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The GENIUS Approach to Robust Mendelian
Randomization Inference
Eric Tchetgen Tchetgen, BaoLuo Sun and Stefan Walter

Abstract. Mendelian randomization (MR) is a popular instrumental vari-
able (IV) approach, in which one or several genetic markers serve as IVs
that can sometimes be leveraged to recover valid inferences about a given
exposure-outcome causal association subject to unmeasured confounding.
A key IV identification condition known as the exclusion restriction states
that the IV cannot have a direct effect on the outcome which is not medi-
ated by the exposure in view. In MR studies, such an assumption requires an
unrealistic level of prior knowledge about the mechanism by which genetic
markers causally affect the outcome. As a result, possible violation of the
exclusion restriction can seldom be ruled out in practice. To address this con-
cern, we introduce a new class of IV estimators which are robust to violation
of the exclusion restriction under data generating mechanisms commonly as-
sumed in MR literature. The proposed approach named “MR G-Estimation
under No Interaction with Unmeasured Selection” (MR GENIUS) improves
on Robins’ G-estimation by making it robust to both additive unmeasured
confounding and violation of the exclusion restriction assumption. In cer-
tain key settings, MR GENIUS reduces to the estimator of Lewbel (J. Bus.
Econom. Statist. 30 (2012) 67–80) which is widely used in econometrics
but appears largely unappreciated in MR literature. More generally, MR GE-
NIUS generalizes Lewbel’s estimator to several key practical MR settings, in-
cluding multiplicative causal models for binary outcome, multiplicative and
odds ratio exposure models, case control study design and censored survival
outcomes.

Key words and phrases: Additive model, confounding, exclusion restric-
tion, G-estimation, instrumental variable, robustness.

1. INTRODUCTION

Mendelian randomization (MR) is an instrumental vari-
able approach with growing popularity in epidemiology
studies. In MR, one aims to establish a causal associa-
tion between a given exposure and an outcome of interest
in the presence of possible unmeasured confounding, by
leveraging one or more genetic markers defining the IV
(Davey Smith and Ebrahim, 2003, 2004, Lawlor et al.,
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2008). In order to be a valid IV, a genetic marker must
satisfy the following key conditions:

(a) It must be associated with the exposure.
(b) It must be independent of any unmeasured con-

founder of the exposure-outcome relationship.
(c) There must be no direct effect of the genetic marker

on the outcome which is not fully mediated by the expo-
sure in view.

Assumption (c) also known as the exclusion restric-
tion is rarely credible in the context of MR as it requires
complete understanding of the biological mechanism by
which each marker influences the outcome. Such a priori
knowledge may be unrealistic in practice due to the possi-
ble existence of unknown pleiotropic effects of the mark-
ers (Little and Khoury, 2003, Davey Smith and Ebrahim,
2003, 2004, Lawlor et al., 2008). Violation of assumption
(b) can also occur due to linkage disequilibrium or pop-
ulation stratification (Lawlor et al., 2008). Possible vio-
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lation or near violation of assumption (a) known as the
weak instrumental variable problem also poses an impor-
tant challenge in MR as individual genetic effects on phe-
notypes can be fairly weak.

There has been tremendous interest in the development
of statistical methods to detect and account for violation
of IV assumptions (a)–(c). The literature addressing vio-
lation of assumption (a) is arguably the most developed
and extends to possible nonlinear models under a gener-
alized methods of moments framework; notable papers of
this rich literature include Staiger and Stock (1997), Stock
and Wright (2000), Stock, Wright and Yogo (2002), Chao
and Swanson (2005) and Newey and Windmeijer (2009).
Methodology to address violations of (b) or (c) is far less
developed and constitutes the central focus of this paper.
An important approach involves deriving bounds and per-
forming sensitivity analysis for causal estimands which
are typically only partially identifiable from the observed
data law without further untestable assumptions (Manski
and Pepper, 2000, Hirano et al., 2000, Nevo and Rosen,
2012, Conley, Hansen and Rossi, 2012, Flores and Flores-
Lagunes, 2013, Mealli and Pacini, 2013, Huber, 2014).
The other concerns point identification and estimation of
causal effects under violation of either of these assump-
tions, and three strands of work stand out in recent lit-
erature primarily in multiple-IV settings under standard
linear outcome and exposure models. In the first strand,
Kang et al. (2016) developed a penalized regression ap-
proach that can recover valid inferences about the causal
effect of interest provided fewer than fifty percent of ge-
netic markers are invalid IVs (known as majority rule);
Windmeijer et al. (2019) improved on the penalized ap-
proach, including a proposal for standard error estimation
lacking in Kang et al. (2016). In an alternative approach,
Han (2008) established that the median of multiple esti-
mators of the effect of exposure obtained using one instru-
ment at the time is a consistent estimator also assuming
majority rule and that IVs cannot have direct effects on the
outcome unless the IVs are uncorrelated. Bowden et al.
(2016) explore closely related weighted median method-
ology. In a second strand of work, Guo et al. (2018) pro-
posed two stage hard thresholding (TSHT) with voting,
which is consistent for the causal effect under linear out-
come and exposure models, and a plurality rule which
can be considerably weaker than the majority rule. The
plurality rule is defined in terms of regression parame-
ters encoding the association of each invalid IV with the
outcome and that encoding the association of the cor-
responding IV with the exposure. The condition effec-
tively requires that the number of valid IVs is greater
than the largest number of invalid IVs with equal ratio
of the regression coefficients given above. Furthermore,
they provide a simple construction for 95% confidence
intervals to obtain inferences about the exposure effect

which are guaranteed to have correct coverage under the
plurality rule. Importantly, in these first two strands of
work, a candidate IV may be invalid either because it vi-
olates the exclusion restriction, or because it shares an
unmeasured common cause with the outcome, that is,
either (b) or (c) fails. Both the penalized approach and
the median estimator may be inconsistent if majority rule
fails, while TSHT may be inconsistent if plurality rule
fails. For instance, it is clear that neither approach can
recover valid inferences if all IVs violate either assump-
tion (b) or (c). In a third strand of work, Kolesár et al.
(2015) considered the possibility of identifying the expo-
sure causal effect when all IVs violate the exclusion re-
striction (c), provided the effects of the IVs on the ex-
posure are asymptotically orthogonal to their direct ef-
fects on the outcome as the number of IVs tends to in-
finity. A closely related meta-analytic version of their
approach known as MR-Egger has recently emerged in
the epidemiology literature (Bowden, Davey Smith and
Burgess, 2015); they referred to the orthogonality condi-
tion as the instrument strength independent of direct ef-
fect (InSIDE) assumption. As pointed out by Kang et al.
(2016), the orthogonality condition on which these ap-
proaches rely may be hard to justify in MR settings as
it potentially restricts unknown pleiotropic effects of ge-
netic markers often with little to no biological basis. A no-
table feature of aforementioned methods is that they are
primarily tailored to a multiple-IV setting, in fact methods
such as MR-Egger are consistent only under an asymp-
totic theory in which the number of IVs goes to infin-
ity, together with sample size. It is also important to
note that because confidence intervals for the causal ef-
fect of the exposure obtained by Windmeijer et al. (2019)
and Guo et al. (2018) rely on a consistent model selec-
tion procedure, such confidence intervals fail to be uni-
formly valid over the entire model space (Guo et al., 2018,
Leeb and Pötscher, 2008).

Because in practice, it is not possible to ensure that ei-
ther majority rule or plurality rule holds, it is important
to develop causal inference and estimation methods that
are robust to possible violation of IV assumptions un-
der alternative conditions. Lewbel (2012, 2018) proposed
novel identification and estimation strategies with mis-
measured and endogenous regressor models by leveraging
a heteroscedastic covariance restriction, which has since
been widely applied in econometrics and social sciences.
In Section 2, we introduce notation used throughout and
provide a review of the invalid IV model considered by
Lewbel (2012). We extend Lewbel’s identification result
in Section 3. The proposed framework which we call “MR
G-Estimation under No Interaction with Unmeasured Se-
lection” (MR GENIUS) can also be viewed as a version of
Robins’ G-estimation (Robins, 1994) that is robust to both
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additive unmeasured confounding and violation of IV as-
sumptions, and which unlike the aforementioned meth-
ods equally applies whether one has observed a single
or many candidate IVs. An important feature of multi-
ple IV MR GENIUS is that the correlation structure for
the IVs can essentially remain unrestricted without nec-
essarily affecting identification, this is in contrast with
Bowden, Davey Smith and Burgess (2015) who require
uncorrelated IVs and Kang et al. (2016) who likewise re-
quire IV correlation structure to be somewhat restricted
(Windmeijer et al., 2019). Section 4 presents several key
generalizations including MR GENIUS under multiplica-
tive or odds ratio exposure models, as well as for right
censored time-to-event endpoint under a structural addi-
tive hazards model, which extends the recent semipara-
metric IV estimator of Martinussen et al. (2017) against
possible violation of the exclusion restriction assumption.
In Section 5, we evaluate the proposed methods and com-
pare them to a number of previous MR methods in ex-
tensive simulation studies. In Section 6, we illustrate the
methods in an MR analysis of the effect of diabetes on
memory in the Health and Retirement Study. Section 7
offers some concluding remarks. We note that although
MR is used as motivating example throughout the paper,
the development of methodology to adequately address
the issue of invalid IVs remains a priority for several dis-
ciplines, including biostatistics, epidemiology, economet-
rics and sociology, in which our results equally apply.

2. NOTATION AND DEFINITIONS

Suppose that one has observed n i.i.d. realizations of a
vector (A,G,Y ) where A is an exposure, G the candidate
IV and Y is the outcome. Let U denote an unmeasured
confounder (possibly multivariate) of the effect of A on
Y . G is said to be a valid instrumental variable provided it
fulfills the following three conditions (Didelez, Meng and
Sheehan, 2010):

ASSUMPTION 1. IV relevance: G �⊥⊥ A|U ;

ASSUMPTION 2. IV independence: G ⊥⊥ U ;

ASSUMPTION 3. Exclusion restriction: G ⊥⊥ Y |A,U .

The first condition ensures that the IV is a correlate of
the exposure even after conditioning on U . The second
condition states that the IV is independent of all unmea-
sured confounders of the exposure-outcome association,
while the third condition formalizes the assumption of no
direct effect of G on Y not mediated by A (assuming As-
sumption 2 holds). The causal diagram in Figure 1a en-
codes these three assumptions and therefore provides a
graphical representation of the IV model. It is well known
that while a valid IV satisfying Assumptions 1–3, that is,
the causal diagram in Figure 1a, suffices to obtain a valid
statistical test of the sharp null hypothesis of no individual
causal effect, the population average causal effect is itself
not point identified with a valid IV without an additional
assumption. Angrist, Imbens and Rubin (1996) showed
that the local average treatment effect among compliers
can be nonparametrically identified under an additional
monotonicity assumption about the effect of Z on D.
The additive and multiplicative structural mean models of
Robins (1989, 1994) represent another approach in which
the average treatment effect on the treated can be iden-
tified under effect heterogeneity restrictions. In case of a
valid binary IV and binary exposure, Wang and Tchet-
gen Tchetgen (2018) recently established that the average
causal effect βa of A on Y is nonparametrically identified
by the so-called Wald estimand

βa = δ ≡ E(Y |G = 1) − E(Y |G = 0)

E(A|G = 1) − E(A|G = 0)
,

if either of the conditions

E(Y |A,G,U) = βaA + βu(U),(2.1)

E(A|G,U) = αgG + αu(U),(2.2)

holds, where the unknown functions βu(·) and αu(·) are
restricted only by natural features of the model, see, for
example, such that the outcome and exposure means are
bounded between zero and one in the binary case. Sup-
pose that, as encoded in the diagram given in Figure 1b,
Assumption 3 does not necessarily hold. Lewbel (2012)
considered identification and estimation of βa under the

FIG. 1. Directed acyclic graph depicting (a) a valid instrument G which satisfies Assumptions 1–3, (b) the situation in which exclusion restriction
(Assumption 3) does not necessarily hold (the dashed line indicates possible direct effect of G on outcome Y ), and (c) the situation in which IV
independence (Assumption 2) and exclusion restriction (Assumption 3) do not necessarily hold (the dashed lines indicate possible direct effects of
U on G, and of G on Y ).
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invalid IV model

E(Y |A,G,U) = βaA + βg(G) + βu(U),(2.3)

E(A|G,U) = αg(G) + αu(U),(2.4)

where βg(G) encodes the direct effect of G on Y , with
βg(0) = αg(0) = 0. Note that the models for E(Y |A,G,

U) and E(A|G,U) considered by Bowden, Davey Smith
and Burgess (2015) satisfy (2.3) with βg(·) and αg(·) lin-
ear functions, while Kang et al. (2016) specified models
implied by these two restrictions. With binary exposure
A, we consider identification of the average causal effect
for the following generalization of the invalid IV model
considered in (2.3).

