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Optimal Shrinkage Estimation of Predictive
Densities Under a-Divergences®

Edward George', Gourab Mukherjee?, and Keisuke Yano®

Abstract. We consider the problem of estimating the predictive density in a het-
eroskedastic Gaussian model under general divergence loss. Based on a conjugate
hierarchical set-up, we consider generic classes of shrinkage predictive densities
that are governed by location and scale hyper-parameters. For any a-divergence
loss, we propose a risk-estimation based methodology for tuning these shrink-
age hyper-parameters. Our proposed predictive density estimators enjoy optimal
asymptotic risk properties that are in concordance with the optimal shrinkage cal-
ibration point estimation results established by Xie, Kou, and Brown (2012) for
heteroskedastic hierarchical models. These a-divergence risk optimality properties
of our proposed predictors are not shared by empirical Bayes predictive density
estimators that are calibrated by traditional methods such as maximum likelihood
and method of moments. We conduct several numerical studies to compare the
non-asymptotic performance of our proposed predictive density estimators with
other competing methods and obtain encouraging results.
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1 Introduction

Predictive density estimation (prde) is one of the fundamental problems in statistical
prediction analysis (see chapters 2, 7 and 10 of Aitchison and Dunsmore, 1975 and
chapters 2, 3 and 9 of Geisser, 1993). Predictive density estimates assign probabilities
to all possible future outcomes and can be used for better risk assessment and decision
making than traditional point estimation methods (Mukherjee, 2013; Liang, 2002; Xu,
2005). Predictive densities have been widely used in a host of statistical applications in
weather forecasting (Taylor and Buizza, 2004), finance (Tay and Wallis, 2000), infor-
mation theory (Liang and Barron, 2005; Yuan and Clarke, 1999; Barron et al., 1998) as
well as for model diagnostics and validation (Gelman et al., 2013; Pardoe, 2001; Gelman
et al., 2014).

In this paper, we consider multivariate predictive density estimation under general
divergence loss in a heteroskedastic Gaussian model. For point estimation, since the
seminal work of James and Stein (1961) there has been substantial research toward
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understanding the risk properties of shrinkage estimators for the homoscedastic hier-
archical normal models (see Fourdrinier et al., 2018, Efron, 2012 and the references
therein). The concept of shrinkage is important because it provides an elegant frame-
work for combining information from related populations and often leads to substantial
improvements in the performances of estimators used for simultaneous inference. Ko-
maki (2001, 2004); George et al. (2006); Brown et al. (2008) demonstrated the critical
role of shrinkage priors for constructing efficient predictive density estimates (prdes) un-
der Kullback-Leibler (KL) loss. High-dimensional decision theoretic parallels between
prde under Kullback-Leibler loss and point-estimation under quadratic loss have been
established in Fourdrinier et al. (2011); Xu and Liang (2010); George et al. (2012);
Kubokawa et al. (2013); Mukherjee and Johnstone (2017, 2015); Yano and Komaki
(2017); Ghosh et al. (2019). Ghosh et al. (2008), Suzuki and Komaki (2010), Maruyama
and Strawderman (2010), L'Moudden and Marchand (2018) and Ghosh and Kubokawa
(2018) extended those parallels for prde under general a-divergences. Using KL loss as
a divergence measure between the true and estimated predictive density leads to con-
venient tractable analysis. However, predictive densities calibrated by KL loss are often
non-robust to outliers and may under-estimate the variance or ignore important local
attributes of the true density. To circumvent these issues, it is becoming increasingly
popular in complex prediction approaches (Wang et al., 2018; Hernédndez-Lobato et al.,
2016; Cichocki and Amari, 2010; Zhang et al., 2017) to use the class of a-divergences
(Amari, 2009; Liese and Vajda, 2006; Barron et al., 1992) that covers a wide spectrum
of divergence measures with contrasting attributes.

