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Abstract: Global null testing is a classical problem going back about
a century to Fisher’s and Stouffer’s combination tests. In this work, we
present simple martingale analogs of these classical tests, which are ap-
plicable in two distinct settings: (a) the online setting in which there is a
possibly infinite sequence of p-values, and (b) the batch setting, where one
uses prior knowledge to preorder the hypotheses. Through theory and sim-
ulations, we demonstrate that our martingale variants have higher power
than their classical counterparts even when the preordering is only weakly
informative. Finally, using a recent idea of “masking” p-values, we develop
a novel interactive test for the global null that can take advantage of co-
variates and repeated user guidance to create a data-adaptive ordering that
achieves higher detection power against structured alternatives.
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1. Introduction

This paper proposes new martingale-based methods for testing the global null
corresponding to hypotheses {Hi}i∈I using a corresponding set of p-values
{pi}i∈I and possibly other covariates {xi}i∈I , where the index set I can be
finite or countably infinite. Global null testing corresponds to testing if all indi-
vidual hypotheses are truly nulls (denoted as Hi = 0), against its complement:

HG0 : Hi = 0 for all i ∈ I, HG1 : Hi = 1 for at least one i ∈ I.
As we review later in the introduction, this is a well-studied classical problem.
We consider two settings, the batch setting and the online setting, and our
proposed framework applies to both settings:

• Batch setting: we have access to a fixed batch of n hypotheses, thus
I = {1, . . . , n}.

• Online setting: an unknown and potentially infinite number of hypotheses
arrive sequentially in a stream, thus I = {1, 2, . . . , k, . . .}.

Most common global null tests involve a one-step operation, comparing a single
statistic with a critical value derived from its null distribution. Observing that
many classical tests effectively use a martingale-type test statistic, we propose
novel martingale analogs of these tests that are inherently sequential (multi-
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step) in nature, and thus naturally apply in the online setting, or in the batch
setting if an ordering can be created using prior knowledge and/or the data.
Intriguingly, the ordering may also be created interactively : this means that an
analyst may adaptively create the ordering in a data-dependent manner if they
adhere to a particular protocol of masking and unmasking (the definition is
introduced later in equation (3)). In order to understand why our interactive
martingale tests have desirable properties (both controlling type-I errors and
having higher power in structured settings), it is necessary to present them last,
after having derived the vanilla non-interactive martingale global null tests,
which are also novel in their own right. Specifically, for the purposes of pro-
gressively developing intuition, our treatment follows three steps of increasing
complexity:

• (Preordered setting, Section 2) In the batch setting, the analyst employs
prior knowledge (data-independent) to preorder the hypotheses. In the
online setting, an ordering of hypotheses is provided by nature.

• (Data-adaptive ordering, Section 3.1) In the batch setting, the hypotheses
are unordered, but an adaptive data-dependent ordering is created based
on “masked” p-values. In the online setting, nature orders hypotheses, but
the analyst discards some hypotheses from the ordering based on their
masked p-values. Even though the data-adaptive and preordered settings
proceed sequentially and handle the p-values one at a time, the analyst
plays no role during this sequential process, as all the rules for how to
order the hypotheses are prespecified before the data is observed.

• (Interactive ordering, Section 3.2). The utility of masking to enable in-
teraction with a human is most compelling in the batch setting, where in
addition to the unordered hypotheses, we suppose that the analyst also
has additional side information in the form of covariates, and perhaps prior
knowledge in the form of structural constraints on the non-null set. Using
these, and any working models of their choice, the analyst interactively
creates an ordering by initially observing only masked p-values, and pro-
gressively unmasking them one at a time. The analyst can update their
prior knowledge and/or structural constraints and/or working model in
the middle of the process (when only some hypotheses have been ordered
and their p-values unmasked), thus intervening to change the rest of the
ordering. It is important to note that even though an analyst is allowed
to make subjective decisions at each step of the interaction, an algorithm
can be deployed in place of the analyst.

Since all our tests proceed sequentially in nature, accumulating evidence from
one hypothesis at a time, the type-I error guarantee we achieve is that

P0(∃i ∈ I : the test stops and rejects HG0 after step i) ≤ α,

where P0 is the probability under the global null HG0. They are judged based
on their power,

P1(∃i ∈ I : the test stops and rejects HG0 after step i),
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where P1 is the probability under some alternative in HG1. We remark that even
though we formulate our tests in terms of a target type-I error level α, there
is an equivalent formulation in terms of creating a sequential “always-valid” p-
value for the global null that is valid at any arbitrary stopping time. Section 7
explicitly connects these two interpretations.

1.1. Assumptions

Instead of assuming that the marginal distribution of null p-values is exactly uni-
form, we relax it by allowing conservative p-values defined in two different ways.
We either assume that (a) if the global null is true, all p-values are stochastically
larger than uniform:

If HG0 is true, P(pi ≤ t) ≤ t for all t ∈ [0, 1], i ∈ I, (1)

or assume that (b) if the global null is true, all p-values are mirror-conservative:

If HG0 is true, fi(a) ≤ fi(1− a) for all 0 ≤ a ≤ 0.5, i ∈ I, (2)

where fi is the probability mass function of pi for discrete p-values or the density
function otherwise. Neither of the aforementioned conditions implies the other,
though the former is more commonly made. Examples of mirror-conservative p-
values include permutation p-values and one-sided tests of univariate parameters
with monotone likelihood ratio [14]. In the majority of the paper, it may be
easier for the reader to pretend that the null p-values are exactly uniform for
simplicity. Later in the paper, we explicitly demonstrate the distinct advantages
of our tests for conservative p-values. We also assume that if the global null is
true, the null p-values are independent of each other:

If HG0 is true, {pi}i∈I are jointly independent.

This is also a common assumption; Fisher’s test [7] and Tukey’s Higher Crit-
icism [4] are two other examples. Even though we are cognizant that inde-
pendence is a strong assumption that only holds in some limited situations in
practice (like meta-analysis), we wish to explore how much it can be exploited
to design novel tests, for instance enabling the use of martingale techniques and
“masking”, as described soon.

We remark that all aforementioned assumptions on the null p-values only need
to hold under the global null. If the global null is not true, we do not require
the null p-values (or the non-nulls) to have any particular marginal distribution
or to satisfy any independence assumptions.

1.2. Related work

Our paper builds on and connects three distinct lines of work: classical work
on global null testing, modern ideas on permitting interaction using p-value
masking, and recent ideas on uniform martingale concentration inequalities. We
discuss these separately below.
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Global null testing. Most previous tests for the global null have been de-
signed to work in the batch setting, and it continues to be an active area of
research [22, 23, 13, 18, 29]. Our work is most directly connected to tests which
accumulate information as a sum, such as Fisher’s and Stouffer’s tests [27].

There are many other global null tests like the Bonferroni method, Simes’
test [26], and Higher Criticism, and our techniques do not apply to these. Im-
portantly, we do not claim that our interactive martingale tests are more pow-
erful than prior work in any universal sense, but instead, our goal is to expand
the creative design space of new procedures that can involve a human in the loop
and explore their potential benefits.

Permitting interaction by masking the p-values. The motivation behind
masking p-values is to permit interaction with an analyst, who may freely employ
models, prior knowledge and intuition, without any risk of violating type-I error
control. The main idea is to decompose each individual p-value pi into two parts,

h(pi) = 2 · 1{pi < 0.5} − 1 and g(pi) = min{pi, 1− pi}. (3)

Here, g(pi) is called the masked p-value, while h(pi) is called the missing bit
since it is either plus or minus one. The critical observation is that h(pi) and
g(pi) are independent if Hi is null (pi is uniformly distributed). Masking was
introduced recently by Lei and Fithian [14] in the context of false discovery
rate (FDR) control, and further generalized and extended in Lei, Ramdas and
Fithian [15] for FDR control under structural constraints, and then followed by
work on FWER control [5]. The underlying property of masking can be traced
to the “knockoff” method by Barber and Candès [2, 1]. In this paper, we show
that masking is also useful for global null testing in structured settings, and
permitting interaction with an insightful analyst can improve power (but it is
impossible for any analyst to violate type-I error control).

Uniform martingale concentration inequalities. All new test statistics
in this paper are designed to be martingales under the global null. The type-I
error control guarantees for our tests thus stem from utilizing uniform martin-
gale concentration inequalities. These “boundary crossing” inequalities are high
probability statements about the behavior of the entire trajectory of the mar-
tingale. In fact, several of our martingales have increments which are either fair
coin flips (±1) or standard Gaussians, which are some of the most well studied
objects in sequential analysis, especially through their natural connections to
Brownian motion [25]. In this paper, we care about nonasymptotic guarantees
on the type-I error, and hence we use some recent line-crossing inequalities [9]
and new curve-crossing inequalities [10] that are nonasymptotic generalizations
of the law of the iterated logarithm, which goes back to the work by Robbins [20]
(see Appendix D for a detailed comparison). For a martingale Mk, these bound-
aries are denoted uα(k) and satisfy

P(∃k ∈ N : Mk > uα(k)) ≤ α.
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In the next section, we provide the exact expressions for the uα(k) that we
use, which are chosen because they have similar qualitative behavior but tighter
constants than earlier work, references to which may be found within the afore-
mentioned papers.

1.3. Outline

To progressively build intuition, the preordered martingale test is described in
Section 2 followed by the adaptively ordered martingale test in Section 3.1. In
Section 3.2, the general interactively ordered martingale test is presented. For
all these methods, the type-I error guarantees are presented immediately after
the algorithms. However, power guarantees for all algorithms in the Gaussian
sequence model are derived in Section 4. We then perform extensive simulations
in Section 5. In Section 6, we examine the robustness of our test to conservative
nulls. Section 7 explicitly describes how to interpret our tests as tracking an
anytime-valid sequential p-value. Finally in Section 8, we discuss alternative
ways of masking p-values. We end with a brief summary in Section 9, and defer
all proofs and additional experiments to the Appendix.

