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Vector Operations for Accelerating Expensive
Bayesian Computations – A Tutorial Guide∗

David J. Warne‡,§,†, Scott A. Sisson¶, and Christopher Drovandi‡,§

Abstract. Many applications in Bayesian statistics are extremely computation-
ally intensive. However, they are often inherently parallel, making them prime
targets for modern massively parallel processors. Multi-core and distributed com-
puting is widely applied in the Bayesian community, however, very little attention
has been given to fine-grain parallelisation using single instruction multiple data
(SIMD) operations that are available on most modern CPUs. In this work, we
practically demonstrate, using standard programming libraries, the utility of the
SIMD approach for several topical Bayesian applications. Using the C program-
ming language, we show that SIMD can improve the single-core floating point
arithmetic performance by up to a factor of 6× compared scalar C code and more
than 25× compared with optimised R code. Such improvements are multiplicative
to any gains achieved through multi-core processing. We illustrate the potential of
SIMD for accelerating Bayesian computations and provide the reader with tech-
niques for exploiting modern massively parallel processing environments.
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1 Introduction

Practical applications in Bayesian statistics are computationally challenging since the
posterior density is only known up to a normalising constant. Therefore, advanced
Monte Carlo schemes are often required. Intractable likelihoods further compound these
computational burdens (Sisson et al., 2018). In addition to posterior sampling, there are
other computational challenges in Bayesian statistics. For example, it may be necessary
to ensure priors are only weakly informative, and selected from a family of priors with
a hyperparameter (Evans and Jang, 2011; Gelman, 2006).
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The performance of computational methods and computer hardware continues to
improve (Green et al., 2015) largely due to increased parallel processing capacity. To
fully exploit modern computational resources for Monte Carlo sampling, implementation
details are essential. Code optimisation for hardware acceleration is standard in the high
performance computing (HPC) discipline, and Bayesian practitioners can benefit from
these techniques (Gillespie and Lovelace, 2017).

Many Monte Carlo schemes are inherently parallel. For example, likelihood-free
methods, such as approximate Bayesian computation (ABC) require a large number of
independent prior predictive samples that can be executed in parallel. However, more
sophisticated samplers, such as Markov chain Monte Carlo (MCMC) (e.g. Green et al.,
2015; Marjoram et al., 2003), sequential Monte Carlo (SMC) (e.g. Del Moral et al.,
2006; Sisson et al., 2007) and multilevel Monte Carlo (MLMC) (e.g. Jasra et al., 2019;
Warne et al., 2018) require more effort to efficiently parallelise (Murray et al., 2016)
due to synchronisation and communication requirements. These overheads can inhibit
scalability for multithreading on central processing units (CPUs).

General purpose graphics processing units (GPGPUs) are highly effective at acceler-
ating advanced Monte Carlo schemes (Klingbeil et al., 2011; Lee et al., 2010a). GPGPUs
make heavy use of single instruction multiple data (SIMD) (van der Pas et al., 2017),
that is, instructions that operate on vectors element-wise. SIMD is also widely avail-
able in modern CPUs containing vector processing units (VPUs). Such SIMD CPU
implementations can achieve performance boosts comparable with GPGPU implemen-
tations (Lee et al., 2010b; Mudalige et al., 2016). Therefore, practical understanding of
SIMD for CPUs is relevant to applied Bayesian analysis. We focus on code structures
and algorithmic techniques for practitioners to harness VPUs available in most com-
modity CPUs, and provide example codes using both R and C.1 Since almost all modern
desktops and laptops have SIMD capabilities, these techniques are highly relevant to
many applied statisticians and not exclusively to users of HPC systems.

The paradigms of parallelism are distributed computing, multithreading, vectorisa-
tion, and pipelining (Trobec et al., 2018; van der Pas et al., 2017). Each paradigm has a
granularity that refers to the ratio of communication to computation for a parallel work-
load. We refer to distributed computing and multithreading as coarse-grained, whereas
vectorisation and pipelining are fine-grained. Most exemplars of fine-grain parallelism
in statistics are based on accelerators, such as, GPGPUs (Lee et al., 2010a; Terenin
et al., 2018), Intel Xeon Phis (Hurn et al., 2016; Mahani and Sharabiani, 2015), and
custom co-processors (Zierke and Bakos, 2010). Since accelerators are not practical for
many practitioners, we do not discuss them here. Instead we highlight parallelisation
strategies for optimal utilisation of CPUs with a focus on vectorisation using SIMD.

We demonstrate the utility of CPU-based SIMD for accelerating Bayesian inference.
In Section 2 we introduce principles of code optimisation and hardware acceleration
using SIMD, then practically demonstrate these principles, in Section 3, through a
tutorial comparing optimised R and C implementations of prior predictive sampling for
ABC (Sisson et al., 2018). Finally, several topical case studies are presented in Section 4:
the computation of Bayesian p-values for prior weak informativity tests (Evans and Jang,

1Example code is available from GitHub: https://github.com/davidwarne/Bayesian SIMD examples.

https://github.com/davidwarne/Bayesian_SIMD_examples


D. J. Warne, S. A. Sisson, and C. Drovandi 595

2011), and parameter inference in econometrics (Bekaert et al., 2015). We highlight
algorithmic features that are suited for parallelism and demonstrate modifications for
practical guidance. The clear demonstration of performance benefits using SIMD for
CPUs is our main contribution. Example optimised implementations are provided as
Supplementary Material (Warne et al., 2021) using the C language, OpenMP standard
(version ≥ 4.5), the Intel Math Kernel Library2 (MKL) (version ≥ 2018), and the Intel
C compiler3 icc (version ≥ 17.0.1). Our guidelines are also directly applicable to the
Julia language (Bezanson et al., 2017) and to external interfaces to pre-compiled C code,
such as Matlab C-MEX and Rcpp combined with RcppXsimd (see Section 5).

2 An introduction to code optimisation

Here, we introduce CPU computing concepts essential for optimisation. We avoid tech-
nological details in favour of simple tools and rules-of-thumb for practitioners.

2.1 Vectorisation with SIMD

CPU cores are sequential,4 performing a single operation, such as arithmetic or read-
ing/writing data, per clock cycle. Without optimisations, the loop in Figure 1(a) requires
four floating point addition operations. Modern CPU cores can perform scalar or vector
arithmetic, thus Figure 1(a) takes only a single vector addition (4× speedup).

Figure 1: VPUs execute in SIMD. The body of the for loop in (a) requires four scalar
additions but only one vector addition as shown in (b).

Vector arithmetic is implemented using VPUs that execute in SIMD. The VPU
inputs are wider than the scalar arithmetic units. A VPU that accepts 256 bit in-
puts can store eight single precision (32 bit) or four double precision (64 bit) floating
point numbers. VPUs perform arithmetic element-wise on input vectors as shown in
Figure 1(b). Acceleration through SIMD is multiplicative with gains achieved through
multithreading. Using 18 threads and 512 bit vectors of an Intel Xeon Gold 6140 CPU,5

could theoretically perform up to 18× (512/64) = 144 times as many double precision
operations per second than sequential processing with scalar operations (Tian et al.,
2013).

2https://software.intel.com/content/www/us/en/develop/tools/performance-libraries.html.
3https://software.intel.com/content/www/us/en/develop/tools/compilers/c-compilers.html.
4Although, they do not necessarily execute operations in the order defined by the users code. CPUs

re-order operations as needed to optimise pipelining. This is called out-of-order execution and is a
feature that is not readily available on accelerator architectures.

5https://ark.intel.com/products/120485/Intel-Xeon-Gold-6140-Processor-24-75M-Cache-2-30-GHz-

https://software.intel.com/content/www/us/en/develop/tools/performance-libraries.html
https://software.intel.com/content/www/us/en/develop/tools/compilers/c-compilers.html
https://ark.intel.com/products/120485/Intel-Xeon-Gold-6140-Processor-24-75M-Cache-2-30-GHz-
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2.2 Vectorisation and multithreading with OpenMP

VPUs may be accessed in a variety of ways. One approach is OpenMP, an open stan-
dard for automated parallel computing. OpenMP supports parallel computing through
directives within standard C/C++ (van der Pas et al., 2017) by providing additional
information to the compiler. For C/C++ programs, a compiler is used to translate the
C/C++ source code into binary CPU instructions. OpenMP directives influence this
compilation process. For example, the directive #pragma omp simd (Figure 2(a)) guides
the compiler to include instructions that utilise VPUs.

