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Recent technological advancements have enabled detailed investigation
of associations between the molecular architecture and tumor heterogeneity
through multisource integration of radiological imaging and genomic (radio-
genomic) data. In this paper we integrate and harness radiogenomic data in
patients with lower grade gliomas (LGG), a type of brain cancer, in order
to develop a regression framework called RADIOHEAD (RADIOgenomic
analysis incorporating tumor HEterogeneity in imAging through Densities)
to identify radiogenomic associations. Imaging data is represented through
voxel-intensity probability density functions of tumor subregions obtained
from multimodal magnetic resonance imaging and genomic data through
molecular signatures in the form of pathway enrichment scores correspond-
ing to their gene expression profiles. Employing a Riemannian-geometric
framework for principal component analysis on the set of probability density
functions, we map each probability density to a vector of principal compo-
nent scores which are then included as predictors in a Bayesian regression
model with the pathway enrichment scores as the response. Variable selec-
tion compatible with the grouping structure amongst the predictors induced
through the tumor subregions is carried out under a group spike-and-slab
prior. A Bayesian false discovery rate mechanism is then used to infer signif-
icant associations based on the posterior distribution of the regression coeffi-
cients. Our analyses reveal several pathways relevant to LGG etiology (such
as synaptic transmission, nerve impulse and neurotransmitter pathways) to
have significant associations with the corresponding imaging-based predic-
tors.

1. Introduction. Gliomas are a group of tumors occurring in the brain and spinal cord,
further categorized into subgroups. Lower grade gliomas (LGG) are characterized as World
Health Organization grade II and III tumors, and they come from two different types of brain
cells known as astrocytes and oligodendrocytes. The causes of these types of tumors are
not well understood, and recent studies have examined their molecular characterization from
datasets generated by The Cancer Genome Atlas (TCGA) and have associated disease prog-
nosis with their underlying molecular architecture (Verhaak et al. (2010)). In the context of
gliomas, there has been growing interest in exploring the underlying comprehensive molec-
ular characterization (Fishbein et al. (2017), Noushmehr et al. (2010), Venneti and Huse
(2015), Verhaak et al. (2014)). For example, Ceccarelli et al. (2016) studied the complete set
of genes associated with diffuse grade II-III-IV gliomas from TCGA to identify molecular
correlations by comprehensively analyzing the sequencing and array-based molecular profil-
ing data and to improve disease classification and provide insights into the progression of the
tumor from low- to high-grade.
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Gliomas usually contain various heterogeneous subregions: edema, nonenhancing and en-
hancing core which reflect differences in tumor biology, have variable histologic and genomic
phenotypes and exhibit highly variable clinical prognosis (Bakas et al. (2017a)). This intrin-
sic heterogeneity in tumor biology is also reflected in their radiographic phenotypes through
different intensity profiles of the subregions in imaging. Such phenotypes can be obtained
from images based on computed tomography (CT), positron emission tomography (PET) and
magnetic resonance imaging (MRI); each of which allows integration with other data sources
(e.g., genomics). Moreover, imaging and genomic data provide complementary information
in terms of tumor heterogeneity and molecular characterization, respectively. Molecular clas-
sification of LGGs can be facilitated, and sometimes even validated, through radiogenomic
analyses based on noninvasive medical image-derived features. Imaging features have been
known to capture physiological and morphological heterogeneity of tumors as they progress
from a single cell (Marusyk, Almendro and Polyak (2012)). Such studies have an important
bearing on the design of personalized therapeutic strategies in cancer and, potentially, guide
monitoring of disease development or progression for early stage cancers. Thus, examination
of inter- and intra-tumor heterogeneity through imaging features as well as their potential
association with genomic markers can lead to a better understanding of molecular signatures
of LGGs.

In this work we focus on the MRI modality, as it furnishes a wide range of image con-
trasts at a high resolution, which can be used to exhibit and evaluate the location, growth
and progression of tumors. Moreover, improved resolution of MRIs has facilitated the un-
derstanding of different aspects of tumor characteristics (Just (2014)). The apparent utility of
MRI in studying heterogeneity of subregions of gliomas can be seen in Figures 2 and 3, where
different intensity profiles disseminated across the multimodal MRI scans appear to exhibit
complementary information. Studying heterogeneity in the subregions is now feasible, due to
the availability of their gold standard labeling (Bakas et al. (2015)), which facilitates further
radiomic and radiogenomic analyses.

1.1. Voxel-intensity densities as an imaging feature. Using the raw MRI scans as predic-
tors in the modelling is a challenge, as we do not have an underlying atlas structure to com-
pare between subjects that is commonly available for other imaging modalities such as neu-
roimaging studies (Ombao et al. (2016)). Diagnostic image-based features using voxel-level
data have been utilized for modelling purposes (e.g., to visualize the progression/regression
of tumors). However, one of the main drawbacks of existing studies is that only a few chosen
summary statistics/metrics represent entire regions of interest. Some of these summary statis-
tics include percentiles, extreme percentiles (e.g., 5th and 95th), quartiles, skewness, kurtosis,
histographic pattern, range and mode of MRI-based voxel intensity histograms (Baek et al.
(2012), Just (2011), Song et al. (2013)). Although such metrics have clear utility in the assess-
ment of tumor heterogeneity, they generally do not provide a comprehensive representation
due to: (a) the subjectivity in the choice of the number and location of summary features and
(b) the limitation of these features in terms of capturing the entire information in a voxel-
intensity distribution. As a result, any statistical analysis based on such an approach is unable
to detect potential small-scale and sensitive changes in the tumor due to treatment effects
(Just (2014)).

As an alternative to summary statistics, associations between genomic variables and tumor
heterogeneity can be examined on different scales of the voxel intensity probability density
function (PDF): while significant genomic variation might manifest as markedly distinct as-
pects of a PDF (e.g., number of modes, large changes in location of mean/mode), genomic
variation (relative to the measurement scale) might show up in subtle, small-scale changes in
overall shape of the PDF (e.g. slopes between modes) and sometimes in the tails. Indications
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of such a behavior were evident in an unsupervised clustering setting in earlier work that
considered entire voxel-intensity PDFs as data objects (Saha et al. (2016)). Including such
small-scale changes without summarizing the entire PDF through coarse summary statistics
could result in better correlative and predictive power of models associating genomic vari-
ables to radiographic phenotypes (Yang et al. (2020)).

In this article we propose to examine variations in the genomic signature of a tumor
through changes, both large and subtle, in overall shape1 of the PDF of voxel intensities,
using a Riemannian-geometric framework on the space of PDFs. This space is a nonlinear,
infinite-dimensional manifold, and the lack of a global linear structure brings about nontrivial
challenges in their analyses. Here, we develop a regression framework called RADIOHEAD
(RADIOgenomic analysis incorporating tumor HEterogeneity in imAging through Densities)
to model associations between genomic variables characterizing the molecular signature of
tumors and voxel-intensity PDFs from multimodal MRI scans. In what follows we use PDFs
and densities interchangeably.

1.2. RADIOHEAD modelling outline. We propose an integrated end-to-end method:
from MR images to evaluation of voxel-level density-based radiomic features, gene expres-
sion to associated pathway-level enrichment scores and the subsequent statistical modelling
framework. Figure 1 shows the schematic workflow diagram for our method. For each patient
we generate PDFs corresponding to three heterogeneous tumor subregions: (i) necrosis and
nonenhancing, (ii) edema and (iii) enhancing core. The expression/activation of the pathways
is evaluated by computing pathway enrichment scores through gene-set variation analysis
(GSVA); these scores are subsequently used as a univariate response variable. We apply the
proposed RADIOHEAD approach to the TCGA dataset of LGGs.

