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We discuss the use of likelihood asymptotics for inference on risk mea-
sures in univariate extreme value problems, focusing on estimation of high
quantiles and similar summaries of risk for uncertainty quantification. We
study whether higher-order approximation, based on the tangent exponential
model, can provide improved inferences. We conclude that inference based
on maxima is generally robust to mild model misspecification and that profile
likelihood-based confidence intervals will often be adequate, whereas infer-
ences based on threshold exceedances can be badly biased but may be im-
proved by higher-order methods, at least for moderate sample sizes. We use
the methods to shed light on catastrophic rainfall in Venezuela, flooding in
Venice, and the lifetimes of Italian semisupercentenarians.

1. Introduction.

1.1. Risk measures. Estimating worst-case scenarios is important for risk management
and policy making, but the hypothetical events that keep decision-makers awake at night can
lie far outside the available data. Large-sample likelihood approximations are routinely used
for inference based on extreme observations, but the numbers of rare events can be small,
which raises the question of the adequacy of standard asymptotic approximations. Improved
approximations are used in other domains (e.g., Brazzale, Davison and Reid (2007)), but thus
far they have had limited impact in extreme-value statistics.

The focus in applications of extremes is typically on measures of risk, such as exceedance
probabilities, quantiles, or other summaries of the distribution tail. Accurate small-sample
inference for such quantities, which we denote by ψ in general discussion, is the topic of this
paper. Their estimators may have very asymmetric sampling distributions, so classical “es-
timate ±c× standard error” confidence intervals may be appallingly bad: they may contain
inadmissible parameter values, and the empirical probability that such an interval contains
the true parameter value may be much less than the nominal probability. One approach to
dealing with these deficiencies is to compute the confidence interval on a transformed scale,
for example, by considering the logit of a probability, but even this can perform very badly,
as we shall see below. In such settings it is natural to require that confidence intervals are in-
variant to so-called “interest-preserving transformations” which transform in a natural way:
if (L,U) is a (1 − α) confidence interval for a scalar parameter ψ in a model with other
parameters λ, then, for any monotone increasing transformation g, [g(L), g(U)] is the cor-
responding confidence interval for g(ψ), even if the remaining parameters are transformed
from λ to ζ(λ,ψ). Confidence intervals based on the profile likelihood have this property,
and this is an important reason to favor these intervals in applications, but we shall see below
that modified versions of them may be preferred in some cases.
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1.2. Motivating example: Vargas tragedy. Cumulative rainfall of around 911 mm over
a three-day period in mid-December 1999 led to landslides and debris flow that caused an
estimated 30,000 deaths in the Venezuelean coastal state of Vargas. Daily cumulated rainfall
data recorded at the Maiquetía Simón Bolívar International Airport for the years 1961–1999
were analyzed in Coles and Pericchi (2003) and Coles, Pericchi and Sisson (2003), whose
fit to annual maxima up to 1998 suggested that the return period for such an event would be
approximately 18 million years, though more sophisticated models led to much more reason-
able risk estimates. Yearly maxima for 1951–1960 and anecdotal records are also available:
for example, during the floods of February 1951, a reported 282 mm of rain fell in Maiquetía
over consecutive days, while the neighbouring station of El Infiernito in the Cordillera de la
Costa, between Caracas and Maiquetía, recorded 529 mm for the same day (Wieczorek et al.
(2001)). These events suggest potential for extremes well beyond the range seen in the daily
records.

To motivate the practical need for modified likelihood approximations, we fit the general-
ized Pareto and the inhomogeneous Poisson process models described, respectively, in Sec-
tions 2.1 and 4.1 to daily rainfall totals from 1961 to November 1999 that exceed 27 mm and
take the risk measure ψ to be the median of the semicentennial maximum distribution. The
threshold stability plot in the right-hand panel of Figure 1 suggests that a threshold of u = 27
mm is appropriate, and the extremogram (Davis and Mikosch (2009)), which estimates the
conditional probabilities P(Yt > u | Yt−h > u) for a threshold u and lags h, suggests that high
rainfall on successive days is only very weakly dependent. This leaves nu = 142 exceedances
for inference, on average 3.74 per year. The profile likelihoods for ψ , shown in Figure 1,
are nearly indistinguishable and highly asymmetric; the maximum likelihood estimator is
ψ̂ = 153 mm, the 95% profile confidence intervals are (116,262) mm, and higher-order con-
fidence intervals are (118,278) mm (generalized Pareto) and (125,301) mm (Poisson process);
the latter accounts for the randomness of the number of exceedances. In view of the shape
of the log-likelihood, any symmetric interval would be highly inappropriate and could lead
to severe underestimation of the risk of rare events. The higher-order intervals are both more
asymmetric and shifted to the right relative to the profile likelihood intervals, corresponding

FIG. 1. Left panel: Profile likelihoods (solid) and higher-order versions (dashed), discussed in Section 3.2, for
the median semicentennial maximum daily rainfall at Maiquetía based on threshold exceedances of daily cumu-
lated rainfall above 27 mm for 1961–1999 (excluding December 1999) using the generalized Pareto (grey) and
inhomogeneous Poisson process (black) likelihoods. The dashed grey horizontal line at −1.92 (−3.32) indicates
cutoff values for 95% (99%) confidence intervals based on the asymptotic χ2

1 distribution. Right panel: Threshold
stability plot of Wadsworth (2016) for the shape parameter ξ of the generalized Pareto distribution with 95%
simultaneous confidence intervals.
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to substantially increased risk. Simulations summarized in Section 5 suggest that the modi-
fied profile likelihood interval has better properties than the usual profile likelihood interval,
both in this case and for related measures of risk.

1.3. Outline. In later sections we first outline the necessary elements of extreme-value
statistics and their use for the estimation of risk. Then, we explain the construction of variants
of the profile likelihood using the tangent exponential model approximation, and show how
they influence the conclusions to be drawn in three applied settings: rainfall extremes in
coastal Venezuela, probabilities of severe flooding in Venice, and excess lifetimes of Italian
semisupercentenarians. Finally we use simulation to assess when the higher-order methods
provide improved inferences. We conclude that the coverage properties of profile likelihood
intervals are adequate overall, though small-sample bias appears for extrapolation too far
into the tail. The improved methods yield wider confidence intervals with more accurate
error rates, though slightly larger samples are needed for them to be effective. The code used
for the simulation study and the applications is available for download at https://github.com/
lbelzile/hoa-extremes

2. Basic notions.

2.1. Extremal models. Extreme value analysis is concerned with two main problems:
estimating the probability of extremes of given sizes and estimating a typical worst-case
scenario over a given period. A standard approach to addressing them is to fit specific distri-
butions justified by asymptotic arguments to maxima (or minima) over specific time periods
or to exceedances of a high (or low) threshold. The limiting distributions for high and low
extremes are related by a simple change of sign, so we can consider only maxima and ex-
ceedances of a high threshold.

The extremal types theorem (Fisher and Tippett (1928); Gnedenko (1943)) character-
izes the limiting distribution of maxima under very mild conditions, but we use slightly
stronger assumptions for ease of exposition. Let F(y) denote a thrice-differentiable dis-
tribution function with density f (y) whose support has upper endpoint y∗, define s(y) =
−F(y) log{F(y)}/f (y), let bm denote the solution of the equation − logF(bm) = m−1, and
let am = s(bm) > 0. If Mm denotes the maximum of a block of m independent observations
from F , then the existence of ξ� = limm→∞ s′(bm) implies the existence of the limit

lim
m→∞ P

{
(Mm − bm)/am ≤ y

} = lim
m→∞Fm(amx + bm) = exp

{−(
1 + ξ�y

)−1/ξ�

+
}
,(1)

where a+ = max(a,0) for real a and also implies convergence of both the corresponding
density function and of its derivative uniformly in y on all finite intervals (Pickands (1986),
Theorem 5.2). Thus, if am and bm were known, we might approximate the distribution of
(Mm − bm)/am by the right-hand side of (1). In practice, they are unknown, so we fit the
generalized extreme value distribution GEV(μ,σ, ξ) with location parameter μ ∈ R, scale
parameter σ ∈ R+, and shape parameter ξ ∈ R,

G(y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp

{
−

(
1 + ξ

y − μ

σ

)−1/ξ

+

}
, ξ �= 0,

exp
{
− exp

(
−y − μ

σ

)}
, ξ = 0,

(2)

with this formula valid in {y ∈ R : ξ(y − μ)/σ > −1}. Letting ξ → 0 yields the Gumbel
distribution; the limit is continuous, but the log-likelihood and its derivatives should be com-
puted very accurately near ξ = 0 to palliate numerical instability of log(1 + x) when x ≈ 0.

https://github.com/lbelzile/hoa-extremes
https://github.com/lbelzile/hoa-extremes
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The GEV(μ,σ, ξ) is max-stable, and this allows extrapolation beyond the observed
data into the tail of the distribution: if Y1, . . . , YN ∼ GEV(μ,σ, ξ) are independent, then
max{Y1, . . . , YN } ∼ GEV(μN,σN, ξ) with μN = μ + σ(Nξ − 1)/ξ and σN = σNξ when
ξ �= 0, and with μN = μ + σ log(N) and σN = σ when ξ = 0. Thus, if μ, σ and ξ have been
estimated from n independent block maxima and the fit of (2) appears adequate, the distri-
bution of a maximum of N further independent observations can also be estimated, even if
N � n, though the uncertainty generally grows alarmingly as N increases.