Figure 2: Example OpenMP directives: (a) loop vectorisation, (b) loop parallelisation
with multithreading, and (c) shorthand syntax for multithreading.

Using #pragma omp parallel tells the compiler to create a pool of threads within
the next code block. Within a parallel block, #pragma omp for distributes loop itera-
tions across these threads. Figure 2(b) and (c) show the same loop as in Figure 2(a), but
parallelised across cores. Combining the use of simd, parallel and for, and parallel

for is key to performance. The following guidelines are useful:

1. Use simd (Figure 2(a)) when loop iterations are independent without conditionals.
The loop should only use arithmetic and standard functions (e.g. sin, exp or pow).

2. Use parallel for (Figure 2(c)) when loop iterations are independent but utilise
conditionals. The loop can be complex and include user function calls.

3. A simd (Figure 2(a)) loop can be included within the body of a parallel for

(Figure 2(c)) loop, but the converse is not true.

4. The full parallel and for (Figure 2(b)) construct can be useful to more explicitly
control the behaviour of individual threads through the use of OpenMP functions.

These guidelines are not strict rules, for example, user defined functions may be called
within a simd loop provided the function has been appropriately constructed and defined
with declare simd. Many other features are also available within OpenMP, and we refer
the reader to the specifications6 for details. Trobec et al. (2018) and van der Pas et al.
(2017) also provide details on parallel computing and HPC. Alternatives to OpenMP
are discussed in Section 5.

6See https://www.openmp.org/specifications/ for full OpenMP specifications.

https://www.openmp.org/specifications/
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2.3 Memory access and alignment

To fully exploit SIMD, it is crucial to manage memory access. Commodity random
access memory (RAM) bandwidth is around 20 GB/sec, whereas the VPU can process
floating point data at a rate of 600 GB/sec. That means only 3% utilisation is possible
for data retrieved from RAM. CPUs avoid this bottleneck with a hierarchy of memory
caches, typically with three levels: L1, L2, and L3. Lower cache numbers correspond
to higher bandwidth, but smaller capacity. L1 cache can keep the VPU close to 100%
utilised, but is typically less than 30 KB. When data are requested, the caches are tested
in order. If the data are in L1 cache, then there is no memory access penalty. If not in
L1 cache, then L2 is checked and so on. RAM is accessed only when the data are not in
any cache, which is called a cache miss. For efficiency, data arrays should be accessed in
patterns that minimise cache misses. Aim to reuse data soon after it was last accessed
and avoid random memory access patterns in favour of regular access. That is access
a[i], then a[i+n], then a[i+2*n].7 Ideally, n = 1 or is small to avoid cache churn.

Memory alignment is also important for SIMD. Memory is partitioned into blocks
called cache lines. For many recent Intel CPUs, these are 64 bytes in length.8 When
the CPU loads data at an address, the entire cache line is loaded. When doing SIMD,
the first byte of a data array should be aligned with the 64 byte cache line boundary,
otherwise some vectors will cross cache lines. Performing SIMD on unaligned data incurs
a performance penalty, or may fail completely for some older standards. In practice this
only impacts the code used to allocate memory and define array variables: i) Use either
mm malloc (Intel) or memalign (GNU), in place of default malloc;9 and ii) append
declspec(align(n)) to the usual array definition code.10 For details on efficient use

of cache and memory access, see Crago et al. (2018) and Geng et al. (2018).

2.4 Performance analysis

Not all applications require code optimisation and this must be assessed on a problem-
specific basis. Code optimisation effort should be informed by performance analysis to
ensure potential reductions in computation time are worth extra development time. It
is common for this to be overlooked in practice (Hurn et al., 2016; Lee et al., 2010b).

Profiling and static code analysis software can be used to obtain performance statis-
tics on timing and memory bottlenecks, e.g., Intel VTune Amplifier11 and Intel Ad-
visor.12 These tools are also essential to investigate and control compiler output. In
addition to profiling code, it is important to estimate the theoretical peak performance
for your hardware. One can obtain a rough best-case runtime by comparing this peak
performance with an estimate of the number of floating point operations your algorithm
will perform, on average (Hurn et al., 2016).

7Access matrices according to the matrix storage format. For example, the row-major format is used
in C/C++ (access row-by-row) and the column-major format is used in R (access column-by-column).

8The CPU-Z utility (https://www.cpuid.com) is a useful tool to identify cache line sizes.
9On most systems, malloc defaults are 8byte or 16byte.
10For example, declspec(align(64)) double A[100] is a 64 byte aligned array.
11https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html.
12https://software.intel.com/content/www/us/en/develop/tools/advisor.html.

https://www.cpuid.com
https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html
https://software.intel.com/content/www/us/en/develop/tools/advisor.html
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Lastly, most algorithms require some sequential operations, and not all calculations
can be efficiently mapped to SIMD or multithreading. Amdahl’s law (Amdahl, 1967)
states the speedup factor, s, is bounded by

s ≤ CS + CP

CS + CP /P
, (2.1)

where CP is the sequential runtime of code that can be parallelised, CS is the runtime
of code that must remain sequential, and P is the core count or vector length. Thus,
s = (CS + CP )/CS is the maximum speedup as P → ∞.

2.5 A note on random number generation

When combining statistics with parallel computing it is important to consider initialisa-
tion and usage of random number generators (RNGs). Dealing with these aspects poorly
can lead to invalid results, even within standard environments like R. In particular, the
use of different seed values (one per thread) for the same sequential RNG should be
approached with caution. For example, sequences of Linear Congruential Generators
can become correlated if a linear sequence of seeds is used (Davies and Brooks, 2007).

Broadly there are three approaches to deal with this: (i) generate all required ran-
domness serially and distribute among parallel processes; (ii) use a random number
generator that can be split into independent sub-streams, for example a generator that
supports Skip Ahead or Leapfrog methods; or (iii) use a sequence of random number
generators that are statistically independent for the same seed value. We utilise the last
option through the VSL BRNG MT2203 generator family (available within Intel MKL)
that provides statistically independent Mersenne Twister generators. See Bradley et al.
(2011) and Lee et al. (2010a) for details.

2.6 Summary

This introduction to SIMD, OpenMP, memory usage, code analysis, and RNGs is not
specific to Bayesian statistics. However, the ideas are important to efficiently implement
steps within the increasingly computationally expensive algorithms that form a core
part of modern practical Bayesian techniques. In Sections 3 and 4 we demonstrate the
application of these guidelines through a detailed tutorial and number of case studies
in settings of direct interest to Bayesian practitioners.

3 A practical tutorial demonstration for R users

In this section, we provide a practical demonstration of the computational benefits of
directly accessing CPU SIMD operations for ABC-based inference. We begin with R
implementations, step through relevant optimisation within R, then demonstrate the
computational advantages of direct SIMD access using C and OpenMP.
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3.1 Prior predictive sampling for approximate Bayesian computation

ABC techniques are powerful for inference with intractable likelihood functions (Sisson
et al., 2018) and are routinely used to study complex stochastic models (Ross et al., 2017;
Tanaka et al., 2006). Given data, Dobs, the parameter prior density, π(θ), a discrepancy
metric, ρ, and a vector of sufficient (or informative) summary statistics, S(Dobs), then
ABC rejection sampling generates approximate posterior samples by first generating
artificial data from the prior predictive distribution with density,

π(D) =

∫
Θ

s(D;θ)π(θ) dθ, (3.1)

where s(D;θ) is the probability density of the data generation process for a fixed pa-
rameter vector θ in parameter space Θ. A small proportion of samples are accepted to
form an approximation to the posterior,

π(θ | Dobs) ≈ π(θ | ρ(S(Dobs), S(D)) ≤ ε) =
P (ρ(S(Dobs), S(D)) ≤ ε |θ)π(θ)

π(Dobs)

with a sufficiently small acceptance threshold ε. This process is shown in Algorithm 1.

Algorithm 1 ABC rejection sampling.

