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When the response mechanism is believed to be not missing at ran-
dom (NMAR), a valid analysis requires stronger assumptions on the response
mechanism than standard statistical methods would otherwise require. Semi-
parametric estimators have been developed under the parametric model as-
sumptions on the response mechanism. In this paper, a new statistical test is
proposed to guarantee model identifiability without using instrumental vari-
able assumption. Furthermore, we develop optimal semiparametric estima-
tion for parameters such as the population mean. Specifically, we propose two
semiparametric optimal estimators that do not require any model assumptions
other than the response mechanism. Asymptotic properties of the proposed
estimators are discussed. An extensive simulation study is presented to com-
pare with some existing methods. We present an application of our method
using Korean labor and income panel survey data.

1. Introduction. Handling missing data often requires some assumptions about the re-
sponse mechanism. If the study variable does not affect the probability of the response, the
response mechanism is called missing at random (MAR) [32]. If, on the other hand, the
response probability of a study variable depends on that variable directly, the response mech-
anism is called not missing at random (NMAR) [19]. Under NMAR, the response probability
cannot be verified using the observed study variables only, therefore, additional assumptions
about the study variable are often required.

Let r be the response indicator of the study variable y with auxiliary variable x, where r

takes 1 if y is observed, and takes 0 otherwise. In this paper, we consider a situation where the
study variable y is subject to missingness. Ignorable nonresponse or MAR can be understood
as the conditional independence of r and y given x, namely r ⊥ y | x, which is usually
untestable. Greenlees et al. [11] and Diggle and Kenward [7] proposed a fully parametric
approach to analyze nonignorable nonresponse data; their method requires two parametric
models: (i) an outcome model, [y | x]; and (ii) a response model [r | x, y]. In practice, it
is difficult to verify models (i) and (ii), because some of Y are not observed. For the fully
parametric approach, model identification and model misspecification can be a problem, and
sensitivity analysis becomes necessary [31, 33, 41, 42]. Sverchkov [37] and Riddles et al.
[27] proposed a fully parametric approach that uses different model specifications based on
(i) [y | x, r = 1], and (ii) [r | x, y]. Their approach is attractive because one can verify a
model for [y | x, r = 1] from the observed responses; however, because it is a fully parametric
approach, it is still subject to model misspecification error.

Recently, several semiparametric approaches have been proposed for nonignorable non-
responses. Ma et al. [22] studied identification and parameter estimation for binary study
variables. Tang et al. [38] also considered model identification using an instrumental variable

Received May 2020; revised March 2021.
MSC2020 subject classifications. Primary 62F35, 62G20; secondary 62G10.
Key words and phrases. Estimating functions, identification, incomplete data, not missing at random (NMAR),

semiparametric efficient estimation.

2991

https://imstat.org/journals-and-publications/annals-of-statistics/
https://doi.org/10.1214/21-AOS2070
http://www.imstat.org
mailto:morikawa@sigmath.es.osaka-u.ac.jp
mailto:jkim@iastate.edu
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


2992 K. MORIKAWA AND J. K. KIM

and proposed a maximum pseudo likelihood estimator that does not require model specifica-
tion of the response mechanism. D’Haultfoeuille [6] also used the same instrumental variable
assumption and considered a regression analysis using the nonparametric propensity score
model. Zhao and Shao [44] extended the method of Tang et al. [38] and relaxed the con-
dition on the instrumental variable, which is called nonresponse instrumental variable [43].
Fitzmaurice et al. [10] and Skrondal and Rabe-Hesketh [36] proposed protective estimators
that do not require a model for the response mechanism, but the application of this approach
is limited to situations in which Y is binary. In the meantime, Kim and Yu [17] proposed
a semiparametric method for estimating E(Y ) using a semiparametric response model, but
a validation sample is required in order to estimate the parameters in the response mecha-
nism. Tang et al. [39] used the method of empirical likelihood to extend the method of Kim
and Yu [17] to estimate more general parameters. In Zhao et al. [45], the method of Qin et al.
[26] was used to construct a n1/2-consistent estimator without a validation sample. Morikawa
et al. [25] used the kernel regression estimator to remove the parametric model assumption
on model (i) [y | x, r = 1]. Chang and Kott [3] and Wang et al. [43] considered a general-
ized method of moments (GMM) estimator that uses the response model assumption only,
but their method is generally lacking in efficiency. Recently, Shao and Wang [35] proposed
a semiparametric inverse propensity weighting method using the nonresponse instrumental
variable (NIV) assumption of Wang et al. [43]. However, the above papers do not address
efficiency of their semiparametric estimation methods. Furthermore, the NIV assumption is
difficult to verify from the sample. Developing an optimal semiparametric estimator and a
test procedure for model idenitification under NMAR are important research topics in miss-
ing data analysis.

In this paper, we use a parametric model for [r | x, y] and a fully nonparametric model for
[y | x, r = 1] to form a semiparametric model and develop a nonparametric test procedure for
model identification of the semiparametric model. After that, we construct optimal estimators
for parameters both related to the response mechanism and for the parameter of interest such
as population mean. Efficiency under this setup has already been discussed by Rotnitzky and
Robins [30] and Robins et al. [28]. However, their estimator requires many working models
to achieve the semiparametric efficiency bound. Misspecification of the working models may
lead to loss of efficiency. See the simulation study in Section 6 and real data analysis in
Section 7 for comparison with the method of Rotnitzky and Robins [30].

Therefore, we consider an alternative approach and propose two semiparametric estimators
that attain the semiparametric lower bound [2] (1) with a working model assumption or (2)
without requiring working model assumptions. The first estimator is an adaptive estimator
using a working model for [y | x, r = 1]. If the working model is correct, the first estimator
attains the lower bound. The second one is based on the nonparametric regression model,
which does not require any additional assumptions, but it still attains the lower bound. All
technical details are given in Appendix B.

2. Basic setup. Let (zi, ri), i = 1, . . . , n be n realizations from a joint distribution [z, r],
where z = (xT, y)T, x is a d-dimensional covariate vector, y is a response variable and r is
a response indicator of y, that is, it takes 1 if y is observed, and takes 0 otherwise. Also, let
Gr(z) be the observed data when the response indicator is r , that is, G1(z) = z and G0(z) =
x. Suppose that the response model is π(z;φ) with a q-dimensional parameter φ ∈ �. Let θ ∈
� be a parameter satisfying E{U(Z; θ)} = 0, where U is a known function of z. For example,
if we are interested in E(Y ), then U(z; θ) = y − θ , and in regression coefficients E(Y | x) =
μ(x; θ), then U(z; θ) = a(x){y−μ(x; θ)}, where a(·) is any linearly independent function of
x having same dimension as θ . In this paper, we consider semiparametric estimation of (φ, θ)

from partial observations. In particular, we propose the efficient estimator among the regular
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asymptotically linear estimators [2, 41] without specifying the correct outcome model. We
assume that the parameter φ is distinct from θ in the sense that they are independent a priori
[32]. Therefore, we consider a setting where θ and φ are irrelevant to each other, and propose
two adaptive estimators for (φ, θ).

For model identification for a response model, Miao et al. [23] gives a sufficient condition
when the outcome models are normal or normal mixture. However, the normality assumption
cannot be checked directly from observed data. In the meantime, Wang et al. [43] developed
a theory for identification by assuming that there exists a NIV x2 in the covariate vector
x = (xT

1 , xT
2 )T such that x2 is independent of r , given x1 and y. When x is the single variable,

x itself is the NIV. Although the existence of such a NIV is a sufficient condition, it is hard to
verify it from the observed data. Therefore, both identification conditions are not testable with
observed data. In Section 3, we propose an alternative condition for the model identification
by assuming a restriction on [y | x, r = 1], not only on the response mechanism, and develop
a test procedure for model identification.

Classical approaches for analyzing nonignorable nonresponse data are based on correct
specification for [y | x] as well as the response mechanism [11]. This requirement can be
challenging because the specification cannot be verified under nonignorable nonresponse
[24]. Chang and Kott [3] proposed a semiparametric estimator for φ based on the follow-
ing estimating equation:

n∑
i=1

�(xi, yi, ri;φ) =
n∑

i=1

{
1 − ri

π(zi;φ)

}
g(xi;φ) = 0,(2.1)

where g = {g1(x), g2(x), . . . gq(x)}T, which can be called calibration function, is a function
of x whose elements are linearly independent; q is the dimension of φ. Note that although this
estimator satisfies consistency and asymptotic normality under certain regularity conditions,
its efficiency is not guaranteed.

