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Comment: Stabilizing the Doubly-Robust
Estimators of the Average Treatment Effect
under Positivity Violations
Fan Li

Abstract. Doubly-robust estimators within the one-step and TMLE frame-
works could exhibit finite-sample bias and excess variability under positivity
violations. We comment on how the application of a stabilization factor may
improve the efficiency property of one-step estimator and TMLE, and the
comparisons with their collaborative counterparts using the adaptive propen-
sity scores.
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1. INTRODUCTION

We congratulate Benkeser, Cai and van der Laan on
their valuable and timely article which contributes an
improved approach to estimate the average treatment
effect (ATE) in observational studies. While the tradi-
tional semiparametric doubly-robust methods—the one-
step and the targeted minimum loss estimation (TMLE)—
are locally efficient when the relevant nuisance parame-
ters are consistently estimated, they could exhibit finite-
sample bias and excess variability in challenging scenar-
ios when the propensity score distribution has a long tail.
Using the adaptive propensity score, defined as the con-
ditional probability of assignment given the conditional
mean outcome, in the construction of the semiparamet-
ric estimators, the authors demonstrated super-efficiency
over their locally efficient counterparts. As the adaptive
propensity score may be inconsistent to the true propen-
sity score, the proposed collaborative estimators trade off
the double robustness property for greater stability and ef-
ficiency.

In this discussion, we would like to contribute our
thoughts on alternative methods that may improve the
finite-sample behavior of the semiparametric estimators,
in challenging scenarios when there is lack of overlap
(or positivity violations) and the causal estimand is only
weakly identifiable. For inverse probability weighting
(IPW), a common remedy for lack of overlap is to trim ob-
servations with extreme propensity scores and restrict the
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analysis to the subpopulation where the average causal ef-
fect is better identified. To avoid arbitrary selection of the
trimming threshold, Crump et al. (2009) developed the
optimal symmetric trimming rule where the asymptotic
variance of the weighted estimator is minimized among
all symmetric trimming rules. By continuously down-
weighting influential observations at the propensity tails,
Li, Morgan and Zaslavsky (2018) introduced the over-
lap weights which target the average causal effect among
the subpopulation with substantial equipoise. The overlap
weights are also efficient in a sense that they minimize the
asymptotic variance of the weighted estimator among the
larger family of balancing weights. While these alterna-
tive weighting schemes address limitations of IPW, it is
less clear whether they could improve the performance of
the doubly-robust estimators in challenging scenarios. In
what follows, we introduce these two weighting schemes
to the one-step and TMLE framework for stabilization
purposes, and evaluate their operating characteristics un-
der lack of overlap.

The remainder of this discussion is organized as fol-
lows. Sections 2 and 3 introduce notation and the alterna-
tive weighting schemes. In Section 4, we compare these
alternative methods with the standard one-step estima-
tor and TMLE, as well as their collaborative counterparts
based on the adaptive propensity score. Concluding re-
marks are summarized in Section 5.

2. NOTATION

Throughout we will be using the notation of Benkeser
et al. to ensure a consistent presentation. Consider a sam-
ple of n independent units, each receiving one of the
two treatments. Let A = 1 if the unit receives treatment
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and A = 0 otherwise. Without loss of generality, we de-
note the observed outcome for each unit by Y ∈ [0,1],
and the set of pre-treatment covariates by W ∈ W . Under
the Stable Unit Treatment Value Assumption, each unit
has two potential outcomes, Y(1) and Y(0), mapped to
each level of treatment. However, only one of them is ob-
served corresponding to the actual assignment. The tar-
get estimand, ATE, is defined as EP 1

0
[Y(1)]−EP 0

0
[Y(0)],

where P a
0 (a = 0,1) is the true probability distribution

of the potential outcome Y(a). The observed data triplet
for each unit is O = (W,A,Y ), and we define P0 as
the probability distribution of O . We assume the stan-
dard unconfoundedness: {Y(1), Y (0)} ⊥ A|W , and over-
lap: prP0

{0 < prP0
(A = 1|W) < 1)} = 1 in order to iden-

tify the ATE. To simplify the presentation, we focus on
the estimation of the treatment-specific average ψ1

0 =
EP 1

0
[Y(1)] = EP0[EP0(Y |A = 1,W)], since the develop-

ment for ψ0
0 = EP 0

0
[Y(0)] is completely symmetric.