If equation (1) holds, then the linearly rescaled conditional distribution of an exceedance
over a threshold u < y∗ also converges (e.g., Embrechts, Klüppelberg and Mikosch (1997),
Theorem 3.4.5). Let r(y) = {1 − F(y)}/f (y) denote the reciprocal hazard function, then

lim
u→y∗

1 − F {u + r(u)y}
1 − F(u)

= 1 − H(y;1, ξ),(3)

where

H(y; τ, ξ) =
{

1 − (1 + ξy/τ)
−1/ξ
+ , ξ �= 0,

1 − exp(−y/τ)+, ξ = 0,
(4)

is the generalized Pareto (GP) distribution function with scale τ ∈ R+ and shape ξ ∈ R,
denoted GP(τ, ξ). If Y ∼ GP(τ, ξ), straightforward calculations show that Y − u | Y > u ∼
GP(τ + ξu, ξ) for any u ∈ R such that τ + ξu > 0, so exceedances above a threshold u also
follow a GP distribution. This property is termed threshold-stability, and its consequences
parallel those of max-stability.

If the data consist of independent and identically distributed random variables that arrive
regularly, for example on a daily basis, and that satisfy the conditions above, then the times of
events that exceed the threshold u can be approximated by a homogeneous Poisson process;
the exceedances themselves are independent generalized Pareto variables, and this induces a
Poisson process of independent event times and sizes (t1, y1), . . . , (tn, yn).

The shape parameter ξ determines how the tail probability declines at extreme levels: a
negative value gives a distribution with bounded support, whereas zero or positive values give
unbounded extremes, with the distribution tail of form x−1/ξ for large x, so larger values of ξ

correspond to increasingly heavy tails. Authors who have studied likelihood inference for ξ

and other parameters of extreme value distributions include Pires, Cysneiros and Cribari-Neto
(2018), who focused on the shape parameter of the generalized Pareto distribution, and Giles,
Feng and Godwin (2016) and Roodman (2018), who considered bias-corrected estimates of
extreme-value parameters. Although ξ gives important qualitative insights into rare events, it
is not a direct measure of risk, and for this reason and because of the previous work we do
not consider it to be the primary target of inference here.

2.2. Risk measures. Max- and threshold-stability allow the estimation of risks associated
with rare events by extrapolating the fits of the GEV or GP distributions. The most common
risk measure is the N -year return level, that is, the (1 − 1/N)-quantile of F for an annual
maximum, often interpreted as “the level exceeded by an annual maximum on average once
every N years.” The probability pl that a N -year return level is exceeded l times in N years
of independent annual maxima may be computed using a binomial distribution with N trials
and success probability 1/N . For large N , a Poisson approximation yields p0 = p1 = 0.368,
p2 = 0.184, p3 = 0.061, and p4 = 0.015, so the probability of at least one exceedance over
N years is, in fact, roughly 0.63. Perhaps more to the point, any return level is a parameter of
a distribution. Even if this was known perfectly, risk would be associated with the uncertain
nature of future events. In the Bayesian paradigm, one could measure risk using the posterior
predictive distribution of the N -year maximum which can be approximated by higher-order
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techniques (Davison (1986)). Cox, Isham and Northrop (2002, Section 3b), suggested using
direct summaries of the distribution of the N -year maximum also in a frequentist setting; the
N -year return level approximates the 0.368 quantile of this distribution.

We mentioned above that the distribution GN(y) of the maximum of N independent and
identically distributed GEV(μ,σ, ξ) variates is GEV(μN,σN, ξ). Denote the expectation and
p quantile of the N -year maximum by eN and qp = G−1

N (p) and the associated return level
by zN = G−1(1 − 1/N). These may all be expressed in the form{

μ + σ(κξ − 1)/ξ, ξ < 1, ξ �= 0,

μ + σκ0, ξ = 0,

where κξ equals Nξ�(1 − ξ) for eN , {−N/ log(p)}ξ for qp and {− log(1 − 1/N)}−ξ for
zN , and κ0 equals log(N) + γe for eN , log(N) − log{− log(p)} for qp and − log{− log(1 −
1/N)} for zN . Inference on any such scalar risk measure ψ is performed by reparametrizing
the generalized extreme value distribution in terms of ψ and treating two of the other GEV
parameters (μ,σ, ξ) as the vector λ of “nuisance” parameters.

Threshold exceedances are related to maxima as follows: suppose we fit a GP(τ, ξ) dis-
tribution to exceedances above a threshold u, and let ζu denote the unknown proportion of
points above u. If there are, on average, Ny observations per year, then we take HζuNNy as
an approximation to the distribution of the N -year maximum above u.

2.3. Penultimate approximation. When the GEV or GP distribution is fitted to maxima
or threshold exceedances, the best approximating extremal distribution will generally depend
on the block size m or threshold u and the shape parameters will differ from the limiting
values arising when m → ∞ or u → x∗. Smith (1987) shows that if ξ� = limm→∞ s′(bm)

exists, then, for any x ∈ {y : 1 + ξ�y > 0}, there exists z such that

− log[F {v + s(v)x}]
− log{F(v)} = {

1 + s′(z)x
}−1/s′(z)

, v < z < v + s(v)x.

For each m ≥ 1, setting v = bm, and am = s(bm) yields

Fm(amx + bm) = exp
[−{

1 + s′(z)x
}−1/s′(z)] + O

(
m−1)

which can be regarded as a finite-m, or penultimate, version of the approximation stemming
from equation (1). Smith shows that the Hellinger distance between Fm(amx + bm) and
the penultimate approximation GEV{0,1, s ′(bm)} approaches zero as m → ∞ and that it is
smaller than that between Fm(amx + bm) and GEV(0,1, ξ�). Similar statements hold for the
generalized Pareto distribution: unless r ′(x) is constant, there exists y such that a finite-u
version of equation (3),

1 − F {u + r(u)x}
1 − F(u)

= {
1 + r ′(y)x

}−1/r ′(y)
+ , u < y < u + r(u)x,

holds. One can replace the limiting shape limv→x∗ r ′(v) = ξ� by r ′(u), thereby reducing the
Hellinger distance between the true conditional distribution of exceedances and the general-
ized Pareto approximation. Penultimate appproximations for specific parametric models are
straightforward to obtain, as one only needs to compute the scale am, location bm, and shape
s′(bm) parameters for the GEV approximation or the scale r(u) and shape r ′(u) parameters
for the GP approximation.

When the limiting parametric models are fitted to finite samples, maximum likelihood
estimates of the shape parameter will tend to be closer to their penultimate counterparts than
to ξ�; moreover, the estimator of ξ will converge to a target that changes as the threshold or
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the block size increases, depending on the curvature of s′ or r ′. Extrapolations far beyond
the data will, inevitably, be biased due to the incorrect assumption that the max- or threshold-
stability property that holds for infinite m or the limiting threshold also applies at finite levels.
It is customary to investigate the properties of estimators of risk or of ξ by comparing them
with their asymptotic limits, but their penultimate counterparts may be better finite-sample
targets of inference.

2.4. Finite-sample bias. Although many approaches to estimation of the generalized
Pareto and generalized extreme-value distribution have been proposed, we shall consider
likelihood-based estimation, which can easily be extended to complex settings and sampling
schemes. Consistency and asymptotic normality of maximum likelihood estimators for the
extremal distributions have been established (Bücher and Segers (2017); Dombry and Fer-
reira ( 2019), and references therein), but such studies consider infinite sample size, while
small-sample biases can arise, even when the assumed model is correct.

