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Comment: Diagnostics and Kernel-based
Extensions for Linear Mixed Effects Models
with Endogenous Covariates
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Abstract. We discuss “Linear mixed models with endogenous covariates:
modeling sequential treatment effects with application to a mobile health
study” by Qian, Klasnja and Murphy. In this discussion, we study when the
linear mixed effects models with endogenous covariates are feasible to use
by providing examples and diagnostic tools as well as discussing potential
extensions. This includes evaluating feasibility of partial likelihood-based
inference, checking the conditional independence assumption, estimation of
marginal effects, and kernel extensions of the model.
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The authors (“QKM”) have made a significant break-
through in data analysis problems by demonstrating the
theoretical validity and utility of linear mixed effects
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models (LMMs) in the face of endogenous covariates. As
the presence of endogenous covariates and the application
of LMMs is common in microrandomized trials (MRTs),
their method also makes an important contribution to pre-
cision medicine. We study when their method is feasible
to use by providing examples and diagnostic tools as well
as discussing potential extensions.

Feasibility of partial likelihood-based inference. We
first discuss when QKM’s partial likelihood-based in-
ference is feasible. The authors claim that p(Xit |Hit−1,

Ait−1, Yit ) in (11) of QKM does not involve ξ ≡ (α,β, θ,

σε) and can be ignored. However, when covariates are
endogenous, this term might actually involve ξ or some
parameters that are not orthogonal to ξ in general. In
other words, when Xit contains some relevant informa-
tion newer than Yit , p(Xit |Hit−1,Ait−1, Yit ) may con-
tain information about the prognostic effects α or delayed
treatment effects β . This would make (13) of QKM not
the scaled full-likelihood as the authors claim, but only a
partial likelihood.

Wong (1986) illustrated the relative efficiency bound
k/(k + l) of partial likelihood estimators for autore-
gressive models of disconnected sequences, where k is
the observed segment lengths and l is the missing seg-
ment lengths. Although the models proposed in QKM
are distinct from the Wong et al. model since they in-
volve treatments and are not fully autoregressive, the
efficiency bound results provide intuition about the po-
tential efficiency loss of the LMMs. In MRT settings,
the information contained in the nuisance likelihood
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p(Xit |Hit−1,Ait−1, Yit ) can be substantial when there
is a structural relationship between the treatment effects
on Xit and Yit . For instance, when the treatment ef-
fects are not immediate but prolonged such as antide-
pressants (Artigas, Bortolozzi and Celada, 2018), are fur-
ther assumed or known to be linear in time, and Yit and
Xit are the outcomes measured at different time points,
then the information contained in the nuisance likelihood,
p(Xit |Hit−1,Ait−1, Yit ), can be significant. A counterex-
ample is the two-stage example in QKM where Xi2 = Yi2.
In this case, there is no loss of information from ignoring
the nuisance likelihood, and partial likelihood-based es-
timation is equivalent to full likelihood-based estimation
regarding ξ .

Checking the conditional independence assumption.
The authors argue that the conditional independence as-
sumption must be verified from a domain science perspec-
tive. As the assumption may not be testable without hav-
ing a further assumption, we posit a reasonable model to
help with verification in practice and further discuss an ad
hoc testing procedure.

Consider a regression model Xit+1 = (f1(Hit ),Ait ,

Yit+1)
�γ1 + b�

i γ2 + ηit+1, where ηit+1 is an indepen-
dent mean zero error term. As the dimension of f1(Hit )

increases, it is less likely that additionally having bi pro-
vides a meaningful amount of information about Xit+1. In
other words, as the dimension becomes larger, the amount
of history and the proportion of variability explained by
the history increase, and thus the explanatory power of
additionally having the random effects decreases. Then
conditional independence is more likely to hold under the
posited model. This agrees with QKM’s argument in the
HeartSteps example that Xit is plausibly independent of
the random effects given all earlier step counts and treat-
ments because Xit can be largely explained through all
the history. In contrast, if the history is relatively short, as
in the early phases of an MRT, the random effects may
provide additional significant information.

The length of history, however, is not a sufficient mea-
sure of the conditional independence. Even with a long
history, if Hit and Yit are highly noisy, and thus contain
little information on Xit , bi can still provide a signifi-
cant amount of information on Xit . When evidence from
domain science is not sufficient, a diagnostic procedure
could be used to detect possible violations of the condi-
tional independence assumption.