ASSUMPTION 4.

(4a) For unknown functions βg(·) and αg(·) of (U,G)

where βg(U,0) = αg(U,0) = 0, and unknown function
βa(·) of U ,

(2.5)
E(Y |A,G,U) = βa(U)A + βg(U,G) + βu(U),

E(A|G,U) = αg(U,G) + αu(U).

(4b) The orthogonality conditions

(2.6)

cov
{
βg(U,G),αg(U,G)|G}

= cov
{
βg(U,G),αu(U)|G} = 0;

cov
{
βa(U),αg(U,G)|G}

= cov
{
βa(U),αu(U)|G} = 0;

cov
{
αg(U,G),βu(U)|G} = 0,

hold with probability 1.

Under Assumption 4a, the average causal effect of bi-
nary A on Y is given by μ ≡ E{βa(U)}. The model
βg(U,G) encodes the direct effect of G on Y , with po-
tential effect modification by unmeasured confounders U .
Assumption 4b does not imply orthogonality of βu(U)

and αu(U) and therefore the degree of unmeasured con-
founding is not restricted by these orthogonality condi-
tions. In contrast the degree of common effect modifiers in
the outcome and exposure models is effectively restricted
by (2.6).

As pointed out by a reviewer, it is instructive to study
the effect heterogeneity restrictions (2.6) in the context of
the following linear structural models with random coef-
ficients (Wooldridge, 2003, 2010),

(2.7)
Yi = βaiAi + βgiGi + βui + vi;
Ai = αgiGi + αui + wi, i = 1, . . . , n,

where E(vi |Ai,Ui,Gi) = E(wi |Ui,Gi) = 0, βai ≡
βa(Ui), βgi ≡ βg(Ui), βui ≡ βu(Ui), αgi ≡ αg(Ui) and
αui ≡ αu(Ui). Because the random coefficient βai is cor-
related with Ai by virtue of unmeasured confounding,
(2.7) is also known as a correlated random coefficient

model (Heckman and Vytlacil, 1998). It is convenient
to rewrite the outcome model as Yi = μAi + ε′

i , where
ε′
i = {βai −μ}Ai +βgiGi +βui +vi . Then a sufficient set

of conditions for identification of μ is Gi ⊥⊥ Ui , βgi = 0
and either βai = μ or αgi = αg with probability 1 so that
E{ε′

i{Gi − E(Gi)}} = 0. When βgi �= 0, then the proof
of Lemma 3.1 in the next section shows that E{ε′

i{Gi −
E(Gi)}{A−E(A|G)}} = 0 under the restrictions in (2.6),
where {Gi − E(Gi)}{A − E(A|G)} is the constructed in-
strument proposed by Lewbel (2012). As a special case,
the conditions in (2.6) are satisfied if βg(U,G) = βg(G),
αg(U,G) = αg(G) and βa(U) = βa with probability 1,
which is the scenario considered in Lewbel (2012); this
is equivalent to setting βgi = βg , αgi = αg and βai = βa

under the linear random coefficients model (2.7). Intu-
itively, in this case the constructed instrument works be-
cause its exposure regression residual is orthogonal to
βgGi in ε′

i . Assumption 4b generalizes the identification
result and may hold even if assumptions made by Lewbel
(2012) do not, as illustrated by the following example.
Suppose that αu(U) − E[αu(U)] = ∑K

k=1 γk × φk(U) for
a vector of zero-mean functions � = {φk : k = 1, . . . ,K},
and likewise βu(U) − E[βu(U)] = ∑J

j=1 θj × τj (U) for
T = {τj : j = 1, . . . , J }. Denote the linear vector space
spanned by the vector � of functions in U to be S(�),
and 
 to be the least squares projection operator. Let

αg(U,G)

= αg0(G) +
K∑

k=1

αgk(G)
{
φk(U) − 


[
φk(U)|S(T)

]}
,

αgk(0) = 0 for k = 0,1, . . . ,K ,

βg(U,G)

= βg0(G) + βg1(G)
{
ω(U) − 


[
ω(U)|S(�)

+ S
(
φk(U) − 


[
φk(U)|S(T)

]
,

k = 1,2, . . . ,K
)]}

,

for arbitrary function ω(U) with βg0(0) = βg1(0) = 0,
and

βa(U)

= ζ(U) − 

[
ζ(U)|S(�)

+ S
(
φk(U) − 


[
φk(U)|S(T)

]
,

k = 1,2, . . . ,K
)]

for arbitrary function ζ(U). Note that � and T can be of
different dimension. Then the orthogonality conditions of
Assumption 4b are satisfied.

Recent work by Shardell and Ferrucci (2016) proposes
using baseline covariates interacted with G (or certain
non-linear transformations of G) as instrumental variables
when G violates Assumption 3, a method which was first
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introduced in the causal mediation literature (Ten Have
et al., 2007, Albert, 2008, Emsley, Dunn and White, 2010,
Small, 2012, Zheng and Zhou, 2015). However, the ap-
proach generally does not allow for identification in the
absence of covariates when G is binary. For example in
the following outcome model in (2.7) with nonrandom co-
efficients,

Yi = βaAi + βgGi + βui + vi︸ ︷︷ ︸
≡ε

†
i

,

the method fails to yield the two instrumental variables
orthogonal to ε

†
i that are necessary to identify (βa,βg).

3. IDENTIFICATION AND ESTIMATION UNDER
VIOLATION OF EXCLUSION RESTRICTION

We consider identification of μ within the large class of
data generating mechanisms that satisfy Assumptions 1, 2
and 4, which is given in the following lemma.

LEMMA 3.1. Suppose that Assumptions 1, 2 and 4
hold, then

μ = E[{G − E(G)}{A − E(A|G)}Y ]
E[{G − E(G)}{A − E(A|G)}A]

provided that

(3.1) φ ≡ cov
{
G,var(A|G)

} �= 0.

The proof for Lemma 3.1 is given in Appendix A.1.
In particular, for binary G, φ = var(G){var(A|G = 1) −
var(A|G = 0)} so that (3.1) is satisfied if and only if
var(A|G = 1) − var(A|G = 0) �= 0. Lemma 3.1 provides
an explicit identifying expression for the average causal
effect of A on Y in the presence of additive confound-
ing, which leverages a candidate IV G that may or may
not satisfy the exclusion restriction. In order for μ to be
well defined, we require a slight strengthening of the IV
relevance Assumption 1, that is, that var(A|G) must de-
pend on G. It is key to note that this assumption is em-
pirically testable, and will typically hold for binary A,
other than at certain exceptional laws. To illustrate, let
π(g) = Pr(A = 1|G = g) and suppose that Assumptions
1, 2 and 4 hold, however π(1) = 1 − π(0), in which case
(3.1) fails because var(A|G = g) = π(g)(1 − π(g)) =
π(1)(1 − π(1)) = π(0)(1 − π(0)) does not depend on
g and therefore the identifying expression given in the
Lemma does not apply despite the candidate IV satisfying
IV relevance Assumption 1, that is, π(1) �= π(0). Below,
we extend Lemma 3.1 to allow for possible violation of
both Assumptions 2 and 3.

The lemma motivates the following MR estimator,
which is guaranteed to be consistent under Assumptions
1, 2, 4 and equation (3.1) irrespective of whether or not
Assumption 3 also holds:

(3.2) β̂a = Pn[{G − Pn(G)}{A − Ê(A|G)}Y ]
Pn[{G − Pn(G)}{A − Ê(A|G)}A] ,

where Pn = n−1 ∑n
i=1[·]i and Ê(A|G = g) = Pn[Ai ×

1(Gi = g)]/Pn[1(Gi = g)]. This estimator is the simplest
instance of MR GENIUS estimation. The asymptotic dis-
tribution of the estimator is described in Appendix B.1.
We note that (3.2) is equivalent to Lewbel’s estimator
which can be implemented as follows (Lewbel, 2018):

1. Obtain the estimated residuals ε̂a = A − θ̂ T G from
ordinary least squares regression of A on G.

2. Estimate βa by two-stage least squares regression of
Y on A, using (G − Ḡ)ε̂a as the instrument, where Ḡ is
the sample mean of G.

The above estimator assumes E(A|G) = θT G, although
the first step can be extended for some nonlinear, possi-
bly unknown exposure model. Lewbel showed that β̂a is
consistent for the average causal effect which is parame-
terized by the scalar βa under model (2.3) and condition
(3.1) as well as cov{G,εaεy} = 0, where εy = Y − βaA.

3.1 Continuous Exposure

Consider the following stronger version of Assump-
tion 4 in which βa(U) = βa with probability 1,

ASSUMPTION 4*.

(4a*)

E(Y |A,G,U) = βaA + βg(U,G) + βu(U),(3.3)

E(A|G,U) = αg(U,G) + αu(U).(3.4)

(4b*) The orthogonality conditions

cov
{
βg(U,G),αg(U,G)|G}

= cov
{
βg(U,G),αu(U)|G} = 0;

cov
{
αg(U,G),βu(U)|G} = 0,

hold with probability 1.

Then for continuous A, Lemma 3.1 continues to hold
under Assumptions 1, 2 and 4*, where βa = μ now en-
codes the causal effect on the outcome mean upon in-
creasing the exposure by one unit. Condition (3.1) im-
plies that the residual error εA = A − E(A|G) must be
heteroscedastic, that is, var(A|G) = E(ε2

A|G) depends on
G. In the next section, we generalize this identification re-
sult in several important directions particularly relevant to
MR studies.

We note that as previously stated while var(A|G) will
generally depend on G for binary or discrete A, this may
not always be the case for continuous A. However in this
case, the assumption can be motivated under an underly-
ing model for A with latent heterogeneity in the effect of
G on A. Specifically, suppose that A = α∗

g(G, εg)+Ua +
ε∗
a and E(ε∗

a) = 0, where εg and ε∗
a are unobserved ran-

dom disturbances independent of (G,U); the disturbance
εg may be viewed as unobserved genetic or environmen-
tal factors independent of G, that may however interact
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with G to induce additive effect heterogeneity of G–A as-
sociations, for example, α∗

g(G, εg) = α∗
gG + εgG. Then,

one can verify that the model in the above display implies
that A = αg(G) + εa where αg(G) = E(α∗

g(G, εg)|G) +
E(Ua) and var(εa|G) = var({Ua + ε∗

a + α∗
g(G, εg) −

E(α∗
g(G, εg)|G)}|G), which clearly depends on G, pro-

vided α∗
g(g, εg)−α∗

g(0, εg) depends on εg for a value of g,
therefore implying condition (3.1). A model for exposure
which incorporates latent heterogeneity in the effects of G

is quite natural in the MR context because such a model
is widely considered a leading contestant to explain the
mystery of missing heritability (Manolio et al., 2009).

Condition (3.1) is also related to the identification as-
sumptions underlying an important class of bias-adjusted
estimators of causal effects which leverage on gene-
environment interactions when exclusion restriction of
the IV is violated (Spiller et al., 2018). For example, in
Spiller et al. (2018), a genetic risk score for body mass
index (BMI) is shown to interact with a measure of so-
cial class (Townsend Deprivation Index, TDI). The ge-
netic risk score explains a higher proportion of variance in
BMI for people with high TDI values, and therefore con-
dition (3.1) holds. However, unlike Spiller et al. (2018),
we do not require that one observes εg in order to identify
βa , which is a key advantage.

3.2 Identification Under Violation of IV Independence

In this section, we aim to relax the IV independence As-
sumption 2, by allowing for dependence between U and
G as displayed in Figure 1c. Therefore, we consider re-
placing Assumption 2 with the following weaker condi-
tion:

ASSUMPTION 2*. cov(βu(U),αu(U)|G) = ρ does
not depend on G.

To illustrate Assumption 2* it is instructive to consider
the following submodels of Assumption 4*: βu(U) =
β0 + βuU and αu(U) = α0 + αaU . Then Assumption 2*
implies var(U |G) = ρ/(βuαa), that is, the unmeasured
confounder U has homoscedastic variance. Under As-
sumption 2*, E(U |G) is left unrestricted therefore As-
sumption 2 may not hold. We have the following result.