The finite-sample properties of maximum likelihood estimators for extreme value distribu-
tions can be poor (e.g., Hosking and Wallis (1987), Table 5), due to their small-sample bias
(Giles, Feng and Godwin (2016); Roodman (2018)). Figure 2 illustrates this for the shape
parameter ξ . Apart from becoming more concentrated as the sample size n increases, the
distribution of ξ̂ − ξ when fitting the GEV distribution to maxima depends little on n, and,
in particular, its median barely changes. By contrast, the distribution of ξ̂ − ξ , based on the
GP distribution, shows strong negative skewness, with its median and lower quartile system-
atically increasing as n increases, while the upper quartile barely changes. It turns out that
the scale estimator σ̂ for the GP distribution is upwardly biased, and this partially compen-
sates for the downward bias of ξ̂ , but extrapolation far into the tail based on a GP fit tends
to underestimate the sizes of extreme events anyway. Bias-correction can mitigate this, but
analytical first-order corrections of the type pioneered by Cox and Snell (1968) are appli-
cable only when ξ < −1/3 and are unbounded near this. Analytical bias correction is quite
different from bootstrap bias correction (Belzile (2019)), and, furthermore, bias-correction
formulae for risk measures are currently unavailable. We thus consider implicit bias correc-
tions below.

FIG. 2. Smoothed quartiles of the distribution of differences between maximum likelihood estimates and true
shape parameter, ξ̂ − ξ , based on 13,000 simulations from GEV(0,1, ξ) and GP(1, ξ) distributions for samples
of sizes n = 20,30,40,50.
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3. Inference.

3.1. Likelihood. Consider a parametric model for observations y1, . . . , yn with log-
likelihood function �(θ) whose p-dimensional parameter vector θ = (ψ,λ) can be decom-
posed into a q-dimensional parameter of interest ψ and a (p − q)-dimensional nuisance
vector λ. The score vector U(θ), the observed information matrix j (θ), and its inverse are
partitioned accordingly, and the maximum likelihood estimate is θ̂ = (ψ̂, λ̂).

The profile log-likelihood for the parameter of interest is

�p(ψ) = max
λ

�(ψ,λ) = �(̂θψ ) = �(ψ, λ̂ψ ).

The asymptotic properties of this and related statistics stem from those of the full likelihood
and are standard under mild conditions (cf. Severini (2000), page 128): for example, if ψ is
scalar with true value ψ0, the likelihood root

R(ψ0) = sign(ψ̂ − ψ0)
[
2
{
�p(ψ̂) − �p(ψ0)

}]1/2(5)

has an asymptotic standard normal distribution to order O(n−1/2). Confidence limits ψα for
ψ are obtained by solving the equations R(ψα) = �−1(α) for α ∈ (0,1), with � denoting
the standard normal cumulative distribution function. Such intervals are invariant to interest-
preserving reparametrisations. The same two-sided equitailed confidence intervals are ob-
tained via χ2 approximation to the distribution of the likelihood ratio statistic based on �p(ψ),
but these and other first-order methods can perform badly in small samples if the dimension
of λ is large, and higher-order methods may then provide more accurate tests and confidence
intervals.

The standard asymptotic approximations described above apply under regularity condi-
tions whereby the score statistic satisfies the first two Bartlett equalities. The r th moment of
the score for the GEV and GP distributions exists only for ξ > −1/r (Smith (1985)), so the
above discussion applies to them only for ξ > −1/2. Estimates of ξ are typically above −0.3
in applications and very often are close to zero, so the failure of regularity conditions is rarely
of practical importance.

In the case of scalar ψ , one improvement is via normal approximation to a modified like-
lihood root (Barndorff-Nielsen and Cox (1994), Section 6.6.1)

R�(ψ) = R(ψ) + 1

R(ψ)
log

{
Q(ψ)

R(ψ)

}
,(6)

where Q(ψ) is discussed below. If the response distribution is continuous, then R�(ψ0) is
asymptotically standard normal to order O(n−3/2); this is known as a third-order approx-
imation. In many ways more important than the reduction of the error rate from n−1/2 to
n−3/2 is the fact that the error when using R�(ψ) is relative, leading to improved inferences,
even when ψ̂ is distant from ψ0. Confidence limits are obtained by solving the equations
R�(ψα) = �−1(α), and these too are invariant to interest-preserving reparametrization to the
given order.

Estimators of ψ can be obtained by solving the equations R(ψ) = 0 and R�(ψ) = 0. The
first yields the maximum likelihood estimator ψ̂ , while the second yields ψ̂�, an implicitly de-
biased version of ψ̂ ; both transform appropriately. The maximum likelihood estimator could
also be debiased directly by subtracting an estimated bias or, indirectly, by modifying the
corresponding score equation (Firth (1993); Kenne Pagui, Salvan and Sartori (2017); Belzile
(2019)).

The use of equation (6) hinges on the ready computation of Q(ψ). This involves sample
space derivatives of the log-likelihood, which are awkward, in general, and a variety of ap-
proaches to their computation have been proposed. In the next section we sketch a simple
general approach developed by D. A. S. Fraser, N. Reid, and colleagues.
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3.2. Tangent exponential model. The tangent exponential model (TEM) provides a gen-
eral formula for the quantity Q(ψ) that appears in equation (6) (Fraser, Reid and Wu (1999)).
The idea is to approximate the probability density function of the data by that of an exponen-
tial family for which highly accurate inference is possible. Following Brazzale, Davison and
Reid (2007, Chapter 8), we outline its construction. The presence of sample space deriva-
tives makes it necessary to distinguish a generic response vector y = (y1, . . . , yn)

 from the
responses actually observed, yo = (yo

1 , . . . , yo
n).

The tangent exponential model depends on an n × p matrix V, whose ith row equals the
derivative of yi with respect to θ, evaluated at θ̂ and yo; the p columns of V correspond to
vectors in R

n that are informative about the variation of y with θ . The TEM implicitly condi-
tions on an (n − p)-dimensional approximate ancillary statistic whose value lies in the space
orthogonal to the columns of V and constructs a local exponential family approximation at θ̂
and yo with canonical parameter

ϕ(θ) = V ∂�(θ;y)

∂y

∣∣∣∣
y=yo

.

The components of ϕ(θ) can be interpreted as the directional derivatives of �(θ;yo + Vt)
with respect to the columns of V, obtained by differentiating with respect to the components
of the p × 1 vector t and setting t = 0.

In models for continuous scalar responses, the Vi can be obtained by using the probability
integral transform to write yi = F−1(ui; θ) in terms of a uniform variable ui , yielding

Vi = ∂yi

∂θ
∣∣∣∣
y=yo,θ=θ̂

= −∂F (yo
i ; θ)

∂θ
1

f (yo
i ; θ)

∣∣∣∣
θ=θ̂

, i = 1, . . . , n;(7)

equivalently, we may take the total derivative of the pivotal quantity F(yi; θ). Discrete re-
sponses cannot be differentiated and are replaced by their means, leading to an error of order
n−1 for inferences based on equation (6) (Davison, Fraser and Reid (2006)).

The approximate pivot in equation (6) stemming from the TEM is

Q(ψ) =
∣∣∣ϕ(̂θ) − ϕ(̂θψ) ∂ϕ/∂λ(̂θψ)

∣∣∣
|∂ϕ/∂θ(̂θ)|

|j (̂θ)|1/2

|jλλ(̂θψ)|1/2
,(8)

where the first matrix in the numerator is formed by binding the p × 1 vector ϕ(̂θ) − ϕ(̂θψ)

to the p× (p−1) matrix ∂ϕ/∂λ. A modified profile likelihood �fr(ψ) = −{R�(ψ)}2/2 may
be constructed by using equation (8) and treating R�(ψ) as standard normal.