For predictive density estimation in multivariate Gaussian models, Ghosh et al.
(2008) showed that the canonical minimax prde, which is the Bayes prde under uniform
prior, is not admissible under general divergence loss for dimensions greater than 2.
For dominating the canonical minimax prde, Ghosh et al. (2008) used prdes that are
not necessarily Bayes, whereas Maruyama et al. (2019) established the domination re-
sults for the Bayes prde under the harmonic prior of George et al. (2006). Ghosh and
Kubokawa (2018) established that the hierarchical Bayes prde has lower frequentist
risk than that of the empirical Bayes prde in a regression set-up. While Ghosh et al.
(2008); Ghosh and Kubokawa (2018) showcased enhanced predictive efficiency of the
Bayes prde from non-informative priors over plug-in prdes, L’Moudden and Marchand
(2018) proposed improving plug-in prdes directly. However, all of these results are based
on the homoskedastic model. They also do not provide any prescription for selecting a
particular prde among the host of feasible and admissible prdes.

Here, we study the prde in a heteroskedastic set-up where our target density is no
longer spherically symmetric, and consider the problem of finding optimal shrinkage
directions. We provide a data driven program for determining the optimal directions
(location) and magnitude (scale) of shrinkage such that the resultant prde has minimal
frequentist risk among a wide class of shrinkage estimators. Our proposed prde not
only possesses the plug-in-dominance properties of the Bayes prde as in Ghosh et al.
(2008), but also obtains the minimal risk among a wide class of shrinkage rules. These a-
predictive risk optimality properties parallel those established by Xie, Kou, and Brown
(2012) for point estimation in heteroskedastic hierarchical models.
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Recent point estimation results of Xie, Kou, and Brown (2012); Xie et al. (2016);
Tan (2015); Weinstein et al. (2018) have brought to light new shrinkage phenomena
in heteroskedastic models. A hierarchical set-up specifying a second-level structure to
motivate the shrinkage is considered, and the corresponding hyper-parameters are sub-
sequently estimated. Whereas, the common practice is to choose the conjugate hierar-
chical structure and estimate the hyper-parameters through empirical Bayes maximum
likelihood estimator (EBMLE) or empirical Bayes method of moments (EBMOM), we
instead consider tuning the hyper-parameters by minimizing efficient risk estimates as
in Xie, Kou, and Brown (2012).

A significant finding reported in Xie, Kou, and Brown (2012); Xie et al. (2016); Tan
(2015); Weinstein et al. (2018) is that, under heteroskedasticity, EBMLE or EBMOM
provide sub-optimal predictive performance and are far outperformed by algorithms
tuned using risk estimation-based approaches. We establish asymptotic optimality of our
proposed predictive methods akin to the point estimation results in Xie, Kou, and Brown
(2012). These asymptotic properties are not shared by EBMLE or EBMOM based prdes.
We establish asymptotic convergence rates of our risk estimates as dimension increases.
Dimension independent non-asymptotic characterizations of the predictive risk of our
proposed estimators are also provided using maximal inequalities for martingales. We
compare these comprehensive results for general a-divergence with those of Xu and
Zhou (2011) who studied empirical Bayes prde in spherically symmetric homoskedastic
Gaussian model under KL loss. Our general a-divergence results well reconcile with the
KL results in the existing literature. Through numerical studies, we demonstrate the
benefits of using a-divergence based risk calibrated prdes over EBMLE or EBMOM
based prdes. The direction of shrinkage and the shape of the optimally shrunken prdes
greatly varies as o changes.