Fitting a model by regressing enrichment scores against multiple PDFs (one from each
combination of tumor subregion and MRI sequence) poses two main challenges:

1. Each PDF is a nonnegative function which integrates to one and hence cannot be
treated as a standard functional predictor;

FIG. 1. Schematic representation of the RADIOHEAD modelling approach. Pathway scores are constructed
from gene expression using gene-set variation analysis (GSVA). From each MRI sequence we construct densities
for each of the three tumor subregions and use them to construct principal component scores under a Reimanni-
an-geometric framework. Pathway scores are used as a response and the principal component scores as predictors
in the downstream analysis.

1“(S)hape” is used in a nontechnical sense.
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2. The grouping structure between tumor subregions needs to be incorporated while
examining the functional relationship between a pathway score and its corresponding PDFs.

The first challenge is addressed by mapping each PDF to a finite-dimensional vector of princi-
pal component (PC) scores by carrying out Riemannian principal component analysis (PCA)
on the sample of PDFs corresponding to each tumor subregion. These PC scores, correspond-
ing to the multiple PDFs, act as imaging meta-features and are incorporated as individual
predictors, which leads to a p � n situation wherein the number of radiomic meta-features
(p) is higher than the number of subjects (n). In the presence of uncertainty in the actual
effects of small changes in the PC scores on the enrichment scores, it is natural to employ a
Bayesian model for variable selection. To this end, we address the second challenge by using
a group-structured continuous spike-and-slab prior (Andersen, Winther and Hansen (2014),
Ishwaran and Rao (2005)) on the total set of PC scores in an effort to capture information
on the biological structure in the data and to provide analyses that are more amenable to
interpretation. The prior formulation also simplifies the computation by allowing for sim-
ple (conditional posteriors from standard distributions) and fast MCMC sampling (via Gibbs
sampling). Other existing prior formulations incorporating group structure (Xu and Ghosh
(2015), Yang and Narisetty (2020), Zhang et al. (2014)) could also be used. Furthermore, to
address the issue of multiple comparisons, a Bayesian false discovery rate-based approach is
used to build inference based on error rates.

Section 2 describes the data along with the acquisition process and pre-processing steps.
We describe the algorithm to compute the density-based PC scores in Section 3.1; the com-
putation of GSVA-based enrichment scores is outlined in Appendix B. Section 3.2 describes
the regression setup with densities as covariates. In Section 3.3 we describe the regression in
terms of PC scores and the modelling approach based on Bayesian variable selection using
the group spike-and-slab prior. The estimation and inference strategies follow in Sections 3.4
and 3.5. In Section 4 we present our results and describe the identified radiogenomic asso-
ciations in LGG. We close with a brief Discussion and some directions for future work in
Section 5.

2. Dataset description. We describe the data acquisition and pre-processing steps in-
volved for the imaging and genomic data separately.

2.1. Imaging data. To conduct our analyses, we use MRI scans that include reliable tu-
mor segmentations along with identified tumor subregions. We consider preoperative multi-
institutional scans in the TCGA LGG collection, publicly available in The Cancer Imaging
Archive (TCIA–Clark et al. (2013)). We obtain segmentation labels for these MRI scans us-
ing an automated method called GLISTRboost (Bakas et al. (2015), Bakas et al. (2017a)).
Segmentation labels generate a mask for each subject’s MRI scan which distinguishes be-
tween necrotic and nonenhancing tumor (NCR/NET or NC), peritumoral edema (ED) and
enhancing tumor (ET).

MRI provides a wide range of imaging contrasts through multimodal images. The pri-
mary MRI sequences include: (a) native (T1), (b) post-contrast T1-weighted (T1Gd), (c)
T2-weighted (T2) and (d) T2 fluid attenuated inversion recovery (FLAIR). Each of these se-
quences identifies different types of tissue and displays them using varying contrasts based
on the tissue characteristics. We use LGG data for 65 subjects, obtained from Bakas et al.
(2017b), which contain: (a) MRI scans based on all four sequences (T1, T1Gd, T2 and
FLAIR) and (b) corresponding segmentation masks generated by GLISTRboost.

The structure of the data under study is as follows: each MRI scan is a three-dimensional
array with the third axis representing different axial slices. For each subject we have four
sequences, as described above, corresponding to four different 3D arrays accompanied by a
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FIG. 2. Figures (a)–(d): Axial slice of a skull-stripped brain MRI for a subject with LGG, shown for the four
sequences T1, T1Gd, T2 and FLAIR, respectively. The segmented tumor region is displayed using a red boundary
overlaid on the images. Figure (e): The corresponding subregion segmentation mask with the NC, ED and ET
regions marked in different colors.

unique segmentation mask that has a one-to-one correspondence with the voxels in the MRI
scans. That is, there is a voxel-to-voxel correspondence across all four MRI sequences and
the segmentation mask. An example of a single axial slice from a brain MRI for a subject
with LGG, for the four aforementioned sequences, is shown in the left panel in Figure 2. The
segmented tumor region is indicated by a red boundary overlaid on the images and is further
classified into the tumor subregions NC, ED and ET, as shown in the right panel in Figure 2.
The voxel intensity values of MRI scans are difficult to interpret and compare, as they are
sensitive to the configuration of the MRI scanner. These values are not comparable either
between study visits within a single subject or across different subjects which necessitates
pre-processing of the images in terms of intensity value normalization. We address this issue
through a biologically motivated normalization technique using the R package WhiteStripe
(Shinohara et al. (2014)).

2.2. Genomic data. The genomic data was obtained from LinkedOmics2
 (Vasaikar et al.

(2017)) which is a publicly available portal that includes multiomics data for LGG among
many other cancer types. We consider the normalized gene-level RNA sequencing data from
the primary solid tumor tissue using the Illumina HiSeq system (high-throughput sequencing)
with expression values in log2 scale. The entire dataset contains gene expression data for 516
samples and 20,086 genes; we consider a subset of 65 matched samples corresponding to
the imaging data described in Section 2.1. We consider the enriched pathways in LGG, as
identified by Ceccarelli et al. (2016), hereafter referred to as C-Pathways.

We obtain the mapping from genes to pathways and use them along with the gene ex-
pression data to obtain pathway scores. These scores are numerical estimates of the relative
enrichment of a pathway of interest across a sample population, and are computed using a

2www.linkedomics.org

http://www.linkedomics.org
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nonparametric, unsupervised method called GSVA. It estimates a value per sample and path-
way for the variation in the activity of a pathway within an entire gene expression set. In
other words, it assesses the relative variability of gene expression in the pathway, as com-
pared to expression of genes not in the pathway. The computation details of the pathway
scores can be found in Appendix B. For the C-Pathways (such as ion transport and synaptic
transmission) considered in this paper, the genes to pathway mappings are obtained from the
molecular signature database (Liberzon et al. (2011)). For each gene-set within the collection,
we construct the pathway score using gene-set variation analysis (Hänzelmann, Castelo and
Guinney (2013)). Of the 22 C-Pathways we only include 21 of them, as the gene membership
for one of the pathways was not available. The pathway scores are computed using the GSVA
package in R obtained from Bioconductor (Gentleman et al. (2004)). Summary statistics for
the pathway scores are shown in Table S1 of the Supplementary Material (Mohammed et al.
(2021a)).