3.3. Modified profile likelihoods. In the previous section the likelihood root was derived
from the profile log-likelihood function via the likelihood ratio statistic, then modified, and
used to construct the modified profile likelihood �fr(ψ). An alternative is direct modification
of the profile log-likelihood, two approaches to which are listed by Severini (2000, Sec-
tions 9.5.3–9.5.4). The first approach uses elements of the tangent exponential model and is
of the form

�tem
m (ψ) = �p(ψ) + 1

2
log

{∣∣jλλ(̂θψ )
∣∣} − log

{∣∣�λ;y (̂θψ )Vλ(̂θ)
∣∣},(9)

where �λ;y = ∂2�/∂λ∂y is the derivative of the log-likelihood with respect to the nuisance
parameter and observations and Vλ denotes the columns of V in equation (7) that correspond
to derivatives with respect to λ. The second approach is due to Severini and is similar in spirit
to ideas in Skovgaard (1996). This approximation has a lower order of accuracy than the TEM

and relies on empirical covariances with

�cov
m (ψ) = �p(ψ) + 1

2
log

{∣∣jλλ(̂θψ )
∣∣} − log

{∣∣ĵλ;λ(̂θψ ; θ̂)
∣∣},(10)
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where

ĵλ;λ(̂θψ ; θ̂) =
n∑

i=1

�
(i)
λ (̂θψ )�

(i)
λ (̂θ);

here, �
(i)
λ denotes the component of the score statistic due to the ith observation. It is straight-

forward to check that these modifications are invariant to interest-preserving reparametri-
sation. The components of the score vector and information matrix are readily obtained, if
necessary using computer algebra.

4. Data analyses.

4.1. Vargas tragedy. Figure 1 only considered threshold exceedances of events before
the catastrophe, either treating the number of threshold exceedances nu as fixed, incorrectly,
or as random. To deepen our analysis, we consider how risk measures are affected by stopping
data collection after the disaster and add the yearly daily rainfall maxima for 1951–1960 to
the daily values for 1961–1999, considered in Section 1.2. Failing to account for the fact that
the data collection appears to end with the largest event ever observed leads to upwardly-
biased risk estimates (Barlow, Sherlock and Tawn (2020)). There are a number of ways in
which an implicit stopping rule might be formulated, but for a rough assessment of its impact
we consider that sampling would have ended at the first time a daily value exceeded s = 282
mm, the largest two-day sum previously reported.

We consider a Poisson process P with measure ν on X = (0,∞) × (u,∞), where the
first axis represents the times t of extreme events and the second axis represents their sizes
y, which are presumed to exceed some high threshold u. If the events x = (t, y) arrive at a
constant rate in time, then standard extremal modeling leads to setting

(11) ν
{[t1, t2] × (y,∞)

} = (t2 − t1)�(y),

where �(y) = {1 + ξ(y − μ)/τ }−1/ξ
+ and the intensity of the process is ν̇(t, y) = −�̇(y) =

−∂�(y)/∂y, say. Our stopping rule presupposes that for some given s > u, X is partitioned
into a stopping set S = (0,∞) × (s,∞) and its complement Sc, and the data are analysed
just after the random time T at which P first falls into S . The probability of no event in S
before time t is exp{−t�(s)}, so T is an exponential random variable with mean �(s)−1.
Let Nt denote the number of events in Sc before time t . Since S and Sc are disjoint, events
in them are independent, so T is independent of events in Sc. Hence the probability element
corresponding to successive events (t1, y1), . . . , (tn, yn) in Sc followed by (t, yt ) in S is

(12) ν̇(t, yt )

n∏
j=1

ν̇(tj , yj ) × exp[−ν
{[0, t] × [

u,∞)
}]

, u < y1, . . . , yn < s < yt .

The stopping rule affects the repeated sampling properties of estimators by constraining the
data to satisfy Nt = n. We can rewrite (12) as

(13) exp
[−t

{
�(u) − �(s)

}] n∏
j=1

{−�̇(yj )
} × exp

{−t�(s)
}{−�̇(yt )

}
,

where the first term corresponds to the n events in Sc before time t and the second term to the
event in S that terminates the sampling. In the application to the Vargas data, we take t = 39
years, so an annual maximum has distribution exp{−�(y)}. The probability that sampling
stops at time t and there are then n events in Sc is

P(Nt = n,T = t) = [t{�(u) − �(s)}]n
n! exp

[−t
{
�(u) − �(s)

}] × exp
{−t�(s)

} × �(s).
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Expression (13) corresponds to what Barlow, Sherlock and Tawn (2020) call Lstd, and
which they find gives biased inferences and the equivalent of their “full conditional” likeli-
hood, which uses the joint density of the event sizes y1, . . . , yn, yt , conditional on T = t and
Nt = n, that is,

(14) Lfc =
{−�̇(yt )

�(s)

} n∏
j=1

[ −�̇(yj )

t{�(u) − �(s)}
]
, u < y1, . . . , yn < s < yt ,

should have lower sampling bias. If y > u, then −�̇(y)/�(u) equals a generalized Pareto
density with parameters ξ and τu = σ + ξ(u − μ) evaluated at y − u, so (14) reduces to a
product of truncated generalized Pareto densities. We do not consider the “partial conditional”
likelihood by Barlow, Sherlock and Tawn (2020) of Lpc, which corresponds to replacing the
terms �(u) − �(s) in (14) by �(u), that is, ignoring the right truncation of y1, . . . , yn.

Our functional of interest, the median of the semicentennial daily maximum, is obtained
by taking N = 50 years, p = 0.5, and

qp = μ − σ

ξ

{
1 −

( −N

logp

)ξ}
.

The log-likelihood has three components: the yearly maxima for 1951–1960, the right-
truncated exceedances of u = 27 mm for 1961–1999 and, finally, a left-truncated largest
record that exceeds the stopping rule threshold s = 282 mm. As these are independent, they
make additive contributions to ϕ(θ). The component for the maxima is readily obtained us-
ing their assumed generalized extreme-value distribution and so are the components for the
exceedances in the full conditional likelihoods which correspond to independent truncated
generalized Pareto variables; see Appendix C. The form of ϕ(θ) for the tangent exponential
model approximation for a Poisson process, which is needed for the higher-order version of
(13), seems not to have been derived previously and may be found in Appendix B.

The ordinary and TEM-based profile log likelihoods for qp with full conditioning and the
standard log-likelihood, shown in the left panel of Figure 3, are strikingly different: the con-
ditional log-likelihood is much more concentrated and the higher-order TEM version is just

FIG. 3. Left panel: Profile log-likelihood based on Lstd (gray) and Lfc (black) for the Maiquetía data using
threshold exceedances up to and including data for December 15th, 1999. The curves show the shifted regular
profile likelihood (full) and the TEM approximation �fr = −R�(ψ)2/2 (dashed). The dashed grey horizontal line
at −1.92 indicates cutoff values for 95% confidence intervals based on the asymptotic χ2

1 distribution. The mark
at 410.4 mm indicates the record of December 15th, 1999. Right panel: Probability-probability plot for the full
conditional likelihood fit with approximate simultaneous 95% confidence intervals.
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slightly less precise, whereas the TEM version of the standard log-likelihood (13) gives much
larger point estimates and upper confidence interval limit than does the standard profile log-
likelihood. Thus, not allowing for the implicit stopping rule can have a dramatic effect not
only on standard but also on higher-order inferences. If we consider the one-sided likeli-
hood ratio test for H0 : qp > 410.4 mm, the respective p-values obtained from R/R� are
0.095/0.28 for the standard likelihood and 0.019/0.025 for the full conditional likelihood,
suggesting that the magnitude of the 1999 event was indeed significantly larger than the me-
dian 50-year maximum.

4.2. Venice sea level. The Italian city of Venice is threatened by sea-level rise and sub-
sidence and is increasingly at risk from flooding in so-called acqua alta events. To quantify
this risk, we consider data analyzed by Smith (1986) and Pirazzoli (1982) containing large
annual sea level measurements from 1887 until 1981, complemented with series for 1982–
2019 extracted from the City of Venice website (accessed June 2020 and available under the
CC BY-NC-SA 3.0 license). Only the yearly maximum is available for 1922 and only the six
largest observations for 1936. Figure 4 shows the two largest annual order statistics; while
there is a clear trend, we detected no change when the measurement gauge was relocated in
1983. In addition to the simple straight-line model suggested by the plot, we fitted a smooth
additive nonparametric quantile regression (Fasiolo et al. (2021)) with 50 knots and a smooth
term for years and different intercepts for the two largest order statistics: the resulting fits,
shown in Figure 4, suggest that a straight line is adequate.

If the extremal types theorem holds, then the log-likelihood corresponding to the joint
limiting distribution of the r largest observations of a sample, Y1 ≥ · · · ≥ Yr , is

�(μ,σ, ξ ;y) = − r log(σ ) −
(

1 + 1

ξ

) r∑
j=1

log
(

1 + ξ
yj − μ

σ

)
+

−
(

1 + ξ
yr − μ

σ

)−1/ξ

+
, μ, ξ ∈R, σ > 0.