2 Predictive Set-Up

Predictive Sequence Model Consider observing a vector X = {Xy,...,X,,} where
X; are independent among each other and X; follows N(6;,02),i=1,...,n. Based on
observing X we would like to predict the unknown density of future observations ¥ =
{Y; : 1 < i < n}, where Y; independently follow N (6;, Vf) Here, o;, v; are known and
thus, r; = 12 /0? is the known ratio of the future-to-past variances. The observed past
X and unobserved future Y are only related through the unknown location parameter
0 = {0, : 1 < i < n}. This is the heteroskedastic version of the Gaussian predictive
model studied in Komaki (2001); George et al. (2006); Brown et al. (2008); Xu and Zhou
(2011). Let p(y|x) be any prde for the true density p(y|0,v) = [\, ¢(yi —bi;v;) of Y.
Note that, here we denote normal probability density function (pdf) with variance v by
¢(-;v) and thus, ¢(y; — 0;;v;) = V;1/2¢(V_1/2(yi — 6;)) where ¢(-) denotes standard
normal pdf.
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Loss Function Consider a-divergence as the measure of discrepancy between the prde
and the true density. For any fixed o € R, the loss defined as

Lno(0,p(-;2)) = /p(y |0,v) ¢, (M) dy,

where the f-divergence function £, with domain in [0, c0) is:

{4/(1 = a®)H1 = 20F9/2} o # £,
lo(2) :=< —logz, a=-—1,

zlog z, a=1.

Integrating over the density of the observed past, we have the predictive a-risk as:
Roa(8.5)i= [ p(a | 6,0)L0.0(6.5( - s2)) do.

When o = 3, we have Pearson y2-divergence where as o = —3 corresponds to Neyman
x2-divergence; o = —1 is KL loss and « = 1 yields reverse KL loss; o = 0 corresponds
to Bhattacharyya-Hellinger (BH) loss Bhattacharyya (1943). Note that, the predictive
risk might not be well-defined for all & € R on which we reflect later. For g € {—1, 1},
Ry .00 (0,9) =limg_,qy Rn.o(0, D), so that the KL and reverse KL predictive risk expres-
sions will follow from the general a-predictive risk. Note that, the a predictive risk is
the posterior predictive relative entropy regret criterion introduced in Sweeting et al.
(2006) and differs from the reference prior inducing criterion studied in Clarke and Yuan
(2010); Ghosh et al. (2011).

Hierarchical Set-Up and Shrinkage Prdes Next, we assume a hierarchical higher level
exchangeable structure on the unknown location parameters. Let {6; : 1 < i < n}
be independent and identically distributed (i.i.d.) from a N(n,7) prior where n € R
and 7 > 0 are unknown hyper-parameters. This exchangeable hierarchical set-up, well-
used in the literature (Xie, Kou, and Brown, 2012; Efron and Morris, 1973; Robbins,
1964; Zhang, 2003), allows partial pooling of information from quantities of interest for
different yet related groups of populations. Define the integrated Bayes risk with respect
to any prior 7, on 0 as By, (7,p) = [ Rn,a(0,0)7,(0)d6. Let ay =1+ 2min{r; : 1 <
i <n},b=(1-«)/2and b =1—b. The following result (proved in George et al.
(2021, Section 1.2)) shows that for all @ < oy and for any product normal priors, i.e.,
7 (0) = [1¢(0; — n;7), the integrated Bayes risk has a well-defined minima and the
resultant Bayes predictive density estimator is also a product of normal densities.
Lemma 2.1. Consider 64,...,0, b N(n,7) wheren € R and 7 > 0. Then, the Bayes
predictive density estimate with respect to a-divergence loss for any fivred o < ay is

n

Pl 7l yl®) = [[ o (vi — (wizs + @in); (s +bwi)o? ), (2.1)