LEMMA 3.2. Suppose that Assumptions 1, 2*, 4*
hold, then βa = μ provided that condition (3.1) holds.

The proof of Lemma 3.2 is given in Appendix A.2.
Lemma 3.2 implies that under Assumptions 1, 2*, 4*
and condition (3.1), β̂a continues to be consistent even if
U �⊥⊥ G. As previously mentioned, MR GENIUS may be
viewed as a special case of G-estimation (Robins, 1997).
In fact, under Assumption 4a and the additional assump-
tion of no unobserved confounding given G, that is, if ei-
ther U ⊥⊥ A|G or U ⊥⊥ Y |A,G, the G-estimator β̃a which
solves an estimating equation of the form:

0 = Pn

[
h(G)

{
A − Ê(A|G)

}{Y − β̃aA}],

is consistent and asymptotically normal for any user-
specified function h(·) (up to regularity conditions).

It is straightforward to verify that the MR GENIUS es-
timator (3.2) solves the estimating equation:

(3.5) 0 = Pn

[{
G − Pn(G)

}{
A − Ê(A|G)

}{Y − β̂aA}],
therefore formally establishing an equivalence between
MR GENIUS and G-estimation for the choice h(G) =
G − E(G). Remarkably, as we have established above,
this specific choice of h renders G-estimation robust to
unmeasured confounding under certain no-additive inter-
actions conditions with unmeasured factors used in se-
lecting exposure levels, therefore motivating the choice
of acronym for the proposed approach.

4. GENERALIZATIONS

4.1 Incorporating Covariates

One may wish in an MR analysis to adjust for covari-
ates, either to account for observed confounding of the
exposure effect on the outcome, or to account for con-
founding of the effects of the genetic markers primarily
by ancestry (known as population stratification) or simply
to improve efficiency. In order to account for covariates
C, we propose to solve:

(4.1)
0 = Pn

[
h(C)

{
G − Ê(G|C)

}
× {

A − Ê(A|G,C)
}{Y − β̂aA}],

for user-specified choice of h, where Ê(G|C) and Ê(A|
G,C) are consistent estimators of E(A|G,C) and Ê(G|
C) obtained say by fitting appropriate generalized lin-
ear models. For example, as G is binary, one may spec-
ify logit Pr(G = 1|C) = ω0 + ω′C to obtain Ê(G|C) by
standard maximum likelihood estimation of a logistic re-
gression, and likewise when A is binary, one may ob-
tain Ê(A|G,C) by fitting a similar logistic regression,
and when A is continuous, an analogous linear regression
could be used instead. Identification results established in
previous Sections continue to apply by further condition-
ing on C.

4.2 Incorporating Multiple IVs

MR designs with multiple candidate genetic IVs may be
used to strengthen identification and improve efficiency.
Multiple candidate IVs can be incorporated by adopt-
ing a standard generalized method of moments approach.
Specifically, under models (3.3) and (3.4) with G now a
vector, we propose to obtain β̂a by solving:

(4.2) β̂a = arg min
βa

Pn

[
Û ′(βa)

]
WPn

[
Û (βa)

]
,

where

Û (βa) = {
h(G,C) − Ê

(
h(G,C)|C)}

× {
A − Ê(A|G,C)

}{Y − βaA}
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for a user-specified function h(G,C) of dimension K ≥ 1,
and W is user-specified weight matrix. In practice, it may
be convenient to set h(G,C) = G and W = IK×K the
K dimensional identity matrix. Let βa denote the cor-
responding estimator. A more efficient estimator β̂a can
then be obtained by solving (4.2) with weight Wopt =
Pn[Û(βa)Û(βa)

′]− where T − denotes the generalized
inverse of matrix T . Identification of GMM is guaran-
teed (at least locally) provided that the second deriva-
tive with respect to βa of the GMM objective func-
tion Pn[Û ′(βa)]WPn[Û (βa)] is nonsingular at the truth,
which is a generalization of condition (3.1). The asymp-
totic distribution of β̂a which solves (4.2) is described in
Appendix B.2.

4.3 Multiplicative Causal Effects

In this section, we consider making inferences about
the multiplicative causal effect of exposure A, under the
model

(4.3)
E(Y |A = a,G,U)

E(Y |A = 0,G,U)
= exp(βaa),

where for simplicity, we assume no baseline covariates,
binary A and scalar G. Therefore, If Y is binary, βaa en-
codes the conditional log risk ratio

log
{
Pr(Y = 1|A = a,G,U)/Pr(Y = 1|A = 0,G,U)

}
,

which is assumed to be independent of U and G, that
is, there is no multiplicative interaction between A and
(G,U). In order to state our identification result with an
invalid IV, consider the following assumption.

ASSUMPTION 4a†. Equations (4.3) and

E(Y |A = 0,G,U) = βg(U,G) + βu(U),

E(A|G,U) = αg(U,G) + αu(U)

hold.

LEMMA 4.1. Suppose that Assumptions 1, 2*, 4a†

and 4b* hold, then βa is the unique solution to equation:

0 = Umul(Y,A,G;βa)

≡ E
[{

G − E(G)
}{

A − E(A|G)
}
Y

× exp{−βaA}],
(4.4)

provided that ∂Umul(Y,A,G;βa)/∂βa �= 0 at the truth.

The results follows upon noting that E[Y exp{−βaA}|
A,G,U ] = E[Y |A = 0,G,U ]. The proof then proceeds
as in Lemma 3.2.

According to Lemma 4.1, a consistent estimator of βa

can be obtained by solving an empirical version of equa-
tion (4.4) in a similar manner as in previous Sections. The
unbiasedness property given by equation (4.4) continues
to hold for continuous A under the conditions given in
Lemma 4.1, and generalizations to allow for covariates

and multiple IVs can easily be deduced from previous
Sections.

Interestingly, equation (4.4) continues to hold under
case-control sampling with respect to the outcome Y ,
however note that E(G) and E(A|G) must be evaluated
wrt the underlying distribution for the target population
which will in general not match the corresponding distri-
butions in the case-control sample. To use the result in
practice, one would either need to obtain these quanti-
ties from an external source or one could alternatively ap-
proximate them with the corresponding data distribution
in the controls (i.e., units with Y = 0) provided the out-
come is sufficiently rare. In the event sampling fractions
for cases and controls are available, one could in prin-
ciple implement inverse-probability of sampling weights
to consistently estimate E(G) and E(A|G). Unbiased-
ness under case-control sampling follows from noting that
f (A,G,U |Y = 1) ∝ Pr(Y = 1|A,G,U)f (A,G,U), and
therefore

E
[{

G − E(G)
}{

A − E(A|G)
}

exp{−βaA}|Y = 1
]

∝ E
[{

G − E(G)
}{

A − E(A|G)
}

× exp{−βaA}E(Y |A,G,U)
]

= E
[{

G − E(G)
}{

A − E(A|G)
}

exp{−βaA}Y ]
= 0,

where the last equality follows from Lemma 4.1. The ap-
proach therefore extends that proposed by Bowden and
Vansteelandt (2011) who give a detailed study of IV in-
ferences using G-estimation under case-control sampling,
in order to account for potentially invalid IVs.

4.4 Multiplicative Exposure Model

A multiplicative exposure model may also be used for
count or binary exposure under the following assumption:

ASSUMPTION 4†.

(4.a†) There is no additive A − (U,G) interaction in
model for E(Y |A,G,U)

(4.5) E(Y |A = a,G,U) − E(Y |A = 0,G,U) = βaa

and no additive G − U interaction in model for E(Y |A,

G,U)

E(Y |A = 0,G = g,U) − E(Y |A = 0,G = 0,U)

= βg(g)
(4.6)

for an unknown function βg(·) that satisfies βg(0) = 0
(4.b†) There is no multiplicative G − U interaction in

model for E(A|G,U)

(4.7) log
E(A|G = g,U)

E(A|G = 0,U)
= αg(g)

for an unknown function αg(·) that satisfies αg(0) = 0.
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MR GENIUS can be adapted to this setting according
to the following result. Let

(4.8) log
E(A|G = g)

E(A|G = 0)
= �g(g),

and Ua = E(A|G = 0,U).

LEMMA 4.2. Suppose that Assumptions 1, 2 and 4†

hold, then

βa = E[{G − E(G)}{A exp(−�g(G)) − E(A exp(−�g(G)))}Y ]
E[{G − E(G)}{A exp(−�g(G)) − E(A exp(−�g(G)))}A]

provided that var(A|g)/var(A|g = 0) �= exp(�g(g)) for
at least one value of g.

The proof for Lemma 4.2 can be found in Appendix
A.3. A consistent estimator of βa is therefore obtained
as in the previous section, by substituting in consistent
estimators of unknown parameters and sample averages
for expectations. To ground ideas, suppose that �g(g) =
�T

g g for vector �g , then a consistent estimator �̂g of �g

is given by the solution to the estimating equation:

Pn

[
A exp

(−�̂ T
g G

)
(G − PnG)

] = 0.

Note that if A is a rare binary exposure then var(A|g)/

var(A|g = 0) ≈ exp(�g(g)) for all g, therefore violat-
ing the identification condition. In such instance, we
recommend using the additive model described in the
previous section. For count data, the result rules out
using a Poisson model for exposure, however other
models that accommodate over-dispersion such as the
negative binomial distribution may be used. Finally,
it is straightforward to verify that Lemma 4.2 con-
tinues to hold if Assumption 2 is dropped to allow
for unmeasured confounding of the effects of G pro-
vided that the conditional covariance between the resid-
ual (Ua/E(Ua|G) − 1) and Uy given G does not de-
pend on G. Note that in this latter case E(A|G = g) =
exp(�g(g)) = exp(αg(g))E(Ua|G = g).

4.5 Odds Ratio Exposure Model

We briefly consider how MR GENIUS might be applied
in a setting where Assumption 2 is replaced by the follow-
ing weaker conditional independence assumption:

ASSUMPTION 2††. IV conditional independence:
G ⊥⊥ U |A = 0.

A key implication of this assumption is that the causal
effect of G on Y , is now identified conditional on A, be-
cause the assumption implies no unmeasured confound-
ing of the effects of G on Y . Note however that G and
U are not marginally independent. Suppose one wishes
to encode the IV-exposure association on the odds ratio
scale, under the following homogeneity assumption:

ASSUMPTION 4††.

(4a††) Equations (4.3) and E(Y |A = 0,G,U) =
βg(G) + βu(U) hold.

(4b††) There is no odds ratio G − U interaction in
model for E(A|G,U)

logit Pr(A = 1|G = g,U) − logit Pr(A = 1|G = 0,U)

= χg(g)

for an unknown function χg(·) that satisfies χg(0) = 0.

We then have the following identification result for the
multiplicative causal effect βa of model (4.3)

LEMMA 4.3. Under Assumptions 1, 2†† and 4††, we
have that βa = θ , where θ is the unique solution to equa-
tion:

0 = E
[{

G − E(G|A = 0)
}{

A − E(A|G = 0)
}
Y

× exp
{−(

ϕg(G) + θ
)
A
}]

,

where

ϕg(g) = logit Pr(A = 1|G = g) − logit Pr(A = 1|G = 0),

provided that γag(g) �= 0 for some value of g, with:

γag(g) = E(Y |A = 1,G = g,u)

− E(Y |A = 1,G = 0, u)

− E(Y |A = 0,G = g,u)

+ E(Y |A = 0,G = 0, u) �= 0.

The proof for Lemma 4.3 can be found in Appendix
A.4. Assumption 2†† in fact implies that ϕg(·) = χg(·)
(Ma, Xie and Geng, 2006). Lemma 4.3 establishes that
under Assumptions 1, 2†† and 4††, the multiplicative
causal effect of A is identified, provided that γag(g) �= 0.
In the proof of the lemma we establish that under our as-
sumptions γag(g) = (exp(βa) − 1)βg(g), and therefore
the causal effect is not identified by the lemma if all
IVs satisfy the exclusion restriction assumption, such that
βg(g) = 0 for all g. Note that the latter assumption is
empirically testable because the direct effect of G on Y

is unconfounded. If βg(g) �= 0 for some g, a valid test
for the causal null hypothesis can be performed by test-
ing whether the estimating equation given in the Lemma
holds at θ = 0. An estimator of βa based on the lemma is
easily deduced from previous sections.