1: repeat
2: Generate candidate sample θ∗ ∼ π(θ);
3: Use stochastic simulation to generate prior predictive data D∗ ∼ s(D;θ∗);
4: until ρ(S(Dobs), S(D∗)) ≤ ε;
5: Accept θ∗ as an approximate posterior sample;

ABC rejection sampling is rarely implemented in this direct manner (Algorithm 1 is
serial, and produces a random number of candidate samples). Rather, it is common to
generate a fixed number, N , of prior predictive joint samples, (θ∗,D∗). The acceptance
threshold, ε, is then selected a posteriori based on the empirical distribution of the
discrepancy metric, ρ. See e.g. Fan and Sisson (2018) and Warne et al. (2019) for
detailed reviews of ABC methods. ABC-based Monte Carlo estimators converge slowly
in mean-square (Barber et al., 2015), and require large N for reliable inference.

3.2 Example model: a genetic toggle switch

We consider a genetic toggle switch model (Bonassi et al., 2011). Let ui(t) ≥ 1 and
vi(t) ≥ 1 represent expression levels of genes u and v at time t for cells i = 1, 2 . . . , C.
Gene expression evolves according to two coupled stochastic differential equations
(SDEs)

dui(t) =

(
αu

1 + vi(t)βu
− (1 + 0.03ui(t))

)
dt+

1

2
dWi,u(t),

dvi(t) =

(
αv

1 + ui(t)βv
− (1 + 0.03vi(t))

)
dt+

1

2
dWi,v(t),

(3.2)
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where parameters αu, βu, αv and βv define gene inhibition and Wi,u(t) and Wi,v(t) are
independent Wiener processes. The observation process is

yi = ui(T ) + μ+ μσ
ηi

ui(T )γ
, i = 1, 2, . . . , C, (3.3)

where T is the observation time, μ, σ and γ control the error rate and ηi are standard nor-
mal random variables. The data are the measurements for all cells, {yi}Ci=1. Sampling the
prior predictive distribution is needed to infer the parameters θ=(μ, σ, γ, αu, αv, βu, βv)

′

using ABC. We adopt independent uniform priors as chosen by Bonassi et al. (2011),
μ ∼ U(250, 400), σ ∼ U(0.05, 0.5), γ ∼ U(0.05, 0.35), αu, αv ∼ U(0, 50), and βu, βv ∼
U(0, 7). We follow Vo et al. (2019) in adopting 19 equally spaced quantiles of the em-

pirical distribution of {yi}Ci=1 as the vector of summary statistics.

3.3 Implementation and optimisation using R

To simulate the toggle switch system (Equation (3.2)) and observation process (Equa-
tion (3.3)) we can use the Euler-Maruyama scheme (Maruyama, 1955),

ui(t+Δt) = ui(t) + Δt
αu

1 + vi(t)βu
−Δt(1 + 0.03ui(t)) + 0.5

√
Δtξi,u(t),

vi(t+Δt) = vi(t) + Δt
αv

1 + ui(t)βv
−Δt(1 + 0.03vi(t)) + 0.5

√
Δtξi,v(t),

(3.4)

where Δt is the discretisation step and ξi,u(t) and ξi,v(t) are independent normal random
variables. For simplicity, we will assume Δt = 1. This can be implemented directly using
R as shown in Listing 1.

1 simulate.tsw.SDE <- function(theta , T, C) {

2 y <- numeric(C); mu <- theta [1]; sigma <- theta [2]; gam <- theta [3]

3 alpha.u <- theta [4]; alpha.v <- theta [5]

4 bet.u <- theta [6]; bet.v <- theta [7]

5 for (i in 1:C) { # loop over cells

6 ut <- 10; vt <- 10

7 for (j in 2:T){ # evolve gene expression dynamics

8 p.u <- vt^bet.u; p.v <- ut^bet.v

9 ut <- 0.97*ut + alpha.u/(1+p.u) - 1.0 + 0.5*rnorm (1,0,1)

10 vt <- 0.97*vt + alpha.v/(1+p.v) - 1.0 + 0.5*rnorm (1,0,1)

11 ut <- ifelse(ut < 1.0,1.0,ut)

12 vt <- ifelse(vt < 1.0,1.0,vt)

13 }

14 # make noise observation

15 y[i] <- ut + mu + sigma*mu*rnorm (1,0,1)/(ut^gam)

16 }

17 y <- ifelse(y < 1.0, 1.0, y)

18 return(y)

19 }

Listing 1: Näıve R implementation of the toggle switch model.
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Here, the pair of SDEs for ui(t) and vi(t) are evolved one cell at a time, for i =
1, 2, . . . , C. Such a näıve implementation is typical for initial prototypes, but it is pro-
foundly inefficient with a single simulation with T = 600 and C = 8000 taking 35
seconds. This is not practical for ABC sampling, even with individual simulations dis-
tributed across a HPC cluster.

One can achieve substantial computational improvements by re-writing the R code in
terms of vector and matrix mathematics. This exploits optimised linear algebra libraries
such as BLAS and LAPACK that often use SIMD. Listing 2 is an example of vectorised
R code for the toggle switch model.

1 simulate.tsw.SDE <- function(theta , T, C) {

2 ut <- numeric(C); vt <- numeric(C)

3 mu <- theta [1]; sigma <- theta [2]; gam <- theta [3]

4 alpha.u <- theta [4]; alpha.v <- theta [5]

5 bet.u <- theta [6]; bet.v <- theta [7]

6 ut[1:C] <- 10; vt[1:C] <- 10

7 zeta <- matrix(nrow=C,ncol=2*(T-1) +1)

8 zeta[,] <- rnorm(C*(2*(T-1) +1) ,0,1) #generate all random variates

9 for (j in 2:T) { # evolve all cells together with vectors

10 p.u <- vt^bet.u; p.v <- ut^bet.v

11 ut <- 0.97*ut + alpha.u/(1+p.u) - 1.0 + 0.5*zeta [1:C,2*(j-1)]

12 vt <- 0.97*vt + alpha.v/(1+p.v) - 1.0 + 0.5*zeta [1:C,2*(j-1) + 1]

13 ut[ut < 1.0] <- 1.0; vt[vt < 1.0] <- 1.0;

14 }

15 # make noise observation

16 y <- ut + mu+ sigma*mu*zeta [1:C,1]/(ut^gam)

17 y[y < 1.0] <- 1.0

18 return(y)

19 }

Listing 2: Optimised R implementation of the toggle switch model.

The key changes are: 1) genes of all cells are stored in vectors of length C; 2) all Gaus-
sian random variates required for the entire simulation are generated in a single call of
rnorm(); 3) all genes are simulated together using R’s vector maths functions; and 4)
logical indexing is used instead of ifelse() to implement the boundary condition. The
improvements are substantial, taking 1.3 seconds to perform a single simulation with
T = 600 and C = 8000. This is more than 25× improvement, without any multithread-
ing, explicit SIMD operations, or Rcpp code. See the excellent text by Gillespie and
Lovelace (2017) for details.

The purpose of comparing Listings 1 and 2 is to highlight the importance of optimis-
ing serial code. Now that the R implementation is efficient, we can distribute the process
across multiple cores using the doParallel package as shown in Listing 3. Distribut-
ing N = 8064 draws from the prior predictive across 16 cores (Intel Xeon E5-2680v3
processor13) takes just over 11 minutes!

13https://ark.intel.com/products/81908/Intel-Xeon-Processor-E5-2680-v3-30M-Cache-2-50-GHz-.

https://ark.intel.com/products/81908/Intel-Xeon-Processor-E5-2680-v3-30M-Cache-2-50-GHz-
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1 library(tictoc)

2 library(doParallel)

3 source("simulateToggleSwitchSDEopt .R")

4 # set up problem size

5 T <- 600; C <- 8000; N <- 8064

6 # set up cluster

7 cl <- makeCluster (24)

8 registerDoParallel(cl)

9 tic() # Generate prior predictive samples

10 obs_vals <- foreach(k = 1:N) %dopar% {

11 # sample the prior

12 theta <- runif(7,c(250.0 ,0.05 ,0.05 ,0.0 ,0.0 ,0.0 ,0.0),

13 c(400.0 ,0.5 ,0.35 ,50.0 ,50.0 ,7.0 ,7.0))

14 # run model simulation

15 c(theta ,simulate.tsw.SDE(theta ,T,C))

16 }

17 toc() # report timing

18 stopCluster (cl) # clean up

Listing 3: Multithreaded prior predictive sampling using the R package doParallel.