Riddles et al. [27] proposed an efficient estimator that uses a parametric model for [y |
x, r = 1]. Using the mean score theorem [21], the maximum likelihood estimator can be
obtained by solving

n∑
i=1

[
ris1(zi;φ) + (1 − ri)E0

{
s0(Z;φ) | xi

}] = 0,

where sr(z;φ) is the score function of φ, that is,

sr(z;φ) = {r − π(z;φ)}π̇ (z;φ)

π(z;φ){1 − π(z;φ)} ,(2.2)

π̇(z;φ) = ∂π(z;φ)/∂φ, and E0(· | x) is the conditional expectation conditional on x and
r = 0. To compute E0(· | x), under Bayes’ formula, Riddles et al. [27] proposed using

n∑
i=1

[
ris1(zi;φ) + (1 − ri)

E1{O(Z;φ)s0(Z;φ) | xi}
E1{O(Z;φ) | xi}

]
= 0,(2.3)

where O(z;φ) = {1 − π(z;φ)}/π(z;φ), and E1(· | x) is the conditional expectation on y

given x and r = 1. The conditional expectation is computed by assuming a parametric model
f1(y | x;γ ) = f (y | x, r = 1;γ ). This may increase the efficiency, however, misspecification
of the f1 model could cause the solution φ̂ to be inconsistent. Morikawa et al. [25] proposed a
semiparametric method using a nonparameteric estimator of f1, assuming that the semipara-
metric model is identified. We now give more rigorous treatments of the model identification
of the semiparametric model.



2994 K. MORIKAWA AND J. K. KIM

3. Identification. We consider a new identification condition for estimation of the re-
sponse model with observed data. Our idea is to define the target parameter φ0 as a unique
solution to

E
{
�(Z,R;φ) | X} = 0 a.s.,(3.1)

where � is defined in (2.1), though natural definition of the parameter might be through ei-
ther (i) E{�(Z,R;φ) | Z} = 0 or (ii) E{�(Z,R;φ)} = 0. Note that providing a sufficient
condition for the parameter defined in (ii) is the strongest (and in (i) is the weakest) since
E{�(Z,R;φ)} = E[E{�(Z,R;φ) | Z}] and E{�(Z,R;φ) | X} = E[E{�(Z,R;φ) | Z} |
X] hold. This implies a sufficient condition for the parameter (3.1) does not necessarily guar-
antee the model identification of (ii), which is the probability limit of the estimating equation
(2.1). However, it does not matter because even if we face such a problem, it can be solved by
constructing an objective function with the integrated regression function [8]. Therefore, we
focus on providing a sufficient condition of the model identification for the parameter defined
in (3.1).

3.1. Identification condition with f1 model. Let O(z;φ) = 1/π(z;φ) − 1 be the odds
function of the response model, E1(· | x) be the operator for the true conditional expectation
given x and r = 1. A new identification condition for the semiparametric model is given in
the following theorem.

THEOREM 3.1. The identification condition for a parameter (3.1) holds under the fol-
lowing conditions:

(I1) E1{O(Z;φ)|x} exists and is bounded almost surely;
(I2) The weight function g in (2.1) satisfies P(infφ∈� |g(X;φ)| > 0) > 0, and elements of

g(x;φ) are linearly independent functions with respect to x for all φ;
(I3) E1{O(Z;φ) | x} = E1{O(Z;φ′) | x} a.s. implies φ = φ′.

As for the condition (I1), it can be shown that the probit models do not satisfy the con-
dition, but the logistic and the robit models [20, 23], which are cumulative functions of t-
distributions, meet the condition. Although the probit model is not applicable, Theorem 3.1
is practically useful because the performance with the probit and logistic model is very simi-
lar, and thus, misspecification of the response model is not a serious problem in practice (see
Section 7 for the performance with misspecified response models). Condition (I2) is required
to avoid g becomes identically zero.

The key condition is (I3), which implies that we should check the identification of
E1{O(Z;φ) | x}. Checking the identification of E1{O(Z;φ) | x} is relatively easy and fea-
sible with observed data. For example, if the response mechanism is specified as π(z;φ) =
1/{1 + exp(φx0 + φx1x + φyy)}, where φ = (φx0, φx1, φy)

T. Then E1{O(Z;φ)|x} is written
as

E1
{
O(Z;φ)|x} = exp

{
φx0 + φx1x + Kφy(x)

}
,(3.2)

where Kφy(x) = logE1{exp(φyY) | x} is the cumulant-generating function of [y | x, r = 1].
Therefore, we only need to verify that Kφy(x) is not linear with respect to x. If f1 is a
parametric model, the model identification for φ is easy to check. For example, if [y | x, r =
1] belongs to an exponential family with the density function

f1(y | x; τ,ψ) = exp
[
yτ(x) − b{τ(x)}

ψ
+ c(y,ψ)

]
,
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where ψ is the dispersion parameter and τ , b, c are known functions, then the cumulant-
generating function reduces to Kφy(x) = {b(φyψ + τ(x)) − b(τ(x))}/ψ , from which we can
verify the model identification. For example, for model identification, b is allowed to be any
polynomial function except for the first- and second-order function of x such as log-function
(e.g., Gamma distribution), exponential-function (e.g., Poisson distribution), etc. However,
when b is a second-order polynomial function, for example, b(τ) = τ 2/2, which means f1
follows normal distribution, then Kφy(x) = τ(x)φy + φ2

yψ2/2. Also, we obtain

E1
{
O(Z;φ)|x} = exp

{
φx0 + φx1x + τ(x)φy + φ2

yψ2/2
}
.

Thus, by Theorem 3.1, φ is identifiable unless the mean structure τ(x) is linear since there are
three parameters with two equations. If τ(x) is linear, we may use a transformation approach
which is introduced in Section 3.3.

On the other hand, checking the model identifiability with a nonprametric f1(y | x) model
is still challenging, because there is no way to estimate the cumulative function Kφy(x) non-
parametrically for every φy up to our knowledge. Therefore, we propose a test statistic to test
a reasonable necessary condition for the identification condition.

3.2. Nonparametric test statistics. In view of (3.2), the model is unidentifiable when the
cumulant-generating function is linear with respect to x for all φy. In this section, we show
that linearity of the cumulant-generating function implies linearity of the mean function in a
data generation process, and propose a simple nonparametric test statistics for identifiability
by checking the linearity of the mean function. Let a general data-generating process be y =
μ(x) + ε(x), where μ(x) is the conditional expectation of y given x, and ε(x) is the condi-
tional mean-zero error. Consider a class of error functions E : for ε ∈ E , ε(x) = ∑∞

j=0 ξj ej (x),
where ξj (j ≥ 0) are mean-zero random variables, which are independent of x, and ej (j ≥ 0)

are any measurable functions of x satisfying E[{∑∞
j=0 |ξj ej (X)|}k] < ∞ for any positive in-

teger k, and el �= em for l �= m. This class of error functions include many functions with
mean-zero conditional expectation such as the infinite normal mixture distribution. Under
this setup, we can show the following proposition.

PROPOSITION 3.1. Suppose that ε ∈ E , then linearity of the conditional cumulant-
generating function Kφy(x) implies that of the conditional mean function μ(x).

For the above reasons, we test a data-generation structure

H0 : y = μ(x; c) + ε,(3.3)

where μ(x; c) = c1 + c�
2 x, c = (c1, c

�
2 )�, and ε is a mean-zero random variable and inde-

pendent of x. Denoting the true conditional mean function by m(x) = E(Y | X = x), the
null hypothesis can be also represented by H0: there exists c such that m(x) = μ(x; c). It
is desirable that the statistical test enjoys two properties: (i) dimension-free for x; (ii) no
parametric assumption on ε. The first property is practically useful because classical non-
parametric tests such as Eubank and Hart [9] suffer from curse of dimensionality. The sec-
ond property can avoid subjectivity imposing some parametric assumption on the error vari-
able. Recently, some nonparametric methods to check a goodness-of-fit have been proposed
with Hilbert–Schmidt independence criterion (HSIC) [12, 13, 34, 40] and mutual informa-
tion [1]. In this paper, we utilize an idea of HSIC proposed by [12, 13]. With HSIC, Sen
and Sen [34] and Hidalgo et al. [40] proposed a test statistics to check goodness-of-fit of
a (parametric/nonparametric) model, which has the two desirable properties. Their idea is
based on the fact that independence of X and ε implies correctness of the mean function
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μ(x; c) = c1 + c�
2 x because ε is independent of x. The HSIC can be used to check the inde-

pendence.
We propose using a nonparametric test statistic by using the bootstrap method [34] to check

the linearity of m(x) = E(Y | X = x). Let H = In − n−11n1�
n where In is the n × n identity

matrix and 1n is the n × 1 vector of ones. Also let each k and l be a characteristic kernel
that prescribes RKHS of the random variables X and Y , respectively, such as a Gaussian
kernel k(x, x̃) = exp(−σ−1‖x − x̃‖), where σ is a tuning parameter and the sample median
is often used as a heuristic estimate of σ . In the algorithm, let x = (x1, . . . , xn1)

� and y =
(y1, . . . , yn1) be observed covariate variables and response variables. To make the algorithm
simple and clear, a vector is used instead of each element, that is, μ(x; c) implies the vector
(μ(x1; c), . . . ,μ(xn1; c))�. Also for a matrix A, (A)ij implies (i, j)th element.