4.6 MR GENIUS for Censored Failure Time Under a
Multiplicative Survival Model

Censored time-to-event endpoints are common in MR
studies and IV methods to address such data are increas-
ingly of interest; recent contributions to this literature
include Nie, Cheng and Small (2011), Tchetgen Tchet-
gen et al. (2015), Li, Fine and Brookhart (2015) and
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Martinussen et al. (2017). While these methods have been
shown to produce a consistent causal effect estimator en-
coded either on the scale of survival probabilities, or as
a hazards ratio or hazards difference, leveraging a valid
IV which satisfies Assumptions 1–3, they are not robust
to violation of any of these assumptions. In this section,
we briefly extend MR GENIUS to survival analysis un-
der an additive hazards model. Thus, suppose now that Y

is a time-to-event outcome which satisfies the following
additive hazards model

(4.9)
h(y|A,U,G) = β0(y) + βa(y)A + βg(y)G

+ βu(y,U),

where h(y|A,U,G) is the hazard function of Y evalu-
ated at y, conditional on A, U and G, and the functions
(β0(·), βa(·), βg(·), βu(·, ·)) are unrestricted. The model
states that conditional on U , the effect of A on Y encoded
on the additive hazards scale is linear in A for each y, al-
though, the effect size βa(y) may vary with y. The model
is quite flexible in the unobserved confounder associa-
tion with the outcome βu(·, ·), which is allowed to remain
unrestricted at each time point y and across time points.
This is the model considered by Tchetgen Tchetgen et al.
(2015) who further assumed that βg(y) = 0 for all y by
the exclusion restriction Assumption 3. Here we do not
make this assumption. As usually the case in survival
analysis, Y is subject to right-censoring due to drop-out,
and therefore instead of observing Y for all subjects, one
observes Y ∗ = min(Y,X) and � = I (min(Y,X) = Y),
where X is an independent censoring time (i.e., indepen-
dent of Y,A,G,U). Let R(y) = I (Y ∗ ≥ y) denote the
at-risk process and N(y) = I (Y ∗ ≤ y,� = 1) the count-
ing process associated with failure time. As discussed
in Martinussen et al. (2017), the additive hazards model
(4.9) is particularly attractive because it implies a multi-
plicative survival model for the joint causal effect of A

and G on Y :
Pr(Y > y|A = a,G = g,U)

Pr(Y > y|A = 0,G = 0,U)

= exp
{−Ba(y)a − Bg(y)g

}
,

where Ba(y) = ∫ y
0 βa(v) dv, Bg(y) = ∫ y

0 βg(v) dv. Our
objective is therefore to identify and estimate Ba(y). We
have the following result which extends the result of
Martinussen et al. (2017) in order to accommodate pos-
sible violation of the exclusion restriction assumption:

LEMMA 4.4. Under Assumptions 1, 2 and equations
(4.9) and (2.4), we have that for each y

(4.10) 0 = E
{
W

(
y,Ba(y),Bg(y)

)}
,

where

W
(
y,Ba(y),Bg(y)

)
= [

dN(y) − dBa(y)A − dBg(y)G
]

× exp
{
Ba(y)A + Bg(y)G

}
R(y)h(G,A),

h(G,A) =
( (

G − E(G)
)(

G − E(G)
)(

A − E(A|G)
)) .

The proof for Lemma 4.4 is given in Appendix A.5. As
in Martinussen et al. (2017), the unbiasedness of equation
W(y,Ba(y),Bg(y)) suggests a way of estimating the in-
crements (dBa(y), dBg(y)) by solving an empirical ver-
sion of equation (4.10) for each y with population expec-
tations replaced by sample analogs, giving the following
recursive estimator(

B̂a(y), B̂g(y)
)

=
∫ y

0
Pn

[
ĥ(A,G)′ exp

{
B̂a

(
s−)A

+ B̂g

(
s−)G}

dN(s)
]
M̂

−1(s),

where B̂a(s
−) is the value of B̂a right prior to s, and like-

wise for B̂g(s
−), and

ĥ(A,G) =
( (

G − Ê(G)
)(

G − Ê(G)
)(

A − Ê(A|G)
)) ,

M̂(s) = Pn

[(
A

G

)
ĥ(A,G)′R(s)

× exp
{
B̂a

(
s−)A + B̂g

(
s−)G}]

.

Because of its recursive structure, this estimator can be
solved forward in time starting with (dBa(0), dBg(0)) =
(0,0). The resulting estimator is a counting process in-
tegral, therefore only changing values at observed event
time. The estimator is only defined provided M̂(y) is in-
vertible at each such jump time, which is essentially a
necessary condition for identification. The large sample
behavior of the resulting estimator follows from results
derived in Martinussen et al. (2017) and is therefore omit-
ted. Note that the result relies on Assumption 2 therefore
ruling out confounding of the effect of the IV on the out-
come.

4.7 More Efficient MR GENIUS

Similar to standard g-estimation, MR GENIUS can be
made more efficient by incorporating information about
the association between G and Y . This can be achieved
by the following steps:

1. Obtain the MR GENIUS estimator β̂a either on the
additive or multiplicative scale.

2. Define a treatment-free outcome Ŷ0(β̂a) = Y− β̂aA

or Ŷ0(β̂a) = Y exp{−β̂aA}.
3. Regress Ŷ0(β̂a) on G using a generalized linear

model with appropriate link function, and define μ̂(G) a
person’s corresponding fitted (predicted) value.
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4. Define β̂
opt
a as the solution to

0 = Pn

[{
G − Pn(G)

}{
A − Ê(A|G)

}{
Ŷ0

(
β̂opt

a

)− μ̂(G)
}]

with Ŷ0(β̂
opt
a ) = Y − β̂

opt
a A or Ŷ0(β̂

opt
a ) = Y exp{−β̂

opt
a A}.

If all regression models are correctly specified (includ-
ing the glm for E(Y0(βa)|G) required in Step 3 of the
above procedure), a standard argument of semiparamet-
ric theory implies that the asymptotic variance of β̂

opt
a

is guaranteed to be no larger than that of β̂a (Robins,
1997). Interestingly, MR GENIUS and its more efficient
version coincide (up to asymptotic equivalence) when-
ever nonparametric methods are used to estimate all nui-
sance parameters, that is, to estimate E(G), E(A|G)

and μ(G) = E(Y − βaA|G). For instance, in the case
of binary G, such that regression models E(A|G) and
μ(G) = E(Y − βaA|G) are saturated, the two estimators
are exactly equal and yield identical inferences. Both ap-
proaches also coincide if all IVs are valid, however the
above modification will tend to be more efficient with in-
creasing number of invalid IVs. Note that μ(G) does not
necessarily have a causal interpretation as the effect of G

on Y may be confounded by U . Also note that misspeci-
fication of a model for μ(G) does not affect consistency
and asymptotic normality of the MR GENIUS estimator
of βa provided that as we have assumed throughout, the
model for E(A|G) is correct.

In the case of multiplicative outcome model, it is
straightforward to extend the robustness properties of
the efficient MR GENIUS estimator described above
under an assumption of no multiplicative interaction
(rather than no additive interaction) between G and U .
This would simply entail replacing {Ŷ0(β̂

opt
a ) − μ̂(G)}

in Step 4 with {Ŷ0(β̂
opt
a )μ̂(0; β̂opt

a )/μ̂(G; β̂opt
a )}, where

μ̂(G; β̂opt
a ) is the regression of Y exp{−β̂

opt
a A} on G

under an appropriate GLM and solving the estimating
equation in Step 4 for β̂

opt
a . One can show using the

same method of proof used throughout, that the result-
ing estimator is consistent for the causal effect of inter-
est under violation of both Assumptions 2 and 3, un-
der an assumption analogous to Assumption 2*. Note
however that μ̂(g)/μ̂(0) would now need to be consis-
tent for E(Y |A = 0,G = g)/E(Y |A = 0,G = 0). It is
likewise possible to modify the above procedure to ac-
commodate a multiplicative exposure model by substi-
tuting in {A exp(−�̂g(G)) − Pn(A exp(−�̂g(G)))} for
{A − Ê(A|G)} in Step 4.

5. SIMULATION STUDY

5.1 Single IV

We investigate the finite-sample properties of MR GE-
NIUS proposed above and compare them with existing
estimators under a variety of settings. For a single binary

IV G, we generate independent and identically distributed
(Gi,Ui,Ai, Yi), i = 1,2, . . . , n as follows:

Gi ∼ Bernoulli(p = 0.5),

Yi ∼ N
(
αGi + βAi + Ui,12),

where for binary exposure A,

εi ∼ truncated N
(
a = 0.2, b = 0.5,μ = 0.35, σ 2 = 12),

Ui = φbGi + εi,

Ai ∼ Bernoulli
(
pi = exp (γbGi)

1 + exp (γbGi)

+ Ui − E(Ui |Gi)

)
,

where εi is appropriately bounded to ensure that p falls in
the unit interval, and for continuous A,

Ui = φcGi + N
(
0,12),

Ai ∼ N
(
γcGi + Ui, |λ0 + λ1Gi |2).

The data generating mechanism satisfies Assumptions 2*
and 4*. We set γb = −0.5 or −1 (binary A), and γc = −1,
λ0 = 1, λ1 = 1 or 5 (continuous A) which satisfy both
Assumption 1 and condition (5). Assumptions 2 and 3 are
violated when we set φb = −0.2, φc = −2 and α = −0.5,
respectively. The causal parameter is set equal to β = 0.5
throughout this simulation. The IV strength is tuned by
varying the values of γb and λ1, for binary and continuous
A, respectively.

MR GENIUS is implemented as given in (3.2), with
Ê(A|G) estimated with linear or logistic regression when
A is continuous or binary, respectively. In this single-IV
setting, we also implement the two-stage least squares
(TSLS) estimator, which is the most common approach
used in practice. The simulation results based on 1000
replicates at sample sizes n = 500 and n = 1000 are sum-
marized in Tables 1 and 2, for continuous and binary
exposure, respectively. When Assumptions 2 and 3 both
hold, TSLS and MR GENIUS have small bias regardless
of sample size. When the IV is invalid, TSLS is biased
while in accordance with theory MR GENIUS continues
to have small bias.

5.2 Multiple IVs

Here we generate i.i.d. Li = (Gi,Ui,Ai, Yi), i =
1,2, . . . , n, with pG = 10 IVs from:

Gij ∼ Bernoulli(p = 0.5), j = 1,2, . . . , pG,

Yi ∼ N
(
αT Gi + βAi + Ui,12),

where Gi = (Gi1,Gi2, . . . ,GipG
)T . For binary exposure,

εi ∼ Truncated N
(
a = 0.2, b = 0.5,μ = 0.35, σ 2 = 12),

Ui = φb
T Gi + εi,
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TABLE 1
Monte Carlo results of MR GENIUS and TSLS estimation of β0 = 0.5

with continuous exposure and single IV at two different strengths
(λ1 = 1,5). The first and second rows’ results for each estimator

correspond to sample sizes n = 500,1000, respectively

|λ1| = 1 |λ1| = 5

TTT† TTF TFF TTT TTF TFF

Median absolute value of bias
MR GENIUS 0.001 0.001 0.001 0.001 0.001 0.001

0.001 0.001 0.001 0.000 0.000 0.000
TSLS 0.001 0.501 0.835 0.000 0.507 0.837

0.002 0.499 0.834 0.002 0.498 0.832

Monte Carlo standard error‡

MR GENIUS 0.084 0.084 0.084 0.017 0.017 0.017
0.060 0.060 0.060 0.011 0.011 0.011

TSLS 0.122 0.133 0.052 0.126 0.248 0.114
0.093 0.085 0.036 0.094 0.152 0.080

Monte Carlo standard error/median estimated standard error
MR GENIUS 1.003 1.003 1.003 1.037 1.037 1.037

1.008 1.008 1.008 0.990 0.990 0.990
TSLS 0.951 1.068 1.058 0.925 1.121 1.019

1.042 0.984 1.021 1.042 1.009 1.027

Coverage proportion∗
MR GENIUS 0.953 0.953 0.953 0.948 0.948 0.948

0.948 0.948 0.948 0.952 0.952 0.952
TSLS 0.953 0.027 0.000 0.990 0.369 0.000

0.959 0.010 0.000 0.977 0.058 0.000

†TTT: IV Assumptions 1–3 hold; TTF: IV Assumption 3 does not
hold; TFF: both IV Assumptions 2 and 3 do not hold.
‡Robust normal-consistent estimate obtained from dividing the in-
terquartile range of causal effect estimates by 1.349.
∗Nominal level = 95%.