Write the true outcome regression function as Q̄1
0(w) =

EP0[Y |A = 1,W = w], and its estimate Q̄1
n(w) for each

w ∈ W . The distribution function of pre-treatment covari-
ates is defined as Q0,W (w), and the corresponding empiri-
cal distribution function is Qn,W = n−1 ∑n

i=1 1(Wi ≤ w).
Define the true propensity score for each w ∈ W by
Ḡ0(w) = prP0

(A = 1|W = w). Based on these notation,
the efficient influence function that leads to the construc-
tion of the one-step estimator and TMLE has the form

(2.1)
D1(

o|Q̄1
0,Q0,W , Ḡ0

) = a

Ḡ0(w)

[
y − Q̄1

0(w)
]

+ Q̄1
0(w) − ψ1

0

for a typical observation o. In particular, the leading term
can be interpreted as a mean-zero residual bias-correction
to the outcome regression function Q̄1

0(w) for the estima-
tion of ψ1

0 . As the bias-correction term concerns the in-
verse probability weights, a/Ḡ0(w), the overlap assump-
tion is necessary to ensure the existence of variance of
the influence function, or equivalently the semiparametric
variance lower bound.

3. ALTERNATIVE WEIGHTING SCHEMES

Even though the overlap assumption should hold in the-
ory, practical lack of overlap can arise in finite samples
due to a number of reasons (Petersen et al., 2012), leading
to poor identification of the treatment-specific averages.
In this case, the estimated propensity score Ḡn(w) may
be close to zero for some design point w ∈ W , and an es-
timate for the residual bias-correction term would involve
an exploding weight, resulting in bias and excess variabil-
ity (Li, Thomas and Li, 2019). As a potential remedy, we

consider the following influence function:

(3.1)
D1

h

(
o|Q̄1

0,Q0,W , Ḡ0
) = ah(w)

Ḡ0(w)

[
y − Q̄1

0(w)
]

+ Q̄1
0(w) − ψ1

0 ,

where h(w) is a stabilization factor that depends only on
w and satisfies ∫

h(u)dQ0,W (u) = 1.

Influence function (3.1) is similar to (2.1) except that
the bias-correction term includes a stabilized weight,
ah(w)/Ḡ0(w). In fact, this bias-correction term in (3.1)
is identical to that of the efficient influence function for
the estimation of the weighted average treatment effect
(WATE, Hirano, Imbens and Ridder, 2003). In the latter
context, h(w) is a tilting function that redefines the tar-
get population and causal estimand with potentially im-
proved identifiability (Li and Li, 2019). In the current set-
ting, however, we still focus on the ATE and only con-
sider h(w) to avoid unnecessary bias-correction based on
extremely small propensity score values. The influence
functions, D1

h(·|Q̄1
0,Q0,W , Ḡ0) and D1(·|Q̄1

0,Q0,W , Ḡ0),
are equivalent when h(w) = 1 for all w ∈W , but not nec-
essarily so when h(w) deviates from unity. Similar to the
collaborative estimators based on the adaptive propensity
score, the specification of a stabilization factor trades off
robustness for efficiency in estimating the ATE. Under the
assumption that Q̄1

n is consistent to Q̄1
0 (also assumed for

the collaborative estimators), both the stabilized one-step
estimator and TMLE based on influence function (3.1)
converge to ψ1

0 , and therefore different choices of h(w)

only affect efficiency. With an inconsistent initial outcome
model estimate, however, the stabilized estimators could
be biased to the true ATE even when the propensity score
is consistently estimated.