3. Statistical framework. Our main goal is to identify associations between imaging
meta-features and gene expression-based pathway scores. In this section we first describe the
Riemannian-geometric approach to construct the voxel PDF-based PC scores for each subject
corresponding to a certain tumor subregion. We also define a formal regression model based
on the group spike-and-slab prior as well as associated estimation and variable selection
procedures.

3.1. Density-based principal component scores. We use R to index tumor subregions
and M for the different MRI sequences. Consider MRI scans for n subjects from four se-
quences with the tumor masks containing the segmented tumor region and indicating the
subregions. For a given sequence M , we construct the kernel density estimate f M

i (R),
i = 1, . . . , n for the tumor subregion R in subject i, based on the voxel intensity values in
the MRI scan at the array locations of region R obtained from the segmentation. Hence, for
each subject i and each sequence M , we have PDF estimates denoted by f M

i (NC), f M
i (ET)

and f M
i (ED) corresponding to the necrotic and nonenhancing tumor core (NC), the peritu-

moral edema (ED) and the enhancing tumor (ET) subregions, respectively. Thus, we consider
univariate kernel-density estimates for all tumor subregions and all subjects across the four
imaging sequences. The density plots are displayed in Figure 3, where each row corresponds
to a specific imaging sequence while each column corresponds to a tumor subregion. We
compute the PC scores for each sequence M separately. For brevity, we shall drop the se-
quence indicator M from the densities and use fiR instead of f M

i (R) for the remainder of
this section.

The kernel density estimates (fiR for all i = 1, . . . , n and R ∈ T = {NC,ET,ED}) are
proper PDFs and belong to the Banach manifold of all PDFs. The following description fo-
cuses on PDFs with domain [0,1]; however, the methods apply to more general domains with
small adjustments. PDFs are elements of the space F = {f : [0,1] → R>0| ∫ 1

0 f (x) dx = 1}.
To make F a Riemannian manifold and to facilitate computation on this space, we endow it
with the Fisher–Rao (F-R) Riemannian metric (Kass and Vos (2011), Rao (1992), Srivastava,
Jermyn and Joshi (2007)). For brevity, we omit the specific formula for this metric and sim-
ply mention that it is closely related to the Fisher information matrix and has useful statistical
properties, for example, invariance to bijective and smooth transformations of the PDF do-
main (Čencov (1982)). Unfortunately, the F–R metric is difficult to use in practice, as the
computation of geodesic paths and distances between PDFs is cumbersome and requires nu-
merical methods for approximation. Thus, for simplification we further transform the ker-
nel density estimates using a square-root transformation (Bhattacharyya (1943), Kurtek and
Bharath (2015)). As a result, the space of PDFs becomes the positive orthant of the unit
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FIG. 3. Kernel densities f M
i (R) for all subjects across all four MRI sequences and three tumor subregions.

For visual convenience the y-axes are truncated for each of the subplots. The x-axis shows the voxel-intensity
values; however, we transform them to [0,1] for each imaging sequence to compute the KDEs. Supplementary
Material Figure S1 shows similar plots in color and Supplementary Material Figure S2 shows similar plots without
truncation of the y-axis.

sphere in L
2 := L

2([0,1]), the geometry of which is well known and the F-R metric flattens
to the standard L

2 metric, enabling the computation of geodesic paths and distances in an-
alytical form (Kurtek and Bharath (2015)). Briefly, this result provides simple tools for the
statistical tasks of interest including: (a) definition of a distance between two densities, (b)
computation of a Karcher mean of a sample of densities and (c) PCA of a sample of densities.
We elaborate on these procedures next.

Distances between PDFs and their Karcher mean. Let hiR = +√
fiR denote the (posi-

tive) square-root densities (SRDs) corresponding to the kernel density estimates fiR for all
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i = 1, . . . , n and R ∈ T . Each hiR is an element of H = {h : [0,1] → R>0| ∫ 1
0 h2(x) dx = 1},

the positive orthant of a unit sphere in L
2, that is,H is the collection of SRDs corresponding

to all PDFs in F . Equipped with the standard L
2 metric,H becomes a Riemannian manifold

(recall that the L
2 metric on H corresponds to the F–R metric on F ). Under this setup the

geodesic distance between two densities f1, f2 ∈ F , represented by their SRDs h1, h2 ∈ H,
is defined as the shortest great circle arc connecting them on H: d(f1, f2) = d(h1, h2)L2 :=
cos−1(〈h1, h2〉) = cos−1(

∫ 1
0 h1(x)h2(x) dx) := θ . We can now compute the mean of a sam-

ple of SRDs using a generalized version of a mean on a metric space, called the Karcher mean
(Dryden and Mardia (1998), Karcher (1977)). The sample Karcher mean h̄ on H is defined as
the minimizer of the variance functional H � h 	→ ∑n

i=1 d(h,hi)
2
L2 . An algorithm for com-

puting the Karcher mean is given in Section S1 of the Supplementary Material; Figure S3
shows the Karcher mean of the densities across all of the subjects for all tumor subregions
and imaging sequences, overlaid within each subplot. The computations require two tools
from differential geometry called the exponential and inverse-exponential maps. Let Th(H) =
{δh|〈δh,h〉 = 0} denote the tangent space at h. For h ∈ H and δh ∈ Th(H), the exponen-
tial map at h, exp : Th(H) → H is defined as exph(δh) = cos(‖δh‖)h + sin(‖δh‖)δh/‖δh‖,

where ‖δh‖ =
√∫ 1

0 δh2(x) dx is the L
2 norm (Biliotti and Mercuri (2017)). The inverse-

exponential map is denoted by exp−1
h : H → Th(H) and, for any h1, h2 ∈ H, it is defined as

exp−1
h1

(h2) = θ [h2 − cos(θ)h1]/ sin(θ), where θ = d(h1, h2)L2 as before.3

Principal component analyses on a sample of PDFs. To perform PCA of a sample of
SRDs (equivalently PDFs), we utilize the linear tangent space at the sample Karcher mean
SRD. That is, we first project all SRDs onto this tangent space using the inverse-exponential
map. The sample covariance matrix is then computed in the tangent space at the mean SRD,
and PCA is applied through singular value decomposition (SVD) of this matrix. In practice,
the densities and their corresponding SRDs are approximated using m-dimensional vectors,
which specify the functional values at a set of m discrete points on the domain [0,1] resulting
in m × m-dimensional covariance matrices, where m � n. We describe the above step-by-
step process in Algorithm 1.

The first L columns of UR , denoted as ŨR ∈ R
m×L, span the L-dimensional principal

subspace of the given sample of densities. We can compute the principal coefficients as
XR = VRŨR , where V �

R = [v1Rv2R . . .vnR] ∈ R
m×n for each R ∈ T . These principal co-

efficients XM
R , referred to as PC scores, act as Euclidean coordinates corresponding to the

kernel density estimates f M
i (R) generated from each MRI sequence M and will be used as

predictors in our model. This procedure accomplishes two major goals: (1) it estimates or-
thogonal directions of variability in a sample of PDFs along with the amount of variability

Algorithm 1 PCA on Th̄(H)

1: Compute hiR from fiR (at m discrete points).
2: Compute the Karcher mean of hiR for each tumor subregion R ∈ T as h̄R (see Section

S1 in the Supplementary Material).
3: Use the inverse-exponential map to compute viR = exp−1

h̄R
(hiR) ∈ Th̄R

(H).