For some applications, optimised R can be fast enough and we do not advocate the
use of further optimisation for all Bayesian applications (See Section 2.4). However,
the trade-off between development time and runtime is very application specific. For
this example, even using 16 cores, the optimised R code will take around 24 hours
to draw N = 1,000,000 prior predictive samples, which may be insufficient for ABC
inference with small ε. To motivate progressing beyond R, note that the indirect access
of SIMD through optimised BLAS and LAPACK libraries has limitations in terms of
cache utilisation for this application. This is highlighted in the next section.

3.4 Optimisation using C and SIMD operations

Direct access to SIMD through C with OpenMP enables superior memory access pat-
terns that ensure substantially higher utilisation of the VPUs (see Section 5 for alterna-
tives). While the optimised C implementations presented here are more complex than
the optimised R implementation (Listing 2), they provide a practical example that will
help reduce the learning curve for practitioners.

Listing 4 provides the main structure of the C program. Note the inclusion of the
header files for the MKL libraries and the OpenMP library; we will point out calls to
these libraries as necessary. Definitions of the constants VECL and ALIGN refer to the
width of the SIMD vectors and the memory alignment to ensure vectors never cross
cache lines (see Section 2). The functions simulate tsw SDE and main represent the C
equivalents of the R code Listings 2 and 3. C implementations are given in Listings 5
and 6, the details of which are discussed below.
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1 /* standard C headers */

2 #include <stdio.h>

3 #include <math.h>

4 #include <string.h>

5 /* Intel headers */

6 #include <mkl.h>

7 #include <mkl_vsl.h>

8 /* OpenMP header */

9 #include <omp.h>

10
11 #define VECL 4 /* for AVX2 (256 bit = 4 doubles) */

12 #define ALIGN 64 /* 64 byte cache lines */

13
14 void

15 simulate_tsw_SDE (VSLStreamStatePtr stream ,

16 double * restrict theta , int T, int C,

17 double * restrict zeta , double * restrict y)

18 /* ... code for model simulation ... */

19 }

20
21 int

22 main(int argc ,char **argv) {

23 /* ... code for parallel prior predictive sampling ... */

24 }

Listing 4: Overall structure of the optimised C implementation.

The optimised C implementation of the toggle switch model is given in Listing 5.
From an algorithmic perspective this code can be considered a hybrid between the
two R implementations (Listings 1 and 2). That is, cells are evolved in small blocks
of length VECL, as opposed to individually (Listing 1) or all together (Listing 2). The
outer loop iterates over the cell index c in strides of VECL (the E5-2680v3 CPU sup-
ports 265 bit vectors, giving VECL = 4 doubles). As in the optimised R code (List-
ing 2), all the random variates required within each block are pre-computed using the
vdRngGaussian function from MKL. In each block there are VECL noisy observations,
y[c],y[c+1],. . .,y[c+VECL-1], to be computed (one per cell). Using SIMD we can evolve
the SDE pair associated with the y[c] observation and obtain the others in the same
block at the same time. This is done with a second loop over the index c2 that repre-
sents the position in the SIMD vector. Note the use of the aligned statement within the
simd directive. This allows the compiler to assume the arrays zeta (random variates)
and y (simulated data) are aligned to the cache boundary and enables more efficient
machine code to be generated. The SIMD loop is not really iterating over values of c2,
but rather synchronously executing each statement within the loop for all values of c2
concurrently. This leads to exceptional reuse of L1 cache: since the SDE state variable
u t and v t are updated in-place, all computation is performed using the fast CPU
memory.
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1 void

2 simulate_tsw_SDE (VSLStreamStatePtr s,

3 double * restrict theta , int T, int C,

4 double * restrict zeta , double * restrict y) {

5 double mu = theta [0], sigma = theta [1], gamma = theta [2];

6 double *alpha = theta+3, *beta = theta +5;

7 /* process cells in blocks of VECL */

8 for (int c=0;c<C;c+=VECL){

9 /* Generate all the random variates for these realisations */

10 vdRngGaussian(VSL_RNG_METHOD_GAUSSIAN_BOXMULLER2 ,s,2* VECL*T,

11 zeta ,0.0 ,1.0);

12 /* simulate all trajectories for this block in SIMD */

13 #pragma omp simd aligned(zeta:ALIGN , y:ALIGN)

14 for (int c2=0;c2 <VECL;c2++) {

15 /* copy parameters to ensure in cache/registers */

16 double _gamma = gamma , _sigma = sigma , _mu = mu;

17 double alpha_u = alpha [0], alpha_v = alpha [1];

18 double beta_u = beta[0], beta_v = beta [1];

19 double u_t = 10, v_t = 10;

20 /* evolve u/v pairs for this cell */

21 for (int j=1;j<T;j++) {

22 double p_u = pow(v_t ,beta_u);

23 double p_v = pow(u_t ,beta_v);

24 u_t *= 0.97; u_t += alpha_u /(1.0 + p_u) - 1.0;

25 v_t *= 0.97; v_t += alpha_v /(1.0 + p_v) - 1.0;

26 double zeta_u = zeta[(j-1)*VECL*2 + c2];

27 double zeta_v = zeta[(j-1)*VECL*2 + 4 + c2];

28 u_t += 0.5* zeta_u; u_t = (u_t >= 1.0) ? u_t : 1.0;

29 v_t += 0.5* zeta_v; v_t = (v_t >= 1.0) ? v_t : 1.0;

30 }

31 /* make noisy observation */

32 y[c+c2] = u_t + _mu +

33 _sigma*_mu*zeta[(T-1)*VECL *2+c2]/pow(u_t ,_gamma);

34 y[c+c2] = (y[c+c2] >= 1.0) ? y[c+c2]: 1.0;

35 }

36 }

37 }

Listing 5: Optimised C implementation of the toggle switch model. OpenMP is used to
execute the innermost loop using SIMD. MKL is used for RNGs.

It is possible to do even better, since computing all Gaussian random variates for
each block represents a trade-off. To understand this, note that advanced interfaces,
such as compiler intrinsic functions (see discussion in Section 5), can enable efficient
RNG sampling within the rest of the Euler-Maruyama update. However, this cannot
be done with OpenMP as the function vdRngGaussian has overheads that dominate
for very small sample sizes. Conversely, generating all the Gaussian random variates
at the start with a single vdRngGaussian call forces the CPU to access L2 cache after
a few blocks have been processed, resulting in loss of performance. This trade-off to
memory access presented in Listing 5 cannot be efficiently replicated in R. Using BLAS
and LAPACK functions for small vectors results in similar performance issues as for the
vdRngGaussian function. Therefore, the best that can be done with R is to use long
vectors to evolve all cells together.
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1 int

2 main(int argc ,char **argv) {

3 /* set up problem size */

4 int T = 600, C = 8000, K = 7, N = 8064, seed = 1337;

5 /* allocate aligned memory for generated data */

6 double *obs_vals = (double *) _mm_malloc(C*sN*sizeof(double),ALIGN);

7 /* allocate aligned memory prior samples */

8 double *theta = (double *) _mm_malloc(K*N*sizeof(double),ALIGN);

9 /* compute simulations in parallel */

10 #pragma omp parallel shared(seed ,N,C,obs_vals ,theta)

11 {

12 VSLStreamStatePtr s;

13 /* get thread information and assign workload */

14 int tid = omp_get_thread_num ();

15 int N_per_thr = N/omp_get_num_threads ();

16 /* initialise RNG stream for this thread */

17 vslNewStream (&s,VSL_BRNG_MT2203 +tid ,seed);

18 /* allocate aligned memory for Gaussian random variates */

19 double *zeta = (double *) _mm_malloc (2* VECL*T*sizeof(double),ALIGN);

20 /* compute simulations in this threads workload */

21 for (int k=tid*N_per_thr ;k<(tid +1)*N_per_thr ;k++) {

22 /* pointers to memory for this sample */

23 double *p = theta + k*7, *D = obs_vals + k*C;

24 /* sample prior */

25 vdRngUniform (VSL_RNG_METHOD_UNIFORM_STD ,s,1,p ,250.0 ,400.0);

26 vdRngUniform (VSL_RNG_METHOD_UNIFORM_STD ,s,1,p+1 ,0.05 ,0.5);

27 vdRngUniform (VSL_RNG_METHOD_UNIFORM_STD ,s,1,p+2 ,0.05 ,0.35);

28 vdRngUniform (VSL_RNG_METHOD_UNIFORM_STD ,s,2,p+3 ,0.0 ,50.0);

29 vdRngUniform (VSL_RNG_METHOD_UNIFORM_STD ,s,2,p+5 ,0.0 ,7.0);