In what follows, we will assume that the outcome
model can be consistently estimated (possibly by using
machine learning methods) and explore the efficiency
property under two different specifications of h(w). The
specification associated with the symmetric trimming due
to Crump et al. (2009) corresponds to

(3.2) h(w) = 1(δ ≤ Ḡ0(w) ≤ 1 − δ)∫
1(δ ≤ Ḡ0(u) ≤ 1 − δ) dQ0,W (u)

for some threshold δ ∈ [0,0.5]. For units with propensity
scores bounded between δ and 1 − δ, h(w) ∝ constant,
while for units with propensities outside of that range,
h(w) = 0, and thus effectively removes the influential ob-
servations at the tails during the residual bias-correction
step. To avoid arbitrary trimming decisions, we also ex-
plore the optimal trimming strategy suggested in Crump
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et al. (2009). The optimal trimming threshold δn (if exists)
is defined as the solution of δ to the sample analogue of

(3.3)

1

δ(1 − δ)
= 2EP0

[
1

Ḡ0(W)(1 − Ḡ0(W))
|

1

Ḡ0(W)(1 − Ḡ0(W))
≤ 1

δ(1 − δ)

]
.

Focusing on the optimizable part of the asymptotic vari-
ance, the optimal trimming threshold maximizes the ef-
ficiency of IPW among all trimming rules under ho-
moscedasticity. Here, we are interested in whether such
implications for IPW translate into optimal efficiency gain
for the one-step estimator and TMLE.

While the trimming specification corresponds to set-
ting h(w) as a step function, the overlap specification
smoothly down-weights the influential observations at the
tails. This is achieved by defining

(3.4) h(w) = Ḡ0(w)(1 − Ḡ0(w))∫
Ḡ0(u)(1 − Ḡ0(u)) dQ0,W (u)

.

Clearly, when the propensity score Ḡ0(w) is close to 0.5
(point of equipoise), the stabilization factor reaches its
maximum. On the contrary, when the propensity becomes
extreme, h(w) gradually reduces to zero and, therefore,
mimics a smooth trimming operator without arbitrary de-
cisions on the trimming threshold. For traditional propen-
sity score weighted estimators, the overlap weights ap-
proximately minimize the asymptotic variance among all
possible choices of h(w) (Li, Morgan and Zaslavsky,
2018), and often leads to a more efficient weighted es-
timator than trimming (Li, Thomas and Li, 2019). Fi-
nally, both specifications of h(w) are somewhat adaptive
to the distributions of propensity scores. For example, un-
der adequate overlap such that the majority of Ḡ0(w) is
close to 0.5, h(w) ≈ 1 and the influence function (3.1)
approximates (2.1). Under lack of overlap, h(w) removes
extreme observations at the tails and stabilizes the resid-
ual bias-correction step. Weight truncation is another ap-
proach that could improve efficiency under lack of over-
lap, and has been well-studied in Bembom and van der
Laan (2008), Petersen et al. (2012) and Ju, Schwab and
van der Laan (2019) for one-step estimation, TMLE and
collaborative TMLE. We do not further explore trunca-
tion in this discussion as truncation implies a stabilization
factor that depends on both a and w, corresponding to an
influence function outside of the class given by (3.1).

Denote hn(w) as an estimate of the stabilization fac-
tor, where Ḡ0(w) and Q0,W (w) are replaced by their es-
timates, Ḡn(w) and Qn,W (w). Based on (3.1), the stabi-
lized one-step estimator for ψ1

0 is given by

(3.5)

ψ1
n,+ = 1

n

n∑
i=1

Q̄1
n(Wi)

+ 1

n

n∑
i=1

D1
hn

(
Oi |Q̄1

n,Qn,W , Ḡn

)
.