4: Evaluate the sample covariance matrix KR = 1
n−1

∑n
i=1 viRv�

iR ∈ R
m×m for each R ∈ T .

5: Compute the SVD of KR = UR�RU�
R .

3For the unit sphere in L
2, strictly speaking, although the exponential map is well defined on the entire tangent

space (Biliotti and Mercuri (2017)), the inverse-exponential map may not be. We eschew handling of this technical
detail since this is not an issue when computing using the map in practice.
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explained by each direction via the covariance decomposition, and (2) it performs dimen-
sion reduction by effectively exploring variability in the sample of PDFs through the primary
modes of variation in the data.

3.2. Regression with densities. The PDFs f M
i (R) are representations of the heterogene-

ity in the tumor voxels from the imaging sequence M and the tumore subregion R for
subject i. To identify radiogenomic associations, we build regression models with PDFs
f M

i (R)∀M,R as covariates. For ease of exposition, we drop the indices M and R and ex-
plicate the model for one density fi(t) for t ∈ [0,1] for subject i as the covariate. Let hi(t)

denote the corresponding SRD. If yi corresponds to the pathway score for subject i, hi can
be related to yi using the data-driven model

(1) yi = β0 +
∫ 1

0
exp−1

h̄

(
hi(t)

)
β(t) dt + εi, i = 1, . . . , n,

where h̄ ∈ H is the Karcher mean of SRDs h1, . . . , hn ∈ H. Here, t 	→ β(t) is the real-valued
coefficient function, β0 is a real-valued intercept and εi are i.i.d.N(0, σ 2). We specify the
model on the tangent space at the data-dependent Karcher mean h̄. That is, h̄ is the reference
SRD for the inverse-exponential map. While this choice influences the model specification (as
h̄ changes with changing sample composition), it removes the arbitrariness associated with
choosing the reference SRD. Effectively, exp−1

h̄
(hi(t)) is the Riemannian-geometric equiva-

lent of “centering” the functional covariate hi . The amount of dependence of the model on
h̄ is directly dependent on the variability of the sample h1, . . . , hn which can be quantified
using the geodesic distances between hi and h̄.

When it exists, the range of H � h 	→ exp−1
h̄

(h) is contained within a linear subspace of

L
2, and we can thus express exp−1

h̄
(hi) = ∑

k αikφk for some sequence (αik, k ≥ 1) with∑
k |αik|2 < ∞, where {φk, k = 1,2, . . . } is an orthonormal set of basis functions for L

2.
Similarly, we can write β = ∑

k βkφk for some sequence (βk, k ≥ 1) with
∑

k |βk|2 < ∞.
Hence, the model in equation (1) reduces to

(2) yi = β0 +
∞∑

k=1

αikβk + εi,

since 〈φi,φj 〉 = 1 if i = j , and 0 otherwise. For a given gene-set we denote the pathway
scores as y = (y1, . . . , yn)

�, where yi corresponds to the score for subject i. Having chosen
h̄, we truncate the number of basis functions at some positive integer rn < ∞. The model in
equation (2) is then further simplified as

(3) yn×1 = β01n + Aβ + ε,

where 1n ∈ R
n is the vector with all entries as 1, row i of A ∈ R

n×rn is given as
(αi1, . . . , αirn)

� ∈ R
rn and β = (β1, . . . , βrn)

� ∈ R
rn . Let A�A = PDP�, where P ∈ R

rn×rn

is an orthogonal matrix of eigenvectors of A�A and D is diagonal with λ1 ≥ λ2 ≥ · · ·λsn >

0 = λsn+1 = · · ·λrn . If every λk > 0∀k, then y is regressed on the principal components of A,
which is AP.

The model in equation (3) depends on the choice of the orthonormal basis {φk} of L
2

or, in other words, the matrix A and its eigenvectors in P . We use a PC basis for two rea-
sons: (i) it is the optimal empirical orthogonal basis (see, e.g., Chapter 6 of Ramsay and
Silverman (2005)) for data on L

2, of which Th̄(H) is a linear subspace, and (ii) the map
exp−1

h̄
(hi) 	→ (αi1, αi2, . . . ) is an isometry, and, for a fixed positive integer rn, the corre-

sponding full isometry group is O(rn) (the set of square orthogonal matrices in dimension
rn). From the perspective of (ii), choosing another orthornormal basis and truncating at rn
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amounts to an orthogonal transform of the corresponding coefficients. Thus, we are effec-
tively regressing the score yi of the ith subject on the “optimal” rn-dimensional linear repre-
sentation of the SRD hi in the tangent space Th̄(H) of the sample Karcher mean h̄.

The model in equation (3) corresponds to one PDF as a covariate for each subject i. How-
ever, from our imaging data, we have 12 PDFs, from four imaging sequences and three tumor
subregions, as covariates for each subject. Hence, the model in equation (1) can be extended
as

(4) yi = β0 + ∑
M

∑
R

∫ 1

0
exp−1

h̄M
R

(
hM

iR(t)
)
βR

M(t) dt + εi,

where hM
iR(t) is the SRD for the PDF f M

iR (t) and βR
M(t) is the coefficient function corre-

sponding to the tumor subregion R in imaging sequence M . Here, h̄M
R is the sample Karcher

mean of hM
1R(t), . . . , hM

nR(t). Each of the integrals in equation (4) can be reduced to the PC
regression form in equation (3). In Section 3.3 we directly work with the PC regression form
with the 12 groups of PCs as covariates.

3.3. Regression with PC scores. The PDFs belong to a function space, and they carry
rich information of the voxel intensities of different tumor subregions at different scales. As a
consequence, they also result in a large number (greater than the number of subjects) of prin-
cipal components across sequences and tumor subregions. This p � n situation necessitates
the use of variable selection approaches that can induce sparsity as well as regularization. As
the PC scores are surrogates for the entire density, it is natural to model the aspects of the
density not captured through the scores (such as information on the tumor subregions) using
a Bayesian approach by appropriately placing a prior on the high-dimensional feature space.
Consequently, this allows us to construct and to assess posterior distributions of coefficients
for inference.

Our goal is to identify the density-based principal components across tumor subregions
that are significantly associated with the expression levels in the gene set considered. We ad-
dress this problem from a Bayesian perspective and use the continuous spike-and-slab prior
(George and McCulloch (1997), Ishwaran and Rao (2005)) which has inherent variable selec-
tion properties. We model the pathway scores y using principal component scores obtained
from all of the tumor subregions and MRI sequences as the predictors. In other words, we
assume

(5) y = Xβ + ε with ε ∼ N
(
0, σ 2I

)
,

where

X = [
XT 1

NCXT 1
EDXT 1

ETXT 1Gd
NC XT 1Gd

ED XT 1Gd
ET

XT 2
NCXT 2

EDXT 2
ETXFLAIR

NC XFLAIR
ED XFLAIR

ET
]

corresponds to the n×L matrix of predictors containing the principal component scores. The
normality assumption is reasonable here since the pathway scores are unimodal and approx-
imately normal by construction (Hänzelmann, Castelo and Guinney (2013)). The model can
also be adapted to categorical or survival response types by incorporating latent variable ap-
proaches. Here,L is defined as the total number of principal components considered across
all sequences and tumor subregions: L = ∑

M

∑
R LM

R , where LM
R corresponds to the number

of columns in XM
R for R ∈ T and M belongs to the four different sequences. We choose LM

R

based on a threshold for the total variation explained by the chosen number of principal com-
ponents. In the coefficient vector β ∈ R

L, each component is the coefficient corresponding to
the principal component from each tumor subregion R and each MRI sequence M ; σ 2 is the
variance parameter.