(15)

The 10 largest sea levels are available for almost every year, but one might ask whether
they should be used. The model presupposes that they arise from independent underlying

FIG. 4. First (black) and second (grey) largest yearly observations for the Venice sea level data (in cm), a
smooth additive quantile regression model for the median (with a smooth term for time and a different intercept
for each order statistic). The predicted values for the largest order statistic and those for the corresponding linear
regression are superimposed.

https://www.comune.venezia.it/it/content/archivio-storico-livello-marea-venezia-1
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variables, but, in practice, many are due to combinations of high tides and bad weather during
the winter months. The data source for recent years allows apparently independent events to
be identified, but this is harder for the earlier data.

One purely statistical basis for choosing r is by balancing the information added as r

increases against the potential for bias when r is too large. Calculations in Appendix A es-
tablish that the 3 × 3 Fisher information matrix, based on (15), is of the form Ir(μ,σ, ξ) +
(r − 1)I (μ,σ, ξ), where Ir(μ,σ, ξ) stems from Yr , and (r − 1)I (μ,σ, ξ) is the contribu-
tion for the other observations. These matrices can be used to compute the information
gained when basing inference on Y1, . . . , Yr rather than only on the sample maximum,
Y1. To do so, we calculate the ratios of the diagonal elements of I−1

1 (μ,σ, ξ) to those of
{Ir(μ,σ, ξ) + (r − 1)I (μ,σ, ξ)}−1; an overall variance reduction for a given r is{ |I1(μ,σ, ξ)|

|Ir(μ,σ, ξ) + (r − 1)I (μ,σ, ξ)|
}1/3

.

Figure 5 shows the variance reduction factors for μ, σ , ξ , and the overall efficiency. There
seems to be little gain from taking r > 5 for estimation of μ and σ , while for ξ the decline is
closer to that of independent generalized extreme value data. This is because the parameters
μ and σ cannot be estimated based only on I (μ,σ, ξ), which has rank two, whereas both
I (μ,σ, ξ) and Ir(μ,σ, ξ) contain information on ξ . Hence, as r increases, the information
gain for the location and scale parameters becomes more limited.

FIG. 5. Variance reduction factors for inference based on the r-largest order statistics model for the location,
shape and scale parameters, and overall efficiency (clockwise from top right), as functions of r . The dashed
grey line shows the efficiency gain for independent observations. The value of the shape parameter ranges from
ξ = −0.4 (full black) to ξ = 0.4 (full pale grey) in increments of 0.2.
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FIG. 6. Tukey’s detrended probability-probability plot for the spacings of the r-largest order statistics of the
Venice data, with r = 1,2,3, with approximate simultaneous 95% confidence intervals obtain by using a para-
metric bootstrap and the envelope method (Davison and Hinkley (1997), Section 4.2.4).

The fit can be checked by noting that if the model is correct, then

(16) 0 < �θ (y1) < �θ (y2) < · · · < �θ (yr), �θ (y) = {
1 + ξ(y − μ)/σ

}−1/ξ
+

are a realisation of the first r points of a unit rate Poisson process on the positive half-line.
This implies that the spacings �θ (y(1), �θ (y2) − �θ (y1), . . . have standard exponential dis-
tributions, and systematic departures from this will indicate model failure. The r largest
observations from the asymptotic model can be generated by simulating a unit rate Pois-
son process 0 < U1 < U2 < · · · , where Uj = E1 + · · · + Ej and Ej ∼ Exp(1), and setting

Yj = μ + σ(U
−1/ξ
j − 1)/ξ . The estimated inverse transformation �θ̂ can be used to obtain

empirical spacings. These should be approximately independent and can be used to construct
probability-probability plots, such as Figure 6. The spacings for r = 3 are suggestive of model
misspecification for the Venice data, so it seems that just two extrema each year should be
used. The initial linear decreases visible in the central and right-hand panels of Figure 6 are
probably due to ties or near-ties for the lower records, due to rounding of the data.

Below, we use the r = 2 largest observations for each year and treat data for different years
as independent. Our chosen risk measure is the probability that in year t the annual maximum
sea level exceeds the level z = 194 cm reached in the catastrophic flooding of 1966, based on
a nonstationary extremal model with location parameter μ0 + μ1year, σ , and ξ .

In order to compute the terms necessary for the TEM approximation, suppose that we have
data (y1, . . . , yr) and pivots

u1(y1; θ), u2(y1, y2; θ), . . . , ur(y1, . . . , yr; θ).

Total differentiation of u1(y1; θ) yields

0 = ∂u1(y1; θ)

∂θ
+ ∂y1

∂θ

∂u1(y1; θ)

∂y1
,

and, therefore,

∂y1

∂θ
= −

{
∂u1(y1; θ)

∂y1

}−1 ∂u1(y1; θ)

∂θ
.

Total differentiation of uj (y1, . . . , yj ; θ) likewise yields

∂yj

∂θ
= −

{
∂uj (y1, . . . , yj ; θ)

∂yj

}−1
{

∂uj (y1, . . . , yj ; θ)

∂θ
+

j−1∑
i=1

∂yi

∂θ

∂ui(y1, . . . , yi; θ)

∂yi

}
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FIG. 7. Probability of exceedance of 194 cm with 95% pointwise confidence based on Wald (logit-scale), likeli-
hood root R, and modified likelihood root R� statistics.

with all these expressions evaluated at yo
1 , . . . , yo

j and θ̂ . In the present case the differences
in (16) are pivots, uj (y1, . . . , yj ; θ) = �θ (yj ) − �θ (yj−1), and the resulting expressions for
∂yj/∂θ involve at most two of the yi .

Figure 7 shows that the profile- and TEM-based point estimates and 95% confidence inter-
vals for the probability of a flood exceeding the 1966 level for various years are quite similar,
though the higher-order estimates vary slightly more over time; similar results are obtained
for the other methods of Section 3.3 (not shown). The Wald-based confidence intervals, com-
puted on the logit scale and back-transformed, are somewhat wider. Despite the increase in
sea level, it appears that, even without interventions, an event as rare as that in 1966 will re-
main unlikely for at least the next two decades. The recent inauguration of the Mose system
of flood barriers, which can be raised in order to prevent Venice from flooding when there
are adverse tides in the Adriatic sea, should reduce this probability yet further, at least in the
medium term.

4.3. Old age in Italy. The existence or not of a finite upper limit for human lifetimes has
recently sparked interest in the extreme value community (Belzile et al. (2021) and (2022);
Hanayama and Sibuya (2016); Rootzén and Zholud (2017); Einmahl, Einmahl and de Haan
(2019)). The Italian centenarian data set, kindly provided by Holger Rootzén, contains the
birth dates and ages of 3836 individuals from a study of semisupercentenarians conducted by
the Istituto Nazionale di Statistica (Istat); see Barbi et al. (2018). Individuals are included if
they were aged 105 years or more at some point between January 1, 2009 (c1) and January
1, 2016 (c2); the survival time is censored for individuals alive at c2. The cohort comprises
persons born between 1896 and 1910 with excess lifetimes measured in days above 105 years,
that is, above u = 38,351 days. It is natural to fit the generalized Pareto model to these excess
lifetimes, but it is important to account for the potential left-truncation and right-censoring.
Failure to account for the censoring would lead to negative bias for the shape parameter ξ ,
for example, since individuals born after 1910 could not attain 116 years. A negative shape
parameter corresponds to a finite upper limit ι = −τ/ξ , whereas ξ ≥ 0 means there is no
upper limit.

We consider excess lifetimes of those individuals whose age exceeded u between calendar
times c1 and c2. Let S and f denote the survival and the density functions of lifetimes, let
xi denote the calendar date at which individual i reached u years, let ti denote the excess
lifetime above u at calendar time c2, and let ai be an indicator variable taking value 1 if

https://www.mosevenezia.eu
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TABLE 1
Maximum likelihood estimates of the generalized Pareto for the Italian semisupercentenarian data. From left to
right, threshold u (in years), number of threshold exceedances nu, estimates (standard errors) of the scale and

shape parameters σ and ξ , log-likelihood at MLE �(θ̂)

u nu σ̂ ξ̂ �(̂θ)

105 3836 1.67 (0.04) −0.04 (0.02) −4253.7
106 1874 1.70 (0.06) −0.07 (0.03) −2064.3
107 946 1.47 (0.08) −0.02 (0.04) −999.3
108 415 1.47 (0.11) −0.01 (0.06) −440.6
109 198 1.33 (0.15) 0.03 (0.09) −202.9
110 88 1.22 (0.23) 0.12 (0.17) −85.4
111 34 1.50 (0.47) 0.06 (0.30) −34.9

individual i was alive at calendar time c2 and zero otherwise. The resulting likelihood is

L(θ; t, s) =
n∏

i=1

[
f (ti)

S{(c1 − xi)+}
]1−ai

[
S(ti)

S{(c1 − xi)+}
]ai

,

with the first and second terms in the product corresponding to those individuals seen to die
and to those whose lifetimes are censored at c2. We fit a generalized Pareto distribution to
excess lifetimes over a range of thresholds starting from 105 years and give the maximum
likelihood estimates in Table 1. The largest excess lifetime, for Emma Morano, who died
aged 117 years in 2017, after c2, is censored, and the estimated shape ξ̂u for threshold u is
close to zero, although its variability is large for high u.