i=1

where w; = 7/(7 + 02) and &; = 1 — w;.
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Henceforth, we consider only a-divergences with a < ay. Note that as min; r; >
0, BH, KL, reverse KL, Neyman y? divergences are always covered in our results. If
min; r; > 1, then the Pearson x? divergence is also covered. Based on the above result,
we consider the following flexible class S = {p[n, 7] : 7 € [¢1,d2],0 < 7} of shrinkage
prdes, where p[n, 7](ylx) = [T, ¢(yi — (wizi + @imi); (15 + bwi)o? ), with w; == w;[7] =
/(T + 02), w; = w;[r] = 1 — w;[r], and §1,G2 are ¢/2 and (1 — ¢/2)th quantiles of
X1,...,X, for any prefixed ¢ € (0,1). The class is indexed by the location and scale
hyper-parameters, 7 and 7. For any sensible shrinkage predictors, it is enough to confine
the location hyper-parameter 1 within the 100¢% range of the observed data. The scale
hyper-parameter 7 varies over the non-negative axis. In the following section, we provide
a methodology for choosing the hyper-parameters so that the resultant prde has optimal
risk properties among all prdes in the class S.

Extension to Non-diagonal Predictive Set-Ups The results and methodology devel-
oped here can encompass non-diagonal predictive set-ups where X ~ N(6,3,) and
Y ~ N(0,X) with X, and 3; being known positive definite matrices. For a non-
diagonal prior 8 ~ N(n,A), Lemma 2.1 can be extended as follows with ay being
1+ 2)\,11111(2]«2;1), which is the generalization of the scalar case. The proof of the
lemma is presented in George et al. (2021, Section 1.2).

Lemma 2.2. Let X ~ N(6,%,),Y ~ N(0,%y), and 6 ~ N(n,A) with known positive
definite matrices X,, Xy, and A. Then, the Bayes predictive density estimate with
respect to a-divergence loss for a < ay is

Pl Al(y [z) = oy — (Qa +Qn); Zp +b(3 + A7), (2.2)
where Q= AA+X,)7! and Q=1 - Q.

For tractable shrinkage classes, we need to impose lower dimensional structures on
n and A in (2.2). Perhaps, the most popular choice is § = 1 and A = 71, which
extends the class S based on (2.1) to the non-diagonal set-up. In the following sections,
we describe our method and its associated results for the class S. However, note that
the methodology can be extended to other shrinkage classes based on (2.2).

Hereon, we describe our method first for the diagonal predictive set-up as it produces
comparatively simpler expressions that can be intuitively studied and compared to the
point estimation results of Xie, Kou, and Brown (2012) and the predictive KL results
in Xu and Zhou (2011). The general results for non-diagonal set-ups along with their
complete proofs are provided in George et al. (2021, Section 1).

3 Risk Estimation and Hyper-parameter Calibration

Denote by Ry, (0;n,7) therisk Ry, (0, p[n, 7]) of any arbitrary member p[n, 7] in S. The
following result proved in George et al. (2021, Section 1.3) shows that this multivariate
predictive risk decouples as functions of the corresponding coordinate-wise risks and
subsequently can be explicitly written through closed form expressions as functions of
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1, 7,0 and «a. Letting 7 — oo, we get the second display in Theorem 2.4 of Ghosh et al.
(2008).

Theorem 3.1. For a < ay and o # £1, the risk of any prde pin,7] € S can be
expressed as

n

log (1 — Co R0 (057, T)) = ZHl-(G‘i,n, T; ), where, ¢q = (1 — a2)/4, and,

Hi(eiJ]aT;a) = f((ez - n)vai[TLrhai’ (1 - a)/2) with wi[T] = T/(T + 01‘2)7

F(tw,r,0,b) Blo r +1 r + wb bbw?t

, W, T, 0, =35 Y 7 a5 7 | 7
2 B\ twb) T2\ wh? fw2bh)  20%(r + wh? + w?bh)

andw=1—w,b=1-b.

The risk for the KL and reverse KL losses can be derived from the above expression
by noting that for « = g € {—1,1},

1 —exp{3 7, Hi(0i,n,730)}
"ao_ ]' na— 1 = _2
R im R im aog 6

a—rQQ a—QQ C(,E

9277’77— aO)

where, the last equality follows from the fact that H; = 0 when o € {—1,1}, and
L’Hopital’s rule. Thus,

R, 1= Zfb ((6; — w;[7],73,04;1) and Ry, 1 = —Zfb((@' — )2, w;[7],7:,0:;0),

i=1
where, fy(t,w,r,0;b) = abf(t w,r,o,b). Finally, it yields

- 10g(1 + Ti_lwi) (1212(0@ — 77)2 — wi@i(f?