2. The preordered martingale test

The preordered martingale test is not a single test, but instead, a general frame-
work to extend the application of many classical methods that use the sum or
product of transformed p-values, such as Stouffer’s method [27] and Fisher’s
method [7], from the batch setting to the online setting. In this section, the
ordering of hypotheses is fixed in advance by nature, or by the analyst using
prior knowledge to place potential/suspected non-nulls early in the ordering.

The general framework. Our test takes the following general form:

Reject the null if

k∑
i=1

f(pi) ≥ uα(k), for some k ∈ I, (4)

where f(·) is some transformation of the p-value, and {uα(k)}k∈N is a bound-
ary sequence depending on the choice of f . The boundary is determined by
first establishing that the sequence {

∑k
i=1 f(pi)}k∈N is a martingale under the

global null (after appropriate centering if needed). We then characterize the tail
behavior of the martingale increments f(pi) for a uniform p-value. Finally, to
control the type-I error, we employ recent results [9, 10] which provide bound-
aries under parametric and nonparametric conditions on the increments, such
that with high probability the entire trajectory of the martingale is contained
within the boundary.

The preordered martingale test improves on its original batch version in two
aspects. First, the applicability of the original test is extended from the batch
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setting to the online setting. Second, in the case of sparse non-nulls, the martin-
gale version greatly improves the detection power if the non-nulls appear early
on. As an example of converting a classic test to its martingale version, we de-
velop the martingale Stouffer test below. Two more examples can be found in
Appendix E for a martingale Fisher test using f(pi) = −2 log pi, and Appendix F

for a martingale chi-square test using f(pi) =
[
Φ−1(1− pi)

]2
.

An example: martingale Stouffer test (MST). The batch test by Stouf-
fer [27] calculates Sn =

∑n
i=1 Φ

−1(1 − pi), where Φ(·) denotes the standard
Gaussian CDF. Since the distribution of Sn under the global null is N (0, n), the
batch test rejects when Sn >

√
nΦ−1(1−α). To design the martingale test, sim-

ply observe that {Sk}k∈I is a martingale whose increments f(pi) = Φ−1(1− pi)
are standard Gaussians under the global null. There are several types of uniform
boundaries uα(k) for a Gaussian increment martingale, and here we give two ex-
amples: linear and curved. The first boundary (transformed from equation (2.29)
in Howard et al. [9]), which can be derived from the Gaussian sequential prob-
ability ratio test [30], grows linearly with time. Specifically, the test rejects the
global null if

∃k ∈ N :

k∑
i=1

Φ−1(1− pi) ≥
√

− logα

2m
k +

√
−m logα

2
, (5)

where m ∈ R+ is a tuning parameter that determines the time at which the
bound is tightest: a larger m results in a lower slope but a larger offset, making
the bound loose early on. We suggest a default value of m = n/4 if the number
of hypotheses n is finite, but it should be chosen based on the time by which we
expect to have encountered most non-nulls (if any). In contrast, the martingale
Stouffer test with a curved boundary (equation (2) in Howard et al. [10]) rejects
the global null if

∃k ∈ N :

k∑
i=1

Φ−1(1− pi) ≥ 1.7

√
k

(
log log(2k) + 0.72 log

5.2

α

)
. (6)

These bounds differ in the quota of error budget distributed to every step k =
1, 2, . . ., which can influence the detection power of the martingale test as it
is more likely to exceed a tighter bound. Curved bounds have a slower growth
rate O(

√
k log log k) than the linear bounds, indicating a tighter bound for large

enough k, but they are usually looser for small k. Comparisons of the test with
several linear and curved boundaries are given in Appendix D. Generally, the
linear bound is recommended for the batch setting, and the curved bound for
the online setting.

The martingale Stouffer test with either boundary controls the type-I error,
if under the global null the sum {

∑k
i=1 Φ

−1(1− pi)}k∈N is stochastically upper
bounded by a martingale with standard Gaussian increments, which holds under
our assumption that the null p-values are stochastically larger than uniform, as
stated below.
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Theorem 1. If the p-values are independent and stochastically larger than uni-
form under the global null, then the martingale Stouffer test with linear bound-
ary (5) or curved boundary (6) controls the type-I error at level α.

The next natural question is what we can prove about the detection power of
the aforementioned tests. While this is treated more formally later in the paper,
for now it suffices to say that the power of the martingale Stouffer test relies on
a good preordering that places non-nulls up front. If such prior knowledge is not
available (and say the preordering is completely random, or even adversarial),
then the preordered martingale tests can have poor power. This motivates the
development of methods based on data-adaptive orderings, as treated next.

3. Adaptive and interactive methods

To develop intuition progressively, we first introduce a martingale test whose
ordering depends on the p-values in Section 3.1, and extend it in Section 3.2 to
an interactive test, whose ordering can additionally depend on side information
(covariates) and human interaction.

3.1. The adaptively ordered martingale test (AMT)

If we naively use the p-values to both determine the ordering as well as form
the test statistic, the resulting “double-dipped” sequence of test statistics does
not form a martingale under the global null. In order to allow using the p-value
for determining the ordering, we use a recent idea called masking, as briefly
mentioned in the introduction. Each p-value pi is decomposed as

h(pi) = 2 · 1{pi < 0.5} − 1, g(pi) = min{pi, 1− pi},

where h(pi) is called the missing bit, and g(pi) is called the masked p-value.
The masked p-values are used to create the ordering (by placing smaller ones
up front) while the test statistic just sums the missing bits h(pi) in that order.
Since h(pi) and g(pi) are independent under the global null, sorting by the g(pi)
values results in a uniformly random ordering, and the sum of h(pi) is just a
random walk of independent coin flips. Formally, define the set Mk as the first
k hypotheses ascendingly ordered by g(pi). Our test rejects HG0 if

∃k ∈ {1, . . . , n} :
∑
i∈Mk

h(pi) ≥ uα(k),

where the upper bound uα(k) is the same as for the martingale Stouffer test
in equations (5) and (6), since the sequence of sums

∑
i∈Mk

h(pi) is also a
martingale with 1-subGaussian increments under the global null. The adaptively
ordered martingale test in the batch setting is summarized below.
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Algorithm 1: The adaptively ordered martingale test (batch setting)

Input: p-values (pi)
n
i=1, target type-I error rate α;

Procedure: Initialize M0 = ∅;
for k = 1, . . . , n do

Mk = Mk−1 ∪ argmini/∈Mk−1
g(pi);

if
∑

i∈Mk
h(pi) > uα(k) then

reject the global null and stop;

end

The adaptively ordered martingale test in the online setting proceeds slightly
differently: it screens the hypotheses by g(p) so that only promising non-nulls
enter the set Mk. Specifically, given a threshold parameter c (such as 0.05), the
set Mk expands at time t only if g(pt) < c, as summarized below.

Algorithm 2: The adaptively ordered martingale test (online setting)

Input: target type-I error rate α, threshold parameter c;
Procedure: Initialize M0 = ∅, size k = 0;
for t = 1, . . . , do

pt is revealed by nature;
if g(pt) < c then

k ← k + 1, Mk = Mk−1 ∪ {t};
if
∑

i∈Mk
h(pi) > uα(k) then

reject the global null and stop;

end

The adaptively ordered martingale test controls type-I error if under the
global null, all p-values are mirror-conservative (2), as formally stated below.

Theorem 2. If the p-values are independent and mirror-conservative under the
global null, then the adaptively ordered martingale test controls the type-I error
at level α.

In the batch setting, the adaptive ordering (as realized by the nested sequence
{Mk}) is fully determined at the start of the procedure by sorting the masked
p-values. In the next section, we demonstrate that in the presence of indepen-
dent covariates xi for each hypothesis and side information such as structural
constraints on potential rejected sets, it is actually beneficial to interactively
determine the ordering one step at a time with a human-in-the-loop, who may
be guided by the masked p-values as well as intuition and working models.

3.2. The interactively ordered martingale test (IMT)

The interactively ordered martingale test also applies to both batch and online
settings. We first describe the method in the batch setting with side information
and structural constraints, where the power of interactivity is more compelling.
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To begin, first suppose that in addition to the p-values, the scientist also
has some side information about each hypothesis available to them in the form
of covariates xi. For example, if the hypotheses are arranged in a rectangular
grid, then xi could be the coordinates on the grid for hypothesis i (examples in
Section 5.1). We then suppose that the scientist also has some prior knowledge
or intuition about what structural constraints the non-nulls would have, if the
global null is false. For example, perhaps the scientist thinks that the non-nulls
(if any) would be clustered on the grid, themselves forming a rectangular shape
(of some size, at some location). Our main assumption about the covariates is:

Under the global null, xi ⊥ pj for all i, j ∈ I.
This is a common assumption for tests that incorporate covariate information,
such as Independent Hypothesis Weighting [12], AdaPT [14], and STAR [15]. In
fact, because the aforementioned methods aim at error control of more stringent
metrics such as FDR and FWER, their assumptions are stronger in the sense
that the independence between xi and pi is required for the hypotheses that
are truly null even when the global null is not true (i.e., there exist non-nulls).
Our interactively ordered martingale test satisfies the following two properties:
(a) if the global null is true, the type-I error is controlled, regardless of what the
scientist thinks or acts, (b) if the global null is false, and the prior knowledge
and/or structural constraints are accurate (or somewhat so), then the power of
the test is high. The interactive test proceeds as follows:

• At the beginning, all covariates and masked p-values (xi, g(pi))i∈I are
revealed to the scientist, while only the missing bits (h(pi))i∈I remain
hidden. We initialize M0 = ∅.