1: procedure COMPUTATION FOR NONPARAMETRIC TEST STATISTICS M̂Xε AND ITS

BOOTSTRAP SAMPLES M̂
(b)
Xε (b = 1, . . . ,B)

2: ĉ ← argminc

∑n1
i=1{yi − μ(xi; c)}2

3: ε̂ ← y − μ(x; ĉ)
4: (K)ij ← k(xi, xj ); (E)ij = l(ε̂i , ε̂j ) for all i, j

5: M̂Xε = n−2
1 tr(KHEH)

6: for b = 1 to B do
7: x(b) ← bootstrap sample from observed data x

8: ε(b) ← bootstrap sample from ε̂

9: y(b) ← μ(x(b); ĉ) + ε̂(b)

10: ĉ(b) ← argminc

∑n1
i=1{y(b)

i − μ(x
(b)
i ; c)}2

11: ε̂(b) ← y(b) − μ(x(b); ĉ(b))

12: (K(b))ij ← k(x
(b)
i , x

(b)
j ); (E(b))ij = l(ε̂

(b)
i , ε̂

(b)
j ) for all i, j

13: M̂
(b)
Xε = n−2

1 tr(K(b)HE(b)H)

14: end for

To obtain the limiting distribution of the test statistics M̂Xε and its bootstrap samples
M̂

(b)
Xε (b = 1, . . . ,B), we need additional conditions (T1)–(T4) given in Appendix A. Using

Sen and Sen [34], we have the following asymptotic result.

PROPOSITION 3.2. Suppose that conditions (T1)–(T3) hold. Then, under the null hy-
pothesis H0 in (3.3), the limiting distribution of n1M̂Xε is a quadratic function of a Gaussian
field χ . Also, if the conditions (T1), (T2), and (T4) hold, the distribution of the bootstrap sam-
ples n1M̂

(b)
Xε (b = 1, . . . ,B), given observed data almost surely, converge in law to the same

distribution χ .

REMARK 3.1. Proposition 3.2 guarantees that the bootstrap samples converge to the
same distribution χ given observed data almost surely. Therefore, we do not need to know
the explicit form of the limiting distribution χ , which is given in equation (14) in Sen and
Sen [34] by setting g(x) = (1, x�)�. Thus, the p-value of the test statistics is computed by
B−1 ∑B

b=1 I (M̂Xε ≤ M̂
(b)
Xε ).

3.3. Doubly-normalized exponential transformation. When the null hypothesis (3.3) is
not rejected, an instrumental variable is required to make the estimator, which is the unique
solution to (2.1), consistent. However, selecting the instrumental variable is very difficult even
if it exists. Because the problem comes from using the same covariate between the response
model and mean function, we can make the model identifiable artificially by transforming
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covariate variable x in the response model to a nonlinear variable T (x) such as exp(x) and
x2, at the sacrifice of consistency. Although there are many choices of such functions, it would
be desirable that the transformation enjoys three properties: (i) “nonlinearity” can be adjusted
through a tuning parameter a such that lima→0 Ta(x) = x; (ii) the value a does not depend on
range/scale of x; (iii) range of Ta(x) is same as that of x. The first condition is necessary to
adjust “nonlinearity”: small a-value holds the original data structure, and large a-value breaks
the structure, but provides stronger identification. For example, one may come up with a
transformation Ta(x) = log{a+exp(x)}. However, nonlinearity of such a transformation may
heavily depend on both a and range/scale of x so that it is necessary to find an appropriate
value a (which is close to 0) for every covariate or data set, hence, the second condition
is required. The third condition is requisite to retain the value of response probability to
some extent. Considerably large (small) value of Ta(x) may damage the bounded condition
π(Ta(x), y) > 0, which is often assumed in this field.

We propose a simple nonlinear transformation having three desirable properties called
doubly-normalized exponential transformation (DNET). Let Sa(x) be a normalized expo-
nential transformation Sa(x) = {Var(aX)}−1/2{exp(ax) − E(exp(aX))}. By letting a → 0,
we obtain

lim
a→0

Sa(x) = lim
a→0

a−1{exp(ax) − 1} + a−1{1 − E(exp(aX))}
{Var(X)}1/2

= x − E(X)

{Var(X)}1/2 .

This indicates that the normalized exponential transformation Sa after data normalization
is an identity map as a → 0, that is, with Z : x 
→ {Var(X)}−1/2(x − E(X)), a map Sa ◦
Z becomes identity as a → 0. Finally, after some minor modification to satisfy the third
condition above, we have our proposed transformation method:

1: procedure COMPUTE DNET(a)
2: z ← {var(x)}−1/2(x − mean(x))

3: s ← {var(az/5)}−1/2{exp(az/5) − mean(exp(az/5))}
4: rx ← max(x) − min(x); rs ← max(s) − min(s)

5: Ta(x) ← min(x) + {s − min(s)} × rx/rs

In the algorithm, each mean, var, max and min is sample mean, variance, maximum and
minimum value of x = (x1, . . . , xn). Obtained Ta(xi)(i = 1, . . . , n) is the proposed non-
linear transformation. The reason divided by 5 is just for scale adjustment. We call the
transformation with a-value 0.5 (weak), 1 (moderate) and 2 (strong) nonlinearity. In Fig-
ure 1, we illustrate the scatterplot of Ta(xi) versus yi , for a = 0 (original), 0.5, 1, 2, where
(xi, yi)(i = 1, . . . ,500) are independently generated from a bivariate normal distribution with
both mean 0, variance 1 and correlation 0.5. It can be seen that the transformation enjoys the
three desirable properties.

4. Efficiency bound. In this section, we provide an optimal influence function for the
true parameter (φT

0 , θ0)
T that is the most efficient among all regular and asymptotically lin-

ear estimators under the constraint that the nuisance tangent space of θ and φ are orthogonal.
Rotnitzky and Robins [30] derived the semiparametric efficiency bound for regression param-
eters, which prescribe the first moment of the distribution of [y | x]. However, their adaptive
estimators require many working models, and misspecification of either a regression model
or a response model leads to a biased estimator, but in most cases, we do not expect the
regression model is true and assume a simple function such as a linear regression model.
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FIG. 1. Illustration of DNET: each top left, top right, bottom left and bottom right shows the scatterplot of Ta(x)

v.s. y, for a = 0 (original), 0.5,1,2, respectively. The red curve is conditional mean function of y given Ta(x).

In this section, we first provide the efficiency bound under the response model only, with-
out relying on the information of U -function because the most difficult task in nonignorable
nonresponse missing data analysis is to obtain a consistent estimator of the response model.
Optimal estimators achieving this lower bound will be considered in the next section.

In the following discussion, we abbreviate the parameter value or random variable, for
example, π(z;φ0) = π(z) = π(φ0), unless this would lead to ambiguity.

LEMMA 4.1. Let Seff = (ST
1 , S2)

T, where S1 = S1(R,GR(Z)) and S2 = S2(R,GR(Z))

be defined as

S1
(
R,GR(Z);φ) =

{
1 − R

π(Z;φ)

}
g�(X;φ0),(4.1)

S2
(
R,GR(Z);φ, θ

) = R

π(Z;φ)
U(Z; θ) +

{
1 − R

π(Z;φ)

}
U�(X;φ0, θ)},(4.2)

g�(x;φ0) = E�{s0(Z;φ0) | x;φ0}, U�(x;φ0, θ) = E�{U(Z; θ) | x;φ0}, and

E�{g(Z) | x;φ0
} = E{O(Z;φ0)g(Z) | x}

E{O(Z;φ0) | x}(4.3)

with O(z;φ0) = {1 − π(z;φ0)}/π(z;φ0). Then, the efficient influence function is ϕeff =
H−1Seff, where H = E(S⊗2

eff ) = E{∂Seff(φ0, θ0)/∂(φT, θ)T} and B⊗2 = BBT. Therefore, the
semiparametric efficiency bound is given by {E(S⊗2

eff )}−1.
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This lemma implies that if we can compute E�(· | x) then estimating functions (4.1) and
(4.2) will provide an optimal estimator. The optimal estimator is the solution to

n∑
i=1

Seff,i(φ, θ) =
n∑

i=1

{
ST

1
(
ri,Gri (zi);φ)

, S2
(
ri,Gri (zi);φ, θ

)}T = 0.(4.4)

The equation based on S1(φ) in (4.1) gives an optimal estimator for φ, say φ̂. Then, by
using φ̂, S2(φ̂, θ) in (4.2) can provide an optimal estimator for θ . However, the expectation
E�(· | x) and the parameter φ0 are unknown and need to be estimated. Also, to compute the
conditional expectation, we may need to correctly specify the distribution of [y | x], which
is subjective and unverifiable, as is stated in Section 1. In the next section, two adaptive
estimators are proposed to work around the problem and to attain the lower bound derived in
Lemma 4.1.

REMARK 4.1. Equation (4.1) can be viewed as a special case of the estimator of Chang
and Kott [3] defined in (2.1). Thus, the optimal g function in (2.1) for the Chang and Kott
[3] method is given by g�(x,φ0) in (4.1) although φ0 is unknown. One might think that the
efficiency can be improved with a larger dimension of g because the above two methods can
handle over-identified models with q > d + 1. However, according to Lemma 4.1, there is no
need to use more g functions and it is enough to consider only g�(x,φ0) (i.e., q = d + 1) as
the calibration function.

REMARK 4.2. The optimal score function in (4.1) can be derived differently as follows.
Consider the class of estimating equations in (2.1) indexed by g. For given g, the asymptotic
variance of the solution φ̂g to (2.1) can be written as

V (φ̂g) = 1

n
A−1

g BgA
−1
g ,

where

Ag = E
[
E

{
O(Z;φ0) · s0(Z;φ0) | X}

g(X;φ0)
T]

,

Bg = E
[
E

{
O(Z;φ0) | X}

g(X;φ0)g(X;φ0)
T]

.