1818 S. MOHAMMED ET AL.

Group spike-and-slab prior. Our aim is to identify the tumor subregions in a specific se-
quence (through the principal components) influencing the pathway scores. This translates
to identifying the nonzero coefficients of the model in equation (5). However, the PC scores
within each XM

R contain rich information about the small-scale variability in the densities for
region R in sequence type M . The number of principal components to include is dictated by
the cumulative amount of variability explained by them. As these densities belong to a func-
tion space, capturing variability requires including a large number of PC scores. Moreover,
each of these principal components captures different aspects of the variability for the same
group, that is, (M,R) pair, and, hence, they will need to be evaluated as a group. Incorporat-
ing this grouping structure into the modelling framework, we rewrite the model in equation
(5) as

(6) y ∼ N

(
G∑

g=1

Xgβg, σ
2In

)
,

where G = 4 × 3, as we have 12 groups arising from four MRI sequences and three tumor
subregions. Here,βg = (βg1, . . . , βgLg)

�, where Lg is the number of principal components
included for the gth group of covariates Xg . Note that our covariates have a clear grouping
structure, where each group corresponds to the principal components of a tumor subregion
within an imaging sequence. We now introduce a group spike-and-slab prior onto the coeffi-
cients βg to identify the groups Xg influencing the pathway scores. Consider the following
prior structure:

βgk
ind∼ N

(
0, σ 2ζgν

2
gk

)
,

ζg
iid∼ (1 − w)δv0(ζg) + wδ1(ζg),

w ∼ U(0,1),(7)

ν−2
gk

iid∼ Gamma(a1, a2),

σ−2 ∼ Gamma(b1, b2),

where ζgν
2
gk is the hypervariance of βgk with ζg acting as the group-level indicator variable

taking values 1 or v0 (a small number > 0) with probability w or 1 − w, respectively. If
ζg = 1, the hypervariance is dictated by the Inverse-Gamma prior on ν2

gk ; if ζg = v0, the prior
on βgk is concentrated at 0 allowing for shrinkage of the coefficient parameter βgk . The choice
of hyperparameters a1 and a2 should be such that we have a continuous bimodal prior on βgk .
Further,w acts as the complexity parameter, indicating the proportion of groups with nonzero
coefficients, and has a continuous uniform prior on (0,1). We consider an Inverse-Gamma
prior on the variance parameter σ 2. Note that the group structure is incorporated into the
variable selection through the indicator ζg , which impacts the variance of the parameter βgk .
That is, if a specific group is not selected, the hypervariance for the coefficients corresponding
to all columns in Xg is small, leading to the prior on βgk being concentrated at zero and vice-
versa.

3.4. Estimation. For the model in equation (6) and the group spike-and-slab prior struc-
ture in equation (7), the full posterior distribution is provided in Section S2 of the Supple-
mentary Material. Let us define �g = diag(γg1, . . . , γgLg) and � = block-diag(�1, . . . ,�G),
where γgk = ζgν

2
gk . The conditional posteriors for all of the parameters arise from standard

distributions, and, hence, we can use Markov chain Monte Carlo (MCMC) sampling pro-
cedures, such as Gibbs sampling. Details of the Gibbs sampling approach along with the
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Algorithm 2 Gibbs Sampling for Estimation
1: for T iterations do
2: Sample βg from βg|ζg, ν

−2
gk , σ−2 ∼ N(�X�y, σ 2�), where � = (X�X + �−1)−1.

3: Sample ζg from ζg|βgk, ν
2
gk,w,σ−2 ∼ w1g

w1g+w2g
δv0(·) + w2g

w1g+w2g
δ1(·), where

w1g = (1 − w)v
−Lg

2
0 exp

(
−

Lg∑
k=1

β2
gk

2σ 2v0ν
2
gk

)
and w2g = w exp

(
−

Lg∑
k=1

β2
gk

2σ 2ν2
gk

)
.

4: Sample ν−2
gk from ν−2

gk |βgk, ζg, σ
−2 ind∼ Gamma(a1 + 1

2 , a2 + β2
gk

2σ 2ζg
).

5: Sample w from w|ζg
ind∼ Beta(1 + #{ζg = 1},1 + #{ζg = v0}).

6: Sample σ−2 from

σ−2|βg, ζg, ν
−2
gk

ind∼ Gamma
(
b1 + n + ∑G

g=1 Lg

2
, b2 + 1

2

[
(y − Xβ)�(y − Xβ) + β��−1β

])
.

conditional posteriors for the parameters βg , ζg , ν−2
gk , w and σ−2 are given in Algorithm 2.

Since we are modelling data from each gene set separately, the estimation can be run in
parallel across all pathways making the analysis computationally feasible.

3.5. False discovery rate-based variable selection. The MCMC samples explore the dis-
tribution of the coefficients corresponding to the principal components of each of the sub-
groups, as guided by the data. There are different ways of summarizing the information from
these MCMC samples. We could use the posterior mode (maximum a posteriori or MAP
estimate) of the coefficients βgk and conduct conditional inference based on these point es-
timates. While this approach provides interpretable point estimates, it does not yield exact
zero values as estimates for the coefficients corresponding to principal components not asso-
ciated with the response; it also does not make use of the complete posterior samples. We use
Bayesian model averaging (Hoeting et al. (1999)) which builds inference based on various
configurations visited by the MCMC sampler. This approach adequately accounts for the un-
certainty in the data and allows for variable selection through downstream inference based on
error rates. In this paper we use a multiplicity-adjusted inference for regression on each path-
way separately, since in each of these regressions we are trying to infer from the estimates
of βgk if they are zero or not. The variable selection also contributes to the multiplicity cor-
rection by inducing sparsity. In our Discussion we present results of the false discovery rate
(FDR)-based variable selection approach using Bayesian model averaging combined with the
MAP estimates.

From the model in equation (6), for each βgk , we obtain S samples β
(1)
gk , . . . , β

(S)
gk from

the posterior distribution. For any given threshold c > 0, we can empirically compute
pgk = 1

S

∑S
s=1 I (|β(s)

gk | ≤ c) which can be interpreted as the local FDR (Morris et al. (2008));
then, (1 − pgk) is the probability that the principal component k from group g significantly
impacts the pathway score. Owing to the inherent variable selection property of the group
spike-and-slab prior in equation (7), for some g and k it is almost certain that the correspond-
ing βgk is close to zero. The value of pgk for such a βgk is large, and it is almost certain that
including such a nonzero coefficient is an inferential error. We also expect some of the coef-
ficients to have moderate values for pgk . Furthermore, we expect to have some coefficients
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βgk such that the corresponding pgk are close to zero and they almost certainly influence the
pathway score.

Based on this discussion, we assume that the principal component k from group g will be
included in the estimation as a significant coefficient if pgk < φ. Note that pgk is a Bayesian
q-value or an estimate of the local FDR (Storey (2003)). This threshold φ can be determined
based on different criteria, such as Bayesian utility considerations (Müller et al. (2004)), or by
controlling false-positive/false-negative errors, or the average Bayesian FDR. We determine
a threshold φα , which controls the overall average FDR at some level α, so that we expect
only 100α% of the elements of the set {(g, k)|pgk < φα} to actually be false-positive inclu-
sions in terms of associations with the pathway scores. To compute the threshold φα , we sort
the posterior inclusion probabilities pgk across all principal components k = 1, . . . ,Lg and
groups g = 1, . . . ,G, and denote the sorted probabilities as p(l) for l = 1, . . . ,L = ∑G

g=1 Lg .