30 /* run simulation and store observations */

31 simulate_tsw_SDE (s,p,T,C,zeta ,D);

32 }

33 /* clean up memory */

34 vslDeleteStream (&s);

35 _mm_free(zeta);

36 }

37 /* \ldots code to output results to file goes here ... */

38 exit (0);

39 }

Listing 6: Multithreaded prior predictive sampling using C and OpenMP threading

Armed with a highly efficient SIMD implementation of the model, we can gener-
ate prior predictive samples across multiple CPU cores. This uses the multithreading
pre-processor directive, #pragma omp parallel, as shown in Listing 6. Each thread
is provided with its own random number stream using the Intel MKL/VSL function
vslNewStream with independence guarenteed through the VSL BRNG MT2203 generator
family (see Section 2). The memory allocated to store prior samples, theta, and simula-
tion outputs, obs vals, are shared across threads, using the shared clause, and thread
specific offsets are computed, using the OpenMP functions omp get thread num() and
omp get num threads(). The loop over index k is performing the prior predictive sam-
pling tasks assigned to each thread. Unlike the R implementation (Listing 3), we ex-
plicitly partition the work amongst the available threads to allow reuse of the memory
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allocated for the Gaussian random variates, zeta. OpenMP does support various forms
of automated scheduling of thread tasks, but for this example explicit partitioning is
more straightforward.

3.5 Benchmarks

We compare the R implementations (Listings 1, 2 and 3) with the C implementation
(Listings 4, 5 and 6) in terms of the time taken to generate a fixed number, N , of prior
predictive samples given P cores. The fastest sampler would, in turn, produce a smaller
Monte Carlo error for a fixed computational budget. For example, the standard central
limit theorem suggests a 4× speedup will result in roughly 1/2 the Monte Carlo error
for the same computational budget. In an ABC setting there is also bias to consider, so
reducing the model simulation time is absolutely crucial since the acceptance threshold
ε must be sufficiently small.

The codes are benchmarked using two Intel Xeon E5-2680v3 (Haswell) processors or
a single Intel Xeon Gold 6140 (Skylake) processor. The E5-2680v3 supports the AVX2 in-
struction set (256 bit vector) and the 6140 supports the AVX512 instruction set (512 bit
vectors). Both processor architectures have similar serial performance with cores clocked
at around 2.5 GHz. We benchmark with different numbers of cores, P = 1, 2, 4, 8, 16
for each implementation. For each value of P the benchmark is repeated four times, to
obtain mean computation times ĈT , with each replicate generating N = 8064 prior pre-
dictive samples. For fairness, we compiled R (version 3.3.1) from source using the Intel
compiler suite and linked against MKL for optimised BLAS and LAPACK routines. The
Intel C compiler version is 17.0.1 (compatible with the GNU C complier version 6.3.0).
To demonstrate the difference between speed-up obtained from the improved memory
utilisation and the usage of SIMD, we also compile a version of the C implementation
with SIMD disabled using the -no-vec compiler option.

Figure 3 summarises the results in terms of runtimes ĈT (Figure 3(a),(c),(e)) and
speed-up factor ĈT /ĈB for various serial baselines ĈB (Figure 3(b),(d),(f)). See the
Supplementary Material (Warne et al., 2021) for precise data tables of runtimes. Using
the näıve R code as the baseline (Figure 3(a)–(b)), a speedup of 16× is possible with
P = 16 as one would expect. However, this pales by comparison with the more than
430× speedup using the optimised R code and P = 16, demonstrating the value in
optimising serial code before implementing parallelism. The improvement is even greater
for the C code with speedups of more than 1000× (no vectors, P = 16), 3800× (AVX2
vectors, P = 16), and 4300× (AVX512, P = 16). These impressive numbers are against
a näıve baseline and more sensible numbers are obtained using the optimised R code as
a baseline (Figure 3(c)–(d)). Here optimised C code can achieve 130× speedup (AVX2,
P = 16) and 150× speedup (AVX512, P = 16) compared with only 16× speedup with
optimised R code and P = 16. Finally, even with the C code as a baseline (Figure 3(e)–
(f)), SIMD enables 30× speedup (AVX2, P = 16) and almost 40× speedup (AVX512,
P = 16). In this case, the speedup from multithreading alone is only 13× for P = 16.
There are a few reasons that could cause this, but it is likely that each thread does not
perform enough work to mask threading overheads. P ≤ 4, seems to provide a large
enough workload per thread leading to 15× speedup (AVX2, P = 4) and 20× speedup
(AVX512, P = 4).
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Figure 3: Benchmarking results for the prior predictive sampling application. (a) Mean
runtimes, ĈT , using P cores for various implementations: R Näıve (Xeon E5-2680v3;
solid red), R optimised (Xeon E5-2680v3; dashed red), C with scalar operations only
(Xeon E5-2680v3; blue solid), C with AVX2 vectors (Xeon E5-2680v3; blue dashed),
C with scalar operations only (Xeon Gold 6140; yellow solid), and C with AVX512
vectors (Xeon Gold 6140; yellow dashed). (b) Computational improvements for each
optimisation relative to baseline ĈB (R Näıve with P = 1). (c) and (d) same as (a) and
(b) but using a different baseline ĈB (R Optimised with P = 1). (e) and (f) same as (a)
and (b) but using a different baseline ĈB (C scalar with P = 1 on Xeon E5-2680v3).

3.6 Summary

This tutorial has demonstrated the computational benefits of direct access to SIMD

operations in comparison to indirect access through pre-compiled BLAS and LAPACK

libraries available in languages such as R and Matlab. Our C implementation (Listings 5
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and 6) is more that 20× faster than our optimised R implementation (Listing 2 and 3)
for the same CPU hardware and number of available cores, P . Restricting comparison
to the C implementation, SIMD operations can improve the performance of prior pre-
dictive sampling for ABC by a factor of more than 6× compared with standard scalar
implementations. Given the enormous number of prior predictive samples required to
obtain meaningful parameter estimates with ABC (Barber et al., 2015), we submit that
these techniques are highly relevant for practitioners dealing with such applications. All
codes presented here are available as Supplementary Material (Warne et al., 2021).

4 Case studies

In this section, we explore the benefit of SIMD operations in combination with multi-
threading using two case studies relevant to Bayesian practitioners.

4.1 Case study 1: weakly informative priors

Here, we consider the selection of weakly informative priors (Gelman, 2006) within the
framework proposed by Evans and Jang (2011) using the implementation by Nott et al.
(2018). Following Nott et al. (2018), the prior predictive p-value,

p(Dobs) = P

(
1

π(D)
≥ 1

π(Dobs)

)
= P (π(D) ≤ π(Dobs)) , (4.1)

is a measure of Bayesian model criticism, where Dobs are the observational data, and
π(D) is the prior predictive distribution (Equation (3.1)). Equation (4.1) provides a
p-value for prior-data conflict (Evans and Jang, 2011) associated with low prior density
assigned to parameters with good model fit. If γ is a pre-defined small cut-off, then
p(Dobs) ≤ γ signifies prior-data conflict.

Consider a family of priors, π(θ | λ) with the hyperparameter λ ∈ Λ. A base prior,
π(θ | λ0) for λ0 ∈ Λ, represents the current best knowledge of the parameter θ. Let

π(D | λ) =
∫
Θ

L(θ;D)π(θ | λ) dθ (4.2)

be the prior predictive density for the prior π(θ | λ) and likelihood L(θ;D), and let
pλ(Dobs) be the prior predictive p-value under π(D | λ) (equivalent to Equation (4.1)),

pλ(Dobs) = P (π(D | λ) ≤ π(Dobs | λ)) . (4.3)

Assume data are generated under the base prior predictive distribution, that is,
D0 ∼ π(D | λ0). The task is to find values of λ such that,

P (pλ(D0) ≤ γ) < P (pλ0
(D0) ≤ γ) . (4.4)

Priors satisfying Equation (4.4) are weakly informative with respect to the base prior.
Weak informativity indicates less prior-data conflict than the base. Equivalently, weak
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informativity at level α indicates γλ,α > γλ0,α where γλ,α and γλ0,α are the prior-data
conflict cut-offs such that P (pλ(D0) ≤ γλ,α) = P (pλ0(D0) ≤ γλ0,α) = α.