R, 1(0;n,7 ):Z: 2 + 202(r; +w;) ’
R (60,7 :Z 20 T
i=1

Note that R, _; matches the KL risk expression in equation (11) of Xu and Zhou
(2011). We next estimate the predictive risk R, o(0;7, 7). Noting that (X; —n)? — o2
is an unbiased estimator for (§; —7)?, an unbiased estimate of H;(6;,n, ;) is given by
f[,-(n,T; a), where

N 11—«
Hi 5 = Xi— 2 2 —T i iy T — .
(7777—’@) f(( 77) ) T+0_1277'307 B
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Consider their average H, (7, n; ) = n~! > H;(7,m; ). For any fixed o < ay, select
the hyper-parameters that minimize the average risk estimate, i.e.,

(Mn,as Tna) = argmin sign(a? — 1) Hn(n, 73 ) (3.1)
0<7, n€[d1,42]
to obtain our proposed prde P[fin,a;7ne)(ylz). Thus, when |a| < 1, we maximize
7:[71(7],7';04) and we minimize it when |a| > 1. However, note that in both the cases,
this corresponds to minimizing risk estimates of the actual risk. For a = £1, we di-
rectly minimize the unbiased estimates of R, ; and R, _;. Taking the limit of the
hyper-parameters (7, Tn,o) a8 @ — 1_ or & — —1 also yields similar results.

Figure 1 shows the BH risk of prdes for n = 5 and 10 at 8 = t1 where ¢ varies from 0
to co. The risks of the best prde in S (which is characterized later in (4.1)) are plotted
in blue. The risk of our proposed method is calculated by Monte-Carlo integration and
is plotted in red. In dotted black lines, we have the risk of the best invariant prde py
which is the Bayes prde from the uniform prior. We see that compared to py significant
gains in risk can be obtained by estimators in S when |¢| is near the origin and the gains
decrease when |t| is large. Also, the risk of the proposed method is reasonably close to
the minimum attainable risk in S§. Next, we rigorously document these risk properties
of prdes tuned by the proposed procedure.
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Figure 1: Plot of BH risks of the prdes in a homoskedastic normal model at 8 = t1 as
t varies in the abscissa. Here, 0; = 1 and r; = r for all i = 1,...,n. From left to right,
r =1,0.25,0.1 respectively; n = 5 in the top and n = 10 in the bottom plots. The risk
of the best-invariant predictive density (dotted black), the risk of the oracle estimator
based on hyper-parameters in (4.1) (in blue) and the risk of our proposed method (in
red) are presented here.
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4 Theory Results

We first establish a non-asymptotic concentration bound on the deviation of H,, from
the true log-risk. Consider the expected absolute deviation:

Dpo(0,7,m) =E {sup [n"tlog {1 — ca Rya(0;n,7)} — Ha(n, 7; 04)|] :
>0

We establish an upper bound on D, , that depends on the L, norm of the signal

strength:
18 70—\ 2) /2
o {1 {135 (2)} )

Theorem 4.1. For any o < ay, any fited n € R and 8 € R™, for alln > 1,

Dn,oz(oaT’ 7]) S Ko Tﬂ?l ma’X{17 ‘Ca|}gn(0777) n71/2 )

where, kg = 12 is an absolute constant and r, = inf; r;.

When o — +1, both the D,, (6, 7,71) and the ¢, = (1 — a?)/4 on the RHS tends
to 0. Applying L’Hopital’s rule yields the analogous bound Esup, - ‘n_an’a (0;m,7)}—
Ho(n,750)| < korstgn(8,m)n~1/2 for a = 41. The proof of the theorem is presented
in George et al. (2021, Section 1.3).