We then compute φα = p(u), where u = max{l∗| 1
l∗

∑l∗
l=1 p(l) ≤ α}. The set of principal com-

ponents k from group g with pgk < φα , that is, {(g, k)|pgk < φα}, can then be claimed to be
significantly associated with the pathway score based on an average Bayesian FDR of α.

In summary, we start with the MRI scans for each patient and identify the three tumor
subregions. Based on these subregions, we construct imaging-based meta-features through
PCA on the space of voxel-intensity PDFs using a Riemannian-geometric framework. The
resulting PC scores are used as predictors in a regression model with the pathway score as
a response. The pathway scores act as genomic markers capturing the enrichment activity in
a gene-set. We then use a group structured spike-and-slab prior which captures the natural
grouping of the principal components arising from various tumor subregions to identify ra-
diogenomic associations. We use Gibbs sampling for estimation and an FDR-based criterion
for variable selection. The complete approach of RADIOHEAD is outlined in Algorithm 3
of Appendix A.

4. Radiogenomic analyses of lower grade gliomas. We consider the imaging and
matched genomic data described in Sections 2.1 and 2.2, respectively, which comprises 65
samples. However, four of the 65 samples do not posses segmentation labels for all three
tumor subregions and hence are dropped from the analysis, resulting in a final sample size of
61. For each patient, we have G = 12 groups arising from four MRI sequences (T1, T1Gd,
T2 and FLAIR) and three tumor subregions (NC, ED and ET). First, the density estimates
are obtained using the ksdensity function in MATLAB software which uses an optimal value
for estimating normal densities using Silverman’s rule as the default bandwidth (Silverman
(1986)). We present a sensitivity analysis to assess the differences in the density estimates
based on the choice of bandwidth in Section S9 of the Supplementary Material. The results
indicate reasonable consistency in the computed density estimates. We then compute the
PC scores for these 61 subjects for each of the 12 groups. The number of principal com-
ponents included within each group is decided such that the included principal components
cumulatively explain 99.99% of the total variance. For each of the four imaging sequences,
we display the cumulative percentage of variance explained by the principal components in
Supplementary Material Figure S4. Note that this cut-off of 99.99% results in choosing a
different number of principal components across each group g. Although the choice of this
cut-off could include a large number of PCs, any overfitting concerns are addressed by reg-
ularization via the spike-and-slab prior that incorporates explicit shrinkage on the regression
coefficients (Morris and Carroll (2006), Scheipl, Fahrmeir and Kneib (2012)). We include a
total of 143 covariates across all of the 12 groups for the LGG data. We discuss results of a
sensitivity analysis to assess the effect of sample composition on the computation of PC bases
in Section S8 of the Supplementary Material. We consider only the C-Pathways (Ceccarelli
et al. (2016)), and the corresponding pathway scores are computed for the 61 subjects as
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described in Appendix B. We provide an R package, RADIOHEAD,4 which includes all rele-
vant code, including the data under consideration, that is, the pathway scores corresponding
to C-Pathways and PC scores along with their grouping labels for the 61 LGG subjects.

Prior elicitation and MCMC settings. In our model we have shape (a1, b1) and rate (a2,
b2) hyperparameters corresponding to σ 2 and ν2

gk in equation (7). We choose these hyper-
parameters so as to have noninformative/vague priors with a1 = a2 = 0.001 and b1 = b2 =
0.001: the mean is 1 with a large variance. The other hyperparameter is v0, one of the two
possible values of the indicator ζg . We choose v0 = 0.005 to be close to zero which gener-
ates continuous bimodal priors for βgk . We perform a sensitivity analysis based on different
values for v0. These results are included in Section S7 of the Supplementary Material. We
run the MCMC chain for 105 iterations and discard the first 20,000 samples as burn-in. The
final estimates are based on MCMC samples with a thinning of 125 iterations to reduce auto-
correlation. In Supplementary Material Figures S9 and S10 we show the posterior densities
and trace plots corresponding to randomly chosen βgks for the transmission of the nerve
impulse pathway showing good convergence of the parameters. In Supplementary Material
Figure S11 we present boxplots for the potential scale reduction factors (Gelman and Rubin
(1992)) computed based on the MCMC samples of βgk from seven different chains. This plot
indicates convergence of the MCMC samples across multiple chains.

The results from the regression of these pathway scores on the imaging predictors through
the corresponding PC scores are shown in Figure 4. We display only the gene sets that have
at least one significantly associated covariate among all of the gene sets in the C-Pathways.
Hence, any pathway not shown indicates no significant association between that pathway
and the imaging predictors. Similarly, any principal components for any of the 12 groups not
listed in this figure are not significantly associated with any of the C-Pathways. Each cell in
Figure 4 represents the magnitude of the estimated (MAP) coefficients β̂gk , and the overlaid
symbol denotes its sign; the significantly associated PCs are determined using FDR-based
variable selection on the MCMC samples, as described in Section 3.5. For example, we see
that the scores of the first principal component of enhancing tumor (T1_ET.1) subregion
have a significant association with the transmission of nerve impulse gene-set. The average
Bayesian FDR is controlled at the level α = 0.05; we use a threshold c = 0.001 to compute
the values for pgk across all of the pathway score regressions. The value of c is chosen such
that it is comparable to the bandwidth used to compute the kernel density estimates, which in
turn is essential in computing the MAP estimate from the MCMC chain. Diagnostics for the
linear model in equation (6) reveal no obvious violations of modelling assumptions (Figures
S5–S8 in the Supplementary Material).

Effect of sample composition. As the computation of the pathway scores can be sensitive
to the samples in the patient cohort, the associations identified by our model are dependent on
the sample composition. A visual illustration of the distribution of the pathway scores (using
violin plots) is provided in the Supplementary Material Figures S12–S18. To address this is-
sue, we calibrate the results from our model by computing the pathway scores corresponding
to the 61 subjects in three different scenarios. For the calibration we include genomic data
from TCGA for additional glioma patients (including glioblastoma multiforme (GBM)). The
three scenarios include computing the pathway scores with: (a) the 61 LGG subjects, (b) 516
LGG subjects and (c) 516 LGG and 153 GBM subjects. We build the model in equation (6) for

4The R package can be found in a file in the Supplementary Material that accompanies this article (Mohammed
et al. (2021b)). For the most recent version of the code, see www.github.com/bayesrx/RADIOHEAD.

http://www.github.com/bayesrx/RADIOHEAD
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FIG. 4. Posterior estimates of βgk , after FDR-based variable selection, corresponding to different PC scores
across MRI sequences and tumor subregions. Each row corresponds to a pathway from the C-Pathways. The
average Bayesian FDR is controlled at the level α = 0.05. Values on the gray-scale indicate the magnitude of β̂gk

and the overlaid symbol (+/−) indicates its sign. The size of the symbol is proportional to the magnitude of β̂gk .
Lack of a symbol denotes a zero estimate indicating no significant association.

all three cases and carry out the estimation and inference, as described in Section 3. The re-
sults presented earlier in Figure 4 correspond to the first case, where the pathway scores were
computed with the n = 61 LGG subjects only. However, in Supplementary Material Figures
S19–S21 we present plots for the estimated coefficients (rows and columns are matched in
these plots) when the pathway scores are computed, as described in cases (a)–(c), respec-
tively. These plots are summarized in Figure 5 with pairwise scatterplots of the estimated
coefficients from the three different cases; for example, the top-right plot in Figure 5 corre-
sponds to the scatterplot of estimated coefficients when the pathway scores were computed
with 61 LGG subjects vs. all 669 glioma subjects (LGG+GBM). The triangles indicate coef-
ficients that are selected as significantly associated in both cases, whereas the circles indicate
coefficients that were not selected in one of the two cases. From Figure 5 we see that, across
all three pairwise comparisons, we estimate many coefficients to be similar (as indicated by
the solid line y = x).