The stabilized TMLE algorithm based on (3.1) can pro-
ceed as follows:

1. estimate outcome model: regress Y on W among
units receiving treatment A = 1 to obtain the outcome
model estimate Q̄1

n;
2. predict potential outcomes: use the estimated out-

come model to predict Q̄1
n(Wi) for each unit, i = 1, . . . , n;

3. estimate propensity score model: regress A on W to
obtain the propensity score estimate Ḡn;

4. predict propensity scores: predict the propensity
score, Ḡn(Wi), for each unit, i = 1, . . . , n;

5. fit fluctuation working model: fit logistic regres-
sion of outcome Y on the stabilized clever covariate,
Hn(A,W)=Ahn(W)/Ḡn(W), with offset logit[Q̄1

n(W)];
denote by ε1

n the estimated coefficient;
6. target outcome estimates: use the outcome working

model to obtain a prediction

Q̄1
n,∗ = expit

{
logit

[
Q̄1

n(Wi)
] + ε1

nHn(1,Wi)
}

for each unit, i = 1, . . . , n;
7. compute final estimate: the stabilized TMLE is

ψ1
n,∗ = n−1 ∑n

i=1 Q̄1
n,∗(Wi).

Similar to the standard TMLE, it can be shown that the
score of the stabilized fluctuation model at zero fluctu-
ation (ε = 0) spans the influence curve (3.1) at the ini-
tial estimator, and also that the final TMLE estimate ψ1

n,∗
solves the desired influence curve estimating equations.

4. COMPARISONS VIA SIMULATIONS

We replicate the simulation experiments carried out in
Benkeser et al. to explore whether including the stabi-
lization factor h(w) could improve the finite-sample be-
havior of the one-step estimator and TMLE, and if so,
how the improvement compares with that due to the col-
laborative estimators. In the first simulation, seven con-
founders (W1, . . . ,W7) are independently generated from
Uniform[−1.5,1.5], and an instrumental variable is gen-
erated from Bernoulli(0.5). The true propensity score
model is logit[Ḡ0(w)] = γ /2 − γW8 + ∑7

j=2 21−jWj

and the true potential outcome model is Y(a) = a −∑7
j=2 21−jWj + e, with e ∼ N(0,1); the true ATE

is unity. The coefficient of the instrumental variable
in the propensity model is varied γ ∈ {0,3,6} to in-
duce increasing lack of overlap. Three sample sizes n ∈
{100,500,1000} are considered. In addition to the stan-
dard and collaborative one-step estimators and TMLE
(COS and CTMLE), we include the stabilized esti-
mators associated with the optimal trimming threshold
(OSδn and TMLEδn) and overlap weighting (OSoverlap and
TMLEoverlap). Estimation of all nuisance parameters are
based on correctly-specified parametric models except for
the adaptive propensity score, which is estimated by the
highly adaptive loss minimum loss estimator (HAL-MLE,
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TABLE 1
Comparisons of one-step (OS) estimators for the ATE. Bias: absolute bias (×100); RE: relative efficiency defined as the ratio between the

empirical variance of the standard one-step and that of the estimator of interest; CP: empirical coverage probability (%)

γ = 0 γ = 3 γ = 6

Estimator Bias RE CP Bias RE CP Bias RE CP

n = 100 OS 0.4 1.00 92.7 0.3 1.00 90.2 2.4 1.00 70.1
COS 0.1 1.19 88.7 1.0 2.04 82.2 1.7 3.04 62.0
OSδn

0.2 1.09 93.7 0.7 1.66 93.2 3.0 1.93 85.7
OSoverlap 0.2 1.21 93.6 0.8 1.98 93.7 2.1 2.71 88.5
g-comp 0.2 1.21 – 0.8 1.98 – 2.1 2.71 –

n = 500 OS 0.3 1.00 94.4 0.6 1.00 93.7 1.0 1.00 91.6
COS 0.2 1.07 93.1 0.0 1.56 87.5 0.1 2.65 64.7
OSδn