Our next result which uses Theorem 4.1 shows that our proposed risk estimate
approximates the average of the logarithm of the true multivariate risk uniformly well for
all prdes in the shrinkage class S§. Thus, calibrating the hyper-parameters by minimizing
the risk estimates is a sensible choice. To facilitate shorter mathematical proofs we
assume the following asymptotic conditions:

[A1] limy, oo 1)1 02 < o0, lim;0; > 0 and 0 < lim; 7; < lim; r; < oo,

[A2] limy, oo n 1Y 1 07 < 0.
Though these conditions may be further relaxed as noted after Theorem 3.1 of Xie,
Kou, and Brown (2012), we do not seek the full generality as the conditions are not
restrictive and the proofs presented under these assumptions contain all the essential
statistical perspectives.

Theorem 4.2. Under Assumptions A1-A2, for any a < ay and a, = o(n'/?),

an< sup ’n_llog{l—caRn’a(H;n,T)}—ﬁn(n,T;a)D —0im L asn— o0 .

n€[d1,42],7>0

The above result (proved in George et al. (2021, Section 1.5)) shows that the risk es-
timates 7L, have near-parametric y/n-rates of convergence barring some poly-log terms.
Thus, we expect the risk estimates to be reasonably precise even for moderate dimen-
sions n. This attribute is reflected in the simulation studies in Section 5.
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To study the risk properties of our proposed prde plin,a,Tn,al, We next introduce
the oracle risk (OR) hyper-parameters as those which minimize the true risk function:

(nzta,rﬁfa): argmin Ry, (0;m, 7). (4.1)
0<7, n€[d1,42]

These oracle choices are not really estimators since they depend on the unknown 6

values. They are not obtainable in practice but provide the theoretical benchmark that

one can ever hope to reach. Indeed, no prdes in S can have smaller risk than the oracle
or

risk prde ping ., To'al-

n,o

Consider the average logarithmic ratio of the risk deviations

1- CaRn,oc(0§ 77$Lr,ou T )

n,o

L= caB{Ln a(0;Mm,as Tn,a)}

pn,a(e) = - ’V_Oé lOg {

} where v, = sign(a? — 1).
n

By construction, p, o(6) > 0. For any fixed 0 < a9 < a1 < oo and ¢ > 0, consider
the neighborhood O[e, ap,a1] := {(n,7) : |7 =73, < e, In—n3.] <e,7>0,n¢€
[ag,a1]} around oracle hyper-parameters. We impose the following regularity condition
on the sensitiveness (non-flatness) on the true risk functions around the oracle hyper-
parameters.

[A3] For any € > 0 and —oco < ag < a1 < 00,

1 _ . Yo
lim n~1/2 inf 10g< Caltn.a(05m,7) )) } = 00.

n—00 (1,7)¢Ole, ao, a1] L= calRn a(0;n o T

The following result shows that our estimated hyper-parameters are close to the oracle
hyper-parameters and our proposed prde has risk close to the oracle risk. This property
is not shared by the EBMLE or EBMOM. The estimating equations for calibrating
the hyper-parameters based on the EBMLE and EBMOM (discussed in the following
section), differ from our proposed methodology so that the estimated hyper-parameters
can be highly different (see cases IV-V in Section 5). In such cases the EBMLE and
EBMOM tuned prdes have much higher risk than the oracle unless the risk function is
completely flat. As our proposed estimator Pl a, Tn,] 1S asymptotically nearly as good
as the oracle prde, its asymptotic risk is no larger than that of any other prdes in the
general class S.

Theorem 4.3. For any a < ay, under assumptions A1-A2, the logarithmic ratio
Pn.a(8) converges asymptotically satisfying limsup,,_, .. n'/2?p,, (0) < co. Additionally,
with assumption A3, we have:

(Nn,a = Moo Tnva = Tive) — 0 in probability as n — oo .