Table 2 gives the point estimates and 90% confidence intervals; the numbers of ex-
ceedances at low thresholds are appreciable, so higher-order correction have little impact on
inferences for ι then but difference emerges as the threshold increases. The estimated upper
bounds are large or even infinite.

To confirm our findings, we can estimate the distribution of the likelihood root for ι using
the bootstrap (cf. Lee and Young (2005)). We did not consider this approach in the simulation
study, as its good properties have been checked in other contexts and its calibration entails a
costly double parametric bootstrap. The bth bootstrap likelihood root R(b)(ι) is computed at
each value of ι based on a sample simulated from a generalized Pareto distribution with pa-
rameters (̂ξι, ι). Figure 8 shows that the bootstrap p-value and the p-value obtained from the
asymptotic χ2

1 distribution of the profile likelihood ratio test agree up to Monte Carlo vari-
ability and suggests that this approach may be useful more widely in the context of extremal
inference.

TABLE 2
Point estimates (90% confidence intervals) for the upper limit to lifetime ι (in years) based on the profile

likelihood ratio statistic (middle) and the empirical covariance-based penalized profile likelihood (right) using
exceedances of u for the Italian semisupercentenarian data. Values above 1000 years are replaced by —

u profile Modified profile

105 142.2 (127.1,282.9) 142.1 (127.1,287.7)

105.5 129.9 (121.6,142.5) 127.1 (121.6,142.7)

106 129.3 (123.0,174.6) 131.8 (123.0,176.1)

106.5 131.7 (124.2,—) 139.1 (124.2,—)

107 195.5 (128.1,—) 193.1 (128.3,—)

108 210.3 (123.7,—) 199.1 (124.0,—)

108.5 139.0 (120.6,—) 143.1 (120.8,—)
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FIG. 8. Italian semisupercentenarian data: p-value function for the profile likelihood ratio statistic
R2(ι) = 2{�(̂θ) − �(̂ξι)} using excess lifetime above u = 107 (left) and u = 108 (right) years based on the asymp-
totic χ2

1 distribution (black) and the bootstrap distribution #{b : R2(b)(ι) > R2(ι)}/B for bootstrap replications
b = 1, . . . ,B (grey).

The apparent stability of the estimates and the large standard errors for ξ̂u, seen in Table 1,
do not allow us to rule out the exponential tail for thresholds u > 107 years, though the p-
values for the four lowest thresholds 105–106.5 years, of 4.1%, 0.5%, 1.4%, and 6.0%, are
smaller.

Under the exponential model the probability of surviving one additional year conditional
on survival up to u years is exp(−1/τ). Based on exceedances of u = 110 years, the model
would yield an estimated probability of surviving an additional year of 0.476 with 95% con-
fidence interval (0.416, 0.537): fewer than four in a thousand supercentenarians would be
expected to live older than Emma Morano. These results are coherent with those of Rootzén
and Zholud (2017), who analysed a smaller dataset on individuals who lived over 110 years.

5. Simulation study. The higher-order methods highlighted in the data illustrations typ-
ically lead to much wider confidence intervals for high quantiles. Despite their theoretically
appealing properties, one might ask whether the additional effort is worth it, and, in particu-
lar, whether profile likelihood intervals have adequate coverages even though sample sizes for
extremes, whether block maxima or threshold exceedances, are often small. We used Monte
Carlo simulation to investigate small-sample inference for risk measures, based on the profile
log-likelihood, the tangent exponential model approximation and Severini’s corrections.

5.1. General setup. In a typical data analysis, one may attempt to predict the 100-year
maximum temperature based on 20 years of daily records, where restricting attention to sum-
mer months yields around 90 observations per year. To mimic this scenario, we generated
1800 independent observations from a parametric model and targeted the expectation and
median of the distribution of 9000-observation maximum from that same distribution with
benchmarks computed using penultimate approximations.

The choice of block size or threshold involves a compromise between closeness of ap-
proximation (and thus reduced asymptotic bias) and small-sample effects. For larger block
size/thresholds, the extreme-value approximation is, in principle, better, but estimation un-
certainty is larger because of the smaller sample size. We divided the 1800 simulated values
into blocks of sizes m = 30,45,90, and fitted the GEV distribution to the block maxima. We
also fitted the GP distribution to the largest nu = 20,40,60 order statistics of a sample of
size 1800 from the GP distribution. We likewise generated data from six other distributions
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mentioned in Section 2.3 and applied both block maximum and threshold methods to these
data; see the Supplementary Material (Belzile and Davison (2022)).

For each sample we obtained four estimates and five sets of confidence limits for ψ , based
on the Wald statistic; the likelihood root R(ψ) and the modified likelihood root R�(ψ) de-
fined in equation (5) and equation (6); and the modified profile likelihoods (9) and (10).
The Wald statistic was computed on the log scale and back-transformed, that is, with limits
exp{log(ψ̂) ± �−1(1 − α/2) se(ψ̂)/ψ̂}; the log transformation is intended to mitigate the
poor properties of this statistic in highly asymmetric situations. For each target (return level,
median, and expectation of the T -year maximum), distribution, and threshold or block size,
we also calculated the relative bias of the point estimators as well as the overall coverage
and the average widths of two-sided confidence intervals. The full results are in the Sup-
plementary Material, and we summarize the main findings below, focusing on properties of
one-sided confidence limits.

The maximum likelihood estimator of the shape parameters can occasionally be very large,
leading to very wide confidence intervals. To avoid this unduly affecting the results, we use
trimmed mean estimates for the relative width and the relative bias with 10% trimmed pro-
portion in each tail.

5.2. Summary of findings. The reader is referred to the Supplementary Material for tables
reporting the one-sided relative errors and widths of confidence intervals and the relative
biases of point estimators.

Relative error of one-sided confidence intervals. Figures 9 and 10 display one-sided rel-
ative coverage errors for the expected N -observation maximum; similar results hold for the
N -observation median and the N -observation return level. Despite the log-transformation,
the Wald intervals fail to capture the positive skewness of the estimators of zN , q1/2 (not
shown) and eN defined in Section 2.2. The one-sided relative coverage errors for the Wald
statistics are so large that they fall outside the limits of Figures 9 and 10: for example, apply-
ing the block maximum method with 20 observations to samples from a GEV distribution,
the Wald-based 99% confidence intervals contain the true value roughly 85% and 81% of the
time when ξ = 0.1 and ξ = −0.1, respectively, but the 5% empirical error rate for the lower
limit is 0%, indicating that the interval is too wide on the left and too short on the right.

If the data are generated from the generalized extreme value distribution, the empirical
error rates for the TEM are closer to nominal, but no method is universally best. Perhaps
unexpectedly, the penultimate effects are not really visible for the other distributions (see
Supplementary Material). The profile and higher-order methods for block maxima seem im-
pervious to the effects of extrapolation, and their coverage is excellent overall.

Figure 10 shows that the results based on threshold exceedances are more variable. The
performance of Wald-based intervals remains calamitous: the empirical upper error rate for
the nominal 5% limit is around 30% in all scenarios for the untransformed Wald statistic
and improves only to 20–30% after transformation. With k = 20 observations (Figure 10),
most higher-order methods overcover, even when the model is correctly specified. The TEM

interval is shifted to the right, whereas Severini’s corrections display higher empirical error
in the lower tail. This breakdown of the TEM could be due to penultimate effects and small-
sample bias, as it vanishes as the sample size grows; the TEM performs very well when
k = 60. Two-sided profile likelihood intervals typically have good coverage, but their upper
empirical error rates can be more than double the nominal values, as the intervals tend to
lie too far to the left. Thus, the price paid for intervals with better coverage is increased
uncertainty stemming from their greater width.
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FIG. 9. Relative coverage errors for one-sided lower and upper confidence limits with nominal error rates 0.5%,
2.5%, and 5% for the expected 9000-observation maximum, estimated using maxima of generalized extreme value
samples of sizes n = 20 (left) and n = 60 (right) with shape parameter ξ = −0.1,0,0.1 (bottom to top). An ideal
method would have zero relative error in both tails, whereas methods with relative error ±0.5 have empirical
error rates 1.5 (+) or 0.5 (−) times the nominal rate. The upper- and lower-tail errors for intervals whose relative
errors have opposite signs will cancel to some extent when a two-sided interval is computed. If both upper- and
lower-tail errors are positive, the corresponding two-sided intervals have empirical coverage that is too low,
whereas negative upper- and lower-tail errors correspond to conservative two-sided confidence intervals.