0.2 1.02 94.1 0.2 1.28 94.2 0.3 1.86 92.8
OSoverlap 0.2 1.10 95.1 0.0 1.55 94.4 0.0 2.60 93.2
g-comp 0.2 1.10 – 0.0 1.55 – 0.0 2.60 –

n = 1000 OS 0.3 1.00 94.3 0.3 1.00 94.2 0.5 1.00 92.1
COS 0.3 1.02 93.5 0.2 1.59 88.1 0.5 2.39 65.4
OSδn

0.2 1.01 94.3 0.0 1.29 94.3 0.3 1.64 92.8
OSoverlap 0.3 1.08 95.0 0.2 1.59 94.8 0.5 2.34 93.1
g-comp 0.3 1.08 – 0.2 1.59 – 0.5 2.34 –

van der Laan, 2017, Benkeser and van der Laan, 2016).
As the outcome model is correctly specified, we also in-
clude the outcome regression estimator without the tar-
geting step (g-comp) as a benchmark for efficiency. We
report the absolute bias, relative efficiency and empirical
coverage across 1000 simulations. The relative efficiency
is defined as the ratio between the empirical variance of
the standard estimator (one-step or TMLE) and that of the
estimator of interest; values larger than 1 indicate higher
efficiency compared to the standard implementation. For
each simulation, the 95% confidence intervals are con-
structed based on the noncross-validated sample variance
of the corresponding influence function. We do not report
the coverage of the outcome regression estimator as we
mainly focus on its efficiency.

Table 1 summarizes the results for the one-step estima-
tors. Including the stabilization factor improves the effi-
ciency of the standard one-step estimator, across all de-
grees of overlap and sample sizes considered. The relative
efficiency gain is greater with increasing lack of overlap.
Particularly, the overlap stabilization factor leads to the
same efficiency as the outcome regression estimator based
on the g-computation formula, and is more efficient than
using the optimal trimming stabilization factor. While the
overlap stabilization offers a slight advantage over the
collaborative estimator under adequate overlap (γ = 0),
the collaborative estimator remains slightly more efficient
with increasing lack of overlap (γ = 3 and 6). The inter-
val estimates from the stabilized estimators demonstrate
the best empirical coverage, which is fairly close to 95%
except when the sample size is small and the lack of
overlap is substantial. In contrast, the interval estimates

for the collaborative estimator present notable undercov-
erage. The findings for the stabilized TMLE are similar
(Table 2). It is interesting to observe that, with increas-
ing lack of overlap, the relative efficiency gain over the
standard TMLE due to the adaptive propensity score or
stabilization factor appears more substantial than that in
the one-step framework.

We realize that the optimal trimming threshold δn is de-
rived for the IPW estimator, and thus may not be truly
optimal within the one-step or TMLE framework. To
study whether other deterministic trimming rules could
potentially provide better efficiency, we study the estima-
tor’s performance as a function of the trimming threshold
δ ∈ [0,0.3] defined in (3.2). We present the absolute bias,
efficiency and coverage of the stabilized one-step estima-
tor and TMLE in Figures 1 and 2. Here, we redefine the
efficiency as the ratio between the empirical variance of
the collaborative estimator and that of the stabilized es-
timator. An interesting dichotomy between the one-step
and TMLE frameworks emerges as to how the efficiency
varies over δ. For example, as the threshold moves away
from 0, the efficiency of the one-step estimator tends to
first increase but then decrease, while the TMLE estima-
tor monotonically increases efficiency, eventually approx-
imating the super-efficiency of the CTMLE. This suggests
that the stabilized TMLE with trimming has potential to
achieve a competitive level of efficiency advantage just
as the CTMLE, and the truly optimal threshold is further
away from zero than δn.