Using the Cauchy–Schwarz inequality, the asymptotic variance is minimized at g�(x;φ0) =
E�{s0(Z;φ0) | x;φ0}. Similarly, we can obtain the optimal estimating function in (4.2) by
considering a class of estimating equations of the form

(4.5)
n∑

i=1

[
ri

π(zi;φ)
U(zi; θ) +

{
1 − ri

π(zi;φ)

}
h(zi)

]
= 0,

indexed by h. The asymptotic variance of the solution to (4.5) is minimized at h =
E�{U(Z; θ) | x;φ0}.

REMARK 4.3. In our estimation steps, φ and θ are separately estimated. Thus, it follows
from the identifiability of φ that θ is also identifiable. This is because, under assumptions
(I1)–(I3), φ is identifiable; thus, the identification problem of θ reduces to that of the proba-
bility limit of (4.4) or expectation of (4.2), that is, E{U(Z; θ)}.
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5. Adaptive estimators. We now propose two adaptive estimators for (φ0, θ0): (i) with
a parametric working model for f1(y | x); (ii) with a nonparametric estimator for f1(y |
x), where f1(y | x) = f (y | x, r = 1). Although the optimality result in Lemma 4.1 has
already been discussed by Rotnitzky and Robins [30], the adaptive estimators proposed here
are different from those of Rotnitzky and Robins [30]. See Appendix C for some discussion
of Rotnitzky and Robins [30] estimator.

To discuss the first proposed method, let f1(y | x) be known up to the parameter γ ∈ �,
and let γ̂ be the maximizer of

∑n
i=1 ri logf1(yi | xi;γ ). This can be easily implemented, and

the model selection can be implemented by using information criteria such as the Akaike
information criterion (AIC) and the Bayesian information criterion (BIC). By using the idea
similar to that used to derive (2.3), we can show that, for any function g(z),

E�{g(Z) | x;φ0, γ
} = E1{π−1(Z;φ0)O(Z;φ0)g(Z) | x;γ }

E1{π−1(Z;φ0)O(Z;φ0) | x;γ } ,(5.1)

where E1(· | x) = E(· | x, r = 1). Thus, the expectation can be estimated by using f1(y |
x; γ̂ ) and π(z;φ0). However, since φ0 is unknown, we propose an efficient estimating equa-
tion

∑n
i=1 Seff,i(φ, θ, γ̂ ) = 0, where

Seff,i(φ, θ, γ̂ ) = {
ST

1
(
ri,Gri (zi);φ, γ̂

)
, S2

(
ri,Gri (zi);φ, θ, γ̂

)}T
,(5.2)

with

S1
(
r,Gr(z);φ; γ̂ ) =

{
1 − r

π(z;φ)

}
E�{s0(z;φ) | xi;φ, γ̂

}
,

S2
(
r,Gr(z);φ, θ, γ̂

) = r

π(z;φ)
U(z; θ) +

{
1 − ri

π(z;φ)

}
E�{U(z; θ) | xi;φ, γ̂

}
.

What if f1(y | x) is misspecified? One might expect the solution to the estimating equation
with (5.2) to be inconsistent as a result. Note that the estimator that uses the function on the
right-hand side of (5.1) is consistent even when the assumed model for f1(y | x) is misspec-
ified. Also, if the model is correctly specified, the estimator attains the lower bound. This
leads to Theorem 5.1.

THEOREM 5.1. Let (φ̂T, θ̂ )T be the solution to
∑n

i=1 Seff,i(φ, θ, γ̂ ) = 0 in (5.2). Under
conditions (I1)–(I3) and (C1)–(C7) given in Appendix A and the identification conditions as-
sumed in Theorem 3.1, (φ̂T, θ̂ )T satisfies consistency and asymptotic normality with variance

E

{
∂S∗

eff

∂(φT, θ)

}−1
E

(
S∗⊗2

eff

)
E

{
∂S∗

eff

∂(φT, θ)T

}−1
,

even if f1(y | x; γ̂ ) is misspecified, where γ ∗ is the probability limit of γ̂ , and S∗
eff =

{S1(φ0, γ
∗)T, S2(φ0, θ0, γ

∗)}T is defined in (5.2). In particular, the asymptotic variance of
θ̂ is given as

V ∗ = var
[
τ−1

U
{
S2

(
φ0, θ0, γ

∗) − κ∗S1
(
φ0, γ

∗)}]
,(5.3)

where κ∗ = κ∗
1 (κ∗

2 )−1, κ∗
1 = E[{U�(φ0, θ0, γ

∗) − U(θ0)}π̇(φ0)
T/π(φ0)}], κ∗

2 = E{g�(φ0,

γ ∗)π̇(φ0)
T/π(φ0)}, and τU = E{∂U(θ0)/∂θ}. In addition, if the model is correctly speci-

fied, the estimator attains the semiparametric efficiency bound.

Note that Theorem 5.1 does not require that f1 be correctly specified. Unlike the estimator
of Riddles et al. [27], the parametric model f1 is irrelevant to the consistency and asymptotic
normality of the estimator here. Therefore, we call f1 a working model, as in Liang and Zeger
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[18]. Also, though equation (4.2) has a form similar to that of the doubly robust estimator
under MAR [29], our estimator does not have the doubly robustness property. This is because
the computation for E�(· | x) relies on the correct response mechanism.

Numerical computation is needed to calculate the conditional expectation in (5.1). The
expectation-maximization (EM) algorithm considered in Riddles et al. [27] can be used with
a minor modification. We can directly apply their method, once the weights w∗

ij defined in
(15) of Riddles et al. [27] are changed to

w∗
ij = rjπ

−1(xi, yj ;φ)O(xi, yj ;φ)f1(yj | xi, γ )/C(yj ;γ )∑n
k=1 rkπ−1(xi, yk;φ)O(xi, yk;φ)f1(yk | xi, γ )/C(yk;γ )

,

where C(y;γ ) = ∑n
l=1 rlf1(y | xl;γ ). The weight w∗

ij can be called fractional weights in the
context of fractional imputation of [16]. With these weights, E�{g(xi, Y ) | xi;γ,φ} can be
computed by

∑n
j=1 w∗

ij g(xi, yj ).
We now discuss the second adaptive estimator based on nonparametric estimation for

f1(y | x). When x is discrete, such as when x is a binary variable, the expectation can be
computed by averaging the data conditioned by X = x and R = 1, for example, for x = 0,1,

Ê�{g(x,Y ) | x;φ} =
∑

j∈Ix
rjπ

−1(x, yj ;φ)O(x, yj ;φ)g(x, yj )∑
j∈Ix

rjπ−1(x, yj ;φ)O(x, yj ;φ)
(5.4)

is a consistent estimator of (5.1), where Ix = {j ∈ {1, . . . , n} | Xj = x}.
When x is continuous, the Nadaraya–Watson estimator can be employed. That is, for any

function g(z),

Ê�{g(x,Y ) | x;φ} =
∑n

j=1 Kh(x − xj )rjπ
−1(x, yj ;φ)O(x, yj ;φ)g(x, yj )∑n

j=1 Kh(x − xj )rjπ−1(x, yj ;φ)O(x, yj ;φ)
(5.5)

is consistent under the regularity conditions given in Appendix A. Here, Kh(x−w) = K{(x−
w)/h}, where K is a kernel function, and h is the bandwidth. We have the following result
for the adaptive estimators obtained with the Nadaraya–Watson estimation.

THEOREM 5.2. Let (φ̂T, θ̂ )T be the solution to
∑n

i=1 Ŝeff,i(φ, θ) = 0, where Ŝeff,i(φ, θ)

is defined in (4.4) with the estimated conditional expectation in (5.5). Under Conditions (I1)–
(I3), (C1)–(C4) and, (C8)–(C13) given in Appendix A, (φ̂T, θ̂ )T satisfies consistency and
asymptotic normality, and the estimator attains the semiparametric efficiency bound.

REMARK 5.1. The second proposed estimator is robust because it does not require any
model assumptions on f1, but it would not work well when the dimension of x is high, as is
common in any nonparametric estimation.

Variance estimation is also a difficult problem in semiparametric estimation. When we
consider a parametric working model f1(y | x;γ ),

V̂ = n−1
n∑

i=1

[
τ̂−1

U
{
S2

(
ri,Gri (zi); φ̂, θ̂ , γ̂

) − κ̂S1
(
ri,Gri (zi); φ̂, γ̂

)}]⊗2(5.6)

converges to V ∗ in probability as defined in (5.3), where τ̂U and κ̂ are consistent estima-
tors for τU and κ∗ = κ∗

1 (κ∗
2 )−1, respectively, for κ∗

1 and κ∗
2 as defined in Theorem 5.1. To

estimate κ∗
1 , we propose using the same method that we used to compute θ0, that is, let
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U(φ0, k1, γ
∗) = k1 − (U�(γ ∗) − U)π̇(φ0)

T/π(φ0) be our new U -function and let the solu-
tion to E{U(φ0, k1, γ

∗)} = 0 with respect to k1 be our target parameter; solve the following
equation:

n∑
i=1

[
ri

π(zi; φ̂)
U(zi; φ̂, k1, γ̂ ) +

{
1 − ri

π(zi; φ̂)

}
E�{U(Z; φ̂, k1, γ̂ ) | xi; γ̂ }] = 0.