There are multiple challenges to directly testing the
conditional independence hypothesis, Xit ⊥ bi |Hit−1,

Ait−1, Yit , ∀t . First, as random effects are not observed in
the data, testing conditional independence between ran-
dom effects and the covariates may require additional
modeling of f (Xit |Hit−1,Ait−1, Yit , bi) and a more so-
phisticated estimation procedure. Second, conditioning
on the full history can be problematic for conditional inde-
pendence testing methods because they tend to lose power

as the dimension of the conditioning random variable
grows—the curse of dimensionality. Third, testing the as-
sumption at every time point will lead to a multiple testing
problem. A more practical diagnostic measure may be
an ad hoc test of Xit ⊥ b̂i |sd(Hit−1),Ait−1, Yit ,∀t ∈ T
based on the estimated random effects from the fitted
model and where sd controls the maximum time win-
dow by truncating the history to the last d time points.
One nonparametric possibility for assessing this hypothe-
sis is the Conditional Distance Independence Test (CDIT)
(Wang et al., 2015).

Conducting this diagnostic procedure requires a choice
of the history window d , a set of time points T to test
on, and a strategy for summarizing multiple test statistics.
A large history window may result in a loss of power,
but too narrow a window may invoke false positives by
bringing undue dependence that would not have existed
if conditioning on the full history. Choice of the time
periods at which to conduct the test, T , is another im-
portant question. The simplest approach is picking one
time point, for example, T = {T }, which does not re-
quire summarization of the test. However, it does not
make use of the full information available at the other
time points. Ideally, one would test at every possible time
point to be faithful to the original hypothesis. In this
case, however, the individual test statistics could be con-
siderably correlated among neighboring time points, and
hence tests based on those statistics may not be pow-
erful. To balance between loss of information and du-
plicity, one could pick every r th time point for testing:
T = {T − rk : k = 0,1,2, . . . , �T/r�}. The choice of r

could be d + 1, for example. If the level of conditional
dependence does not change much between neighboring
time points, this approach does not lose much informa-
tion, while still covering most of the time domain. Finally,
summarization of the test can be done in multiple ways.
Let M = (M1, . . . ,M|T |) be the vector of the individ-
ual test statistics. A vector norm (e.g., ‖M‖2 or ‖M‖∞)
can be used to summarize the test, and the p-value can
be obtained either analytically if the dependence struc-
ture of the individual tests can be reasonably posited, or
through resampling: p = B−1 ∑B

b=1 1(‖M‖2 ≤ ‖M(b)‖2),
where M(b) denotes the vector of statistics based on the
bth resample. Alternatively, the p-values of the individ-
ual statistics can be summarized. The p-values could first
be adjusted using a multiple test correction strategy such
as Bonferroni or Benjamini–Hochberg (Benjamini and
Hochberg, 1995), with the minimum value then chosen
as the global p-value.

Estimation of marginal effects. β in QKM’s model
only has a conditional-on-the-random-effects interpreta-
tion, and estimating marginal effects would be useful if
one wishes to make inferences or predictions on future
individuals not in the original study. For instance, esti-
mation of marginal treatment effects is important when
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one aims to provide treatment recommendations to future
patients based on LMMs. In such a precision medicine
setting, we wish to estimate E(Yit+1|Hit ,Ait = 1) −
E(Yit+1|Hit ,Ait = 0), a quantity equal to f1(hit )

�β +
g1(hit )

�E(b1i |Hit ). If we assume that the estimated ran-
dom effects are asymptotically unbiased, then E(b1i |
Hit ) ≈ E{E(b̂1i |b1i ,Hit )|Hit } = E(b̂1i |Hit ). Thus, un-
der this assumption, we need only to model E(b̂1i |Hit )

to obtain asymptotically-valid marginal treatment effect
estimates from our fitted LMM, as well as marginal in-
teraction effect estimates between the treatment and other
predictors.

Let H ∗ = s(Hit ) ⊂ Hit , where s is a prespecified op-
erator that summarizes Hit into a P -dimensional vector,
while keeping E(bi |Hit ) − E(bi |s(Hit )) negligible. Let
b̂1i = (b̂1i1, . . . , b̂1iK), where K = dim(b1i ). We posit the
models E(b̂1ik|Hit ) = H ∗

it
�γk , k = 1,2, . . . ,K , and es-

timate γk by least squares. Let HnT ×P = (H ∗
11,H

∗
12, . . . ,

H ∗
1T ,H ∗

21, . . . ,H
∗
nT )�, �P×K = (γ1, . . . , γK), bk =

(b̂11k1�, . . . , b̂1nk1�)� and BnT ×K = (b1, . . . ,bK),
where 1 is a T × 1 vector of ones. We can rewrite our
posited models as E(B|H) = H�, where the conditioning
can be interpreted row-wise (i.e., E(B|H) = [E(b̂11|H11),
E(b̂11|H12), . . . ,E(b̂1n|HnT )]�). The least squares solu-
tion is �̂ = (H�H)−1H�B.