• The scientist repeats the following at each time step k ≥ 1: they choose a
promising hypothesis i�k from [n]\Mk−1, and update Mk = Mk−1 ∪ {i�k}.

• On doing so, they learn h(pi�k), and thus keep track of Sk :=
∑

i∈Mk
h(pi).

If Sk > uα(k) for any k, they stop and reject the global null.

Type-I error control is essentially guaranteed because regardless of how the
scientist acts at each step, if the global null is true, all the g(pi) values and
the revealed h(pi) values do not provide any information about the still hidden
missing bits, and thus Sk is a martingale.

When the global null is false, we expect the power to be high because of the
following reasons. First, the scientist may use any working model of their choice
(or none at all) to guide their choice at each step. For example, they can attempt
to estimate the likelihood of being non-null for each hypothesis i at each step k,

denoted as π
(k)
i (posterior probability of being non-null). In fact, as they learn

the missing bits at each step, they can change their model or update their prior
knowledge based on the observed p-values thus far. The information available
to the scientist at the end of step k is denoted by the filtration

Fk := σ ((xi, g(pi))
n
i=1, (pi)i∈Mk

) ,

and thus the choice i�k is predictable, meaning it is measurable with respect
to Fk−1. The general interactive framework is summarized below as Algorithm 3.
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Algorithm 3: The interactively ordered martingale test (batch setting)

Information available to the scientist: side covariate information
and/or structural constraints, and masked p-values F0 := σ((xi, g(pi))

n
i=1),

target error α;
Procedure: Initialize M0 = ∅;
for k = 1, . . . , n do

Using Fk−1, pick any i�k ∈ [n]\Mk−1. Update Mk = Mk−1 ∪ {i�k};
Reveal h(pi�k) and update Fk := σ ((xi, g(pi))

n
i=1, (pi)i∈Mk

);

if
∑

i∈Mk
h(pi) > uα(k) then

reject the global null and exit;

end

The interactively ordered martingale test in the online setting screens the
hypotheses based on information in Ft−1 such that pt enters the set Mk only
when it is a promising non-null, as described in Algorithm 4.

Algorithm 4: The interactively ordered martingale test (online setting)

Procedure: Input target error α. Initialize M0 = ∅, size k = 0;
for t = 1, . . . , do

Information available to the scientist: side covariate information
and/or structural constraints, and (masked) p-values
Ft−1 := σ((xi, g(pi))

t
i=1, (pi)

t−1
i=1);

Using Ft−1, decide whether hypothesis t should be included in Mk−1;
if include hypothesis t then

k ← k + 1, Mk = Mk−1 ∪ {t};
if
∑

i∈Mk
h(pi) > uα(k) then

reject the global null and stop;

end

The aforementioned algorithms (or frameworks) comes with the following
error guarantee, regardless of the choices made by the scientist.

Theorem 3. If under HG0, the p-values are mirror-conservative and are in-
dependent of each other and of the covariates xi, then the interactively ordered
martingale test controls the type-I error at level α.

Note that there is no requirement whatsoever on the null or non-null p-values
(i.e., p-values from the hypotheses that are truly non-null) when the global null
is false. As before, note that under the global null, the missing bits are random
fair coin flips, and the masked p-values are uniform on [0, 0.5] and completely
uninformative about the missing bit. However, under the alternative, the true
signals have very small masked p-values (say 0.01, 0.003, etc.) and along with
covariate information, one may be able to infer that the missing bit is more
likely to be +1 and thus include it in the ordering. Continuing the grid example
from the start of this section, by revealing all but one bit per p-value at the
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start of the procedure, the scientist can possibly notice if small masked p-values
are randomly scattered or clustered on the grid.

Remark 1. For any particular setup, like our example of a grid with a cluster
of signals, it may be possible to design a better global null test that is perfectly
suited for that setting. Hence, we do not claim that our interactive method is
the right test to use in all problem setups. Its main advantage is its generality:
instead of having to design a new test for each situation (trying to figure out
how to optimally combine prior knowledge, structural constraints and covariates
from scratch), our general framework provides a simple and flexible alternative.

The correctness of the test (proof in Appendix A.2) hinges on one bit from
each p-value being hidden from the scientist. Once this protocol has been run
once, and all p-values have been unmasked, the procedure obviously cannot be
run a second time from scratch. In other words, our interactive setup does not
prevent these and related forms of p-hacking. This is similar to the traditional
offline setup, where it is not allowed to pick the global null test after observing
the p-values and guessing which test will have the highest power to reject, and
if scientists do this anyway and report only the final finding, we would have no
way to know whether such inappropriate double-dipping has occurred.

It is worth remarking on the main disadvantage of such a test, relative to (say)
the martingale Stouffer test introduced earlier. The interactive test statistic is a
sum of coin flips (missing bits) – no matter how strong the signal might be, the
interactive test statistic can only increase by one at most. On the other hand, the
martingale Stouffer test adds up Gaussians, and if there is a strong signal (very
small p-value), it can stop very early. If a relatively good prior ordering is known
to the scientist, the martingale Stouffer test should be preferred. However, if the
prior knowledge is not in the form of an ordering, but some intuition about how
the covariates and p-values may be related or what type of structure the non-
nulls may have (if any), then the interactive test can be much more powerful.

The above framework leaves the specific strategy of expanding Mk unspeci-
fied, allowing much flexibility. Now, we give one example of how i�k can be chosen
based on the available information Fk. One straightforward choice for i�k is the
hypothesis not in Mk with the highest posterior probability of being non-null,
computed with the aid of a working model, like the Bayesian two groups model,
where each p-value pi is drawn from a mixture of a null distribution F0 with
probability 1− πi and an alternative distribution F1 with probability πi:

pi ∼ (1− πi)F0 + πiF1. (7)

For example, we can choose F0 as a uniform and F1 as a beta distribution. We
may further posit a working model that treats πi as a smooth function of xi.
The masked p-values g(pi) and the revealed missing bits in Fk−1 can be used
to infer the other missing bits using the EM algorithm (see Appendix G). The
missing bits that are inferred to be more likely +1 should be chosen, potentially
in accordance with other structural constraints. Importantly, the type-I error is
controlled regardless of the correctness of the working model or any heuristics
to expand Mk.
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4. Power guarantees of non-interactive procedures

This section is devoted to an analysis of the power of the martingale Stouffer test
and the adaptively ordered martingale test. It’s hard to analyze the power for
the interactively ordered martingale test due to its flexible framework offered to
the user: it can have high power if the user specifies a good interactive algorithm,
and vice versa. Nevertheless, to demonstrate the advantages of the interactively
ordered martingale test, we present numerical results under structured non-nulls
in the next section.

Our analysis includes power guarantees in the batch and online settings in a
simple Gaussian setup. Specifically, we consider a simple multiple testing prob-
lem where each hypothesis is a one sided hypothesis on the mean value of a
Gaussian. In this setting, the i-th null hypothesis is that a Gaussian has zero
mean, and the alternative is that the Gaussian has a positive mean μi > 0.

Setting 1. We observe Z1, . . . , Zn where Zi ∼ N(μi, 1) and wish to distinguish
the following hypotheses:

HG0 : μi = 0 for all i ∈ I, versus

HG1 : μi > 0 for some i ∈ I.

In the remainder of this section, we let ri := I(μi > 0) indicate the non-null
hypotheses. Although we compare the power of various tests in this relatively
simple setting, we emphasize that our tests are more broadly applicable to gen-
eral settings where the p-values are mirror-conservative under the null.

With this setup in place, we now summarize the main results of this section.

• In Section 4.1, we focus on the batch setting. In Theorem 4, we compare the
power of the martingale Stouffer test with its batch counterpart, showing
that when a good a-priori ordering is used the martingale Stouffer test
can have much higher power. Our next result, Theorem 5, studies the
adaptively ordered martingale test in the batch setting. The adaptively
ordered martingale test expands the testing set Mk based on masked p-
values, and tests the global null using the missing bits h(pi). We show
that in cases when the signal strength is high, re-ordering by the masked
p-values can significantly improve power of the resulting test by ensuring
that promising hypotheses are considered early on with high-probability.

• In Section 4.2 we turn our attention to the online setting. In Theorem 6,
we study the power of a simple online Bonferroni test, and compare this in
Theorem 7 with the power of the adaptively ordered martingale test. For
the adaptively ordered martingale test, we study the role of the threshold
parameter c in the power of the test, characterizing some of the tradeoffs
involved in the choice of this parameter.

Figure 1 visualizes the above power comparisons by two simple simulations in
batch and online settings1. Details of the batch experiment appear next.

1https://github.com/duanby/interactive-martingale has R code to reproduce all plots.

https://github.com/duanby/interactive-martingale
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Fig 1. Illustrative simulations that compare the batch and online martingale Stouffer test
(MST) and the adaptively ordered martingale test (AMT) under Setting 1. All plots in this
paper present the averaged power (in the batch setting) and averaged rejection time (in the
online setting) over 500 repetitions, and the type-I error is α = 0.05.

We simulate 104 hypotheses with 50 non-nulls (μi = 3). The position of
the non-nulls is encoded by a sparsity parameter: the non-nulls are uniformly
distributed in the first sparsity · n hypotheses. Thus, larger sparsity indicates
a poorer prior ordering (the non-nulls are more scattered), and it is expected
to result in lower power for order-dependent methods. Indeed, we observe that:
(1) two batch procedures (the adaptively ordered martingale test (AMT) in the
batch version and Stouffer’s test) get the p-values as a set, ignoring the prior
ordering, and hence their power is a flat line; (2) the online AMT and the MST
procedure uses p-values in the ordering provided to it, and their power degrades
as the quality of the ordering degrades; (3) the online AMT is less sensitive to
bad prior ordering than the MST because it discards possible nulls based on the
masked p-values; but it could still let in many nulls if the discarding threshold
is not tight and most nulls are in front, leading to lower power under a worse
prior ordering; (4) overall, the AMT procedures (batch and online) are more
robust to bad prior ordering than the MST because they adaptively alter the
ordering.
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Keep in mind that the simulations above and the power analysis below assume
no prior knowledge, but the interactively ordered martingale test has higher
power when taking advantage of the non-null structure, as shown in Section 5.