FIG. 10. Relative coverage errors for one-sided lower and upper confidence limits for the expected
9000-observation maximum, estimated using generalized Pareto samples of sizes n = 20 (left) and n = 60 (right)
with ξ = −0.1,0,0.1 (bottom to top); see the caption to Figure 9 for explanation.
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Width of confidence intervals. When ξ > 0, the expected N -observation maximum is
larger than both the median of the N -observation maximum and the N -year return level, and
its confidence intervals are the widest of those for all three risk measures, due to the extrap-
olation in the upper tail. The higher-order intervals, especially those based on R�, overcover
slightly when the sample size is smaller and the blocks are larger, for example, for m = 90
with k = 20. The average widths of two-sided confidence intervals for the block maximum
method with m = 30, k = 60 are comparable (not shown). For this setting the intervals based
on �tem

m are the shortest among those implemented.
Higher-order methods for threshold exceedances give wider confidence intervals, often

because they have better coverage in the upper tail: for example, the TEM confidence intervals
are between 1.75 and two times wider than those based on the profile likelihood when k = 20
and about 1.25 times wider when k = 60.

Bias of point estimators of risk measures. When using threshold exceedances, maximum
likelihood estimators of ξ are negatively biased for any sample size k ≤ 60 (Figure 2) and risk
estimators are likewise downwardly biased. For k = 20, the TEM point estimators, obtained
by solving the equation R�(ψ) = 0, are positively biased, but they have the lowest bias of
all point estimators considered when k ≥ 40. The point estimators, derived using Severini’s
modified profile log-likelihoods, have lower bias than the maximum likelihood estimator.

5.3. Practical guidelines. Wald-based confidence intervals for the risk measures consid-
ered here should never be used; their coverage is appallingly low, even after transformation.
For block maxima, profile likelihood-based confidence intervals have good two-sided cov-
erage overall for the risk measures we considered, and there seems to be little gain in using
higher-order methods: the discrepancy between the empirical error rates in the lower and up-
per tails seems to be due to the bias of the risk estimators themselves. For both types of data,
the TEM-based estimator is systematically larger than the maximum likelihood estimator. For
threshold exceedances, TEM-based confidence intervals have very good coverage, and the
corresponding point estimators have smaller bias when the sample size is larger than around
50; while no higher-order method is always better, TEM-based intervals usually improve on
the others. Severini’s modified profile, based on empirical covariance, can be seen as a com-
promise; in theory, it is less accurate than the TEM by O(n−1/2) in both moderate and large
deviation senses for continuous data, but it is more easily derived.

6. Discussion. Our data analyses illustrate the use of higher-order likelihood methods in
risk analysis. Extreme value approximations are only valid asymptotically, so it is tempting to
select large block sizes or high thresholds to reduce model misspecification. In this case sam-
ples are often small, so first-order methods may perform poorly and the higher-order methods
may give better inferences. We have accounted for model misspecification in simulations for
identically distributed data; our results show that, although the coverage of two-sided profile
likelihood confidence intervals is adequate, they tend to be shifted to the left, and higher-
order methods lead to much wider intervals. The improved properties of higher-order ap-
proximations have been established in regression and other contexts (e.g., Fraser, Wong and
Wu (1999)), and there is no reason to suppose that they would be different here; the heuristic
argument for why they work is purely likelihood-based, so the precise form of the underly-
ing model is unimportant, provided the usual regularity conditions for likelihood inference
are satisfied (Davison and Reid (2022)). In formal proofs of accuracy, the accumulation of
information is usually made explicit by supposing that the sample size n is increasing, but the
approximations can work well, even with n very small, so higher-order approximations for
more general regression models, such as that of Wang and Tsai (2009), could be envisioned.
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Comparisons with profile-based intervals can provide reassurance that standard methods are
adequate, but the latter may fare poorly when the dimension of the nuisance vector λ is large,
in which case the TEM may be more useful.

Very similar Bayesian approximations exist, though if prior information is limited, then
it may be wise to choose a prior that will give these approximations good frequentist prop-
erties. Their derivations typically involve integrating a double Laplace approximation (e.g.,
Davison (2003), Section 11.3.1); see Fraser, Reid and Wu (1999), Tierney and Kadane (1986)
and Tierney, Kass and Kadane (1989). Fraser (2011) discusses properties of these Bayesian
procedures and observes that they disagree with higher-order frequentist procedures, except
in location families. Fraser et al. (2016) propose a form of data-dependent Jeffreys prior on
the contour of the profile likelihood that leads to third-order reproducibility, but this requires
a different prior for every risk measure and so is incoherent. Generalized additive models and
penalized likelihood estimators (e.g., Mhalla, de Carvalho and Chavez-Demoulin (2019))
could be incorporated into this framework.

A large body of work in extremes concerns semiparametric estimation of a positive
shape parameter ξ using variants of the Hill (1975) estimator, sometimes coupled with the
Weissman (1978) quantile estimator. Recent proposals address the asymptotic bias of the re-
sulting estimators under second-order regular variation (cf. de Haan and Ferreira (2006), Sec-
tion 2.3) which involves the estimation of additional parameters. Examples include Gomes
and Pestana (2007), who attempt to eliminate the asymptotic bias of log-quantile estima-
tors, and Figueiredo et al. (2012) who consider peaks over random threshold Hill-type quan-
tile estimators. In many cases, such estimators are asymptotically normal and uncertainty is
expressed through Wald-type confidence intervals (e.g., de Haan and Ferreira (2006), Sec-
tion 4.3); see Buitendag, Beirlant and de Wet (2020) for a recent alternative. As the inclusion
of further parameters makes extremal inferences less precise and symmetric confidence in-
tervals for risk measures have dire properties, we prefer to investigate the performance of
likelihood-based approaches under misspecification rather than to consider these semipara-
metric methods. Likelihood-based methods readily apply to settings in which there is nonsta-
tionarity, selection mechanisms, or other complications, whereas semiparametric approaches
typically require fresh theoretical work in each case.

The methods described above may usefully be generalized to risk measures for multivari-
ate extremes, since, as the dimension grows, the performance of first-order methods can be
expected to deteriorate, due to the increased numbers of nuisance parameters. Multivariate ex-
treme value distributions must obey a moment constraint, and conclusions may be expected
to depend on the chosen model more strongly than in the univariate case. Using empirical
likelihood, Einmahl and Segers (2009) fit such a model, and de Carvalho and Davison (2014)
extend this to incorporate covariates; as the properties of empirical likelihood closely mimic
those of regular likelihood, adapting the TEM to this setting could be an avenue for future
work.

APPENDIX A: INFORMATION MATRIX FOR THE r LARGEST ORDER STATISTICS

To derive the information matrix for the r-largest likelihood given in Equation (15), we
note that the marginal density of Yr is

fYr (yr ;μ,σ, ξ) = 1

(r − 1)!σ
(

1 + ξ
yr − μ

σ

)−r/ξ−1

+
exp

{
−

(
1 + ξ

yr − μ

σ

)−1/ξ

+

}
,

so the joint density of Y1, . . . , Yr may be written as

1

(r − 1)!σ
(

1 + ξ
yr − μ

σ

)−r/ξ−1

+
exp

{
−

(
1 + ξ

yr − μ

σ

)−1/ξ

+

}
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× (r − 1)!
r−1∏
j=1

1

σ

(1 + ξ
yj−μ

σ
)
−1/ξ−1
+

(1 + ξ
yr−μ

σ
)
−1/ξ
+

;

that is, we write the joint density as the product of the density of Yr and the joint conditional
density of Y1, . . . , Yr−1 conditional on Yr = yr . This conditional density equals that of the
order statistics of r − 1 independent variables with generalized Pareto density

h(y−r − yr; τ, ξ) =
r−1∏
j=1

1

τ

(
1 + ξ

yj − yr

τ

)−1/ξ−1

+
,

where τ = σ + ξ(yr − μ). Thus, the overall log-likelihood is

�(μ,σ, ξ ;yj , yr) ≡ log
{
fYr (yr;μ,σ, ξ)

} +
r−1∑
j=1

log
{
h(yj − yr; τ, ξ)

}
,

where y1, . . . , yr−1 represent the observed values of a random sample of generalized Pareto
variables. We may thus write the joint density of the r-largest order statistics as the product of
the density of Yr and the joint conditional density of Y1, . . . , Yr−1, conditional on Yr = yr . To
obtain the observed information, we first calculate the Hessian matrix of −�, then condition
on Yr = yr and take expectations over Xj = Yj − yr . It remains to write τ = σ + ξ(yr − μ)

and integrate over Yr . The matrices themselves can be found in the Supplementary Material,
and a numerical implementation is available via the function rlarg.infomat in the R
package mev.