Biological associations. We now focus on those pathways and coefficients whose esti-
mates are consistent across all three cases (within a deviation of ±0.1); these coefficients are
the triangles lying within the dotted lines parallel to y = x in Figure 5. We plot these esti-
mated coefficients across the three cases in Figure 6. These plots include pathways related
to synaptic transmission, ion transport, glutamate signaling, G protein receptor signaling, ex-
ocytosis, nervous system development and protein autoprocessing. Here, we focus on two
major findings in terms of the magnitudes of the different associations:

1. The transmission of nerve impulse pathway is associated with the enhancing tumor
region from the T1 and FLAIR imaging sequences. The region enhanced in both of the se-
quences could potentially indicate demyelination due to glioma invasion which could, in turn,
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FIG. 5. Scatterplots of the estimated coefficients when the pathway scores are constructed using: (a) 61 LGG
subjects for which imaging data was available, (b) 516 LGG subjects from TCGA and (c) 516 LGG and 153 GBM
subjects from TCGA.

lead to disruption in transmission of nerve impulses. This association between the metabolic
activity and the infiltrating tumor region is identified by our model. It is also known that neu-
ronal activity promotes glioma growth (Venkatesh et al. (2015)) which is supported by the
associations of the transmission of nerve impulse pathway with these imaging predictors.

2. The association of glutamate signaling pathway with the enhancing tumor region
from the FLAIR sequence and the necrotic and nonenhancing region from the T1 sequence
highlights metabolic activity related to the infiltration of the tumor. In the mammalian central
nervous system (CNS), glutamate is a major excitatory neurotransmitter, and experimental
evidence suggests that glutamate receptor antagonists may limit tumor growth (Brocke et al.
(2010)).

The aforementioned associations indicate that a deeper validation of these phenotypes is es-
sential to better understand tumor etiology which may illuminate more specific nuances. Ac-
cordingly, we list some of our other findings:

1. Ion channels are important regulators in cell proliferation, migration and apoptosis,
and play an important role in the pathology of glioma. Biological processes can be disrupted,
or cancer progression can be influenced, by malfunction and/or aberrant expression of ion
channels (Wang et al. (2015)). Our model identifies these connections via associations of
the imaging predictors with ion transport pathways, such as potassium ion transport, cell
signaling, behavior and anion transport.

2. G protein-coupled receptor (GPCR) signaling affects tumor growth, metastasis and
angiogenesis (Cherry and Stella (2014)). Our model identifies this association with the path-
way score for GPCR protein signaling.

3. The inhibition of lysosome exocytosis from glioma cells is known to play an im-
portant modulatory role in their migration and invasion (Liu, Zhou and Zhu (2012)). Such
influences are identified through the radiogenomic association with the exocytosis pathway.

5. Discussion. In this paper we propose a statistical framework for integrating multi-
modal data from both radiological images and genomic profiles. This model aims to identify
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FIG. 6. Posterior estimates of βgk , after FDR-based variable selection, corresponding to different PC scores
across MRI sequences and tumor subregions. Each panel corresponds to a pathway from the C-Pathways. Each
column within the panel corresponds to the sample composition used for calibration to compute the pathway
scores. The color on the gray-scale indicates the magnitude of β̂gk and the overlaid symbol (+/-) indicates its

sign. The size of the symbol is proportional to the magnitude of β̂gk .

underlying radiogenomic associations, that is, associations between the radiological charac-
teristics extracted from MRI images and molecular underpinnings encoded in gene expres-
sion data. Toward this end, from the transcriptomic profiling data we have constructed path-
way scores corresponding to those pathways that are known to have influence specifically in
LGGs; from the radiological imaging data we have constructed meta-features based on voxel
intensities of tumor subregions through PDF-based approaches which effectively capture tu-
mor heterogeneity. These meta-features, constructed from multiple MR sequences, are then
used as covariates in a model with pathway scores as responses. We use a Bayesian variable
selection strategy by employing a continuous spike-and-slab prior with a grouping structure
which accounts for the inherent grouping in the imaging meta-features. This approach identi-
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fies many underlying associations between gene pathway activations and image-based tumor
characteristics.

We note that, although we incorporate the grouping structure in the RADIOHEAD frame-
work, we are not (explicitly) interested in the associations with the entire PDF. That is, our
inference is not based only on groups where β̂gk �= 0 for all k in a given group g. Instead, our
focus is to identify associations with any aspect of the PDFs. The imaging meta-features (PC
scores) facilitate evaluation of any underlying associations of the genomic markers with vari-
ous aspects of the PDFs. Furthermore, inference on the group-level indicator is not feasible in
our model setup, as ζg is not identifiable. Such an inference is inferior in performance under
cases with high within-group sparsity, even under a model which has identifiability of the
group-level indicator (Yang and Narisetty (2020)). We demonstrate this using a simulation
study described in Section S6 of the Supplementary Material.

Utility in using densities. Data integration from multiple modalities comes with compu-
tational and modelling challenges. For the imaging data, MRIs facilitate the characterization
of tumor subregions and are obtained from four different sequences. The tumor subregions
are represented as voxel intensity values, and standard analyses utilize summaries from the
histograms of these voxel intensity values. As an improved alternative, we have used the
complete information from the voxel intensities through smoothed histograms (kernel den-
sity estimates). Next, we show the benefits of this more comprehensive representation by
considering seven different cases as potential predictors: (a) mean, (b) mean, first and third
quartiles (Q1 and Q3), (c) five-number summary, (d) mean, standard deviation, skewness
and kurtosis, (e) deciles, (f) 15 equally spaced percentiles and (g) 20 equally spaced per-
centiles. The summary statistics are computed across all of the 12 groups separately. In
each of these seven cases, we employ the RADIOHEAD pipeline which uses the group
spike-and-slab prior and FDR-based variable selection to identify associations. The issue
of multicollinearity within the predictors is handled by the shrinkage properties of the spike-
and-slab prior. These seven cases also include scenarios where the number of predictors is
higher/lower compared to the 143 predictors across groups from the PC scores. The results
based on these seven cases are presented in Supplementary Material Figures S22–S25. We
see that having just the mean or just the mean,Q1 and Q3, does not identify any associ-
ations with the pathway scores. However, adding more summary statistics describing the
histogram aids in identifying associations. But, as we will see next, the PC scores offer more
relevant information about the densities rather than including a larger number of summary
statistics as covariates (cases (f) and (g)). Hence, using the PDF-derived PC scores has a
higher utility in terms of understanding the pathway scores. In Figure 7 we show the box-
plots of the Spearman correlations between computed (observed) and fitted (using estimated
coefficients of density-based meta-features/summary statistics from RADIOHEAD) pathway
scores, that is, Spearman correlation between y and Xβ̂ , respectively. These correlations are
computed separately by considering cases (a)–(g) and density-based PC scores as predic-
tors.