4.1. Power guarantees in the batch setting

We begin by studying the power of the batch, martingale and interactive mar-
tingale tests in the batch setting.

The batch Stouffer test and the martingale Stouffer test. The batch
Stouffer test simply aggregates the observed Z1, . . . , Zn and compares this with
an appropriate threshold. In contrast, the martingale Stouffer test sequentially
compares partial aggregations with an appropriate threshold.

To state our result compactly, for a specified value γ, we define:

Cγ
k := 1.7

√
log log(2k) + 0.72 log

5.2

γ
, (8)

which corresponds to the curved boundary in (6) divided by
√
k. This quan-

tity grows very slowly with k (at the rate of
√
log log(k)) and for all practical

purposes can be treated as a “constant”. We have the following result:

Theorem 4. (a) Batch Stouffer Test (necessary+sufficient): A neces-
sary and sufficient condition for the batch Stouffer test with type-I error α
to have at least 1− β power is that

n∑
i=1

riμi ≥ (Zα + Zβ)n
1/2, (9)

where Zα = Φ−1(1− α) is the (1− α)-quantile of a standard Gaussian.
(b) Martingale Stouffer Test (sufficient): A sufficient condition for MST

to have power at least 1− β is

∃ k ∈ {1, . . . , n},
k∑

i=1

riμi ≥
(
Cα

k + Cβ
k

)
k1/2. (10)

(c) Martingale Stouffer Test (necessary): If α < 1− β, the power of
MST is less than 1− β whenever

∀ k ∈ {1, . . . , n},
k∑

i=1

riμi ≤ (Cα
k − C1−β

k )k1/2.

We defer the proof of this result to Appendix B.1. Several remarks are in
order.

• It is also possible to study the power of the Bonferroni test in the batch
setting. A necessary condition for the power of the Bonferroni method to
be at least 1− β is:

∃ k ∈ {1, . . . , n}, rkμk ≥ Zα/n + Zβ .
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Comparing with the batch Stouffer test, we see that the Bonferroni method
has high power when there is at least one large effect, but can have lower
power in settings where there are many small non-null effects.

• Comparing condition (9) for the batch Stouffer test with its martingale
counterpart (condition (10)), we observe that the batch test rejects when
the average of all the effects is sufficiently large, while the martingale test
rejects as long as any cumulative sum is sufficiently large. In cases where
a good a-priori ordering is available, the martingale test can have much
higher power.

The adaptively ordered martingale test. To ease our calculations, we
assume that all the non-nulls have the same mean value, i.e. μi = μ if ri = 1.
We denote the number of non-nulls by N1 and the nulls by N0. Let Z(ν) be a
Gaussian random variable with unit variance and mean ν, then the non-nulls are
{Zj(μ)} for j = 1, . . . , N1 and we let Z(j)(μ) be the j-th non-null after ordering
by its absolute value so that

|Z(1)(μ)| ≥ |Z(2)(μ)| ≥ . . . ≥ |Z(N1)(μ)|. (11)

Suppose that X ∼ Bin(n, p). We let tα(n, p) denote the α-upper quantile of the
Binomial distribution Bin(n, p), i.e. P(X ≥ tα(n, p)) = α. Recall the definition
of Cγ

k in equation (8). We define, for j ∈ {1, . . . , N1},

qj := P(|Z(0)| > |Z(j)(μ)|),

to be a measure of signal strength. Roughly, the values qj will be close to 0, if
the signal strength μ is large.

Theorem 5. The adaptively ordered martingale test with level α has at least
1− β power if

∃ j ∈ {1, . . . , N1} :

j∑
s=1

(
2P(Z(s)(μ) > 0)− 1

)
≥
(
Cα

n + Cβ/2
n

)
(j + tβ/(2N1)(N0, qj))

1/2. (12)

We prove this result in Appendix B.2. Condition (12) gives a reasonably tight
sufficient condition for the re-ordering based test to have high power (Figure 2).
As expected, when the number of nulls increases (right columns) or the num-
ber of non-nulls decreases (bottom rows), the sufficient condition for the signal
strength μ to guarantee high power grows.

The condition itself can be difficult to interpret as it depends on the distri-
bution of Gaussian order statistics, as well as on the quantiles of a Binomial
distribution. To build some intuition, we consider some simple cases.

• In the extreme case, when the signal strength μ is quite large, the re-
ordering will ensure that the non-nulls are placed early on with high-
probability. In this case, the left-hand side in condition (12) grows linearly
with j. On the other hand, if the signal strength is large then the prob-
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Fig 2. Sufficient signal strength μ for AMT to guarantee both type-I and type-II error control
at 0.05 (derived from (12)), when varying the numbers of nulls N0 ∈ [102, 105] and non-
nulls N1 ∈ [102, 103]. The required signal strength grows when the number of nulls increases
or the number of non-nulls decreases.

abilities qj will be small and we can ignore the term tβ/(2N1)(N0, qj), so
that the right-hand side grows at the rate of roughly

√
j (ignoring log log

factors), ensuring that the condition will be satisfied even for a moderate
number of non-nulls.

• We provide other conditions that suffice to ensure high power in Ap-
pendix B.3 by lower and upper bounding the left and right hand sides
(respectively). We present one sufficient condition here. Suppose there are

sufficient number of non-nulls such that N1 ≥ 6
(
Cα

n + C
β/2
n

)2
, and that

the number of nulls is sufficiently large, i.e. that N0 > 0.1N2
1 . A sufficient

condition for the adaptively ordered martingale test to have 1− β power
is

μ ≥
√
2 log

(
N0

N2
1

)
+ 4 log

(
Cα

n + C
β/2
n

)
+ 3.45. (13)

For comparison, the batch Stouffer test requires

μ ≥ (Zα + Zβ)

√
N0

N2
1

+
1

N1
. (14)

Both conditions are stricter if the ratio N0

N2
1
is large, i.e. in the setting where

there are many nulls and few non-nulls. However, the adaptively ordered
martingale test requires a signal strength that only grows logarithmically
with this ratio.

In Appendix B.3, we relate condition (13) to the detection threshold derived in
the work of Donoho and Jin [4] for the same setting of detecting sparse Gaussian
mixtures.
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To summarize our findings in the batch setting: the martingale Stouffer test
and the adaptively ordered martingale test each require weaker conditions for
the same power than the batch Stouffer test. The martingale Stouffer test relies
on a good pre-defined ordering, whereas the adaptively ordered martingale test
relies on sufficiently large signal strength to ensure that re-ordering is helpful.
We now turn our attention to the online setting.

4.2. Power guarantees in the online setting

When testing the global null, the natural test to compare to is the online Bon-
ferroni method, which chooses a sequence of significance levels {αk}∞k=1 such
that

∑∞
k=1 αk = α, and rejects the global null if

∃ k ∈ N : pk ≤ αk.

The following sections compare the power guarantee of the online Bonferroni
method with the martingale Stouffer test and adaptively ordered martingale
test. Specifically, we derive necessary conditions for the power of the online
Bonferroni test, and compare it with sufficient conditions for the power of our
proposed methods – revealing situation where the online Bonferroni has lower
power than our proposed methods.

The online Bonferroni method versus the martingale Stouffer test.
To better characterize the power of online Bonferroni, we consider two cases:

• Dense non-nulls: the number of non-nulls is infinite,

∞∑
k=1

rk = ∞. (15)

• Sparse non-nulls: the number of non-nulls is finite,

∞∑
k=1

rk ≤ M < ∞ for some large constant M. (16)

The sparse case yields a stronger necessary condition when the sequence of
significance levels satisfies a mild condition that {αk}∞k=1 is nonincreasing.

Unlike previous methods, the online Bonferroni method does not aggregate
p-values, so its power guarantee requires conditions on the individual means.

Theorem 6. Suppose α ≤ (1 − β)/4. In the case of dense non-nulls (15), a
necessary condition for online Bonferroni to have at least 1− β power is

∃k ∈ N : rkμk ≥ 0.25

(√
2 log

(
k2

α

))−1

. (17)
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A stronger necessary condition can be derived for sparse non-nulls (16). If
{αk}∞k=1 is nonincreasing, then online Bonferroni can have at least 1− β power
only if

∃k ∈ N :

⎧⎨⎩rkμk ≥ 0.4
√
αk∗ , if k ≤ k∗,

rkμk ≥
√
log
(

k
4α

)
−
√

2 log
(

M
2(1−β−3α)

)
, if k > k∗,

(18)

where k∗ = M2/α, and αk∗ is the k∗-th significance level.
In contrast, a sufficient condition for the martingale Stouffer test to have at

least 1− β power is

∃ k ∈ N :

k∑
i=1

μiri ≥ (Cα
k + Cβ

k )k
1/2. (19)

Remarks:

• Condition (19) is (up to constants) necessary, because if α < 1 − β, the
power of the martingale Stouffer test is less than 1− β whenever

∀ k ∈ N :

k∑
i=1

riμi ≤ (Cα
k − C1−β

k )k1/2.