This is the optimal estimator for (φ0, κ
∗
1 ) in terms of the asymptotic variance, because U is a

known function and Theorem 5.1 is applicable. The best estimator for κ∗
2 can be obtained in

the same way. When we use the nonparametric method stated in Theorem 5.2 to estimate θ0,
the variance can be also estimated by using the nonparametric method (5.4) and (5.5), instead
of using the parametric model f1(y | x;γ ) in (5.6).

6. Simulation study. In order to evaluate the performance of our proposed estima-
tors and to compare their efficiency with other methods in finite samples, we conduct a
Monte Carlo simulation study with three scenarios. In each scenario, two covariates X1 ∼
N(0,1/

√
2

2
) and X2 | X1 = x1 ∼ N(−x1/3,1/22) are used. For each scenario s(= 1,2,3),

the response mechanism is set to a Bernoulli distribution with parameter π [s](x1, x2, y),
where π [s](x1, x2, y) = 1/{1 + exp(φ

[s]
x0 + 0.5x1 + 0.5x2 + φ

[s]
y y)}, and the response out-

come variables are generated from Y | (x, r = 1) ∼ N(μ[s](x),1/22), where μ[s](x) =
a

[s]
0 + 0.4x1 + 0.4x2 +a

[s]
1 x1x2. The coefficients of the nonlinear term, which is the degree of

nonlinearity, are set to a
[1]
1 = 0, a

[2]
1 = 0.3, a

[3]
1 = 0.6, and the other parameters are set, so that

the expectation of the outcome variable is zero and the marginal response probability is 70%,
to φ

[1]
x0 = −0.959, φ

[2]
x0 = −0.914, φ

[3]
x0 = −0.904, φ

[1]
y = 0.75, φ

[2]
y = 0.4, φ

[3]
y = 0.3, a

[1]
0 =

−0.0563, a
[2]
0 = 0.02 and a

[3]
0 = 0.0775. Note that the scenarios 2 and 3 are identifiable with-

out using any instrumental variable because of the nonlinear term x1x2 in f1, on the other
hand, Scenario 1 is unidentifiable, and Scenario 2 is weakly identified than Scenario 3. We
estimate θ = E(Y ); thus, U(θ;Z) = θ − Y , with two different Monte Carlo samples of size
n = 500 and n = 2000 being independently generated 2000 times.

In Scenario 1, however, it is still possible to make the response model identifiable at the
risk of misspecification of the response mechanism by using DNET. In this article, we change
the variable x1 → Ta(x1) and x2 → Ta(x2)(a = 0.5,1,2).

From each sample, we compute seven estimators, as follows:

1. CK: The estimator of Chang and Kott [3]. We use the estimating equation (2.1), setting
g as (1, x1, x2); θ is estimated by solving

n∑
i=1

ri(θ − yi)/π̂i = 0,(6.1)

where π̂ is the estimated response model.
2. RR: The estimator of Rotnitzky and Robins [30]. This estimator is defined through

four steps (i)–(iv) in Appendix C. In the first step, a consistent estimator is set to be the CK
estimator, and in the second step, each of (C.1), (C.3)–(C.6) is modeled by at most third-order
polynomial function of x1 and x2.

3. RRC: The estimator of Rotnitzky and Robins [30] with correct (C.1), (C.3)–(C.6) mod-
els. This estimator is exactly the same as the RR estimator except for using the correct speci-
fication of (C.1), (C.3)–(C.6) models.

4. RKI: The estimator of Riddles et al. [27]. In all scenarios, we specify a parametric
model on f1 based on normal distribution with the correct mean structure μ(x) = β0 +β1x1 +
β2x2 + β3x1x2.
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5. P: Our proposed estimator with parametric f1 model. As for the working model for f1,
the same model specification as in the RKI method is used.

6. NP: Our proposed estimator with nonparametric f1 model. As for the kernel function
and its bandwidth, Gaussian kernel and a rule-of-thumb bandwidth hj = n

−1/5
1 σ̂xj

(j = 1,2)

is used, where n1 is the sample size of observed outcome variable and σ̂j is the square root
of the sample variance of xj for j = 1,2.

7. DNET(a): Same method as P and NP with the nonlinearly transformed data Ta(x1)(a =
0.5,1,2) for the variables in response models.

Suppose that the response model is correctly specified in our proposed methods, and except
for our proposed methods, for identifiability, suppose that x2 is specified as the instrumental
variable, that is, the response model is specified as

logit
{
π(x1, y)

} = φx0 + φx1x1 + φyy.

Before estimating the parameters, we first check the model identifiability of our proposed
method. The right panel in Figure 2 shows the p-values of the statistical tests proposed in
Section 3.2 under the three scenarios with different sample sizes. The p-values in scenario 1
spread around 1/2 because the null hypothesis is correct or the model is unidentifiable. On
the other hand, as the nonlinearity increases, p-values are close to zero. In particular, when
n = 2000, model identification can be judged with the probability almost 1 even for Scenario
2 which has a small degree of the nonlinearity 0.3.

The left panel in Figure 2 shows the Monte Carlo simulation results with sample size n =
500. The results with sample size n = 2000 are omitted because they are almost the same. In
some Monte Carlo samples, we encounter some numerical problems and there is no solution
because the estimate of the response model does not converge due to weak identifiability.
The rates of data sets not having converging estimators are reported at the bottom right in
Figure 2. The following is a summary of the simulation results:

1. The CK method estimates the parameter stably, but it is biased due to the misspecifi-
cation of the response model. The standard error of the CK estimators is a little larger than
RKI, P, NP and DNET methods due to the lack of efficiency.

2. In many cases, the RR estimators do not converge. This comes from the difficulty of
finding a good starting value of φ in the first step and of modeling the working models defined
in Appendix C.

3. The RRC estimators relatively improve the performance of RR estimators due to the
correct working models, though they are unknown in practice.

4. Performance of RKI method is similar to RRC because these two estimators use the
correct f1 model.

5. When the model is identifiable, the proposed P method works well. However, when it
is unidentifiable, it is hard even to get a convergent sequence of estimators, though that can
be inferred by testing linearity of the mean function.

6. Surprisingly, the NP method can estimate the parameter stably despite of the uniden-
tifiability of the model, and the estimates are biased according to the degree of linearity of
μ[s](x).

7. Proposed DNET works well for all the transformations Ta(x). In Scenario 1, when the
model is not identifiable, the rate obtaining a nonconvergent estimator and bias increase as
the nonlinearity increases, in the meantime, the standard error decreases.

7. Real data analysis. In this section, our proposed estimators are applied to the Korea
Labor and Income Panel Survey (KLIPS) data, which have been analyzed multiple times [17,
35, 43]. The data contain n = 2506 Korean wage earners; the response variable y is total
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FIG. 2. Left panel: Boxplot of Monte Carlo results for converged estimators for θ = E(Y ) under three scenarios
with sample size 500. The six estimators are CK (Chang & Kott’s estimator), RR (Rotnitzky & Robins’s estimator),
RRC (Rotnitzky & Robins’s estimator with correct working models), RKI (Riddles’ estimator), P (our proposed
estimator with parametric f1), NP (our proposed estimator with nonparametric f1) and P and NP method with
DNET (doubly-normalized exponential transformation) where the suffix stands for a value of Ta(x1). The broken
line shows the true value. Right panel: Test statistics for identifiability for data sets with each sample size 500 and
2000, and the bottom right panel shows the rate of estimators failed to obtain an estimator.

wage income (106 Korean Won) in year 2008. There are three fully observed covariates: x1:
total wage income in the previous year (2007); x2: gender; x3: age. While x1 is a continuous
variable, x2 has two categories 1 and 2 for male and female, respectively, and x3 has three
categories 1–3: x3 < 35,35 ≤ x3 < 51 and x3 ≥ 51. We also identified three data points as
outliers and excluded them from further analysis.

Although the data are completely observed, we took the approach of Kim and Yu [17] and
created 1000 incomplete data sets with the following eight response mechanisms: M1 (linear
nonignorable without (x2, x3)): logit(π) = 0.48 − 0.3x1 − 0.5y; M2 (linear nonignorable):
logit(π) = −0.85 − 0.2x1 + 0.5x2 + 0.2x3 − 0.4y; M3 (nonlinear nonignorable, quadratic in
x1 without (x2, x3)): logit(π) = 0.33 − 0.3x1 − 0.1x2

1 − 0.3y; M4 (nonlinear nonignorable,
quadratic in x1): logit(π) = −0.89 − 0.4x1 − 0.1x2

1 + 0.5x2 + 0.2x3 − 0.4y; M5 (nonlinear
nonignorable, quadratic in y without (x2, x3)): logit(π) = 0.24 − 0.25x1 − 0.25y − 0.1y2;
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M6 (nonlinear nonignorable, quadratic in y): logit(π) = −0.93 − 0.2x1 + 0.5x2 + 0.2x3 −
0.2y − 0.1y2; M7 (probit nonignorable) π = �(−0.55 + 0.3x1 + 0.4y); M8 (jump nonignor-
able) π = 0.5I (0.5x2 + 0.2x3 + y ≤ 2.6) + 0.9(0.5x2 + 0.2x3 + y > 2.6), where �(·) is the
cumulative distribution function of the standard normal distribution, and I (A) is the indicator
function that takes 1(0) if event A is true (false). Note that there are NIVs for models M2,
M4, M6 and M8. For all data sets, the response rate is about 70%. We estimated θ = E(Y ) as
considered in the simulation. The “true” average income in 2008 is θ̂n = 1.846 as calculated
using the complete data. In order to estimate the parameters, we assumed a response mech-
anism logit{π(x, y;φ)} = φx0 + φx1x1 + φx2x2 + φx3x3 + φyy. Therefore, M1 and M2 are
correctly specified while M3–M8 are misspecified.