APPENDIX B: THE TEM FOR THE POISSON PROCESS

Suppose we observe events of an inhomogeneous Poisson process P with intensity ν̇(x; θ)

for x ∈ X , where X is partitioned into subsets X1, . . . ,XK . Let N(A) denote the number of
events of P in a measurable set A ⊂ X , let Nk = N(Xk), and suppose that N(X ) has finite
expectation

ν(X ; θ) =
∫
X

ν̇(x; θ)dx.

If ν̇ is constant on each of the Xk , then the log-likelihood is that of the independent Poisson
variables N1, . . . ,NK ,

K∑
k=1

nk log
{|Xk|ν̇(xk; θ)

} − |Xk|ν̇(xk; θ) ≡
K∑

k=1

{
nk log ν̇(xk; θ) − |Xk|ν̇(xk; θ)

}

=
K∑

k=1

�k(θ),

say, where nk is the realised value of Nk and xk ∈ Xk . The terms nk log |Xk|, dropped at the ≡
sign, do not depend on θ ; retaining them leads to an affine transformation of ϕ(θ) and makes
no difference to inferences. The arguments in Davison, Fraser and Reid (2006) imply that
second-order inference is obtained on using

ϕ(θ) =
K∑

k=1

Vk

∂�k(θ)

∂nk

,

where

Vk = ∂E(Nk; θ)

∂θ

∣∣∣∣
θ=θ̂

= ∂|Xk|ν̇(xk; θ)

∂θ

∣∣∣∣
θ=θ̂

,
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and this yields

(17) ϕ(θ) =
K∑

k=1

|Xk|∂ν̇(xk; θ)

∂θ

∣∣∣∣
θ=θ̂

log ν̇(xk; θ) =
∫
X

∂ν̇(x; θ)

∂θ

∣∣∣∣
θ=θ̂

log ν̇(x; θ)dx.

This integral does not depend on the partition of X and so must be the limit as K → ∞.
Since Equation (17) is intractable in general, we employ the numerical approximation

(18)
n∑

j=1

∂ν̇(xj ; θ)

∂θ

∣∣∣∣
θ=θ̂

× 1

ν̇(xj ; θ)
log ν̇(xj ; θ),

based on events x1, . . . , xn ∈ X , which differs from ϕ(θ) by a term of order ν(X ; θ)1/2 and,
therefore, gives the same order of error. To check this, note that, conditional on N(X ) = n,
the xj are independent and identically distributed on X with density ν̇(x; θ)/ν(X ; θ). Thus,
the expectation of (18), conditional on N(X ) = n, is

n

∫
X

∂ν̇(x; θ)

∂θ

∣∣∣∣
θ=θ̂

× 1

ν̇(x; θ)
log ν̇(x; θ) × ν̇(x; θ)

ν(X ; θ)
dx = n

ν(X ; θ)
ϕ(θ),

and, as N(X ) has expectation ν(X ; θ), the expectation of (18) is ϕ(θ), as required. One can
verify that (18) has variance of order ν(X ; θ) under mild conditions on the integrand.

APPENDIX C: THE TEM FOR THE MAIQUETÍA EXAMPLE

We illustrate the derivation of the tangent exponential model from Section 4.1, with thresh-
old exceedances Y1, . . . , Yn, Yt independent of the yearly maximum for Z1, . . . ,Z10: the
contribution of each to the TEM is additive with ϕ(θ) = ϕZ(θ) + ϕY (θ) and, similarly,
ϕ(θ)/∂θ = ϕZ(θ)/∂θ + ϕY (θ)/∂θ . We suppose that the yearly maxima are identically dis-
tributed with Zi ∼ GEV(μ,σ, ξ). The model has parameters ψ = qp and λ = (σ, ξ). The
generalized extreme value distribution is a location-scale family, so the ith row of the 10 × 3
matrix of sufficient directions has components Vzi ,μ = −1 and Vzi ,σ = −(z◦

i − q̂p)/σ̂ , while

Vzi ,̂ξ
= σ̂ ĉξ log(ĉξ ) − ξ̂ (z◦

i − qp) − {̂ξ(z◦
i − qp) + ĉξ } log(ĉξ − ξ̂

z◦
i −q̂p

σ̂
)

ξ̂2
.

Let t (zi) = 1 + ξ(zi − μ)/σ , where μ is an implicit function of (qp, σ, ξ); the canonical
parameters are obtained by multiplying the vector of sample space derivatives by the matrix
of sufficient directions,

ϕZ(θ) =
10∑
i=1

V
zi

× t (zi)
− 1

ξ
−1 + (1 + ξ)t (zi)

−1

σ
=

10∑
i=1

V
zi

× g(zi),

say, and the rows of the matrix of mixed derivatives are

ϕZ
qp

(θ) =
10∑
i=1

V
zi

× (1 + ξ)t (zi)
−1/ξ−2 + ξ(1 + ξ)t (zi)

−2

σ 2 ,

ϕZ
σ (θ) =

10∑
i=1

V
zi

×
{

g(zi)

σ
− (1 + 1/ξ)t (zi)

−1/ξ−2 + (1 + ξ)t (zi)
−2

σ

∂t (zi)

∂σ

}
,

etc.
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The arguments in Section 4.1 show that the distribution function of the n first threshold
exceedances below s, Pr(Yi + u ≤ y) = {�(u) − �(y)}/{�(u) − �(s)}, while the largest
observation Yt ≡ Yn+1 is left-truncated at s and, by virtue of the threshold stability property,
Yt − s follows a generalized Pareto distribution with scale σ + ξ(s −μ) and shape ξ . We can
thus derive the sufficient directions for the threshold exceedances as usual, with

Vyn+1,qp = − ξ̂ (y◦
t − s)

σ̂ ĉξ + ξ̂ (s − q̂p)
, Vyn+1,σ = ĉξ (y

◦
t − s)

σ̂ ĉξ + ξ̂ (s − q̂p)
,

and so forth. Truncation only affects the sufficient directions and, for all of the n + 1 ex-
ceedances, the sample space and mixed derivatives are of the form

ϕY (θ) =
n+1∑
i=1

V
yi

× −(1 + ξ)

σcξ + ξ(y◦
i − qp)

,

ϕY
qp

(θ) =
n+1∑
i=1

V
yi

× −(1 + ξ)ξ

{σcξ + ξ(y◦
i − qp)}2 ,

ϕY
σ (θ) =

n+1∑
i=1

V
yi

× (1 + ξ)cξ

{σcξ + ξ(y◦
i − qp)}2 ,

ϕY
ξ (θ) =

n+1∑
i=1

V
yi

× σcξ {log(cξ ) − ξ} + ξ(y◦
i − qp)

ξ{σcξ + ξ(y◦
i − qp)}2 .
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SUPPLEMENTARY MATERIAL

Supplement to “Improved inference on risk measures for univariate extremes” (DOI:
10.1214/21-AOAS1555SUPPA; .pdf). Expressions for the entries of the information matrices
of the r-largest order statistics of a generalized extreme value distribution. Description of
the simulation study infrastructure and set-up. Additional results from the simulation study,
including relative coverage and width of confidence intervals and relative bias for the block
maximum and the peaks-over-threshold methods.

Code and data (DOI: 10.1214/21-AOAS1555SUPPB; .zip). The compressed archive
AOAS1555−sm.zip contains the R code used to generate all the results presented in the
paper. It is also available from https://github.com/lbelzile/hoa-extremes.
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