We also replicate the bias and efficiency results based
on the Kang and Schafer (2007) simulation design. De-
tails of the data generating process are described in
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TABLE 2
Comparisons of TMLE estimators for the ATE. Bias: absolute bias (×100); RE: relative efficiency defined as the ratio between the empirical

variance of the standard TMLE and that of the estimator of interest; CP: empirical coverage probability (%)

γ = 0 γ = 3 γ = 6

Estimator Bias RE CP Bias RE CP Bias RE CP

n = 100 TMLE 0.2 1.00 91.2 6.2 1.00 75.8 27.1 1.00 42.3
CTMLE 0.0 1.13 88.5 1.0 2.45 82.3 1.6 6.48 62.0
TMLEδn

0.1 1.09 93.2 0.8 2.29 92.1 1.1 5.92 82.7
TMLEoverlap 0.1 1.17 93.7 0.7 2.38 92.7 1.5 5.78 85.2
g-comp 0.2 1.18 – 1.1 2.50 – 1.7 6.47 –

n = 500 TMLE 0.2 1.00 94.5 0.7 1.00 91.8 4.3 1.00 71.7
CTMLE 0.2 1.05 93.0 0.0 1.49 87.5 0.1 3.58 64.7
TMLEδn

0.2 1.02 93.9 0.2 1.33 94.8 0.1 3.20 93.1
TMLEoverlap 0.2 1.09 95.1 0.0 1.48 94.4 0.3 3.40 92.6
g-comp 0.2 1.09 – 0.0 1.49 – 0.1 3.59 –

n = 1000 TMLE 0.3 1.00 94.4 0.2 1.00 92.9 0.7 1.00 83.4
CTMLE 0.3 1.01 93.5 0.2 1.55 88.0 0.5 2.70 65.4
TMLEδn

0.2 1.02 94.2 0.1 1.38 95.5 0.3 2.34 94.2
TMLEoverlap 0.3 1.08 94.9 0.2 1.55 94.8 0.4 2.64 92.9
g-comp 0.2 1.08 – 0.2 1.58 – 0.5 2.70 –

FIG. 1. Performance of the trimmed one-step estimators as a function of threshold δ ∈ [0,0.3]. Bias: absolute bias (×100); Efficiency: defined as
the ratio between the empirical variance of the collaborative one-step estimator and that of the trimmed one-step estimator; CP: empirical coverage
probability (%).
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FIG. 2. Performance of the trimmed TMLE estimators as a function of threshold δ ∈ [0,0.3]. Bias: absolute bias (×100); Efficiency: defined as
the ratio between the empirical variance of collaborative TMLE and that of the trimmed TMLE; CP: empirical coverage probability (%).

Benkeser et al. Similar to the first simulation design,
we summarize in Table 3 the absolute bias, relative ef-
ficiency and empirical coverage corresponding to various
one-step estimators and TMLE for estimating the ATE;
the true ATE is zero. In both the one-step and TMLE
frameworks, we consider the trimming stabilization with
δ ∈ {0.05,0.15,0.25} and the overlap stabilization, be-
yond the standard and collaborative estimators. Given the
true propensity score and outcome model are highly non-
linear functions of the observed covariates, these models
are estimated by the flexible regression tool, HAL-MLE.
Neither the collaborative one-step nor the stabilized one-
step estimators improves the efficiency of the standard
one-step estimator, regardless of sample sizes considered.
However, both the collaborative and the stabilized TMLE
provide modest efficiency benefits at the smallest sample
size n = 100. In this scenario, the trimming stabilization
with δ = 0.25 reaches the same efficiency as the CTMLE
and the nontargeted outcome regression estimates. Due
to the nonnegligible bias and the underestimation of true
variance (via the noncross-validated sample variance of

the influence function), the coverage of all interval esti-
mates are substantially lower than nominal.