Ai ∼ Bernoulli
(
pi = exp (γb

T Gi)

1 + exp (γb
T Gi)

+ [
Ui − E(U |Gi)

])
,

where εi is appropriately bounded to ensure that pi falls
in the unit interval, and for continuous exposure,

Ui = φc
T Gi + N

(
0,12),

Ai ∼ N
(
γc

T Gi + Ui,
∣∣λ0 + λT

1 Gi

∣∣2).
For binary exposure, γb ∼ Uniform(−0.15,−0.05) so
that IV strength is variable, while in the continuous
exposure case γc ∼ Uniform(−3,−2) and (λ0, λ1) is
set to (1,0.5). We first generate an ideal scenario in
which all 10 IVs are valid and satisfy Assumptions
1–3, next we consider scenarios where the first three,
six or all of the IVs are invalid. With three invalid
IVs, αT = −0.5 · (1,1,1,0, . . . ,0) and φT

c = −0.25 ·
(1,1,1,0, . . . ,0), φT

b = −0.05 · (1,1,1,0, . . . ,0) when
Assumption 3 or 2 is violated, respectively; with six
invalid IVs, αT = −0.25(1,1,2,2,4,4,0, . . . ,0) and

TABLE 2
Monte Carlo results of MR GENIUS and TSLS estimation of β0 = 0.5

with binary exposure and single IV at two different strengths
(γb = −0.5,−1). The first and second rows’ results for each

estimator correspond to sample sizes n = 500,1000 respectively

|γb| = 0.5 |γb| = 1

TTT† TTF TFF TTT TTF TFF

Median absolute value of bias
MR GENIUS 0.006 0.006 0.009 0.030 0.030 0.014

0.009 0.009 0.002 0.008 0.008 0.002
TSLS 0.002 4.050 2.162 0.001 2.171 1.613

0.021 4.074 2.176 0.013 2.178 1.614

Monte Carlo standard error‡

MR GENIUS 0.540 0.540 0.316 0.349 0.349 0.341
0.389 0.389 0.224 0.245 0.245 0.238

TSLS 0.786 1.372 0.369 0.408 0.519 0.273
0.550 1.065 0.278 0.293 0.374 0.182

Monte Carlo standard error/median estimated standard error
MR GENIUS 1.002 1.002 0.970 0.968 0.968 1.003

1.054 1.054 0.984 0.971 0.971 1.000
TSLS 1.024 0.984 0.981 1.034 0.986 1.097

1.045 1.097 1.044 1.059 1.011 1.022

Coverage proportion∗
MR GENIUS 0.987 0.987 0.960 0.952 0.952 0.958

0.969 0.969 0.964 0.959 0.959 0.949
TSLS 0.986 0.097 0.000 0.952 0.000 0.000

0.964 0.003 0.000 0.946 0.000 0.000

Note: See the footnote of Table 1.

φT
c = −0.25 · (0.5,0.5,1,1,2,2,0, . . . ,0), φT

b = −0.01 ·
(1,1,3,3,5,5,0, . . . ,0) accordingly. When all IVs are
invalid, α ∼ Uniform(−2,−0.5), φc ∼ Uniform(−2,

−0.5) and φb ∼ Uniform(−0.02,−0.01). The setting
with three invalid IVs investigates the condition in which
fewer than 50% of the IVs are invalid (Kang et al., 2016,
Windmeijer et al., 2019); in the setting with six invalid
IVs this condition is violated, but the set of valid IVs
form the largest group according to the plurality rule (Guo
et al., 2018).

MR GENIUS is implemented as the solution to (4.2)
with optimal weight; a more efficient version of MR GE-
NIUS as described in Section 4.7 is also implemented.
MR-Egger, TSLS and sisVIVE are implemented using
the R packages MendelianRandomization, AER
and sisVIVE (Yavorska and Staley, 2019, Kleiber and
Zeileis, 2008, Kang, 2017) respectively, under default set-
tings. The adaptive Lasso and TSHT estimation methods
are implemented as described in Windmeijer et al. (2019)
and Guo et al. (2018), respectively. We also implement
post-adaptive Lasso which uses adaptive Lasso for the
purpose of selecting valid IVs but not in the process of
estimating the causal effect. We also implement the ora-
cle TSLS which assumes the set of valid IVs to be known
a priori.
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TABLE 3
Simulation results for estimation of β0 = 0.5 with continuous exposure and pG = 10 IVs. The two rows of results for each estimator correspond to

sample sizes of n = 1000 and n = 2000 respectively

TTF† TFF TTF TFF

#invalid IV 0 3 6 10 3 6 10 0 3 6 10 3 6 10

Median absolute value of bias Monte Carlo standard error‡

MR GENIUS 0.006 0.010 0.017 0.046 0.016 0.032 0.115 0.033 0.034 0.037 0.056 0.036 0.046 0.083
0.001 0.003 0.007 0.022 0.006 0.015 0.063 0.023 0.024 0.025 0.043 0.026 0.034 0.072

Efficient MR GENIUS 0.006 0.006 0.008 0.013 0.008 0.011 0.030 0.035 0.035 0.034 0.032 0.035 0.036 0.040
0.002 0.002 0.003 0.006 0.003 0.004 0.014 0.023 0.024 0.024 0.024 0.024 0.024 0.026

TSLS 0.000 0.057 0.133 0.476 0.121 0.264 0.656 0.011 0.012 0.012 0.055 0.013 0.015 0.041
0.001 0.057 0.133 0.480 0.121 0.264 0.652 0.008 0.008 0.009 0.057 0.009 0.010 0.038

Oracle TSLS – 0.000 0.000 – 0.000 0.000 – – 0.013 0.019 – 0.013 0.019 –
– 0.001 0.000 – 0.001 0.000 – – 0.010 0.012 – 0.010 0.012 –

sisVIVE 0.001 0.030 0.106 0.476 0.035 0.223 0.654 0.011 0.014 0.021 0.082 0.013 0.027 0.052
0.001 0.022 0.109 0.475 0.025 0.215 0.652 0.008 0.010 0.019 0.089 0.010 0.021 0.051

ALasso 0.001 0.024 0.094 0.477 0.026 0.207 0.655 0.011 0.014 0.029 0.093 0.013 0.042 0.059
0.001 0.017 0.103 0.480 0.018 0.199 0.653 0.008 0.010 0.032 0.098 0.010 0.026 0.057

post-ALasso 0.001 0.003 0.101 0.478 0.001 0.203 0.654 0.011 0.016 0.049 0.104 0.013 0.048 0.067
0.001 0.001 0.111 0.480 0.001 0.196 0.653 0.008 0.010 0.037 0.105 0.010 0.022 0.066

TSHT 0.001 0.009 0.062 0.477 0.000 0.107 0.653 0.011 0.023 0.031 0.107 0.013 0.071 0.068
0.001 0.001 0.060 0.491 0.001 0.042 0.662 0.008 0.010 0.028 0.124 0.010 0.070 0.071

MR-Egger 0.017 0.008 0.017 0.113 0.406 0.822 0.545 0.063 0.139 0.206 0.338 0.196 0.213 0.250
0.009 0.025 0.022 0.085 0.463 0.927 0.543 0.046 0.116 0.174 0.364 0.148 0.179 0.288

Monte Carlo SE/median estimated SE Coverage proportion∗
MR GENIUS 1.005 1.017 1.014 0.922 0.978 0.970 0.858 0.959 0.947 0.924 0.858 0.924 0.869 0.733

0.997 0.992 0.955 0.952 0.967 0.962 0.940 0.962 0.963 0.946 0.901 0.951 0.917 0.822
Efficient MR GENIUS 1.066 1.070 1.058 0.973 1.076 1.105 1.163 0.942 0.938 0.934 0.918 0.932 0.920 0.811

1.023 1.041 1.030 1.035 1.050 1.037 1.109 0.957 0.957 0.954 0.941 0.952 0.945 0.863
TSLS 1.018 1.054 1.069 3.230 1.143 1.195 2.877 0.942 0.000 0.000 0.000 0.000 0.000 0.000

1.018 1.060 1.037 4.717 1.084 1.075 3.749 0.954 0.000 0.000 0.000 0.000 0.000 0.000
Oracle TSLS – 0.998 1.090 – 0.998 1.090 – – 0.940 0.948 – 0.940 0.948 –

– 1.048 1.000 – 1.048 1.000 – – 0.950 0.946 – 0.950 0.946 –
post-ALasso 1.025 1.213 2.871 4.583 1.026 2.179 3.678 0.938 0.898 0.051 0.000 0.935 0.000 0.000

1.026 1.083 2.578 5.734 1.068 1.219 4.592 0.951 0.943 0.008 0.000 0.950 0.000 0.000
TSHT 1.015 1.835 2.125 5.592 0.984 2.687 4.420 0.944 0.717 0.159 0.000 0.940 0.294 0.000

1.016 1.060 1.665 6.962 1.059 6.053 5.237 0.956 0.945 0.126 0.000 0.949 0.382 0.000
MR-Egger 0.456 0.758 0.718 1.113 0.678 0.622 0.956 1.000 0.985 0.981 0.887 0.758 0.283 0.473

0.424 0.580 0.543 1.083 0.470 0.501 1.039 1.000 1.000 0.999 0.889 0.787 0.159 0.505

†For the invalid IVs, TTF: IV Assumption 3 does not hold; TFF: both IV Assumptions 2 and 3 do not hold.
‡Robust normal-consistent estimate obtained from dividing the interquartile range of causal effect estimates by 1.349.
∗Nominal level = 95%.

Simulation results based on 1000 replications for sam-
ple sizes of n = 1000 and 2000 with continuous expo-
sure are presented in Table 3. When there are zero or
three invalid IVs (majority rule holds), the sisVIVE, adap-
tive, post-adaptive Lasso and TSHT estimators exhibit
small bias which becomes negligible at sample size of
n = 2000. Adaptive Lasso and TSHT on average correctly
identifies invalid IVs, while sisVIVE on average selects
four IVs as invalid when there are three in truth (see Ta-
ble 4 for results on IV selection). The naive TSLS estima-
tor performs well in terms of bias only when all IVs are
valid; as expected, it is biased in all other settings with at
least one invalid IV. Post-adaptive Lasso is generally less

biased in finite sample than adaptive Lasso. Post-adaptive
Lasso and oracle TSLS perform similarly in terms of bias
and efficiency when the majority rule holds, in agreement
with theory since they are asymptotically equivalent un-
der these settings (Windmeijer et al., 2019). MR GENIUS
also has small bias at all sample sizes and its bias becomes
negligible at n = 2000. When six IVs are invalid and
the majority rule is violated, sisVIVE and adaptive/post-
adaptive Lasso are significantly biased, with no improve-
ment as sample size increases. On average, sisVIVE and
adaptive Lasso select 7 to 8 IVs as invalid when only six
are actually invalid, and fails to select all the IVs as invalid
when all in fact are. TSHT is also biased when all IVs are
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TABLE 4
Average number of IVs selected as invalid by adaptive Lasso and sisVIVE, and average number of IVs selected as relevant (Ŝ) and relevant but

invalid (Î ) by TSHT. The two rows of results for each estimator correspond to sample sizes of n = 1000 and n = 2000 respectively

TTF† TFF TTF† TFF

#invalid IV 0 3 6 10 3 6 10 0 3 6 10 3 6 10

Continuous exposure Binary exposure
ALasso 0.0 3.1 5.5 4.8 3.0 7.3 4.4 0.1 3.2 5.0 1.0 3.1 5.1 0.9

0.0 3.0 6.8 5.9 3.0 7.8 5.5 0.1 3.1 5.0 1.0 3.1 5.1 0.9
sisVIVE 0.0 3.8 7.1 6.2 4.2 7.9 5.6 0.0 3.8 5.0 1.1 3.8 5.0 1.1

0.0 3.9 7.8 7.3 4.2 8.3 6.8 0.0 3.7 5.1 1.3 3.7 5.2 1.4
TSHT (Î ) 0.0 2.4 4.5 3.4 3.0 6.8 2.7 0.0 0.7 0.4 0.0 0.7 0.5 0.1

0.0 3.0 7.1 5.7 3.0 5.6 5.1 0.0 0.6 0.5 0.1 0.6 0.5 0.1
TSHT (Ŝ) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 4.7 4.7 4.7 4.7 4.7 4.7 4.5

10.0 10.0 10.0 10.0 10.0 10.0 10.0 3.2 3.2 3.2 3.2 3.2 3.2 3.4

†For the invalid IVs, TTF: IV Assumption 3 does not hold; TFF: both IV Assumptions 2 and 3 do not hold.

invalid (with about 5 of the IVs selected as invalid on av-
erage in this case); however when six IVs are invalid, the
plurality rule holds and its bias diminishes at n = 2000.
The efficiency of all estimators generally decreases with
increasing number of invalid IVs.