We specified unknown f1 models as normal distribution Y | (x1, x2 = i, x3 = j, r = 1) ∼
N(μi,j (x1), σ

2
i,j ) (i = 1,2; j = 1,2,3), where μi,j (x1) = γ0i,j +γ1i,j x1 +γ2i,j x

2
1 +γ3i,j x

3
1 +

γ4i,j x
4
1 ; (γ1i,j , γ2i,j , γ3i,j , γ4i,j ) is the regression parameter when (x2, x3) = (i, j). We chose

the best model by AIC among 25 − 1 models for each (x2, x3)’s 2 × 3 pattern. Using The-
orem 3.1, one can show that this model is identifiable as one of the 6 mean structures are
nonlinear, or all the structures are linear but all of them are not the same. One simple suffi-
cient condition is to check whether the conditional mean of y given x1 is linear with respect
to x1. In the real data, the correlation between x1 and y is too high because wage income does
not change considerably within one year; the mean structure is almost linear. However, the
p-values of the test statistics are almost zero in all data sets with M1–M8, therefore, all the
response models are identifiable without using any instrumental variable nor transformation.
In Table 1, Bias, S.E. (standard error) and RMSE (root mean square error) with five meth-
ods, CK, RR, RKI, P, NP methods same as in Section 5, are reported. The following are a
summary of the results:

1. The CK method estimates the parameter stably, but it is inefficient compared to our
proposed methods.

2. As in Section 5, the RR estimators do not converge in many data sets.
3. RKI methods can obtain estimates stably, but it is severely biased due to the misspeci-

fication of f1 model, which is generally unknown in real.
4. The proposed P method works well, but for some data sets, we encounter some numeri-

cal problems due to the misspecification of the response model. As for such data sets, we may
get a reasonable estimator by using DNET. Note that our method is effective for the probit
response mechanism (M7), even though the use of the probit model makes it hard to identify
the parameter as stated in Section 3.1.

5. Performance of the proposed NP method is the best among the five methods considered.
However, the results with data set M5 and M6 implies the difficulty of obtaining the estimator
with misspecified response models.

8. Discussion. We have presented a test statistic for model identification, semiparamet-
ric efficiency bound for (φT

0 , θ0)
T under nonignorable nonresponse; proposed two types of

adaptive semiparametric estimators that attain the semiparametric lower bound. Identifiabil-
ity is a challenging problem in nonignorable nonresponse [23]; previous methods require
nonignorable NIVs to guarantee model identification [43]. Our new identifiability condition
is not on the response mechanism, but on the distribution of [y | x, r = 1].

In this paper, we have mainly used a logistic response model, but as discussed in Section 3,
it may be possible to use other response models such as the probit model. Finding a sufficient
condition for model identifiability of the response models such as done in Miao et al. [23] will
be a future work. We adopted a kernel regression to construct an adaptive estimator. However,
as recently shown in Chernozhukov et al. [5], we expect that other nonparametric methods
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TABLE 1
Bias, S.E. (standard error) and RMSE (root mean square error) of our proposed estimator, where the full sample

estimate θ̂n = 1.846 is set to the true value, for data sets M1–M8. NA rate is the rate of data set failed to get a
convergence estimator. All values are multiplied by 1000 except for NA rate

Methods

Model CK RR RKI P NP

M1 Bias 73 118 737 22 17
S.E. 130 388 676 48 31
RMSE 149 406 1000 52 35
NA rate(%) 0.7 31.9 0 1.8 1.6

M2 Bias 66 90 599 23 13
S.E. 119 217 580 49 31
RMSE 136 235 834 54 33
NA rate(%) 1.1 27.9 0 1.2 1.0

M3 Bias 205 197 879 11 -6
S.E. 128 694 810 49 31
RMSE 241 722 1195 50 32
NA rate(%) 8.1 48.4 0 4.3 2.5

M4 Bias -103 10 245 55 29
S.E. 100 179 295 51 26
RMSE 144 179 383 75 39
NA rate(%) 15.8 40.9 0 1.1 0.3

M5 Bias -39 78 840 59 0
S.E. 71 288 780 211 56
RMSE 81 298 1146 219 56
NA rate(%) 2.9 24.2 0 1.9 32.7

M6 Bias -68 57 776 44 13
S.E. 87 550 734 51 49
RMSE 111 553 1068 68 51
NA rate(%) 7.4 34.0 0 1.7 37.4

M7 Bias 158 125 1131 15 11
S.E. 155 472 844 42 34
RMSE 221 489 1412 45 36
NA rate(%) 2.2 36.7 0 5.8 2.0

M8 Bias 175 136 689 27 9
S.E. 115 475 579 48 33
RMSE 209 494 900 55 34
NA rate(%) 0.6 37.2 0 1.4 1.1

such as the kernel unconstrained least squares importance fitting (KuLSIF) [15] for estimat-
ing the f1(y | x) distribution, which have a certain mild convergence rate, are also applicable
because the estimating equations (4.1) and (4.2) have, as it can be easily shown, the Neyman
orthogonality defined in [5]. The proposed method is based on the correct specification of
the response model. There may be various other models for the true response mechanism,
and thus the appropriate information criteria for choosing the response mechanism will be
a topic of future research. Instead of specifying a single response model, one can consider
multiple response models, and obtain consistency when one of the specified response models
is correct. This multiple robustness property has been investigated under the ignorable nonre-
sponse setup [4, 14]. Extension of multiple robustness to the nonignorable nonresponse case
will also be a topic of our future research.
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APPENDIX A: REGULARITY CONDITIONS

Conditions for consistency and asymptotic normality of the proposed estimator.

(C1) � and � are compact.
(C2) Wi = (Xi, Yi,Ri) are independently and identically distributed.
(C3) � is compact, Sγ (γ ) = ∂ logf1(y | x;γ )/∂γ is continuously differentiable at

γ ∈ � with probability one, there exists e(W) such that ‖Sγ (γ )‖ ≤ e(W) for all γ ∈ �

and E{e(W)} < ∞, E{Sγ (γ )} = 0 has a unique solution γ ∗ ∈ �, ∂Sγ (γ )/∂γ T is con-
tinuous at γ ∗ with probability one, and there is a neighborhood �N of γ ∗ such that
‖E{supγ∈�N ∂Sγ (γ )/∂γ T}‖ < ∞.

(C4) Identifiability of θ for complete data: there exists a unique θ0 ∈ � such that
E{U(Z; θ0)} = 0.

(C5) ∂Seff(φ, θ, γ )/∂(φT, θ, γ T) is continuous at (φ0, θ0, γ
∗) with probability one, and

there is a neighborhood �N × �N × �N of (φ0, θ0, γ
∗) such that∥∥∥E{

sup
(φ,θ,γ ∗)∈�N×�N×�N

∂Seff(φ, θ, γ )/∂
(
φT, θ, γ T)}∥∥∥ < ∞.

(C6) Seff(φ, θ, γ ) is continuously differentiable at each (φ, θ, γ ) ∈ � × � × � with
probability one, and there exists d1(W) such that ‖Seff(φ, θ, γ )‖ ≤ d1(W) for all (φ, θ, γ ) ∈
� × � × � and E{d1(W)} < ∞.

(C7) E{∂Seff(φ, θ, γ ∗)/∂(φT, θ, γ T)} is nonsingular at (φ0, θ0, γ
∗).

(C8) The conditions (C5)–(C7) hold at the true value γ ∗ = γ0.
(C9) Let X be the support of x. Then f1(x) > 0 and E1{π(x,Y ;φ0) | x} > 0 for all

x ∈ X .
(C10) The kernel K(u) has bounded derivatives of order k, satisfies

∫
K(u)du = 1, has

zero moments of order ≤ m − 1, and has a nonzero mth order moment.
(C11) For all y, π(·, y;φ0), π̇(·, y;φ0), and U(·, y; θ0) are differentiable to order k and

are bounded on an open set containing X .
(C12) Let a1(z) = 1, a2(z) = s0(z;φ0), and a3(z) = U(z). Then there exists v ≥ 4 such

that E1{|π−1(Z;φ0)O(Z;φ0)ai(Z)|v} and E1{‖π−1(Z;φ0)O(Z;φ0)ai(Z)‖v | x}f1(x) are
bounded for all x ∈ X .