Given a set of K hyperparameter values, λ1, . . . ,λK ∈ Λ, with λ0 corresponding
to the base prior, the task is to compute γλk,α such that P (pλk

(D0) ≤ γλk,α) = α for
k = 0, 1, . . . ,K and D0 ∼ π(D | λ0). The process proceeds as in Algorithm 2. The
output of Algorithm 2 is a set of α level cutoffs {γλ0,α, γλ1,α, . . . , γλK ,α}, to derive a set
of weakly informative prior distributions with respect to the base prior π(θ | λ0), that
is, {π(θ | λk) : γλk,α > γλ0,α, k = 1, 2, . . . ,K}.

Algorithm 2 Weak informativity test.

1: Initialise hyperparameters λ0,λ1, . . . ,λK ∈ Λ, with base parameter λ0;
2: for k ∈ [0, 1, . . . ,K] do
3: for i ∈ [1, 2, . . . , N ] do

4: Generate data from base prior predictive D(i)
0 ∼ π(D | λ0);

5: Generate data from prior predictive D(i)
k ∼ π(D | λk);

6: Evaluate πi
0 ← π(D(i)

0 | λk) and πi
k ← π(D(i)

k | λk);
7: end for
8: for i ∈ [1, 2, . . . , N ] do

9: Estimate p-value samples pik ← pλk
(D(i)

0 ) ≈ 1
N

∑N
j=1 1[0,πi

0]

(
πj
k

)
;

10: end for
11: Compute γλk,α as the α quantile of

{
p1k, p

2
k, . . . , p

N
k

}
;

12: end for

This process is extremely computationally intensive since the evidence term, π(D |
λ), must be evaluated for many different D. Adaptive sequential Monte Carlo (SMC)
sampling (Supplementary Material, Warne et al., 2021) using likelihood annealing and
Markov chain Monte Carlo (MCMC) proposals (Beskos et al., 2016; Chopin, 2002)
is used to estimate π(D | λ). Algorithm 2 requires 2KN executions of the adaptive
SMC sampler (Supplementary Material, Warne et al., 2021). Algorithm 2 represents a
direct implementation of the weak informativity test for the purposes of demonstrating
SIMD optimisation. However, other algorithmic optimisations could also be made. For
example, it would be possible to re-use the N datasets generated by the base prior for
each k = 0, 1, . . . ,K and there may be computational benefits for doing so, such as
variance reduction and likelihood evaluation reuse.

We consider weakly informative priors for the analysis of an acute toxicity test in
which M groups of animals are given different dosages of some toxin, and the number of
deaths in each group are recorded (Evans and Jang, 2011; Nott et al., 2018). A logistic
regression model is applied for the number of deaths yi in group i ∈ [1, 2, . . .M ],

yi ∼ Bin

(
ni,

1

1 + eβ0+β1xi

)
, i = 1, 2, . . . ,M, (4.5)

where ni and xi are respectively the number of animals and the toxin dose level in the
ith group of the experiment, and θ = (β0, β1)

′ are the regression parameters. Given
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data Dobs = [yobs,1, yobs,2, . . . , yobs,M ], the likelihood function is

L(θ;Dobs) =

M∏
i=1

(
ni

yobs,i

)(
1

1 + eβ0+β1xi

)yobs,i
(
1− 1

1 + eβ0+β1xi

)ni−yobs,i

. (4.6)

From the data in Evans and Jang (2011) we have M = 4, n1 = n2 = n3 = n4 = 5,
x1 = −0.86, x2 = −0.3, x3 = −0.05 and x4 = −0.75. We adopt bivariate Gaussian
priors from Nott et al. (2018), θ ∼ N (0, diag(λ)2) and λ0 = (10, 2.5)′.

Parallelisation and SIMD opportunities

Parallel implementations of SMC samplers using multithreading require thread syn-
chronisation for both the resampling and annealing steps (Hurn et al., 2016; Lee et al.,
2010a; Murray et al., 2016). Thus, it is more beneficial to distribute the K hyperparam-
eter values in Algorithm 2 across P cores, with each thread computing the α quantile
for K/P hyperparameters, since these may be performed independently. For every hy-
perparameter, we sequentially process the N p-value computations. The SMC sampler
(Supplementary Material, Warne et al., 2021) can be accelerated through SIMD. SMC
samplers are well suited to SIMD since sychronisation is maintained automatically.
While there are many aspects of this sampler that use SIMD in the code example, we
focus here on SIMD for the MCMC proposal kernel for diversification of particles as it
has the greatest effect on performance.

The strategy is similar to the C implementation of the toggle switch model (Sec-
tion 3). At SMC step n, each particle is perturbed via Rn MCMC steps. The same op-
erations are performed at each MCMC iteration, with the exception of a single branch
operation that arises from the accept/reject step. We process the particle updates in
blocks of length V and evolve the Rn MCMC steps for this block together using SIMD.
All of the Gaussian and uniform random variates required for the block are generated
together before the block is processed. The SIMD MCMC proposals are performed as in
Algorithm 3. Hadamard notation indicates element-wise division, x� y, multiplication,
x◦y and exponentiation, x◦a, for scalar a. Element-wise application of a function, f , over
length V vectors is denoted by fV (xi:i+V ) = [f(xi), f(xi+1), . . . , f(xi+V )]. In practice,
Algorithm 3 operates with the likelihood and prior on the log scale to avoid numerical
underflow. For optimal performance, SIMD forms for the likelihood LV , prior density
πV and Gaussian proposal density φV are required. This is available for the logistic
regression model, Gaussian priors and proposals used here.

Other aspects of the SMC sampler that can utilise SIMD include likelihood evalua-
tions and the computation of effective sample sizes and weight updates (Supplementary
Material, Warne et al., 2021). The scalar bottleneck is the multinomial resampling step
that utilises the look-up method. Parallel approximations for resampling have been pro-
posed (Murray et al., 2016) and demonstrated to be very effective for large scale SMC
samplers. Since we focus here on a SIMD implementation of SMC, we do not implement
this, however, extending Murray et al. (2016) to SIMD is an important piece of future
work.
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Algorithm 3 SIMD implementation of MCMC proposals for SMC.

1: for i = 1, 1 + V, 1 + 2V, . . . , Np + 1− V,Np do

2: Generate increments ξ1:Rn

1:V ∼ N (0, hΣ̂);

3: Generate uniform variates u1:Rn

1:V ∼ U(0, 1);
4: for r = 1, 2, . . . , Rn do
5: Generate proposal θ∗

1:V ← θ(i:i+V )
n + ξr1:V ;

6: α1:V ← LV (θ∗
1:V ;D)◦tn ◦ πV (θ∗

1:V |λ) ◦ φV (θ(i:i+V )
n ;θ∗

1:V , hΣ̂);

7: α1:V ←α1:V �
[
LV (θ(i:i+V )

n ;D)◦tn ◦ πV (θ(i:i+V )
n |λ) ◦ φV (θ∗

(i:i+V );θ
(i:i+V )
n , hΣ̂)

]
;

8: for j = 1, 2, . . . , V do
9: if ur

j ≤ αj then

10: θ(i:i+j−1)
n ← θ∗

j ;
11: end if
12: end for
13: end for
14: end for

Performance

We test the performance improvement obtained through vectorisation and multithread-
ing using the Xeon E5-2680v3 and Xeon Gold 6140 processors. The evaluation of the
weak informativity test in Algorithm 2 is performed for K = 400 hyperparameters and
N = 400 datasets. In all simulations, the K hyperparameter values are generated using
a bivariate uniform distribution λk ∼ U([0.1, 10] × [0.1, 20]) for k = 1, 2, . . . ,K. The
SMC sampling is performed with Np = 500 particles to enable computation to remain
largely within L1 and L2 cache. Results are provided in Figure 4 (see Supplementary
Material for data tables, Warne et al., 2021).

Figure 4(b) shows almost perfect speedup from multithreading and consistent im-
provement due to SIMD when comparing scalar and SIMD performance for the same
CPU and core count (2.1× for AVX2 and 2.3× for AVX512). Diminishing returns are
observed when stepping from 256 bit vector operations to 512 bit SIMD. In our bioas-
say example, the MCMC proposal kernel performs a small number of steps (usually no
more than Rn = 30) and the number of particles in the SMC sampler is Np = 500. The
performance will improve for SIMD in cases where longer MCMC runs are required,
since the MCMC step will dominate SMC iterations with more reuse of L1 cache.