• The necessary condition (17) under dense non-nulls requires a lower bound

on rkμk that decreases at the rate of (log k)
−1/2

. This lower bound is fairly
tight: for an example of sequence {αk}∞k=1 that decreases at the rate of
1/[k(log k)2], the power of the online Bonferroni test would be one if all
hypotheses are non-null when k > 1 and the mean value decreases at a

slower rate: μk = (log k)
−1/c

for any c > 2 (see Lemma 4 in Appendix C.1).
• The proof of Theorem 6 is in Appendix C.1. If asymptotically, the mean

values are nonzero but fade as k grows at a fast rate, the online Bonferroni
method has little power, but the martingale Stouffer test can have good
power. For example, suppose all the hypotheses are non-nulls and μk =
k−1/3/10. Controlling the type-I error α at 0.15, the online Bonferroni
method has power less than 0.6 (by condition (17)) whereas the martingale
Stouffer test has power that approaches 1 (by condition (19)).

The adaptively ordered martingale test. For clarity, we consider the same
mean value for the non-nulls, μi = μ if ri = 1. Let a Z score for each hypoth-
esis Hi be Zi = Φ−1(1 − pi). Our guarantee on the power for the adaptively
ordered martingale test depends critically on the choice of the threshold param-
eter c (we consider Algorithm 2 with the filtering Φ−1(1 − g(pt)) > c, which is
equivalent to g(pt) < c′ for c′ = 1−Φ(c)). To concisely state our results, define
the following quantities:

A(μ; c) =
5

3

√
Φ(−c)

Φ(μ− c)− Φ(−μ− c)
,
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B(μ; c) =
10(Φ(μ− c) + Φ(−μ− c)− 2Φ(−c))

9(Φ(μ− c)− Φ(−μ− c))2
∨ 25

(Φ(μ− c) + Φ(−μ− c))2
,

T (β; c) =
0.79 log(15.57/β)Φ2(−c) + 0.4

Φ4(−c)
.

For a reasonable choice of the threshold parameter, i.e., setting c = μ for in-
stance, we note that the quantity B(μ;μ) is upper bounded by a universal
constant (when μ > 0). On the other hand, the quantity A(μ;μ) decays expo-
nentially for large signal strength, i.e., when μ > 0.25 we have:

A(μ;μ) ≤ e−μ2/4. (20)

With these quantities in place, we now state our main result on the power of
the adaptively ordered martingale test.

Theorem 7. A sufficient condition for the adaptively ordered martingale test
with type-I error α and threshold parameter c to have 1− β power is that:

∃ k ≥ T (β; c) :
k∑

i=1

ri ≥ A(μ; c)
(
Cα

k + C
β/3
k

)
k1/2

+B(μ; c)
(
Cα

k + C
β/3
k

)2
k−1/2.

It is interesting to compare the above result with the necessary condition for
the martingale Stouffer test: the power of MST is less than 1− β if

∀ k ∈ N :

k∑
i=1

ri ≤ μ−1
(
Cα

k − C1−β
k

)
k1/2. (21)

Both right-hand sides grow at the rate of k1/2 (ignoring log log factors), but the
μ-dependent term exp(−μ2/4) for AMT (derived in bound (20) for A(μ;μ)) is
much smaller than the corresponding 1/μ term in condition (21) for MST. As
a consequence, the adaptively ordered martingale test will have higher power
when the non-nulls have sufficiently large mean values but are sparse.

To summarize the basic insights we derive in this section, we find that both
in the batch setting and the online setting, the martingale Stouffer test and the
adaptively ordered martingale test require weaker conditions than their classical
counterparts to guarantee the same power when the non-nulls are sparse. The
martingale Stouffer test relies on good prior knowledge to order the hypotheses,
while the adaptively ordered martingale test uses masked p-values to generate
a good ordering. The theoretical analyses in this section discuss the case with
no prior knowledge, and the simulations in the next section delve deeper into
the setting where the non-nulls are structured.

5. Numerical simulations

While the martingale Stouffer test can only use prior knowledge in the form of
non-null probabilities for each hypothesis, the interactively ordered martingale
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Fig 3. Visualization of the interactively ordered martingale test under the block structure: the
hypotheses in Mk, which interactively expands (darker color indicates a lower p-value and
possible non-null).

test combines (a) side covariate information (which could include prior non-null
probabilities in working model (7) as a component) with (b) structural con-
straints on the unknown non-null set, and (c) masked p-values, to infer whether
a hypothesis is non-null and thus include it earlier in the ordering. Here, we
demonstrate that prior structural constraints can help the interactively ordered
martingale test attain a higher power than the martingale Stouffer test and
some classical methods.

We first consider the batch setting and use two non-null structures as simple
examples: a blocked structure within a grid and a hierarchical structure within a
tree; and we discuss similar structures in the online setting. For each of these, we
customize a heuristic strategy to expand Mk in the interactively ordered mar-
tingale test (recalling that type-I error is controlled regardless of the heuristic
used, and only power is affected).

5.1. Clustered non-nulls in a grid of hypotheses

Consider the setting where the hypotheses are arranged in a rectangular grid,
and if the null is false, then the non-nulls form a single coherent cluster. This
is a common structure which, as a hypothetical example, is a reasonable belief
when trying to detect if there is a tumor in a brain image. Here, the covariates xi

are simply the two-dimensional location of the hypothesis Hi on the grid. The
blocked non-null structure is utilized in specifying the posterior probability of
being non-null using model (7) by constraining the prior non-null probabilities πi

to be a smooth function of xi. Details can be found in Appendix G.
The block structure is also imposed in the strategy of interactively expand-

ing Mk such that Mk forms a single connected component. The interactively
ordered martingale test expands Mk by only including possible non-nulls that
are on the boundary of Mk (see Figure 3 for example).

We compare the interactively ordered martingale test with the martingale
Stouffer test and the batch Stouffer test. We use the martingale Stouffer test
(MST) with a preordering that starts at the center of the grid, and the fol-
lowing hypotheses are included into the preordering in randomly chosen (data-
independent) directions such that the hypotheses always form a single cluster.
Our simulation has 104 hypotheses arranged in a 100× 100 grid with a disc of
about 150 non-nulls, placed either at the grid center and or at a corner of the
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Fig 4. Testing the interactively ordered martingale test (IMT), the martingale Stouffer test
(MST), and the batch Stouffer test with varying alternative mean under a block non-null
structure (batch setting). The MST has lower power when the non-null is not in the center,
whereas the IMT has high power in both cases. Type-I error corresponds to the power when
the alternative mean value is zero. The horizontal line corresponds to the target type-I error
level α = 0.05.

grid. We use Setting 1 as defined in Section 4, where we varied the non-null
mean as (0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8).

The interactively ordered martingale test has high power for both positions of
the non-null block, whereas the power of martingale Stouffer test drops quickly
when the block is not at the center (Figure 4), which is because the martingale
Stouffer test does not have information of the block position (its preordering
starts from the center by default), whereas the interactively ordered martingale
test uses masked p-values to learn the block position. It is worth noting that
even with a bad preordering, the martingale Stouffer test does not do worse
than the batch version, but has much higher power with a good preordering.

Remark 2. As mentioned in the introduction, we do not intend to claim that
the interactively ordered martingale test is in any sense the “best” test for this
problem setting. It is possible, or even likely, that several other generic tests
(Bonferroni, chi-squared, higher criticism, or many others) or specialized tests
(scan statistics) might have higher power. We discuss the comparison with two
recent methods: the adaptively weighted Fisher test [16, 6, 11] and the weighted
Higher Criticism [31] in Appendix H. Our goal in this section is to demon-
strate the tradeoffs between the batch and martingale versions of the same test
(Stouffer in this case), and the interactive versus preordered martingale tests.
Also note that the power of our martingale tests depends crucially on the pre-
ordering, or on the model and heuristic used to form the ordering interactively,
and perhaps better models/algorithms might further improve the power of our
own tests. We chose settings that are easy to visualize for intuition, keeping in
mind that our tests apply to any general covariates xi, and prior knowledge or
structural constraints, any working models, etc.
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Fig 5. Power of the interactively ordered martingale test (IMT), the martingale Stouffer test
(MST), and the batch Stouffer test under a hierarchical structure. Hypotheses form a fixed
tree (batch setting) with non-nulls only on a sub-tree. When the alternative mean is big,
masked p-values and the hierarchical non-null structure lead to a good ordering and hence
high power for the IMT.

5.2. A sub-tree of non-nulls in a tree of hypotheses

In applications such as wavelet decomposition, the hypotheses can have a hi-
erarchical structure, where the child can be a non-null only if its parent is a
non-null. The hierarchical structure is again encoded in modeling the posterior
probability of being non-null (7) by adding a partial order constraint on πi that

πi ≥ πj , if i is the parent of j.

Also, the hierarchical structure is imposed in the strategy of update Mk such
that Mk should keep as a sub-tree. Specifically, we compare the posterior prob-
abilities of being non-null for all the leaf nodes of Mk and choose the highest
one.

We compare the interactively ordered martingale test with the martingale
Stouffer test and Stouffer’s test, where the martingale Stouffer test order the
hypotheses by level and from left to right within level. We simulate a tree of five
levels (the root has twenty children and three children for each parent node after
that) with over 800 nodes in total and 7 of them being non-nulls. Each node tests
if a Gaussian is zero mean as described in Setting 1, where we vary the mean
value for the non-nulls as (0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4). The interactively ordered
martingale test is implemented without modeling the posterior probabilities of
being non-null for the sake of computational cost. The interactively ordered
martingale test has a higher power especially when the signal is strong so that
the masked p-values provide a better guide on the Mk update (Figure 5).

The interactively ordered martingale test with modeling is implemented on a
smaller tree with 121 nodes (five levels and three children for each parent node)
and 7 of them being non-nulls on a subtree. We consider two types of hierarchical
non-null structure: one with the probability of being non-null decreasing down



4512 B. Duan et al.

Fig 6. Hypothesis tree in the batch setting with decreasing/increasing probability of being non-
null. Testing the interactively ordered martingale test (IMT) with a model for the posterior
probability of being non-null, which has higher power than the martingale Stouffer test (MST)
in both cases.

the tree, and one with increasing probability, which means the parent cannot
be a non-null unless its children are non-nulls. The result is consistent with
the above: the interactively ordered martingale test has higher power than the
non-interactive martingale Stouffer test (Figure 6). Compared with decreasing
probability of being non-null, both methods have lower power for the tree with
an increasing probability of being non-null, because in the latter case, the non-
nulls gathered at later generations where there are more nulls and the non-nulls
are sparser.