The bias of MR GENIUS improves with increasing
sample size when six or all IVs are invalid. The efficient
MR GENIUS is generally less biased and more efficient
compared to MR GENIUS, especially when more IVs are
invalid. MR-Egger shows little bias when any or all of the
IVs are invalid, provided only Assumption 3 (exclusion
restriction) is violated, in agreement with theory. How-
ever, MR-Egger is generally more biased when the in-
valid IVs violate both Assumptions 2 and 3, which corre-
sponds to a violation of the InSIDE assumption (Bowden,
Davey Smith and Burgess, 2015).

Simulation results with a binary exposure are reported
in Table 5; the conclusions are mostly qualitatively simi-
lar to those in the continuous exposure setting. However,
when there are six invalid IVs, TSHT is biased with no
improvement as sample size increases. While the expo-
sure is generated under a logit model (upon marginaliz-
ing over U ), TSHT assumes a linear model which is mis-
specified in this simulation study. In addition, because the
exposure is binary, most if not all IVs are weakly asso-
ciated with A on the additive scale. Weak IVs may not
be selected as valid IVs in the first thresholding step of
TSHT (the number of IVs selected as relevant is 3.2 on
average at n = 2000); even if they are included, their in-
clusion may lead to incorrect inference in the subsequent
estimation step (the number of IVs selected as relevant
but invalid is close to 0.5 on average at sample size of
n = 2000, when in fact 6 are invalid). MR-Egger also ap-
pears to exhibit more bias, since the exposure model is
misspecified as the linear probability model. Additional
simulation results under the null (β0 = 0) are reported in
the Supplementary material (Tchetgen Tchetgen, Sun and
Walter, 2021).

6. DATA APPLICATION

The prevalence of type 2 diabetes mellitus is increas-
ing across all age groups in the United States possibly as
a consequence of the obesity epidemic. Many epidemio-
logical studies have suggested that individuals with type 2
diabetes mellitus (T2D) are at higher risk of various mem-
ory impairments which are highly associated with demen-
tia and Alzheimer’s Disease. However, such observational
studies are well known to be vulnerable to confounding
bias. Therefore, obtaining an unbiased estimate of the as-
sociation between diabetes status and cognitive function-
ing is key to predicting the future health burden in the
population and to evaluating the effectiveness of possible
public health interventions.

In order to illustrate the proposed MR approach, we
used data from the Health and Retirement Study, a co-
hort initiated in 1992 with repeated assessments every
2 years. We used externally validated genetic predictors
of type 2 diabetes as IVs to estimate effects on mem-
ory functioning among HRS participants. The Health and
Retirement Study is a well-documented nationally repre-
sentative sample of persons aged 50 years or older and
their spouses (Juster and Suzman, 1995). Genotype data
were collected on a subset of respondents in 2006 and
2008. Genotyping was completed on the Illumina Omni-
2.5 chip platform and imputed using the 1000G phase
1 reference panel and filed with the Database for Geno-
types and Phenotypes (dbGaP, study accession number:
phs000428.v1.p1) in April 2012. Exact information on
the process performed for quality control is available via
Health and Retirement Study and dbGaP21 (Mailman
et al., 2007). From the 12,123 participants for whom
genotype data was available, we restricted the sample to
7738 non-hispanic white persons with valid self-reported
diabetes status at baseline and memory assessment score
two years later. Self-reported diabetes in the Health and



456 E. TCHETGEN TCHETGEN, B. SUN AND S. WALTER

TABLE 5
Simulation results for estimation of β0 = 0.5 with binary exposure and pG = 10 IVs. The two rows of results for each estimator correspond to

sample sizes of n = 1000 and n = 2000 respectively

TTF† TFF TTF TFF

#invalid IV 0 3 6 10 3 6 10 0 3 6 10 3 6 10

Median absolute value of bias Monte Carlo standard error‡

MR GENIUS 0.068 0.075 0.233 0.631 0.076 0.250 0.689 0.910 0.996 1.238 2.231 1.012 1.258 2.207
0.000 0.084 0.205 0.661 0.089 0.211 0.658 0.847 0.933 1.135 2.218 0.945 1.167 2.102

Efficient MR GENIUS 0.020 0.034 0.053 0.119 0.037 0.054 0.086 0.897 0.912 0.930 1.013 0.914 0.931 0.992
0.021 0.010 0.0001 0.069 0.010 0.005 0.037 0.824 0.823 0.821 0.860 0.823 0.823 0.811

TSLS 0.041 1.704 5.880 20.241 1.866 6.199 20.381 0.513 1.822 2.939 7.351 1.979 3.093 7.242
0.015 2.306 8.317 28.526 2.530 8.73 28.220 0.437 1.640 2.786 7.525 1.832 2.948 7.607

Oracle TSLS – 0.051 0.089 – 0.051 0.089 – – 0.593 0.831 – 0.593 0.831 –
– 0.031 0.038 – 0.031 0.038 – – 0.509 0.657 – 0.509 0.657 –

sisVIVE 0.041 0.533 3.802 20.122 0.523 3.932 20.256 0.509 0.775 3.438 7.309 0.773 3.651 7.283
0.015 0.452 5.700 28.215 0.450 5.950 28.080 0.437 0.590 4.129 7.764 0.590 4.381 7.932

ALasso 0.041 0.368 2.041 20.086 0.364 2.039 20.289 0.510 0.617 2.939 7.354 0.597 3.129 7.173
0.016 0.308 3.457 28.269 0.304 3.588 27.999 0.425 0.461 4.081 7.483 0.455 4.344 7.853

post-ALasso 0.041 0.098 1.600 20.019 0.092 1.575 19.952 0.501 0.617 2.676 7.501 0.603 2.819 7.119
0.015 0.020 2.786 28.154 0.022 2.776 27.715 0.428 0.504 3.772 7.567 0.503 3.913 8.055

TSHT 0.026 0.270 3.681 17.799 0.245 3.759 17.496 0.646 1.462 5.575 8.885 1.348 5.931 7.962
0.004 0.065 3.352 22.412 0.058 3.565 22.045 0.558 0.699 7.210 9.625 0.702 7.570 9.443

MR-Egger 0.012 1.213 4.805 15.051 1.341 5.061 16.086 0.929 4.382 7.644 15.343 4.803 8.080 16.189
0.040 0.316 5.695 16.037 0.349 6.008 16.059 0.821 5.065 9.235 16.762 5.611 9.722 19.136

Monte Carlo SE/median estimated SE Coverage proportion∗
MR GENIUS 0.860 0.863 0.914 0.851 0.862 0.912 0.845 0.990 0.990 0.982 0.977 0.990 0.983 0.982

0.950 0.965 0.967 0.975 0.964 0.973 0.933 0.980 0.977 0.976 0.965 0.977 0.975 0.967
Efficient MR GENIUS 0.846 0.858 0.878 0.919 0.860 0.879 0.913 0.993 0.992 0.993 0.993 0.992 0.993 0.992

0.923 0.921 0.919 0.949 0.920 0.921 0.913 0.981 0.981 0.980 0.980 0.981 0.980 0.974
TSLS 0.961 2.499 1.940 1.494 2.598 1.954 1.511 0.983 0.353 0.083 0.019 0.330 0.082 0.022

0.970 2.434 1.573 1.250 2.562 1.586 1.299 0.974 0.201 0.013 0.000 0.183 0.012 0.002
Oracle TSLS – 0.956 0.928 – 0.956 0.928 – – 0.985 0.995 – 0.985 0.995 –

– 0.998 0.924 – 0.998 0.924 – – 0.976 0.988 – 0.976 0.988 –
post-ALasso 0.937 0.978 2.366 1.512 0.959 2.469 1.465 0.985 0.976 0.632 0.018 0.979 0.631 0.023

0.948 0.987 3.203 1.255 0.985 3.263 1.373 0.976 0.970 0.485 0.004 0.971 0.491 0.004
TSHT 0.942 1.751 4.088 1.561 1.619 4.230 1.372 0.990 0.728 0.382 0.013 0.734 0.370 0.012

0.908 1.037 6.211 1.511 1.040 6.219 1.506 0.985 0.883 0.446 0.000 0.885 0.446 0.002
MR-Egger 0.886 1.044 1.034 0.947 1.042 1.039 1.005 0.977 0.919 0.872 0.846 0.920 0.871 0.829

0.891 0.998 1.076 0.998 1.004 1.078 1.138 0.960 0.927 0.866 0.833 0.923 0.866 0.836

Note: See the footnote of Table 3.

Retirement Study has been shown to have 87% sensi-
tivity and 97% specificity for Hemoglobin A1c defined
diabetes among non-Hispanic white HRS participants
(White et al., 2014). Memory was assessed by immedi-
ate and delayed recall of a 10-word list plus the proxy
assessments for severely impaired individuals. The va-
lidity and reliability of these measures have been doc-
umented elsewhere (Ofstedal, Fisher and Herzog, 2005,
Wu et al., 2012).

Standard MR relies on the assumption that all 39 SNPs
affect a person’s memory score at follow-up only through
baseline diabetes status which is unlikely, even if all 39
SNPs only affect memory through diabetes. This is be-
cause there is likely to be a nonnegligible direct effect
from one of the SNPs to diabetes incidence among per-

sons who are diabetes-free at baseline. This would consti-
tute a violation of the exclusion restriction and therefore
would invalidate a standard MR analysis for assessing
effects of baseline diabetes on memory score at follow-
up. Nonetheless, although possibly positively biased un-
der the alternative hypothesis, the two-stage regression
estimator could still be interpreted as a valid test of the
null hypothesis of no association between diabetes disease
(whether baseline or time-updated) and memory score. It
may also be true that unknown pleiotropic effects of at
least one of the SNPs exists through a pathway not involv-
ing diabetes, which would constitute an even more serious
violation, as it would also invalidate our MR analysis as
a valid test of a causal association between diabetes and
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memory functioning. In light of these possible limitations,
a more robust MR analysis is naturally of interest.

We used GENIUS to estimate the relationship between
diabetes status (coded 1 for diabetic and 0 otherwise)
and memory score. As genetic instruments, we used 39
independent single nucleotide polymorphisms previously
established to be significantly associated with diabetes
(Morris et al., 2012).

We first performed an observational analysis, which en-
tailed fitting a linear model with memory score as out-
come, diabetes status as exposure, adjusting for age at
cognitive assessment and sex. Next, we implemented an
MR analysis of the effects of diabetes status on cogni-
tive score incorporating all 39 SNPs as candidate IV using
TSLS, sisVIVE, adaptive LASSO, TSHT, MR Egger, and
the proposed GENIUS approaches.

Participants were, on average, 68.1 years old (standard
deviation [SD] = 10.1 years old) at baseline and 1282 of
them self-reported that they had diabetes (16.7%). The 39
SNPs jointly included in a first-stage logistic regression
model to predict diabetes status explained 3.5% (Nagelk-
erke R2) of the variation in diabetes in the study sample.
The estimated coefficients from first-stage logistic regres-
sion of type 2 diabetes status on the 39 SNPs, as well
as memory score-SNP linear regression coefficient esti-
mates, are displayed as a scatter plot in Figure 2.

Table 6 shows results from both observational and IV
analyses. In the observational analysis, being diabetic was
associated with an average decrease of 0.04 points (s.e. =
0.02) in memory score. MR GENIUS suggests a notably
larger diabetes-associated decrease in average memory
score equal to 0.18 points (s.e. = 0.14). The efficient
MR GENIUS produced a similar decrease of 0.16 points
(s.e. = 0.14). MR-Egger produced an estimate suggest-
ing a protective effect of diabetes (beta = 0.25, s.e. =
0.35) and so did TSLS (beta = 0.48, s.e. = 0.22), sisVIVE
(beta = 0.48) and adaptive lasso (beta = 0.48, s.e. = 0.22)
which gave the same point estimate, while TSHT (beta =

FIG. 2. Scatter plot of memory score-SNP (MS-SNP) joint linear
regression coefficient estimates versus type 2 diabetes status-SNP
(T2D-SNP) joint logistic regression coefficient estimates for the 39
SNPs.