(C13) As h → 0, n1−(2/v)hd/ lnn → ∞, n1/2hd+2k/ lnn → ∞ and n1/2h2m → 0.

Conditions for consistency of the test statistics.

(T1) The matrix E{(1,X�)�(1,X�)} is invertible;
(T2) Let k and l be characteristic kernels, k is continuous, and l is twice continu-

ously differentiable. Denoting the partial derivatives of l by lx(x, y) = ∂xl(x, y), lxy(x, y) =
∂x∂yl(x, y), etc. Assume that lxx , lxy and lyy are Lipschitz continuous with Lipschitz constant
L with respect to the l∞-norm, where the l∞-norm for a vector u = (u1, . . . , up)� is defined
by |u|∞ = max1≤i≤p |ui |.

(T3) Let each (X1, . . . ,X4) and (ε1, ε2) be indenpendent and identically distributed
(i.i.d.) copies of X and ε, respectively. Then (a) E|X|2∞ < ∞, (b) E(ε2) < ∞, (c)
E{v2(Xq,Xr,Xs,Xt)} < ∞ (1 ≤ q, r, s, t ≤ 4), and (d) E{f 2(εq, εr)} < ∞ for f =
l, lx, ly, lxx, lyy, lxy (1 ≤ q, r ≤ 2), where vp(Xq,Xr,Xs,Xt) = kp(Xq,Xr){1 +|Xs |p∞}{1 +
|Xt |p∞}.

(T4) Let ε = m(X) − μ(X; c̃) + ε, ε0 = ε − E(ε), c̃ be the probability limit of the
least squared estimator ĉ, and (ε0

1 , ε0
2) be i.i.d. copies of ε0. There exists δ > 0 such that

(a) E{|X|4+2δ∞ } < ∞, (b) E{|μ(X)2+δ|} < ∞, (c) E{|ε|2+δ} < ∞, (d) E{v2+δ(Xq,Xr,Xs,

Xt)} < ∞ (1 ≤ q, r, s, t ≤ 4), (e) for 1 ≤ q, r ≤ 2,

E
{∣∣l(ε0

q, ε0
r

)∣∣2+δ}
< ∞, E

[{
1 + |Xq |2+δ∞

}∣∣f (
ε0
q, ε0

r

)∣∣2+δ]
< ∞ (f = lx, ly),
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E
[{

1 + |Xq |2+δ∞ + |Xq |4+2δ∞
}∣∣f (

ε0
q, ε

0
r

)∣∣2+δ]
< ∞ (f = lxx, lyy, lxy).

APPENDIX B: PROOFS OF THE TECHNICAL RESULTS

PROOF OF THEOREM 3.1. Let f1(y | x) be the true density function of [y | x, r = 1].
Here, the distribution of [y | x] can be represented through the observed outcome density and
the response model, because by using Bayes’ formula, we have

f (y | x;φ) = f1(y | x)π−1(x, y;φ)∫
f1(y | x)π−1(x, y;φ)dy

.(B.1)

Suppose that φ0 is the true value of the response model so that the true distribution of [y | x]
is f (y | x;φ0). Then it follows from (B.1) that the probability limit of the estimating equation
is

E
{
�(Z,R;φ) | x} = g(x;φ)

∫ {
1 − π(Z;φ0)

π(Z;φ)

}
f (y | x;φ0) dy

= g(x;φ)

{
1 −

∫
π(Z;φ)−1f1(y | x;φ)dy∫

π(Z;φ0)−1f1(y | x;φ0) dy

}
.

By using (I2) and (I3), the conditional expectation cannot be vanished unless φ = φ0. There-
fore, the solution is unique. �

PROOF OF PROPOSITION 3.1. For any error function ε ∈ E , under the null hypothesis
H

(∞)
0 , there exist c

(�)
1 , c

(�)
2 (� = 2,3) such that E(ε2 | x) = c

(2)
1 + (c

(2)
2 )�x and E(ε3 | x) =

c
(3)
1 + (c

(3)
2 )�x. On the other hand, it holds that

ε2 =
∞∑

j=0

ξ2
j e2

j (x) + ∑
j �=k

ξj ξkej (x)ek(x).

It follows from ej �= ek (j �= k) that there must exist a positive integer j such that ej =
{E(ξ2

j )}−1/2(c
(2)
1 + (c

(2)
2 )�x)1/2 and ek ≡ 0 for k �= j , so that ε = (c

(2)
1 + (c

(2)
2 )�x)1/2ξj . Let

such j be 1 without loss of generality. In a similar way, it follows from the third moment con-
dition of ε that ε = (c

(3)
1 + (c

(3)
2 )�x)1/3ξ1, which implies c

(2)
2 = c

(3)
2 = 0 and c

(3)
1 = (c

(2)
1 )3/2.

By using the induction, under the null hypothesis H
(∞)
0 , it can be shown that c

(�)
2 ≡ 0 for

� ≥ 2. As a result, ε is a random variable, which is independent of x. Therefore, H
(1)
0 or

testing linearity of mean function is enough to check the model identification. �

Next, we provide a proof of Lemma 4.1 and Theorems 5.1 and 5.2. In order to prove
Lemma 4.1, we will assume U(z) = y just for simplicity. We specify the joint distribution
z = (xT, y)T by f (z;η), where η is an infinite-dimensional nuisance parameter, and η0 is the
true value. By “full model,” we refer to the class of models in which the data are completely
observed, and by “obs model” we refer to those in which some Y are missing; that is, a full
model consists of functions h(Z) and an obs model consists of h(R,GR(Z)). Furthermore,
for each full and obs model, denote the nuisance tangent space by �F and �, respectively,
and its orthogonal complement by �F⊥ and �⊥, respectively. Let Sφ be the score function
with respect to φ. Consider a Hilbert space H = {h(q+1)×1 | E(h) = 0; ‖h‖ < ∞} with inner
product 〈h1, h2〉 = E(hT

1 h2), where the expectation is taken under the true model. See Bickel
et al. [2] and Tsiatis [41] for more details. When U is comprised of other functions, the proof
is almost the same.
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At first, we introduce a proposition of Rotnitzky and Robins [30], which provides the
efficient score for (φ, θ), as follows. Let B and D be functions of (R,GR(Z)), and let B∗ and
D∗ be functions of Z. Also, let us define the following three linear operators: g(B∗) = E(B∗ |
R,GR(Z)), m(B∗) = E{g(B∗) | Z}, and u(B∗) = RB∗/π(Z). Then the efficient score for
(φ, θ) can be derived by the following lemma. See Proposition A1 in Rotnitzky and Robins
[30] for the proof.

LEMMA B.1. The efficient score for (φ, θ) can be written as

Seff = u
(
D∗

eff
) − �

[
u
(
D∗

eff
) | �2

] + A2,eff = g
{
m−1(

D∗
eff

)} + A2,eff,(B.2)

where �[h | �2] is the projection of h onto �2, �2 = [h(R,GR(Z)) : E(h(R,GR(Z)) |
Z) = 0], and D∗

eff is a unique solution to

�
[
m−1(

D∗) | �F⊥] = (
Q,SF⊥

eff,θ
)
,(B.3)

where Q = �[m−1[E{g(SF
φ ) | L}] | �F⊥], A2,eff = (�[Sφ | �2]T,0)T = (g(SF

φ ) −
g[m−1[E{g(SF

φ ) | L}]]T,0)T, and SF⊥
eff,θ is the efficient score function of θ in the full model.

This lemma implies that the efficient score can be represented by (B.2) with D∗
eff satisfying

condition (B.3). Thus, in the nonignorable nonresponse case, �F⊥ needs to be calculated, and
it can be done in a way similar to that shown in Section 4.5 of Tsiatis [41].

LEMMA B.2. The nuisance tangent space �F and its orthogonal complement �F⊥ in
the full model are written as follows:

�F = [
h(Z) ∈ H such that E

{
Yh(Z)

} = 0
]
,

�F⊥ = [
k(Y − θ0), where k is any q + 1 dimensional vector

]
.

Finally, we give an explicit formula to calculate the projection onto �2.

LEMMA B.3. For h(R,GR(Z)) = Rh1(Z) + (1 − R)h2(X), it holds that

�(h | �2) =
{

1 − R

π(Z)

}
E[{1 − π(Z)}{h2(X) − E{h1(Z)} | X]

E{O(Z) | X} .(B.4)

PROOF OF LEMMA B.3. Obviously, the right-hand side of (B.4) belongs to �2. Thus, it
remains to check that for any g,〈

h −
{

1 − R

π(Z)

}
h2(X) − E{h1(Z) | X}

E{O(Z) | X} ,

{
1 − R

π(Z)

}
g(X)

〉
= 0,

which can be proved easily. �

We now give a proof of Lemma 4.1.