5.3. Structures in the online setting

Recall that in the online setting, a potentially infinite number of hypotheses
arrive, and the adaptively ordered martingale test and interactively ordered
martingale test use some discarding rules to only allow promising non-nulls
entering Mk. This section presents two examples of non-null structures in the
online setting, and demonstrates the power of the interactive test as follows.

Blocks of non-nulls in a growing sequence of hypotheses. Suppose the
non-nulls arrive as blocks. In other words, the next hypothesis is more likely to be
a non-null if the last arrived hypothesis is truly non-null; and vise versa. Let the
discarding rule in the interactively ordered martingale test be g(pt) > ct, where
ct = c = 0.05 by default. The interactively ordered martingale test adjusts ct for
t > 10 based on previous p-values: it alleviates the discarding rule by increasing
ct to 2c if the ten p-values prior to t (pt−10, . . . , pt−1) are all less than 0.1;
otherwise, it decreases ct to c/4. For a fair comparison, the discarding threshold
in the adaptively ordered martingale test is set to c = 0.05.
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Fig 7. Number of hypotheses needed to reject the global null (detection time) in the online
setting of the interactively ordered martingale test (IMT), the adaptively ordered martingale
test (AMT), the martingale Stouffer test (MST), and the Bonferroni test when varying the
alternative mean μ. The non-nulls arrive in blocks, and on average, every 104 hypotheses
contain a block of 500 non-nulls. The length of the error bar is two standard error. The
interactively ordered martingale test is the first to reject the global null because it incorporates
the block structure and adjusts the discarding threshold based on past p-values.

The interactively ordered martingale test is the first to reject the global null
since its discarding rule accounts for the block structure (see Figure 7). This
advantage is more evident when the non-null signal is mild (μ < 3), where the
prefixed discarding rule in the adaptively ordered martingale test might be too
strict or lenient, while the interactively ordered martingale test can adjust the
rule accordingly. In practice, the adjustment on the discarding threshold can
also utilize side information and prior knowledge, if provided.

A sub-tree of non-nulls in a growing tree of hypotheses. The online
tree grows a new level at every step, with the probabilities of being non-null
no bigger than their parents. For an arriving level k, the interactively ordered

martingale test models the posterior probability of being non-null π
(k)
j for the

new hypothesis Hj by equation (7), where the prior probability of being non-null
is the same as its direct parent Hi from the level k − 1,

π
(0)
j = π

(k−1)
i , if i is the parent of j.

For simplicity, we set the discarding rule in the interactively ordered martin-

gale test to be π
(k)
i < c where c = 0.6 as a default. That is, hypothesis with

π
(k)
i < 0.6 are omitted. We compare the interactively ordered martingale test

with the martingale Stouffer test and a classical method, the online Bonferroni
method (with the sequence of significance levels {αk}∞k=1 decreases at the rate of
1/[k(log k)2]). In the online setting, their performances are assessed by the av-
eraged number of hypotheses required to reject the global null (detection time);
the smaller the better.
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Fig 8. Number of hypotheses needed to reject the global null (detection time) in the online
setting of the interactively ordered martingale test (IMT), the adaptively ordered martingale
test (AMT), the martingale Stouffer test (MST), and the Bonferroni test when varying the
alternative mean in a growing hypothesis tree (online setting). IMT incorporates the hierar-
chical structure of non-nulls, so it is the first to reject the global null when the non-null signal
is mild (μ < 2).

We simulate the online tree with forty children for the root node and three
children for each parent node after that. The probability of being non-null for
the first generation children is set to 0.1 for 30 children and 0.9 for the other 10
children. The ongoing three children of each node reduce the probability of being
non-null as by a proportion of 100%, 20%, 0%. Each node tests if a Gaussian is
zero mean as described in Setting 1, where we vary the mean value for the non-
nulls as (0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4). The interactively ordered martingale test
needs much shorter time when the non-null signal is not strong (μ < 2) because
it incorporates the hierarchical structure and estimates the probability of an
arriving hypothesis being non-null with the aid of the data from its ancestors
(Figure 8). When the alternative mean is large, p-values themselves provide
strong evidence of non-null, while the algorithm using the tree structure would
treat all children from a non-null parent as promising non-nulls while at least
one of them is null in our simulated example. Thus, the online AMT that uses
only the p-value information can have better performance when the alternative
mean is large.

Overall, both in the batch setting and the online setting, the interactively or-
dered martingale test has a higher detection power than the martingale Stouffer
test, Stouffer’s test, and the online Bonferroni method, provided with structured
alternatives. We again remark the advantage of the interactively ordered mar-
tingale test in practice where prior knowledge often exists in various forms. The
interactively ordered martingale test is highly flexible in that it allows modi-
fications to the strategy of expanding Mk, at any step and with any form as
a human analyst (or a program) wants to. The next section demonstrates one
more advantage of the interactively ordered martingale test under the conser-
vative nulls (see definition in the next section).
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Fig 9. Comparing the interactively ordered martingale test (IMT) with tent and railway
masking functions, the martingale Stouffer test (MST), and Stouffer’s test for the robustness
to conservative nulls. The IMT with railway function is more robust.

6. Robustness to conservative nulls

In all the above simulations, the nulls have uniformly distributed p-values, but
in practice they could be stochastically larger than uniform (condition (1)) or
mirror-conservative (condition (2)); both are henceforth referred to as “conser-
vative nulls”. For simplicity, this section focuses on the conservative null with
an increasing density, which satisfies both descriptions in condition (1) and con-
dition (2). Such conservative nulls diminish the detection power of many batch
global null tests like Fisher’s and Stouffer’s methods. For example, each term in
Stouffer’s test is Φ−1(1− p), whose value can be smaller than −2 if the p-value
is bigger than 0.98; thus as the nulls grow more conservative and their p-values
closer to one, its power can quickly drop to zero.

To examine the effect of conservative nulls on the interactively ordered mar-
tingale test, we first propose an alternative definition of a masked p-value as
g̃(p) := min(p, (p+ 1

2 )mod1). Recalling that g(p) = min(p, 1− p), we call g and
g̃ as the tent and railway functions respectively (see Figure 9a, Figure 9b). Note
that if the p-value is exactly uniformly distributed, g̃(p) is still independent of
h(p), and g(p) has the same distribution as g̃(p), and so all previous results still
hold with the new masking function in place of the old one. (The error control
when using the railway masking function can be found in Appendix A.3 for uni-
form and conservative p-values.) However, when the p-values are conservative,
the new masking function has a clear advantage. To see this, consider a p-value
of 0.99. The original masked p-value would be 0.01, thus causing the methods
to potentially confuse this with a non-null masked p-value, but the new masked
p-value would be 0.49, which the methods would easily exclude as being a null.

As an example, we consider the simple case with no prior knowledge and
simulate 1000 hypotheses with 100 non-nulls. Each hypothesis is a one sided
hypothesis on whether a Gaussian is zero mean as described in Setting 1. The
alternative mean values are set to 1.5. The mean values for nulls are negative so
that the resulting null p-values are conservative. We tried nine values from 0 to



4516 B. Duan et al.

−4 for the mean of nulls, with a smaller value indicating higher conservativeness.
Figure 9c compares the power of the interactive martingale test with tent and
railway functions, the martingale Stouffer test and Stouffer’s test. The power of
most tests drops sharply to zero, but the power of interactively ordered martin-
gale test with the new railway function initially dips and then improves. The
reason for the initial dip is that the increasingly conservative nulls influence the
interactive martingale test in two opposite directions: (a) more null h(p) values
are now equal to −1 (instead of being ±1 with equal probability), and this hurts
power because including a null h(p) in the martingale almost always lowers its
value (instead of increasing and lowering its value with equal probability), (b) as
the p-value gets more conservative, g(p) will approach 0.5 for nulls, allowing the
tests to easily distinguish between the non-nulls and the nulls to increase the
power. When the p-values are only slightly conservative, effect (a) dominates
and hurts power, causing the initial dip in power in Figure 9c.

7. Anytime-valid p-values and safe e-values

In this paper, we defined the problem as testing the global null at a predefined
level α. Instead, we could ask the test to output a sequential or anytime p-value
for the global null, which is a sequence of p-values {pt}∞t=1 that are valid at any
stopping time. We use pt to differentiate it from pt — the latter is the input
to our global null test, the former is the desired output of our global null test.
Specifically, pt is a function of p1, . . . , pt, such that if p1, . . . , pt are all null,
then pt will be a valid p-value (its distribution will be stochastically larger than
uniform), and this fact will be true uniformly over t.

Recall that all of the proposed procedures follow the same form; we reject
the global null if

∃k ∈ {1, 2, . . .} s.t. Sk > uα(k),

where Sk is a martingale under the global null and uα(k) is a sequence of upper
bounds at level α. The anytime p-value pt at time t is defined by the smallest
level at which our test would have rejected the null at or before time t.

Definition 1. The p-value pt can be defined as the smallest level α at which
the test would have rejected at or before time t:

pt = inf{α : ∃k ∈ {1, . . . , t} s.t. Sk > uα(k)}. (22)

Viewing uα(k) as a function of two variables k, α, we define an inverse function
at a fixed k with respect to the level α as

u−1(S; k) = α iff uα(k) = S,

which is unique for a given input S since the bound uα(k) is continuous and
strictly decreasing in α. Then the p-value at time t can be computed as

pt = min
1≤k≤t

{u−1(Sk; k)}.
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As one example, if uα(k) is the linear bound as in test (5), its inverse is

u−1(S; k) = exp

{
−2m

S2

(k +m)2

}
.