We leave a mathematically rigorous proof of the con-
sistency of our least squares estimates to future work,
though we do give a heuristic argument in the Supple-
mentary Material that could be helpful. It is worth noting
that we can also include interactions between covariates
and time in H ∗

it to model changes in associations with
time, or include higher-order terms to model nonlinear as-
sociations. In either case, the same estimation procedure
would still apply. For future work, it may be possible to
develop models that are more robust to model misspeci-
fication or more efficient. For example, as it is more re-
alistic to assume that history is caused by random effects
than the other way around, positing models for E(Yit |b1i )

and E(Xit |b1i ) and inverting them to model E(b1i |Hit )

may lead to a more realistic model. However, there are
a few challenges unique to positing and estimating mod-
els for the estimated random effects that will need to be
taken into account. We leave a brief discussion of these
challenges to the Supplementary Material for those inter-
ested.

Kernel extensions. Accurate estimates and valid infer-
ence from linear mixed effects models can only be ob-
tained with assumptions of linearity, which are often vi-
olated in practice. To deal with this problem, we dis-
cuss an extension to LMMs with kernels and show how
QKM’s results apply in this case. The approach is loosely
based on the mixed effects random forest (MERF) model
by Hajjem, Bellavance and Larocque (2014). While the
typical LMM assumes Yi = Xiβ + Zibi + εi , the MERF

model assumes Yi = f (Xi)+Zibi + εi , where Yi , Xi and
Zi are a vector of responses, a matrix of fixed covariates,
and a matrix of random covariates associated with the ith
subject, respectively. f is a nonparametric fixed regres-

sion function, bi
iid∼ N(0,G(θ)) is a linear random effect

and εi
iid∼ N(0, σ 2

ε I ) is a vector of random errors. How-
ever, while the MERF model uses random forests to esti-
mate f (Xi), we use Gaussian kernels, and our optimiza-
tion procedure also differs.

Let Zit = (H�
it ,Ait )

� and Z∗
it = s(Zit ) ∈ R

d+1, where
s is a prespecified operator that removes all elements
from Zit except for Ait and some known d-dimension
subset H∗

it of H�
it . Let q be the number of the earli-

est time points for which s cannot be applied. For in-
stance, if s extracts history from the last 3 time points,
then s cannot be applied to Zit for t ∈ {1,2}, and q = 2.
Define h : Rd+1 → R

n(T −q) such that h(w;Z∗, γ ) =
(K1{q+1}(w;Z∗, γ ),K1{q+2}(w;Z∗, γ ), . . . ,K1T (w;Z∗,
γ ), K2{q+1} (w;Z∗, γ ), . . . ,KnT (w;Z∗, γ ))� and
Kit (w;Z∗, γ ) = exp(−γ ‖w − Z∗

it‖2) is a Gaussian ker-
nel with a fixed bandwidth γ . Finally, let f (Zit ;Z∗, γ ) =
h(s(Zit );Z∗, γ ). We assume the model

Yit+1 = α0 + f
(
Zit ;Z∗, γ

)�
α + g0(Hit )

�b0i

+ Aitg1(Hit )
�b1i + εit+1,

(1)

where 1 ≤ i ≤ n, q + 1 ≤ t ≤ T , g0, g1 are known

functions similar to s, (b�
0i , b

�
1i)

� iid∼ N(0,G(θ)), εit+1
iid∼

N(0, σ 2
ε ), Ait ⊥ (b0i , b1i )|Hit and Xit ⊥ (b0i , b1i )|

Hit−1,Ait−1, Yit . To avoid overfitting and nonidentifia-
bility of α, we additionally impose a prior on the fixed ef-
fects, α ∼ N(0, (λK)−1), where K = (f (Z1{q+1};Z∗, γ ),

f (Z1{q+2};Z∗, γ ), . . . , f (Z1T ;Z∗, γ ), f (Z2{q+1};Z∗,
γ ), . . . , f (ZnT ;Z∗, γ ))� is our n(T − q) × n(T − q)