0.45, s.e. = 0.28) gave a slightly smaller but still pro-
tective estimate. TSLS, sisVIVE and adaptive lasso in-
ferences coincide exactly in this application because all
39 candidate SNPs ended up being selected as “valid” by
sisVIVE and adaptive lasso. In contrast, TSHT selected
six candidate IVs only as both valid and relevant which
were therefore used to estimate the causal effect. In con-
clusion, both the observational analysis and MR GENIUS
found some evidence of a harmful effect of diabetes on
memory score, which supports the prevailing hypothesis
in the diabetes literature. In contrast, all other (robust and
non-robust) MR methods suggest a protective effect of di-
abetes on memory, a hypothesis with little if any scientific
basis in the diabetes literature. However, the results from
MR GENIUS, MR-Egger and TSHT are not statistically
significant at the 95% confidence level.

We note that while TSLS is asymptotically efficient
with a valid IV under linear models and the conditional
homokesdasticity condition that cov{(A,Y )T |G} is con-
stant in G (Wooldridge, 2010, Vansteelandt and Didelez,
2018), the latter is typically violated with binary expo-
sure. Furthermore, the simulation study results in Table 5
suggest that MR GENIUS generally has smaller variance

TABLE 6
Estimation of βt2d-ms, the association between type 2 diabetes and memory score

β̂t2d-ms SE 95% CI # of instruments selected as invalid

Observational analysis

−0.04 0.02 (−0.08,0.001) –
IV analyses

MR GENIUS −0.18 0.14 (−0.45,0.08) –
Efficient MR GENIUS −0.16 0.14 (−0.43,0.11) –
MR-Egger 0.25 0.35 (−0.43,0.93) –
sisVIVE 0.48 – – 0
TSLS 0.48 0.22 (0.05,0.90) –
Adaptive Lasso 0.48 – – 0
Post-adaptive Lasso 0.48 0.22 (0.05,0.90) 0
TSHT 0.45 0.28 (−0.10,1.00) 0 (out of 6 selected as relevant)
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than TSLS when exposure is binary and at least some of
the potential IVs in G are invalid.

7. DISCUSSION

As MR gains popularity as a promising strategy to
address confounding bias in observational studies, there
clearly also is a growing need for robust MR methodol-
ogy that relax the standard IV assumptions. Although a
variety of methods have recently been proposed, we have
argued that MR GENIUS stands out as an effective ap-
proach with clear advantages over other existing meth-
ods. Whereas existing methods are technically only con-
sistent either as the number of candidate IVs goes to in-
finity (MR-Egger), or as a majority (adaptive lasso) or a
plurality (TSTH) of IVs are valid, MR GENIUS is guar-
anteed to be consistent without even one valid IV. An R
package which implements MR GENIUS is available at
https://github.com/bluosun/MR-GENIUS.

In closing, we acknowledge certain limitations of MR
GENIUS. It is important to check how strongly var(A|G)

varies with G in practice, for example by performing
the Breusch–Pagan test (Breusch and Pagan, 1979) when
exposure is continuous, because identification via het-
eroscedasticity may yield noisier estimates under certain
settings compared to standard first-order moment exclu-
sion restrictions. This may be less of an issue if one has
available a moderate to large number of candidate IVs
for the exposure of interest, such as in MR studies, to in-
crease precision. The 39 SNPs considered in the applica-
tion were strongly associated as a set with the binary en-
dogenous variable (Likelihood ratio test Chi-square statis-
tic = 162 with 39 degrees of freedom, which corresponds
to a significance value <0.001). This provides fairly com-
pelling evidence that the IVs are not only jointly relevant
but also satisfy the first stage heteroscedasticity condition
required by MR GENIUS. Secondly, the approach may
be vulnerable to weak instrument bias which may occur if
var(A|Gj) is weakly dependent on each candidate IV Gj ,
a possibility that was largely ruled out in this paper. Esti-
mation of causal effects with many weak invalid IVs is the
subject of a companion manuscript currently in prepara-
tion. Finally, MR GENIUS is also currently not designed
to handle high dimensional IVs (where the number of IVs
may exceed sample size). We plan to further develop MR
GENIUS to address all of these remaining challenges in
future work.

APPENDIX A: PROOFS OF LEMMAS

A.1 Proof of Lemma 3.1

PROOF. Under Assumption 4a and taking iterated ex-
pectation with respect to (A,G,U) followed by (G,U),

E
[{

G − E(G)
}{

A − E(A|G)
}
Y
]

= E
[{

G − E(G)
}{

A − E(A|G)
}
E(Y |A,G,U)

]
= E

[{
G − E(G)

}{
A − E(A|G)

}{
βa(U)A

+ βg(U,G) + βu(U)
}]

= E
[{

G − E(G)
}{

A − E(A|G)
}
βa(U)A

]
+ E

[{
G − E(G)

}{
A − E(A|G)

}
βg(U,G)

]
+ E

[{
G − E(G)

}{
A − E(A|G)

}
βu(U)

]
= E

[{
G − E(G)

}{
1 − E(A|G)

}
βa(U)

× {
αg(U,G) + αu(U)

}]
+ E

[{
G − E(G)

}{
αg(U,G) + αu(U) − E(A|G)

}
× βg(U,G)

]
+ E

[{
G − E(G)

}{
αg(U,G) + αu(U) − E(A|G)

}
× βu(U)

]
= E

[{
G − E(G)

}{
A − E(A|G)

}
AE

{
βa(U)|G}]

+ E
[{

G − E(G)
}{

1 − E(A|G)
}

× cov
{
βa(U),αu(U)|G}]

+ E
[{

G − E(G)
}{

1 − E(A|G)
}

× cov
{
βa(U),αg(U,G)|G}]

+ E
[{

G − E(G)
}

cov
{
αg(U,G),βg(U,G)|G}]

+ E
[{

G − E(G)
}

cov
{
αu(U),βg(U,G)|G}]

+ E
[{

G − E(G)
}

cov
{
αg(U,G),βu(U)|G}]

+ E
[{

G − E(G)
}

cov
{
αu(U),βu(U)|G}]

.

Under Assumption 2, E{βa(U)|G} = E{βa(U)} and
cov{αu(U),βu(U)|G} = cov{αu(U),βu(U)}, so that
E[{G − E(G)} cov{αu(U),βu(U)|G}] = 0. Therefore,
under Assumption 4b,

E[{G − E(G)}{A − E(A|G)}Y ]
E[{G − E(G)}{A − E(A|G)}A] = E

{
βa(U)

}
provided that E[{G−E(G)}{A−E(A|G)}A] = E[{G−
E(G)}var(A|G)] �= 0. �
A.2 Proof of Lemma 3.2

PROOF. Under Assumption 4* and taking iterated ex-
pectation with respect to (A,G,U) followed by (G,U),

E
[{

G − E(G)
}{

A − E(A|G)
}
Y
]

= E
[{

G − E(G)
}{

A − E(A|G)
}
E(Y |A,G,U)

]
= E

[{
G − E(G)

}{
A − E(A|G)

}
× {

βaA + βg(U,G) + βu(U)
}]

= E
[{

G − E(G)
}{

A − E(A|G)
}
A
]
βa

+ E
[{

G − E(G)
}

cov
{
αg(U,G),βg(U,G)|G}]

+ E
[{

G − E(G)
}

cov
{
αu(U),βg(U,G)|G}]

https://github.com/bluosun/MR-GENIUS
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+ E
[{

G − E(G)
}

cov
{
αg(U,G),βu(U)|G}]

+ E
[{

G − E(G)
}

cov
{
αu(U),βu(U)|G}]

.

The proof for Lemma 3.2 follows from the observa-
tion that instead of requiring Assumption 2, we just need
cov{αu(U),βu(U)|G} = ρ so that

E
[{

G − E(G)
}

cov
{
αu(U),βu(U)|G}] = 0,

and hence

E[{G − E(G)}{A − E(A|G)}Y ]
E[{G − E(G)}{A − E(A|G)}A] = βa. �

A.3 Proof of Lemma 4.2

PROOF. The proof follows upon noting that under our
assumptions,

exp
(
�g(G)

)
E
(
A exp

(−�g(G)
))

= E(A|G)

= exp
(
αg(G)

)
E(Ua),

and

E(A|G,U) − exp
(
�g(G)

)
E
(
A exp

(−�g(G)
))

= [
Ua − E(Ua)

]
exp

(
αg(G)

)
.

Therefore

E
[{

G − E(G)
}

× {
A exp

(−�g(G)
)− E

(
A exp

(−�g(G)
))}

Y
]

= E
[{

G − E(G)
}

× {
A exp

(−�g(G)
)− E

(
A exp

(−�g(G)
))}

βaA
]

+ E
[{

G − E(G)
}

× {
A exp

(−�g(G)
)− E

(
A exp

(−�g(G)
))}

βu(U)
]

+ E
[{

G − E(G)
}

× {
A exp

(−�g(G)
)− E

(
A exp

(−�g(G)
))}

βg(G)
]

= βaE
[{

G − E(G)
}

× {
A exp

(−�g(G)
)− E

(
A exp

(−�g(G)
))}

A
]

+ E
[{

G − E(G)
}[

Ua − E(Ua)
]
βu(U)

]︸ ︷︷ ︸
=0

+ E
[{

G − E(G)
}{

Ua − E(Ua)
}
βg(G)

]︸ ︷︷ ︸
=0

= βaE
[{

G − E(G)
}{

A − E(A|G)
}
A exp

(−�g(G)
)]

= βaE
[{

G − E(G)
}

var(A|G) exp
(−�g(G)

)]
,

where we used the fact that under Assumption 2, �g(g) =
αg(g), therefore proving identification provided that
var(A|G) exp(−�g(G)) is a function of G,which holds
as long as var(A|g)/var(A|g = 0) �= exp(�g(g)). �

A.4 Proof of Lemma 4.3

PROOF. We first note that for any additive function
t (A,G) = t1(A) + t2(G),

E
(
t (A,G)

{
G − E(G|A = 0)

}{
A − E(A|G = 0)

}
× exp

{−ϕg(G)A
}) = 0

because

E
(
t (A,G)

{
G − E(G|A = 0)

}{
A − E(A|G = 0)

}
× exp

{−ϕg(G)A
})

= ∑
a,g

f (a, g)t (a, g)
{
g − E(G|A = 0)

}
× {

a − E(A|G = 0)
}

exp
{−ϕg(g)a

}
∝ ∑

a,g

{
f (a|g = 0)f (g|a = 0) exp

{
ϕg(g)a

}
t (a, g)

× {
g − E(G|A = 0)

}{
a − E(A|G = 0)

}
× exp

{−ϕg(g)a
}}

= ∑
a,g

f (a|g = 0)f (g|a = 0)t (a, g)

× {
g − E(G|A = 0)

}{
a − E(A|G = 0)

}
= 0,

where we used the fact that

f (a, g) ∝ (a|g = 0)f (g|a = 0) exp
{
ϕg(g)a

}
,

see, for example, Tchetgen Tchetgen, Robins and Rot-
nitzky (2010). It is straightforward to verify that the

θ = − ln
(
1 − E

[{
G − E(G|A = 0)

}{
A − E(A|G = 0)

}
Y

× exp
{−ϕg(G)A

}](
E
[{

G − E(G|A = 0)
}

× {
A − E(A|G = 0)

}
AY exp

{−ϕg(G)A
}])−1)

.