The p-value sequence {pt}∞t=1 has the following nice properties,

1. the anytime p-values decrease with time:

pt+j ≤ pt for all j, t > 0.

2. inft∈I pt is also a valid p-value for the global null:

P(inf
t∈I

pt ≤ x) ≤ x ≡ P{∃t : pt ≤ x} ≤ x, for all x ∈ (0, 1).

In fact inft∈I pt is the global p-value: the smallest level α at which the test
would ever reject:

inf
t∈I

pt = inf{α : ∃k ∈ {1, 2, . . .} s.t. Sk > uα(k)}.

3. for any arbitrary stopping time τ ∈ I, pτ is a valid p-value:

P(pτ ≤ x) ≤ x, for all x ∈ (0, 1).

The second property implies that the p-value at any time t is a valid p-value. Re-
calling that fixed-sample p-values are dual to fixed-sample confidence intervals,
it is also the case that anytime p-values are dual to anytime confidence inter-
vals. These ideas are explored and explained in depth by Howard et al. [10]. An
alternative to anytime p-values, called safe e-values, was recently proposed by
Grünwald et al. [8], and their relationship to confidence sequences, sequential
tests and anytime p-values was detailed by Ramdas et al. [19]. Specifically, op-
tionally stopped nonnegative supermartingales, which underlie all our bounds,
yield safe e-values. The main takeaway message for our current paper is that
all aforementioned tests can be reformulated as calculating anytime p-values or
safe e-values. To exactly recover our level α tests, we just stop and reject at the
first time that pt ≤ α (or equivalently, the e-value exceeds 1/α).

8. Alternative masking functions

In most of this paper, we have considered one way of decomposing p-value as
equation (3), but interactive tests can be developed for other decompositions.
Shafer et al. [24] discuss a class of calibrators (functions) for the p-values f :

[0, 1] → [0,∞) such that f is non-increasing and
∫ 1

0
f(p)dp ≤ 1. They consider

a “product-martingale”
∏k

i=1 f(pi) and reject the null if

∃k ∈ N :
k∏

i=1

f(pi) ≥ α−1,
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which uses Ville’s inequality (an infinite-horizon uniform extension of Markov’s
inequality). For each calibrator f , an interactive test can be developed by view-
ing f(p) as the missing bit for inference and finding the corresponding masked
p-value g(p) for interactive ordering. Type-I error is controlled if the pair of f(p)
and g(p) are mean independent under the null:

E(f(p) | g(p)) = E(f(p)). (23)

Lei et al. [15] provide a recipe to construct mean independent g(p) given any
calibrator. The interactive test given a pair of f(p) and g(p) follows the same
procedure as Algorithm 3, with the rejection rule at each step k changed to

Mk∏
i=1

f(pi) ≥ α−1, (24)

or equivalently
Mk∑
i=1

log f(pi) ≥ log(α−1).

We explore a class of calibrators fc parameterized by a constant c ∈ (0, 1):

fc(p) = cpc−1. (25)

In an interactive test, log fc(pi) is viewed as playing the role of the missing
bit for inference (even though it is technically not one bit, we use the same
terminology for simplicity). To calculate the corresponding masked p-value, we
define function Hc(x) = xc − x for x ∈ [0, p∗], where p∗ is the solution of
log fc(p) = 0. The masked p-value is defined as

gc(pi) =

{
pi, if pi ≤ p∗

s(pi), otherwise,

where for any pi > p∗, we define s(pi) as the unique solution of Hc(x) = Hc(pi)
within the range [0, p∗]. Both p∗ and s(pi) can be obtained numerically by
a simple binary search since log fc(p) and Hc(x) are monotonic. To compare
different options of missing bits, Figure 10 shows the maps for original h(pi) (one
bit) and the log term log(fc(pi)), since they play similar roles in the interactive
tests as forming cumulative sum statistics.

Different choices of missing bit and the corresponding masked p-value reflect
a tradeoff between the information of p-values allocated for inference and inter-
active ordering. Compared with one bit h defined in equation (3), fc maps small
p-values to large value (Figure 10a), so that an evident non-null leads to a big
increment in the test statistics and higher likelihood of being detected. In other
words, fc takes more information from p-values than h for inference. However,
the corresponding masked p-value is less informative to suggest a good order-
ing. It’s because a wider range of p-values that are bigger than 0.5 (from nulls)
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Fig 10. Different choices of missing bit and its corresponding masked p-value. When small
p-values (possible non-nulls) are more evident when measured by one choice of the missing
bit, they are less distinctive when looking at the corresponding masked p-values.

would have small masked p-value (Figure 10b), which mixes with the actual
small p-values and makes it harder to select possible non-nulls. As c approaches
zero, more information is allocated to inference and less for interactive ordering.

We also consider a mixture of fc, denoted as fm:

fm(p) =

∫ 1

0

cpc−1dc ≡ 1− p+ p log p

p(log p)2
.

The corresponding masked p-value gm(p) can be calculated using the same for-
mula as above except for a new definition of Hm(x) as x−1

log x − x. As shown in
Figure 10, the amount of information that fm takes for inference is between f0.2
and f0.4.

We compare the interactively ordered martingale tests using different missing
bits: (a) the original one bit h(pi) defined in equation (3); (b) fc(pi) where we
vary parameter c as (0.2, 0.4, 0.6, 0.8); and (c) the mixed missing bit fm(pi).
Our simulation uses the structured hypotheses with a cluster of non-nulls (de-
scribed in Section 5.1). The highest power comes from the test with the original
definition of the missing bit: h(pi) = 2 · 1{pi < 0.5} − 1 (Figure 11).

However, given that there is a tradeoff between the information contained in
the missing bit and the masked p-value, and that the masked p-value is used
together with the prior knowledge for a good ordering, we conjecture that the
performance of tests with different missing bits depends on the amount of prior
knowledge. When the prior knowledge is informative to order the hypotheses,
the test with most of the information in the missing bit has a higher power
(an example is the martingale Stouffer test, which has the highest power in
Figure 4a). We leave the following as an open question: under different types of
prior knowledge, does there exist and can one determine an “optimal” p-value
decomposition that leads to the highest power?
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Fig 11. Power of interactive tests using different missing bits. Under the block structure
of non-nulls as described in Section 5.1, the IMT with the original missing bit defined in
equation (3) has the highest power.

9. Summary

We have introduced martingale analogs of some classical global null tests, and
used these to build adaptively ordered martingale tests through the idea of
masking. These are further generalized to a protocol for interactively ordered
martingale tests that possess the following interesting advantages:

• It is a general global null testing framework that can utilize any types of
covariates, structural constraints, prior knowledge and repeated user inter-
action guided by a posited working model, all while provably controlling
the type-I error.

• It permits the use of Bayesian modeling techniques while retaining fre-
quentist error guarantees.

• It applies to both the batch and online settings.
• It is robust against conservative nulls.
• It has favorable theoretical power guarantees in simple settings, and per-

forms well in simulations.

In fact, in most of this paper, we do not need to know the null distribution
of the underlying test statistics and be tied to working with p-values as inputs.
Given test statistics Ti ∈ Rn for each hypothesis Hi, the framework of the
interactively ordered martingale test applies as long as there exits two functions
h : Rn → {−1, 1} and g : Rn → R such that

E [h(Ti) | g(Ti)] ≤ 0 for all i ∈ I. (26)

As an example, if the distribution of the test statistic Ti is symmetric under the
null (such as Gaussian with unknown covariance, a t distribution with unknown
degrees of freedom, or a centered Cauchy), we can still use sign(Ti) and |Ti| as
h(Ti) and g(Ti) respectively. Indeed, type-I error control (Theorem 3) still holds
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in this setting, since h(Ti) and g(Ti) for the aforementioned decompositions are
independent under the null.

We believe that interactive testing protocols are only beginning to be explored
in the literature, and constitute both an intellectually fascinating direction for
further exploration, as well as a potentially powerful one. Masking (and pro-
gressive unmasking) is a promising technique that permits interaction, and it
deserves further scrutiny and generalization to other settings.

Appendix A: Error control

This section proves the type-I error control for our proposed methods: the mar-
tingale Stouffer test and the interactively ordered martingale test.

A.1. Proof of Theorem 1

Proof. Under the global null, because p-values are independent and stochasti-
cally larger than the uniform, the transformed p-values Φ−1(1 − pi) are inde-
pendent and stochastically smaller than a standard Gaussian. Thus given the
uniform bound for a Gaussian increment martingale uα(k),

P0

(
∃k ∈ N :

k∑
i=1

Φ−1(1− pi) ≥ uα(k)

)

≤ P

(
∃k ∈ N :

k∑
i=1

Gi ≥ uα(k)

)
≤ α,

where Gi for i ∈ I are i.i.d. standard Gaussians. By definition the above argu-
ment proves the type-I error control.

A.2. Proof of Theorem 3

This proof also implies Theorem 2 since the adaptively ordered martingale test
is a special case of the interactively ordered martingale test.

Proof. Batch setting. We argue that the sum {
∑

i∈Mk
h(pi)}k∈I is a super-

martingale with respect to the filtration {Fk−1}k∈I . First, the sum
∑

i∈Mk
h(pi)

is measurable with respect to Fk−1 because the random set Mk = Mk−1 ∪ {i∗k}
has its distribution defined with respect to Fk−1.

Second, we prove that

E(
∑
i∈Mk

h(pi) | Fk−1) ≤
∑

i∈Mk−1

h(pi). (27)
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Because E(
∑

i∈Mk
h(pi) | Fk−1) =

∑
i∈Mk−1

h(pi) + E(h(pi∗k) | Fk−1), condi-

tion (27) boils down to proving

E(h(pi∗k) | Fk−1) ≤ 0.