kernel matrix and λ is a fixed scalar penalty parame-
ter. This becomes a standard Bayesian LMM where we
assume treatments are randomized and conditional in-
dependence holds, and thus this model can be fit with
off-the-shelf Bayesian software packages. Based on the
results of QKM, it is not difficult to show that stan-
dard Bayesian software will take this model and maxi-
mize logL(α0, α, θ, σε|X,Y,Z,γ )−λα�Kα/2 provided
the conditional independence assumption holds, where
L(α0, α, θ, σε|X,A,Y, γ ) = ∏

i p(Xi,Ai, Yi |α0, α, θ,

σε, γ ) is the full-data likelihood of model (1) and −λα�×
Kα/2 is a penalty term from the log-prior.

λ and γ can be tuned by partitioning our data into ob-
servations from n1 subjects for training and from n2 sub-
jects for testing. For a grid of (λ, γ ) values, we can fit
our model on the n1 training subjects, giving us estimates
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ξ̂ (λ,γ ) = (α̂
(λ,γ )
0 , α̂(λ,γ ), θ̂ (λ,γ ), σ̂

(λ,γ )
ε ), and evaluate

logL1
(
ξ̂ (λ,γ )|XTest,ATest, Y Test, γ

)

=
n2∑
i=1

log
∫ �∏

t=q+1

p
(
Y Test

it+1|

HTest
it ,ATest

it , bi; ξ̂ (λ,γ ), γ
)
dF̂ (λ,γ )(bi),

(2)

where p(Y Test
it+1|HTest

it ,ATest
it , bi; ξ, γ ) =d N(μit+1,γ , σ 2

ε ),
μit+1,γ = α0 + f (ZTest

it ;Z∗, γ )�α + g0(HTest
it )�b0i +

Aitg1(HTest
it )�b1i and F̂ (λ,γ ) is the distribution of bi given

θ = θ̂ (λ,γ ). As integration is over the estimated distri-
bution function of bi , which only depends on θ̂ (λ,γ ),
the actual random effects from the test subjects need
not be known, and the likelihood can easily be com-
puted with off-the-shelf numerical integration packages.
A good final choice of (λ, γ ) is that which maximizes
logL1(ξ̂

(λ,γ )|XTest,ATest, Y Test, γ ). It can be shown that
under conditional independence, the values of (λ, γ )

which maximize logL1(ξ̂
(λ,γ )|XTest,ATest, Y Test, γ ) also

maximize the full test likelihood L(ξ̂ (λ,γ )|XTest,ATest,

Y Test, γ ) = ∑n2
i=1 log p(XTest

i ,ATest
i , Y Test

i |ξ̂ (λ,γ ), γ ).
Therefore, there are three important results that hold

under conditional independence. First, we can reduce the
kernel mixed effects model to a standard Bayesian LMM
and fit it using existing software. Second, the resulting
estimates will maximize the full-data likelihood of train-
ing cases for a given bandwidth γ and penalty parameter
λ. Finally, λ and γ can be chosen to maximize full-data
likelihood of the test cases. These results imply that under
conditional independence, we can use standard software
to fit kernel models that accurately model the population
or underlying data-generating distribution of interest.

We performed several simulations to demonstrate the
performance of LMMs in estimating treatment effect
when the true effect is nonlinear. The details and results
of the simulations can be found in the Supplementary Ma-
terial (Cho et al., 2020). Our results show that LMM es-
timates are less reliable when the assumption of linear-
ity is violated, and for certain nonlinear associations, the
mean squared error can be quite high. Using Gaussian ra-
dial kernels would allow for much more flexible models

of the conditional response distribution and lead to more
accurate conditional-on-the-random-effect estimates. Fur-
thermore, our model can easily be combined with our
marginal effect estimation idea to achieve a more flex-
ible marginal mean model and more accurately predict
the difference in treatment effect for future individuals
with particular histories. Finally, unlike inference from
standard LMMs, Gaussian kernel mixed effects models
can allow one to determine important variables even if
they have nonlinear associations with treatment efficacy
and response. For instance, relative importance of vari-
ables can be established by randomly permuting values
for each variable and observing the decrease in likelihood
after training.

SUPPLEMENTARY MATERIAL

Supplement to “Comment: Diagnostics and Kernel-
based Extensions for Linear Mixed Effects Mod-
els with Endogenous Covariates” (DOI: 10.1214/20-
STS782SUPP; .pdf). Supplementary information.
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