Next,
E
[{

G − E(G|A = 0)
}

× {
A − E(A|G = 0)

}
Y exp

{−ϕg(G)A
}]

= E
[{

G − E(G|A = 0)
}{

A − E(A|G = 0)
}

× exp(βaA)E(Y |A = 0,G,U) exp
{−ϕg(G)A

}]
= E

[{
G − E(G|A = 0)

}{
A − E(A|G = 0)

}(
exp(βa) − 1

)
× AE(Y |A = 0,G,U) exp

{−ϕg(G)A
}]

+ E
[{

G − E(G|A = 0)
}{

A − E(A|G = 0)
}
E(Y |A = 0,G,U) exp

{−ϕg(G)A
}]

= (
exp(βa) − 1

)
E
[{

G − E(G|A = 0)
}{

A − E(A|G = 0)
}

× AE(Y |A = 0,G,U) exp
{−ϕg(G)A

}]
+ E

[{
G − E(G|A = 0)

}{
A − E(A|G = 0)

}(
E(Y |A = 0,G,U) − E(Y |A = 0,G = 0,U)

)
× exp

{−ϕg(G)A
}]

+ E
[{

G − E(G|A = 0)
}{

A − E(A|G = 0)
}(

E(Y |A = 0,G = 0,U)
)

exp
{−ϕg(G)A

}]
= (

exp(βa) − 1
)
E
[{

G − E(G|A = 0)
}{

A − E(A|G = 0)
}

× AE(Y |A = 0,G,U) exp
{−ϕg(G)A

}]
+ E

[{
G − E(G|A = 0)

}{
A − E(A|G = 0)

}
βg(G) exp

{−ϕg(G)A
}]︸ ︷︷ ︸

=0
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+ E
[{

G − E(G|A = 0)
}{

A − E(A|G = 0)
}
E
[
E(Y |A = 0,G = 0,U)|A]

exp
{−ϕg(G)A

}]︸ ︷︷ ︸
=0

.

Likewise

E
[{

G − E(G|A = 0)
}{

A − E(A|G = 0)
}

× AY exp
{−ϕg(G)A

}]
= E

[{
G − E(G|A = 0)

}{
A − E(A|G = 0)

}
× exp(βa)E(Y |A = 0,G,U)A exp

{−ϕg(G)A
}]

.

Therefore,

E
[{

G − E(G|A = 0)
}{

A − E(A|G = 0)
}
Y

× exp
{−ϕg(G)A

}](
E
[{

G − E(G|A = 0)
}

× {
A − E(A|G = 0)

}
AY exp

{−ϕg(G)A
}])−1

= (
exp(βa) − 1

)
E
[{

G − E(G|A = 0)
}

× {
A − E(A|G = 0)

}
AE(Y |A = 0,G,U)

× exp
{−ϕg(G)A

}]
× (

exp(βa)E
[{

G − E(G|A = 0)
}

× {
A − E(A|G = 0)

}
× E(Y |A = 0,G,U)A exp

{−ϕg(G)A
}])−1

= (exp(βa) − 1)

exp(βa)
,

θ = − ln
(

1 − (exp(βa) − 1)

exp(βa)

)
= − ln exp(−βa)

= βa

provided that

E
[{

G − E(G|A = 0)
}{

A − E(A|G = 0)
}

× E(Y |A = 0,G,U)A exp
{−ϕg(G)A

}]
= E

[{
G − E(G|A = 0)

}{
A − E(A|G = 0)

}
× βg(G)A exp

{−ϕg(G)A
}]

�= 0

which holds by assumption because γag(g) = (exp(βa) −
1)βg(g). �
A.5 Proof of Lemma 4.4

PROOF. We note that by assumption

E
(
dN(y) − dBa(y)A − dBg(y)G|R(y) = 1,A,G,U

)
= dB0(y) + dBu(y,U),

and

E
(
exp

{
Ba(y)A + Bg(y)G

}
R(y)|A,G,U

)
= exp

{−B0(y) − Bu(y,U)
}
.

Therefore

E
{
W

(
y,Ba(y),Bg(y)

)}
= E

{(
dB0(y) + dBu(y,U)

)
exp

{−B0(y) − Bu(y,U)
}( (

G − E(G)
)(

G − E(G)
)(

A − E(A|G)
))}

= E

{(
0(

dB0(y) + dBu(y,U)
)

exp
{−B0(y) − Bu(y,U)

}(
U − E(U)

)(
G − E(G)

))}

= 0. �

APPENDIX B: VARIANCE ESTIMATION

B.1 Single IV

The estimating equation in (3.2) involves the estimated
nuisance parameters μ̂ = Pn(G) and ψ̂ of the model
E(A|G;ψ). To account for the effect of nuisance param-
eter estimation on the subsequent estimation of βa , the
empirical moment conditions are stacked to form

mθ(θ) = Pn

⎡⎣ G − μ

(1,G)′
[
A − E(A|G;ψ)

]
(G − μ)

[
A − E(A|G;ψ)

]
(Y − βaA)

⎤⎦
where θ = (μ,ψ,βa).

The estimation procedure satisfies the joint conditions
mθ

(
θ̂
)

= 0. Without loss of generality, we specify [A −
E(A|G;ψ0)] as a main effects model with intercept. As-
sume standard regularity conditions and expand θ̂ around
the true parameter value θ0 yields

√
n
(
θ̂ − θ0

)
= −

[
∂mθ (θ)

∂θ

∣∣∣∣
θ∗

]− √
nmθ (θ0) ,

where θ∗ is intermediate in value between θ̂ and θ0. It
follows that
√

nmθ (θ0)

= √
nPn

⎡⎣ G − μ0
(1,G)′

[
A − E(A|G;ψ0)

]
(G − μ0)

[
A − E(A|G;ψ0)

]
(Y − βa0A)

⎤⎦
= √

nPn {m̃(θ0)} d→ N(0,E
[
m̃(θ0)m̃(θ0)

′]),
while for the “bread” matrix

∂mθ (θ)

∂θ

∣∣∣∣
θ∗

= B∗(θ∗)

= Pn

⎡⎢⎢⎢⎢⎣
−1 01×2 0

02×1 −
{
(1,G)′ ∂

∂ψ
E(A|G;ψ)

∣∣
ψ∗

}
02×1

∂Û

∂θ

∣∣
θ∗

⎤⎥⎥⎥⎥⎦ ,

where

∂

∂ψ
E(A|G;ψ)
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=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1,G), for continuous A

exp (1,G)ψ

1 + exp (1,G)ψ

(
1 − exp (1,G)ψ

1 + exp (1,G′)ψ

)
(1,G),

for binary A (logit model),

and

∂Û

∂μ
= −(A − E(A|G;ψ))(Y − βaA)

∂Û

∂ψ
= −(G − μ)(Y − βaA)

∂

∂ψ
E(A|G;ψ)

∂Û

∂βa

= −(G − μ)(A − E(A|G;ψ))A.

Assume that the matrix B(θ0) is nonsingular, where the
entries in B(θ0) are the expected values of the sample av-

erages in B∗(θ∗), evaluated at θ0. Then B∗(θ∗) p→ B(θ0),
and √

n(θ̂ − θ0)

d→ N
(
0,B(θ0)

−E
[
m̃(θ0)m̃(θ0)

′]B(θ0)
−′).(S1)

Replacing the expected values in (S1) with sample aver-
ages evaluated at θ̂ yields a consistent estimator of the
asymptotic covariance matrix. For inference about βa , one
may report its Wald-type 95% confidence interval con-
structed with the corresponding component of the esti-
mated covariance matrix for θ̂ .

B.2 Multiple IVs

Let β̂a be the solution to (4.2) with optimal weight
Ŵopt = Pn

[
Û (βa) Û (βa)

′]− where T − denotes the gen-
eralized inverse of matrix T . The empirical moment con-
ditions Û (βa) in (4.2) involves the first stage estimates
μ̂ = PnG as well as ψ̂ of the model E(A|G;ψ), which
effects need to be accounted for in the subsequent es-
timation of βa . Without loss of generality, we specify[
A − E(A|G;ψ0)

]
as a main effects model with intercept.

If there are k IVs, let

mμ(μ) = Pn(G − μ),

mψ(ψ) = Pn(1,G′)′[A − E(A|G;ψ)]
be the k and (k + 1) empirical moment conditions of ob-
taining μ̂ and ψ̂ respectively. For iterated or continuously
updated GMM procedures in which βa is estimated simul-
taneously with the optimal weight, the first-order condi-
tion of (4.2) is

mβa(βa) =
{
Pn

[
∂Û (βa)

∂βa

]}′
Ŵopt (βa)Pn

[
Û (βa)

]
+ op

(
n−1/2

)
.

Let mθ (θ) = (m′
μ (μ) ,m′

ψ (ψ) ,mβa (βa))
′ where θ =

(μ′,ψ ′, βa)
′. The two-stage procedure solution satisfies

the joint moment condition mθ(θ̂) = 0. Assume standard
regularity conditions and expand θ̂ around the true param-
eter value θ0 yields

√
n
(
θ̂ − θ0

)
= −

[
∂mθ (θ)

∂θ

∣∣∣∣
θ∗

]− √
nmθ (θ0) ,

where θ∗ is intermediate in value between θ̂ and θ0. Con-
sider√

nmθ (θ0)

=
⎡⎢⎣I(2k+1)×(2k+1) 0(2k+1)×k

01×(2k+1)

{
Pn

[
∂Û (βa)

∂βa

∣∣∣∣
βa0

]}′
Ŵopt (βa0)

⎤⎥⎦

× √
nPn

⎡⎣ G − μ0
(1,G′)′

[
A − E(A|G;ψ0)

]
U(βa0)

⎤⎦+ op(1).

Let

� = E

(
∂U (βa)

∂βa

∣∣∣∣
βa0

)
, � = E

[
U (βa0)U (βa0)

′] ,
so that{

Pn

[
∂Û (βa)

∂βa

∣∣∣∣
βa0

]}′
p→ �′, Ŵopt (βa0)

p→ �−.

Then

√
nPn

⎡⎣ G − μ0
(1,G′)′

[
A − E(A|G;ψ0)

]
U(βa0)

⎤⎦ = √
nPn {m̃(θ0)}

d→ N(0,E
[
m̃(θ0)m̃(θ0)

′]),
and by Slutsky’s theorem,

√
nmθ (θ0)

d→
[
I(2k+1)×(2k+1) 0(2k+1)×k

01×(2k+1) �′�−
]

× N(0,E
[
m̃(θ0)m̃(θ0)

′])
= M(θ0)N(0,E

[
m̃(θ0)m̃(θ0)

′]).
Next consider the “bread” matrix
∂mθ (θ)

∂θ

∣∣∣∣
θ∗

= B∗(θ∗) =⎡⎢⎣
−Ik×k 0k×(k+1) 0k×1

0(k+1)×k −Pn

{
(1,G′)′ ∂

∂ψ
E(A|G;ψ)

∣∣∣∣
ψ∗

}
0(k+1)×1{

Pn

[
∂Û (βa)

∂βa

∣∣∣∣
β∗

a

]}′
Ŵopt (β

∗
a )Pn

{
∂Û

∂μ

∣∣∣∣
μ∗

,
∂Û

∂ψ

∣∣∣∣
ψ∗

,
∂Û

∂βa

∣∣∣∣
β∗

a

}
+ op(1)

⎤⎥⎦
where
∂

∂ψ
E(A|G;ψ)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
1,G′), for continuous A

exp (1,G′)ψ
1 + exp (1,G′)ψ

(
1 − exp (1,G′)ψ

1 + exp (1,G′)ψ

)(
1,G′),

for binary A (logit model),
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and

∂Û

∂μ
= −Ik×k

(
A − E(A|G;ψ)

)
(Y − βaA),

∂Û

∂ψ
= −(G − μ)(Y − βaA)

∂

∂ψ
E(A|G;ψ),

∂Û

∂βa

= −(G − μ)
(
A − E(A|G;ψ)

)
A.

Assume that the matrix B(θ0) is nonsingular, where the
entries in B(θ0) are the expected values of the sample av-

erages in B∗(θ∗), evaluated at θ0. Then B∗(θ∗) p→ B(θ0),
and √

n(θ̂ − θ0)

d→ N
(
0,B(θ0)

−M(θ0)E
[
m̃(θ0)m̃(θ0)

′]
× M(θ0)

′B(θ0)
−′).

(S4)

In practice, replacing the expected values in (S4) with
sample averages evaluated at θ̂ yields a consistent esti-
mator of the asymptotic covariance matrix. In addition,
centering the IV moment conditions Û (βa) when esti-
mating the covariance matrix E

[
m̃(θ0)m̃(θ0)

′] may im-
prove finite sample inference. For inference about βa , one
may report its Wald-type 95% confidence interval con-
structed with the corresponding component of the esti-
mated covariance matrix for θ̂ . The above variance esti-
mation framework can accommodate baseline covariates
C by stacking the moment conditions for Ê(G|C) and
Ê(A|G,C) instead, as described in estimating equation
(4.1).
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