Summary

We have presented the more challenging problem of weak informativity tests over a
family of priors π(θ | λ) with respect to a base prior π(θ | λ0). This requires a large
number of approximations of the posterior normalising constant for different datasets
from the prior predictive distribution. The traditional approach of parallelisation of each
SMC iteration would reduce the level of parallelism available across hyperparameters.
Using the SIMD implementation of SMC we double our computational performance and
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Figure 4: Benchmarking results for weak informativity test. (a) Mean runtimes, ĈT ,
using P cores for various implementations: C with scalar operations only (Xeon E5-
2680v3; blue solid), C with AVX2 vectors (Xeon E5-2680v3; blue dashed), C with scalar
operations only (Xeon Gold 6140; yellow solid), and C with AVX512 vectors (Xeon Gold
6140; yellow dashed). (b) Computational improvements for each optimisation relative
to baseline ĈB (C with scalar operations only with P = 1 on Xeon E5-2680v3).

can reserve multithreading across hyperparameters. A combination of parallelism and
SIMD could be implemented to improve the performance of a single SMC step. However,
this offers little benefit here since utilising threads for SMC forces hyperparameters to
be processed serially. If HPC resources are available then hyperparameters could be
distributed across servers: leaving both threading and SIMD for SMC steps.

4.2 Case study 2: parameter inference for a non-Gaussian
asymmetric volatility model

We now consider an adaptive SMC sampler to perform parameter inference in eleven di-
mensions for the “bad environment – good environment” (BEGE) model of innovations
on stock market returns (Bekaert et al., 2015; South et al., 2019).

The BEGE model

The BEGE model (Bekaert et al., 2015) is a non-Gaussian generalisation of the Glosten-
Jagannathan-Runkle (GJR) asymmetric volatility model (Glosten et al., 1993) and is a
generalised autoregressive conditional heteroskedasticity (GARCH) model (Bollerslev,
1986). The BEGE model describes the time-series of stock market returns, {rt}t≥0

using a model on innovation on returns, {ut}t≥0, that consists of a linear combination of
positive “good environment” shocks, {ωp,t}t≥0, and negative “bad environment” shocks,
{ωn,t}t≥0. The BEGE time-series evolves according to

rt+1 = ut+1 + μ, ut+1 = σpωp,t+1 − σnωn,t+1,

ωp,t+1 ∼ Γ̃(pt, 1), ωn,t+1 ∼ Γ̃(nt, 1),
(4.7)
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where μ is the conditional mean of returns, Γ̃(k, 1) is the centered (de-meaned) gamma
distribution with shape k and unit scale, {pt}t≥0 and {nt}t≥0 are respectively the shapes
of the positive and negative shocks, and σp and σn are their constant scales. The shape
parameters evolve according to

pt = p0 + ρppt−1 +
φ+
p

2σ2
p

u2
t1[0,∞) (ut) +

φ−
p

2σ2
p

u2
t1(−∞,0) (ut) ,

nt = n0 + ρnnt−1 +
φ+
n

2σ2
n

u2
t1[0,∞) (ut) +

φ−
n

2σ2
n

u2
t1(−∞,0) (ut) ,

(4.8)

where p0, n0 are initial conditions, and ρp, ρn, φ
+
p , φ

+
n , φ

−
p , and φ−

n are autoregression
parameters.

We use S&P Composite Index returns over the period July 1926 to January 2018 (ob-
tained from the Center of Research in Security Prices) consisting of T = 1099 months of
logged monthly divided-adjusted returns, D = Robs,T = {robs,t}0≤t≤T . Using these data,

Bayesian inference on the unknown parameters θ = (p0, σp, ρp, φ
+
p , φ

−
p , n0, σn, ρn, φ

+
n ,

φ−
n , μ) is performed. Priors are adopted from South et al. (2019) and are given by

p0 ∼ U(10−4, 0.5), σp ∼ U(10−4, 0.3), ρp ∼ U(10−4, 0.99), φ+
p ∼ U(10−4, 0.5), φ−

p ∼
U(10−4, 0.5), n0 ∼ U(10−4, 1), σn∼ U(10−4, 0.3), ρn∼ U(10−4, 0.99), φ+

n ∼ U(−0.2, 0.1),
φ−
n ∼ U(10−4, 0.75), and μt ∼ U(−0.9, 0.9).

The major challenge in this inference problem is the computational cost associated
with the evaluation of the log-likelihood function,

logL(θ;D) = logL(θ;Robs,T ) =

T∑
t=1

log π(robs,t | robs,t−1,θ). (4.9)

Bekaert et al. (2015) show that evaluation of the transitional densities,
π(robs,t | robs,t−1,θ), requires the so called BEGE density πBEGE(ut | σp, σn, pt−1, nt−1).
This can be approximated by computing the BEGE distribution function and taking
finite differences (Bekaert et al., 2015). The BEGE distribution function is given by

FBEGE(ut | σp, σn, pt−1, nt−1) =

∫ ∞

−∞
GΓ̃(ωp,t − ut | nt−1, σn)πΓ̃(ωp,t | pt−1, σp) dωp,t,

(4.10)
with GΓ̃(ωp,t −ut | nt−1, σn) = 1−FΓ̃(ωp,t −ut | nt−1, σn), where πΓ̃(· | k, s) and FΓ̃(· |
k, s) are, respectively, the probability density and distribution functions of a centered
gamma distribution with shape k and scale s. The integral in Equation (4.10) can be
approximated numerically using quadrature. For each point in the discretisation of the
ωp,t parameter space, we require two evaluations of the incomplete gamma function,

P (a, x) =
1

Γ(a)

∫ x

0

e−tta−1 dt, (4.11)

where Γ(a) is the gamma function. Equation (4.11) can be computed using a power
series (Press et al., 1992).
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We apply an adaptive SMC sampler to move Np particles from the prior π(θ) to
the posterior π(θ | Robs,T ) under the BEGE model. This is a very similar SMC sampler
to that applied in Section 4.1. The main difference is the scaling rule for the proposal
kernel within the MCMC step, as the posterior is highly non-Gaussian. We apply the
method of Salomone et al. (2018) to evaluate a set of MCMC trials each with a random
scale factor, h ∈ [0.1, 0.2, . . . , 1.0], at each SMC iteration. We then choose the scale
factor, hopt, which maximises the median expected squared jump distance across all
particles. This continues until at least half of the particles have moved further than the
median (Salomone et al., 2018).

Parallelisation and vectorisation opportunities

In the BEGE model inference problem, we utilise both SIMD and multithreading to ac-
celerate a single SMC sampler. Parallel implementations of SMC samplers and particle
filters have been well studied in the literature (Hurn et al., 2016; Lee et al., 2010a; Mur-
ray et al., 2016). Within a single SMC iteration, particles are completely independent
of each other. However, as noted in Section 4.1, automatic synchronisation can occur
within the MCMC proposal mechanism. Rather than distribute Np particles across P
cores, we ensure that the distribute occurs in contiguous blocks of length V . Each core
will process Np/(PV ) blocks of particles. All data associated with particles is processed
in contiguous blocks of length V , allowing each thread to independently exploit SIMD
within the MCMC proposal mechanism as per Algorithm 3.

Another way to exploit SIMD is in the evaluation of the BEGE log-likelihood. We
extend the approximation of the integral in Equation (4.10). Consider a discretisation
of ωp,t of Nω + 1 nodes with spacing Δω. Then Equation (4.10) can be approximated
by

FBEGE(ut | σp, σn, pt−1, nt−1) ≈
Nω∑
j=1

{[
1− P

(
nt−1,

ωj−1
p,t − ut + nt−1σn

σn

)]

×
[
P

(
pt−1,

ωj
p,t + pt−1σp

σp

)
− P

(
pt−1,

ωj−1
p,t + pt−1σp

σp

)]}
,

(4.12)

where ωj
p,t = ω0

p,t + jΔω, for j = 0, 1, . . . , Nω and ω0
p,t is the lower bound of the dis-

cretisation. For every point {ωj
p,t}0≤j≤Nω , the incomplete gamma function is evaluated

twice; once with pt−1 and once with nt−1. Therefore, we can consider SIMD for the
incomplete gamma function for blocks of ωp,t points of length V , that is, PV (a, x1:V ) =
[P (a, x1), P (a, x2), . . . , P (a, xV )]. We achieve this by extending the method of Press
et al. (1992), resulting in the element-wise vector series expression

PV (a, x1:V ) =
[(
expV (−x1:V ) ◦ (x1:V )

◦a)� (Γ(a)e1:V )
]

◦

⎡
⎣ ∞∑
j=0

(
(x1:V )

◦j)� ((j + 1)e1:V )

⎤
⎦ ,

(4.13)
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where expV (−x1:V ) = [e−x1 , e−x2 , . . . , e−xV ] ∈ R
1×V , and e1:V = [1, 1, 1, . . . , 1] ∈

R
1×V . Equation 4.13 allows efficient iteration that reuses previous steps, thus enabling

good use of L1 and L2 cache. The series is truncated once it has converged under the
∞-norm.