PROOF OF LEMMA 4.1. Note that SF⊥
eff,θ = Y − θ0 by Lemma B.2, since there exists only

one influence function, and it is the efficient one under the assumption that θ does not require
any assumptions on the distribution of Z (see [41], Chapter 5). By the projection theorem,
there exists a unique k = (k1, k

T
2 )T such that D∗

eff = k(Y − θ0).
Then we calculate A2,eff. The score function of φ is

Sφ = g
(
SF

φ

) = Rs1(Z;φ) + (1 − R)s0(X;φ),
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where sr(φ) is defined in (2.2). It follows from Lemma B.3 with h1(z) = s1(φ) and
h2(x) = s̄0(x;φ) in (B.4) that �(Sφ | �2) = −{1−R/π(Z)}g�(X). Thus, A2,eff = [0,−{1−
R/π(Z)}g�(X)]. Again, by using Lemma B.3, it follows that �[u(D∗

eff) | �2] = −{1 −
R/π(Z)}E�(Y − θ0 | X), by which (B.2) becomes

S1 = k2

[
R(Y − θ0)

π(φ0)
+

{
1 − R

π(φ0)

}
E�(Y − θ0 | X)

]
−

{
1 − R

π(Z)

}
g�(X)

and

S2 = k1

[
R(Y − θ0)

π(φ0)
+

{
1 − R

π(φ0)

}
E�(Y − θ0 | X)

]
.

This Seff = (S1, S
T
2 ) can be transformed into S̃eff = (S̃1, S̃

T
2 ) = ASeff,

S̃1 =
{

1 − R

π(φ0)

}
g�(X),

S̃2 = R(Y − θ0)

π(φ0)
+

{
1 − R

π(φ0)

}
E�(Y − θ0 | X)

with a nonsingular matrix A,

A =
[
−Iq −kT

2 /k1

0T k−1
1

]
,

where Iq is a q-dimensional identity matrix. The score function multiplied by a nonsingular
constant matrix does not have an influence on the asymptotic distribution. Thus, we have the
desired efficient score. �

PROOF OF THEOREM 5.1. Consistency and asymptotic normality are proved under the
assumptions (C1)–(C8) by using the standard argument for GMM. Next, we give the explicit
form of the asymptotic variance. Let ξ = (φT, θ)T. Recall that each γ̂ and ξ̂ is a solution
to

∑n
i=1 ∂ logf1(yi | xi;γ )/∂γ = ∑n

i=1 Sγ i(γ ) = 0 and
∑n

i=1 Seff,i(γ̂ , ξ) = 0, respectively,
where Seff,i (γ, ξ) is defined in (5.2). By using standard asymptotic theory,[

γ̂ − γ ∗
ξ̂ − ξ0

]
= −I−1n−1

n∑
i=1

[
Sγ i

(
γ ∗)

Seff,i
(
γ ∗, ξ0

)] ,

where

I = E

[
∂Sγ

(
γ ∗)

/γ T ∂Sγ

(
γ ∗)

/ξT

∂Seff
(
γ ∗, ξ0

)
/γ T ∂Seff

(
γ ∗, ξ0

)
/ξT

]

= E

[
∂Sγ

(
γ ∗)

/γ T O

∂Seff
(
γ ∗, ξ0

)
/γ T ∂Seff

(
γ ∗, ξ0

)
/ξT

]
.

Let the (i, j) block of I be Iij . Then

I−1 =
[

I−1
11 O

−I−1
22 I21I−1

2 I−1
22

]
.

Here, it follows that I21 = O because

E

[{
1 − R

π(φ0)

}
∂g�(γ ∗, ξ0)

∂γ T

]
= O
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and

E

[{
1 − R

π(φ0)

}
∂U�(γ ∗, ξ0)

∂γ T

]
= 0T.

Therefore, we have

I−1 =
[
I−1

11 O

O I−1
22

]
.

By applying exactly the same arguments for I−1
22 used for I−1, we obtain the asymptotic

variance of θ̂ as given in (5.3). �

PROOF OF THEOREM 5.2. Consistency and asymptotic normality of our proposed esti-
mator are similar to proving Lemma 4.1 of Morikawa et al. [25]. We herein show our esti-
mator attains the semiparametric lower bound derived in Lemma 4.1. Let f1(x) be the con-
ditional distribution of [x | r = 1]. From the same arguments that were used to prove Lemma
A.1 in Morikawa et al. [25], it can be shown that the estimating equation in Theorem 5.2,
Ŝeff(φ, θ) = {Ŝ1(φ)T, Ŝ2(φ, θ)}T is expanded as

Ŝ1(φ) = n−1
n∑

i=1

[{
1 − ri

π(φ; zi)

}
g�(φ;xi) + riG(zi;φ)

]
+ op

(
n−1/2)

,

Ŝ2(φ, θ) = n−1
n∑

i=1

[
ri

π(φ; zi)
U(θ; zi) +

{
1 − ri

π(φ; zi)

}
U�(θ,φ;xi) + riH(θ,φ; zi)

]

+ op

(
n−1/2)

,

where G(φ; zi) = G1(φ;xi)G2(φ; zi), H(θ,φ; zi) = G1(φ;xi)H2(θ,φ; zi), and

G1(φ;xi) = 1 − E

{
π(φ0;Z)

π(φ;Z)

∣∣∣∣xi

}
,

G2(φ; zi) = π−1(φ; zi)O(φ; zi){s0(φ; zi) − g�(φ;xi)}
E1{π−1(φ;Z)O(φ;Z) | xi}P(R = 1 | xi)

,

H2(θ,φ; zi) = π−1(φ; zi)O(φ; zi){U(θ; zi) − U�(θ,φ;xi)}
E1{π−1(φ;Z)O(φ;Z) | xi}P(R = 1 | xi)

.

Therefore, the asymptotic variance may increase due to the additional terms rG(φ) and
rH(φ), but this solution also attains the lower bound. At first, we focus on the estimator for
φ. Once we get an unbiased estimating equation

∑n
i=1 ϕ(zi;φ) = 0, the asymptotic variance

can be given as Var{E(ϕ̇(φ0))
−1ϕ(φ0)}, where ϕ̇(φ0) = ∂ϕ(φ0)/∂φT. Thus, for the proving

purpose, it suffices to show that G(φ0) = 0 and E(RĠ(φ0)) = O . The former equation is
trivial, so we only need to work on the latter equation, which can be written as E(RĠ(φ0)) =
E(RG1(φ0)Ġ2(φ0)) + E(RG2(φ0)Ġ1(φ0)). The first term is zero from G1(φ0) = 0. Also,
the second term is E(RG2(φ0)Ġ1(φ0)) = E{E(RG2(φ0) | X)Ġ1(φ0)} = O . Hence, the last
equation holds by the definition of g�(φ;x). Therefore, rG(φ) has no effect on the asymp-
totic variance and our estimator also attains the semiparametric efficiency bound. The same
conclusion can be made when estimating θ . �

APPENDIX C: COMPARISON WITH ROTNITZKY AND ROBINS (1997)’S
ESTIMATOR

In Rotnitzky and Robins [30], the semiparametric efficiency bound for NMAR data was
derived in more general settings in Proposition A1 and A2, and an adaptive estimator for
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regression coefficients was proposed. However, to attain the efficiency bound, the estimator
requires many working models to be correctly specified, and it would be practically impos-
sible to correctly specify all of the models. For example, for the case of nonignorable nonre-
sponse, seven working models, equations (32)–(38) in Rotnitzky and Robins [30], have to be
specified.

In particular, if θ = E(Y ) is our parameter of interest, three working models are required:

E1
{
π−1(Z;φ0)O(Z;φ0) | x} =: ν1(x; ζ1),(C.1)

E1
{
π−1(Z;φ0)O(Z;φ0)s0(Z;φ0) | x} =: ν2(x; ζ2),(C.2)

E1
{
Yπ−1(Z;φ0)O(Z;φ0) | x} =: ν3(x; ζ3).(C.3)

Note that (C.2) is a multidimensional function. For example, in the same setup as Section 6,
that is, logit{π(x, y;φ)} = φx0 + φx1x1 + φyy, where x = (x1, x2), (C.2) can be written as

E1
{
O(Z;φ0) | x} =: ν4(x; ζ4),(C.4)

E1
{
x1O(Z;φ0) | x} =: ν5(x; ζ5),(C.5)

E1
{
YO(Z;φ0) | x} =: ν5(x; ζ6),(C.6)

where ν2(x; ζ2) = {ν4(x; ζ4), ν5(x; ζ5), ν6(x; ζ6)}�.
Then an adaptive estimator of φ and θ can be obtained from the following four steps:

(i) Find a consistent estimator φ̃ of φ0 by, for example, Chang and Kott’s [3] method;
(ii) Estimate ζk(k = 1,2,3) in (C.1)-(C.3) by the least square method with the estimated

φ̃;
(iii) Let φ̂ be a solution to

n∑
i=1

{
1 − ri

π(zi;φ)

}
ν2(xi; ζ̂2)

ν1(xi; ζ̂1)
= 0.

(iv) Let θ̂ be the solution to

n∑
i=1

[
ri(yi − θ)

π(zi; φ̂)
+

{
1 − ri

π(zi; φ̂)

}{
ν3(xi; ζ̂3)

ν1(xi; ζ̂1)
− θ

}]
= 0.

Therefore, their adaptive estimator is similar to the two-step estimator in GMM. However,
as shown in Section 6, it may be practically difficult to find a valid consistent estimator of φ

for NMAR data. Also, giving reasonable parametric models for (C.1)–(C.3) are challenging
because the left-hand side of them are nonlinear functions.
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