The above result is proved in George et al. (2021, Section 1.6). It shows that as n
increases, the average logarithmic ratio of risk deviations from the oracle (ALRORD)
converges to 0 for any prde calibrated by the proposed method. As such, as n — oo the
ALRORD of any prde calibrated by the proposed method is always bound above by
Op(n_l/ 2). Assumption A3 implies that the ALRORD for an arbitrary p[n, 7] based on
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hyper-parameter (7, 7) cannot be bounded below Op(n_l/ 2) unless the hyper-parameter
(n,7) is within any prefixed e-neighborhood of the oracle hyper-parameter values. This
ensures that as n — oo, the hyper-parameter estimates in (3.1) converge to the oracle
values in (4.1).

5 Simulation Experiments

We conduct six simulation experiments to compare the performance of our estimation
methodology with competing methods for calibrating estimators in S. We consider the
EBMLE tuned prde which uses hyper-parameters

(ML, TmL) = argminzn:log(r +02) + X —m)?
’ nERT205— ’ T+ 0?2

3

the EBMOM tuned prde whose hyper-parameters are solutions to the following equa-
tions

. Yo + 1) X, T : ( y Tt &
MM = == —— and fyum = —— (Xi —1imm)~ — o]
St (o2 +71)! n—1 ; n ; n
the extended James-Stein (Xie, Kou, and Brown, 2012) based prde in & with hyper-
parameters

. Ztl Uszi A (1 & 2) (an JZQ(Xi - ﬁJS)z )
ms = 1—717_ and T)s = | — g; = -1 5
S0y ”; (n—3) T

as well as the completely non-informative (NI) prde which has 7 — oo and the oracle
estimator of (4.1). Additionally, we also consider the Bayes prde pc from the heavy
tailed Cauchy prior.

The six simulation regimes are inspired by experiments in section 4 of Xie, Kou,
and Brown (2012). In Cases I to V, we have Gaussian noise with mean 0 and variances
o? being i.i.d. from Uniform[0.5, 1.5] distribution. Thus, the mean noise variance is 1.
In Case I, we generate 8 ~ N(0,21I,,) and the r; as uniformly distributed between 0.1
and 1. The average signal-to-noise-ratio (snr) is 2 here. Note, that this case is in perfect
congruence with the hierarchical normal set-up of Section 2. The remaining cases are
different from the normal models and conjugate priors set-ups of Lemmas 2.1 and 2.2. In
Case I1, 0, are i.i.d. from a Uniform prior on [—+/3, /3] and thus has variability 1. Here,
we consider stratification in r. The r; are generated from a mixture of three uniform
distributions with significantly different supports. In Case 111, we introduce dependence
between the means and the future variances by setting & = 7 while r is i.i.d. form
Uniform|0.1,2]. Case IV is similar to case 3, except r;’s are no longer bounded as before
but are generated from an inverse-Chisquare with 5 degrees of freedom. In Case V,
{(0;,7;) :i=1,...,n} are independent among themselves, r; takes two possible values
with P(r; = 10) = 0.7 and P(r; = 1) = 0.3, and the true mean values are generated
conditionally on the r; values with [0;|r; = 10] and [6;|r; = 1] both being normal dis-
tributions with mean 0 and standard deviations 0.1 and 1, respectively. In Case VI, we
consider 8, as in case 3. However, here the noise is no longer Gaussian but is from a
uniform distribution with mean 0 and variance 1. The snr is 1.4 in this set-up.
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Figure 2: Adjusted BH risk of the prdes based on the oracle estimator of (4.1) (in black),
EBMLE (in blue), EBMOM (in green), Cauchy prior based Bayes prde (in cyan) and
our proposed method (in red) are plotted as n varies along the z-axis.