We proceed to approximate FBEGE(ut | σp, σn, pt−1, nt−1) by: 1) applying Equa-

tion (4.13) across the discretisation, {ωj
p,t}0≤j≤Nω , in blocks of length V with shape

pt−1; 2) applying Equation (4.13) across the discretisation, {ωj
p,t}0≤j≤Nω , in blocks of

length V with shape nt−1; and 3) accumulating the sum of products in Equation 4.12.

Performance

We implement the BEGE inference problem using adaptive SMC with likelihood an-
nealing with Np = 1024 particles. We approximate FBEGE(ut | σp, σn, pt−1, nt−1)

using Equations (4.12) and (4.13) with the discretisation {ωj
p,t}0≤j≤Nω , Nω = 100,

ω0
p,t = 10−4−pt−1σp, and Δω = (10σp

√
pt−1−ω0

p,t)/(Nω−1), as is performed by Bekaert
et al. (2015) and South et al. (2019). Results are provided in Figure 5.

Figure 5: Benchmarking results for the SMC sampler for BEGE parameter inference. (a)
Mean runtimes, ĈT , using P cores for various implementations: C with scalar operations
only (Xeon E5-2680v3; blue solid), C with AVX2 vectors (Xeon E5-2680v3; blue dashed),
C with scalar operations only (Xeon Gold 6140; yellow solid), and C with AVX512
vectors (Xeon Gold 6140; yellow dashed). (b) Computational improvements for each
optimisation relative to baseline ĈB (C with scalar operations only with P = 1 on Xeon
E5-2680v3).

We observe an improvement of up to 2× for AVX2 and almost 4× for AVX512 re-
gardless of the number of cores. This is improved VPU utilisation for AVX512 compared
with the weak informativity test (Section 4.1). That is, the BEGE distribution function
approximation is a sufficiently large proportion of the total computation cost, that ef-
ficient calculation can exploit the longer 512 bit vectors. However, the overall speedup
factor is lower from multithreading and increases slowly with P . The SMC sampler
requires threads to synchronise at the end of each iteration. This synchronisation is in
the resampling and annealing steps, and in estimating the optimal MCMC proposal
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scaling could be causing bottlenecks. This can be seen in the diminishing returns on the
parallel speed-up as the number cores increases.

Summary

We have demonstrated how SIMD can be used to further accelerate a parallel SMC sam-
pler for a challenging inference problem from econometrics. Note that the log-likelihood
approximation we apply, based on the work of Bekaert et al. (2015) is biased. Recently,
Li et al. (2020) proposed an unbiased likelihood estimator, for which there are SIMD op-
portunities also. For the purposes of this manuscript, we find the biased approximation
of Bekaert et al. (2015) lends itself more direct discourse.

5 Discussion

The example applications demonstrate common features that allow several conclusions
to be drawn regarding task suitability for SIMD. Firstly, it is clear that the form of
stochastic model under study can have a dramatic effect on the potential performance
boost. Simulation schemes such as Euler-Maruyama are ideal candidates for SIMD,
however, exact stochastic simulation methods like Gillespie’s method (Gillespie, 1977)
are more challenging. We show this effect in the Supplementary Material (Warne et al.,
2021) using the application of ABC for analysis of Tuberculosis transmission (Tanaka
et al., 2006) and observe only moderate improvements from SIMD. This highlights
a difference between continuous time and discrete time Markov processes, and may
motivate the practitioner to consider alternative algorithms that are more suited to
SIMD, for example, the τ -leap approximation (Gillespie, 2000, 2001). The success of
the SIMD version of the MCMC proposal kernel in Section 4.1 also relied on a model
for which SIMD implementation of the likelihood function was possible. Secondly, each
application involved nested parallelisation. The utility of SIMD here is that within
each parallel thread, the computational tasks may be further sub-divided through use
of VPUs. Efficiency gains due to SIMD are multiplicative to those arising from the
use of thread parallelisation. Finally, each application involved a mixture of tasks that
can be performed completely independently and tasks that require synchronisation or
communication. This is important, since independent parallel computation is ideal for
multithreading and fine grain parallel operations with frequent synchronisation are well
suited for SIMD. Our demonstrations are widely applicable, since these three features
are common to many Bayesian applications.

Many other Monte Carlo and Bayesian applications could benefit from these ap-
proaches. One possibility is large scale particle filters, perhaps operating within a
pseudo-marginal scheme (Andrieu et al., 2010), which could be implemented as a hybrid
algorithm in which proposals and weight updates are performed in SIMD blocks that
are distributed across multiple threads. Such a scheme would enable prefix summations,
that is, parallel computation of cumulative sums, to be performed (Hillis and Steele,
1986) in the resampling step, which may improve the performance. Another possibility
is within the class of ABC validation or post-processing procedures. For example, in
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the recalibration post-processing technique of Rodrigues et al. (2018), each of the N
samples θ∗ from the approximate posterior distribution are individually recalibrated
by the construction of a further approximate (ABC) posterior for each θ∗ using all
previously generated (θ∗,D∗) pairs, but based on observing the associated (simulated)
dataset D∗, and constructing all univariate marginal posterior distribution functions.
This re-use of ABC algorithm and previously generated parameter values and datasets
is very common in ABC (e.g. Blum et al., 2013), and makes them particularly suited
for performance gains through parallelism and SIMD. Likelihood-based and frequentist
applications can also benefit from techniques we present here. For example, complex
optimisations for maximum likelihood parameter estimates (Hurn et al., 2016). In gen-
eral, any application that has been demonstrated using GPGPUs could exploit SIMD
on the CPU (Lee et al., 2010a; Holbrook et al., 2020). This is rarely considered when
comparing these technologies (Holbrook et al., 2020; Lee et al., 2010b).

We have provided example C programs, using OpenMP and MKL libraries. We
appreciate that, for very good reasons, higher level languages such as Matlab and R
are preferred environments for many practitioners. The techniques we present can be
exploited through Matlab C-MEX or Rcpp interfaces. However, Matlab and R must be
configured correctly to use the required compiler options. Matrix operations performed
within high level languages, such as Matlab or R, are likely already utilising SIMD
via high-performance BLAS and LAPACK libraries. Unfortunately, many of the SIMD
and memory optimisations cannot be directly exploited using a high level language
alone, as demonstrated in Section 3. Between successive high level functions calls, it
is unlikely that the caches are preserved, and as a result, our SIMD versions of the
Euler-Maruyama scheme and MCMC proposal cannot be directly replicated in Matlab
or R. An exception to this rule is the Julia language (Bezanson et al., 2017) using the
@simd macro to achieve high performance.

OpenMP is also not the only way to access SIMD within C/C++. For example,
OpenCL kernels may be compiled for CPUs that support SIMD units (Hurn et al.,
2016; Macintosh et al., 2019). Instruction level intrinsic functions (available in R via
the RcppXsimd package) allow advanced features such as efficient random variates for
small vectors, but this approach is very challenging and akin to machine code.

We have demonstrated that by following a few simple guidelines to maximise the
utilisation of modern CPUs, advanced Monte Carlo methods may be relatively straight-
forwardly accelerated by a factor of up to 6× when using SIMD compared to equivalent
scalar code in C. We also show speedups of more than 25× when compared with op-
timised R code. These speedups are all for serial code and are multiplied by further
speedups obtained through multithreading. These techniques will only become more
relevant in the future as CPUs architectures are released with wider VPUs and statis-
ticians develop more complex and sophisticated inferential algorithms.

Supplementary Material

Bayesian computations using SIMD operations (DOI: 10.1214/21-BA1265SUPP; .pdf).
Contains: Tutorial code using R and C and example C code using OpenMP and MKL.

https://doi.org/10.1214/21-BA1265SUPP
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