5. CONCLUDING REMARKS

Benkeser et al. have made an important contribution
by providing a super-efficient estimator of ATE with the
adaptive propensity score. Under the assumption that the
initial outcome model is consistently estimated, the pro-
posed estimator leads to greater efficiency than its stan-
dard locally efficient counterpart, especially under lack of
overlap. In our discussion, we have explored alternative
methods to improve efficiency of the standard implemen-
tation through a stabilization factor h(w). While the adap-
tive propensity score could eliminate the deleterious effect
of instrumental variables or nonconfounders in estimating
the assignment mechanism (avoiding the Z-bias), the sta-
bilization factor directly removes or down-weights the in-
fluential observations with extreme propensity scores un-
der lack of overlap. In both simulation designs, we ob-
serve an efficiency advantage over the standard one-step
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TABLE 3
Comparisons of estimators for estimating ATE in the Kang and Schafer (2007) simulation design. Bias: absolute bias (×100); RE: relative
efficiency defined as the ratio between the empirical variance of the standard estimator (OS or TMLE) and that of the estimator of interest;

CP: empirical coverage probability (%)

Estimator Bias RE CP Estimator Bias RE CP

n = 100 OS 0.89 1.00 16.8 TMLE 0.97 1.00 14.6
COS 0.89 1.00 17.9 CTMLE 0.89 1.13 17.9
OS[δ=0.05] 0.89 1.00 17.3 TMLE[δ=0.05] 0.93 1.10 15.4
OS[δ=0.15] 0.89 1.00 18.1 TMLE[δ=0.15] 0.90 1.12 17.9
OS[δ=0.25] 0.89 0.99 19.0 TMLE[δ=0.25] 0.88 1.13 19.6
OSoverlap 0.89 1.00 17.7 TMLEoverlap 0.91 1.11 16.2
g-comp 0.86 1.01 – g-comp 0.86 1.13 –

n = 500 OS 0.21 1.00 16.1 TMLE 0.21 1.00 16.1
COS 0.21 1.00 16.2 CTMLE 0.21 1.00 16.4
OS[δ=0.05] 0.21 1.00 16.2 TMLE[δ=0.05] 0.21 1.00 16.3
OS[δ=0.15] 0.21 1.00 16.4 TMLE[δ=0.15] 0.21 1.00 16.5
OS[δ=0.25] 0.21 1.00 17.2 TMLE[δ=0.25] 0.21 1.00 16.5
OSoverlap 0.21 1.00 16.2 TMLEoverlap 0.21 1.00 16.4
g-comp 0.21 1.00 – g-comp 0.21 1.00 –

n = 1000 OS 0.11 1.00 19.9 TMLE 0.11 1.00 19.3
COS 0.11 1.00 20.6 CTMLE 0.11 1.01 20.3
OS[δ=0.05] 0.11 1.00 20.5 TMLE[δ=0.05] 0.11 1.01 19.9
OS[δ=0.15] 0.11 1.00 22.0 TMLE[δ=0.15] 0.11 1.01 22.2
OS[δ=0.25] 0.11 1.00 23.9 TMLE[δ=0.25] 0.11 1.01 23.6
OSoverlap 0.11 1.00 21.0 TMLEoverlap 0.11 1.01 20.8
g-comp 0.11 1.01 – g-comp 0.11 1.01 –

estimator and TMLE by including the stabilization fac-
tor. In particular, with an appropriately selected threshold
δ, the trimming stabilization has potential to achieve the
same super-efficiency as the collaborative estimator, but
only within the TMLE framework. It would be desirable
to automate the selection of δ for TMLE in a data-adaptive
fashion along the lines of Bembom and van der Laan
(2008) and Ju, Schwab and van der Laan (2019). Finally,
we conjecture that both the collaborative and stabilized
estimators would also have an efficiency advantage for
estimating the pairwise ATEs with multiple treatments,
via the formulation of an adaptive generalized propensity
score (Imbens, 2000). The lack of overlap is a frequent
challenge for estimating average causal effects with mul-
tiple treatments, and it would be worthwhile to explore
the super-efficiency property of the collaborative estima-
tors and stabilized estimators corresponding to multino-
mial trimming and generalized overlap specifications of
h(w) (Li and Li, 2019).
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