We report the Bhattacharyya-Hellinger predictive risk for the six cases in Table 1
and Figure 2. In each of the six cases, we generate {6;,0,,v; : 1 < i < n} values once
from the corresponding model and then calculate the adjusted BH risk for different 7
and 7 estimates across 100 replicates. We calculate the BH risk adjusted for dimension
by ABH,(0;n,7) = 1 — {1 — ¢ Rn,o(e;n,T)}l/". For each case and n, the reported
adjusted BH predictive risk in Figure 2 is the average of the ABH value across the 100
replicates.

In Table 1, n = 1000 and so, it reflects the asymptotic risks of these estimators.
Figure 2 compares the risk profiles as sample size varies (NI and JS were avoided in the
display for their significantly higher error rates reduced clarity in some of the plots).
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Proposed | EBMOM | EBMLE JS NI Cauchy
Case 1 0.05 0.17 0.19 0.04 | 24.63 1.63
Case II 0.23 0.71 0.65 0.16 | 48.30 2.32
Case III 0.21 4.69 4.81 6.70 | 69.70 2.96
Case IV 0.51 26.82 23.07 | 26.43 | 119.47 3.28
Case V 0.55 22.40 23.00 19.00 | 105.97 9.07
Case VI 0.19 5.70 5.67 5.77 | 72.54 2.94

Table 1: As n — oo, the limiting BH predictive risk (adjusted for dimensions) of different
shrinkage prdes is reported in % of excess risk over that of the oracle estimator in (4.1).

From the table, we see our proposed estimation method is asymptotically close to the
oracle in all the cases where as the figure displays that suitable accuracy can be attained
for moderate n across all the concerned scenarios. The EBMLE and the EBMOM have
risks similar to ours in cases I and II but has significantly worse performance in the
other cases when there is dependence between 8 and r. The Cauchy prior based Bayes
prde pc performs considerably better than the EBMLE and EBMOM in Cases III, IV
and V, when n is large (see Table 1), though its risk is still significantly higher than that
of the proposed method. In moderate dimensions, the relative risk of p¢ is substantially
higher than the EBMLE, the EBMOM and the proposed methods. As such for n < 200,
the risk curve for pc is higher than the EBMLE or EBMOM in all cases except IV
(see Figure 2). The JS based prde has erratic asymptotic risk behavior as it often fails
to adapt to the heterogeneity in the data and the non-informative prior based prde
has poor performance across all regimes. We present two numerical examples in the
supplementary materials (George et al., 2021) where suboptimal performance of the JS
based prde is witnessed.

6 Discussion and Future Work

We developed a risk estimation based methodology for tuning linearly shrunken prdes in
Gaussian models under general a-divergence losses. The proposed risk estimation based
method will be particularly useful under heterogeneity. If the set-up is homoskedastic
(0; = 0 and v; = v for all i), then in high dimensions the proposed method will produce
hyper-parameter estimates similar to the EBMOM and EBMLE. An interesting topic for
future work will be to introspect the roles of prde under a-divergences when covariances
are unknown as studied in Kato (2009) for the KL loss. Also, in applications it is
important to choose an a-divergence loss that is tailored to the specific prediction task
at hand (Kempthorne et al., 1988; Rosasco et al., 2004). Following Nguyen et al. (2009);
Giil and Zoubir (2016) it will be important to study the roles different « predictive risks
in hypothesis testing and classification problems. Another important direction would be
understanding the roles of adaptive calibration under a-risk in the presence of latent
structures in the mean parameters such as the sparsity restrictions studied in Mukherjee
(2013); Yano et al. (2021) for the KL loss. Finally, extending the risk estimation based
methodology developed here to non-normal models will be useful.
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Supplementary Material

Supplementary materials for Optimal Shrinkage Estimation of Predictive Densities un-
der a-divergences (DOI: 10.1214/21-BA1264SUPP; .pdf). The supplement contains the
proofs of all the results stated in this paper as well as two numerical examples regarding
prdes.
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