Additionally, since the computation of the pathway score was dependent on the sam-
ple composition, for the case with density-based PC scores as predictors we also include
boxplots of Spearman correlations for three different computations of pathway scores, as
described in Section 4. The width of these boxplots is proportional to the number of path-
ways exhibiting significant associations with at least one of the imaging meta-features. In
Supplementary Material Figure S25 we also show the Spearman correlations between the
computed pathway scores and the fitted pathway scores. This figure demonstrates that we are
able to better understand the underlying radiogenomic associations through our modelling
approach when the density-based meta-features are considered as covariates. Furthermore,
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FIG. 7. Boxplot of Spearman correlations between computed and fitted pathway scores (Xβ̂) using RADIO-
HEAD, while different sets of covariates are considered. The width of the boxplots is proportional to the number
of pathways exhibiting significant associations with at least one of the imaging meta-features.

our model can be used in other applications (including other cancers and disease systems)
involving imaging and genomic data, as the methodology is readily generalizable to different
application domains.

Future work. Although we see promise in the proposed modelling framework to iden-
tify radiogenomic associations in LGG, there are certain directions which can be further
explored. While using density-based features extracted from multimodal MRI scans does
facilitate modelling and provide improved performance, these densities do not explicitly uti-
lize potentially important spatial information in their construction. Incorporating voxel-based
spatial information, in addition to intensity values, is nontrivial and will be explored in our
future studies. The current model explores linear relationships between the PC scores and
pathway scores which could be further extended to investigate nonlinear associations as well.
Such analyses will better inform the understanding of the inter- and intra-tumor heterogeneity
in LGG. Other directions could be to: (a) extend the framework to incorporate dependencies
between pathways (data derived or based on canonical topology) or (b) use gene-level data
instead of pathways while incorporating cross-correlations between the genes. Our frame-
work could also be explored further with other forms of pan-omic data, such as epigenomic
and proteomic data. Furthermore, our findings could be used to build predictive models for
clinical phenotypes (such as survival or progression) that include biologically relevant infor-
mation based on radiogenomic associations. This provides a statistically-informed strategy
to incorporate relevant information for the prediction of clinical phenotypes from complex
data.

APPENDIX A: OVERALL OUTLINE OF RADIOHEAD

Here, we describe the algorithm with an outline of the overall approach of this paper to
identify the radiogenomic associations by modelling the genomic-based pathway scores using
the radiomic-based PC scores.
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Algorithm 3 Outline of RADIOHEAD
1: for each MRI sequence M = T1, T1Gd, T2, FLAIR do
2: for each tumor subregion R = NC, ET, ED do
3: for each subject i = 1, . . . , n do Compute the kernel densities f M

i (R).

4: Compute the principal component scores XM
R using PCA in Algorithm 1.

5: Consider a pathway of interest and compute pathway scores y = (y1, . . . , yn)
� (as de-

scribed in Appendix B) with the sample i = 1, . . . , n in the cohort.
6: Bayesian Modelling

a: Model:

y ∼ N

(
(4×3)∑
g=1

Xgβg, σ
2In

)
; βgk

ind∼ N
(
0, σ 2ζgν

2
gk

);
ζg

iid∼ (1 − w)δv0(ζg) + wδ1(ζg); w ∼ U(0,1);
ν−2
gk

iid∼ Gamma(a1, a2); σ−2 ∼ Gamma(b1, b2).

b: Gibbs sampling for the parameters βg, ζg, ν
−2
gk ,w,σ−2 as described in Algorithm 2.

c: FDR-based variable selection as described in Section 3.5 to identify nonzero βgk .

APPENDIX B: COMPUTATION OF PATHWAY SCORES

Instead of directly including the gene expression profiles in the model, we use the cor-
responding pathway scores. Pathway-based methods offer a significant benefit in terms of
interpretability as gene function is exerted collectively and may vary based on several fac-
tors, such as disease state, genetic modification or environmental stimuli. As mentioned in
Hänzelmann, Castelo and Guinney (2013), using gene sets obtained by organizing genes
provides an intuitive and stable context for assessing biological activity. We compute these
gene-set scores using gene-set variation analysis (GSVA) (Hänzelmann, Castelo and Guinney
(2013)) which is a gene-set enrichment method that estimates variation of pathway activity
over a sample population in an unsupervised manner. We provide a brief overview of the
GSVA procedure next.

Let Z denote the p × n matrix of normalized gene-expression values of p genes for n

samples (p � n) and a collection of gene sets G = {g1, . . . , gm}. The expression profile
for gene i is defined as zi = (zi1, . . . , zin), and each gene set is a subset of genes with its
cardinality being denoted by |gk|. First, GSVA evaluates whether a gene i is highly or lowly
expressed in sample j in the context of the sample population distribution. An expression-
level statistic is computed so that distinct expression profiles can be compared on the same
scale. For each zi , a nonparametric kernel estimation of its cumulative density function is
performed using a Gaussian kernel to compute F̂si (zij ) = 1

n

∑n
r=1 �(

zij−zir

si
), where si is the

gene-specific bandwidth parameter controlling the resolution of the kernel estimation. These
statistics F̂si (zij ) are converted to ranks r(i)j for each sample j and further normalized using
tij = |p2 −r(i)j |. We use these tij to compute a Kolmogorov–Smirnov (KS)-type random walk
statistic for l = 1, . . . , p as

ηjk(l) =
∑l

i=1 |tij |τ I (u(i) ∈ gk)∑p
i=1 |tij |τ I (u(i) ∈ gk)

−
∑l

i=1 I (u(i) ∈ gk)

p − |gk| ,

where τ is a parameter describing the weight of the tail and I (u(i) ∈ gk) is an indicator
taking the value 1 if the gene corresponding to the rank i expression-level statistic belongs
to the gene-set gk . The statistic ηjk(l) produces a distribution over the genes by identifying
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whether the genes in a gene set are more likely to belong to either tail of the rank distribution.
This KS-like statistic is now converted into an enrichment score of the pathway using Sjk =
maxl(0, ηjk(l)) − minl(0, ηjk(l)). Hänzelmann, Castelo and Guinney (2013) note that Sjk

has a clear biological interpretation, as it emphasizes genes in pathways that are concordantly
activated in one direction only, that is, ones that are either over-expressed or under-expressed
relative to the overall population. Low enrichment is shown for pathways containing genes
strongly acting in both directions.
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SUPPLEMENTARY MATERIAL

Supplement to “RADIOHEAD: Radiogenomic analysis incorporating tumor hetero-
geneity in imaging through densities” (DOI: 10.1214/21-AOAS1458SUPPA; .pdf). All of
the details in the text which were referenced as Supplementary Material are provided in this
file. This includes details of: (a) computation of the Karcher mean, (b) full posterior distri-
bution, (c) calibration of pathway scores, (d) utility of densities as predictors, (e) inference
on group-level indicator; and results of the analysis to assess sensitivity in (f) the parame-
ter estimates based on the choice of hyperparameters, (g) the estimated principal component
bases based on the sample composition, and (h) the density estimates based on the choice of
bandwidth.

R package RADIOHEAD (DOI: 10.1214/21-AOAS1458SUPPB; .zip). The R package
RADIOHEAD can be found in this file. For the most recent version of the code, see
www.github.com/bayesrx/RADIOHEAD.
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