Since i∗k and Mk−1 are Fk−1 measurable, and i∗k /∈ Mk−1, we see that

E(h(pi∗k) | Fk−1) ≤ max
i/∈Mk−1

E(h(pi) | Fk−1) = max
i/∈Mk−1

E(h(pi) | g(pi)),

where the last equation is because the p-values are assumed to be independent of
each other and of the covariates xi under the global null; and thus, h(pi) | Fk−1

has the same distribution as h(pi) | g(pi).
The proof is completed if

E(h(pi) | g(pi)) ≤ 0, (28)

for any i /∈ Mk−1. In this case, the sum {
∑

i∈Mk
h(pi)}k∈I is a martingale.

Also, the increment is stochastically smaller than a Rademacher and following
the same argument in Section A.1, so the test using a bound for a Gaussian
increment martingale controls the type-I error (because a Rademacher is sub-
Gaussian).

We have an intermediate result: the interactively ordered martingale test has
type-I error control for any h(p) and g(p) such that condition (28) holds. For a
mirror-conservative p-value, the missing bit h(pi) conditioned on its correspond-
ing masked p-value g(pi) is stochastically smaller than a fair coin flip:

P0(h(pi) = −1 | g(pi) = x) =
fi(1− x)

fi(1− x) + fi(x)

≥ fi(x)

fi(1− x) + fi(x)
= P0(h(pi) = 1 | g(pi) = x),

for any x ∈ [0, 0.5] (i.e., the range of g(pi)), which implies condition (28) and
thus completes the proof.

Online setting. Let the index of the hypothesis that enters the rejection
set Mk−1 be t∗k. Notice that t∗k is a stopping time with respect to Ft−1 (that
is, {t∗k = t} is measurable with respect to Ft−1 because we decide whether to
include pt based on Ft−1). For a clear notation, define a filtration indexed by k
as

Gk−1 := Ft∗k−1, (29)

denoting all the information available prior to the k-th entered hypothesis. We
argue that the sum {

∑
i∈Mk

h(pi)}k∈I is a supermartingale with respect to the
filtration {Gk−1}k∈I . The proof is similar to the above batch setting, where we
prove that

E(h(pt∗k) | Gk−1) ≤ 0.
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Since t∗k is a stopping time with respect to Ft∗k−1, we see that

E(h(pt∗k) | Gk−1) = E(h(pt∗k) | Ft∗k−1)

≤ max
t

E(h(pt) | Ft−1) = max
t

E(h(pt) | g(pt)),

where the last equation is because the p-values are assumed to be independent of
each other and of the covariates xi under the global null; and thus, h(pi) | Fk−1

has the same distribution as h(pi) | g(pi).
The rest of the proof is the same as the batch setting where we show condi-

tion (28) holds:

E(h(pt) | g(pt)) ≤ 0,

for mirror-conservative p-values. Thus, the sum {
∑

i∈Mk
h(pi)}k∈I is a super-

martingale with respect to the filtration {Gk−1}k∈I . Recall that the increment
is stochastically smaller than a Rademacher. Following the same argument in
Section A.1, the interactively ordered martingale test in the online setting using
bound for a Gaussian increment martingale controls the type-I error.

A.3. Error control of the interactively ordered martingale test with
railway masking function in Section 6

Let the masked p-values defined by the railway function in Section 6 be:

g̃(p) := min(p, (p+ 1
2 )mod1)

The corresponding interactively ordered martingale test has a valid error control
when the p-values have nondecreasing densities under the global null.

Theorem 8. If under HG0, the p-values have nondecreasing densities and are
independent of each other and of the covariates xi, then the interactively ordered
martingale test using g̃(p) in place of g(p) controls the type-I error at level α.

Proof. Recall that in Appendix A.2, we have an intermediate result: the in-
teractively ordered martingale test has type-I error control for any h(p) and
g(p) such that condition (28) holds. For a p-value with a nondecreasing density,
the missing bit h(pi) conditioned on its corresponding masked p-value g̃(pi) is
stochastically smaller than a fair coin flip:

P0(h(pi) = −1 | g̃(pi) = x) =
fi(x+ 0.5)

fi(x+ 0.5) + fi(x)

≥ fi(x)

fi(x+ 0.5) + fi(x)
= P0(h(pi) = 1 | g̃(pi) = x),

for any x ∈ [0, 0.5] (i.e. the range of g̃(pi)), which implies condition (28) and
thus completes the proof.
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Remark 3. The above proof implies that the error control holds as long as
under the global null, the p-values satisfy:

fi(a) ≤ fi(a+ 0.5) for all 0 ≤ a ≤ 0.5, i ∈ I,
where fi is the probability mass function of pi for discrete p-values or the density
function otherwise. This condition can be viewed as a third definition of conser-
vativeness in addition to condition (1) and (2) in the main paper. It is not a
consequence of condition (1) (take f(a) = 1(a ≤ 0.5) + 4(a− 0.5)1(a > 0.5)) or
condition (2) (take f(a) = 4min(a, 1− a)), and it does not imply condition (1)
and (2) (take f(a) = 4(0.5−a)1(a < 0.5)+4(1−a)1(0.5 ≤ a < 1)+41(a = 1)).
For simplicity, we focus on the p-values with increasing densities in Section 6,
which are considered as conservative p-values in all three definitions.

Appendix B: Power guarantees in the batch setting

This section presents the proofs of power guarantees in the batch setting for
(1) the batch Stouffer test, (2) the martingale Stouffer test and (3) the interac-
tively ordered martingale test.

B.1. Proof of Theorem 4

We divide the proof into two subsections for the batch Stouffer test and the
martingale Stouffer test.

B.1.1. The batch Stouffer test

Proof. Define the Z-score for each hypothesis Hi as Zi = Φ−1(1 − pi). Un-
der setting 1 in the main paper of testing Gaussian mean, the Z-score is a
Gaussian Zi ∼ N(μi, 1), or written as N(riμi, 1) to separate the true nulls
from the true non-nulls. Thus, the sum Sn =

∑n
i=1 Zi is also a Gaussian

Sn ∼ N (
∑n

i=1 riμi, n). The power of the batch Stouffer test is

P1

(
Sn√
n
≥ Φ−1(1− α)

)
= P1

(
Sn −

∑n
i=1 riμi√
n

≥ Φ−1(1− α)−
∑n

i=1 riμi√
n

)
= 1− Φ

(
Φ−1(1− α)−

∑n
i=1 riμi√

n

)
.

A power of at least 1− β is is equivalent to

1− Φ

(
Φ−1(1− α)−

∑n
i=1 riμi√

n

)
≥ 1− β,

which can be rewritten as
n∑

i=1

riμi ≥ (Φ−1(1− α) + Φ−1(1− β))n1/2,

which is the condition in Theorem 4.
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B.1.2. The martingale Stouffer test

Proof. Following the same proof for Sn ∼ N(riμi, 1) in Section B.1.1, for any

k = 1, . . . , n, Sk ∼ N
(∑k

i=1 riμi, k
)
. The power of the martingale Stouffer test

is

P1 (∃k ∈ {1, . . . , n} : Sk ≥ uα(k))

= P1

(
∃k ∈ {1, . . . , n} : Sk −

k∑
i=1

riμi ≥ uα(k)−
k∑

i=1

riμi

)
.

The power of martingale Stouffer test is at least 1− β if

∃k∗ ∈ {1, . . . , n} : uα(k
∗)−

k∗∑
i=1

riμi ≤ −uβ(k
∗) (a sufficient condition),

since under such condition,

P1

(
∃k ∈ {1, . . . , n} : Sk −

k∑
i=1

riμi ≥ uα(k)−
k∑

i=1

riμi

)

≥ P1

(
Sk∗ −

k∗∑
i=1

riμi ≥ uα(k
∗)−

k∗∑
i=1

riμi

)

≥ P1

(
Sk∗ −

k∗∑
i=1

riμi ≥ −uβ(k
∗)

)

≥ P1

(
∀k ∈ {1, . . . , n} : Sk −

k∑
i=1

riμi ≥ −uβ(k)

)
≥ 1− β.

The last step holds because Gaussian increment martingale is symmetric so that
−uβ(k) is a uniform lower bound.

The power of martingale Stouffer test is less than 1− β if

∀k ∈ {1, . . . , n} : uα(k)−
k∑

i=1

riμi ≥ u1−β(k) (a necessary condition),

since

P1

(
∃k ∈ {1, . . . , n} : Sk −

k∑
i=1

riμi ≥ uα(k)−
k∑

i=1

riμi

)

≤ P1

(
∃k ∈ {1, . . . , n} : Sk −

k∑
i=1

riμi ≥ u1−β(k)

)
≤ 1− β.

Thus, we find a sufficient condition and a necessary condition for the martingale
Stouffer test to have 1− β power. The proof completes by plugging the curved
bound in test (6) in the main paper into the conditions. If without further
explanation, uα(k) in rest of the proofs denotes the curved bound.
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B.2. Proof of Theorem 5

The adaptively ordered martingale test uses the missing bits h(pi) for testing,
and under no prior knowledge, uses the masked p-values g(pi) to order the
hypotheses. We divide the proof into three steps: (1) derive the power guarantee
given a fixed order in Lemma 1; (2) quantify the effect of ordering by masked
p-values in Lemma 2, and (3) derive the power guarantee for the adaptively
ordered martingale test (Theorem 5).

The power of adaptively ordered martingale test given a fixed order.

Lemma 1. Given a fixed sequence of {Mk}nk=1 with the size |Mk| = k, the
adaptively ordered martingale test with type-I error control α has power at least
1− β if

∃k ∈ {1, . . . , n} :
∑
i∈Mk

(ri(2Si(1)− 1) + (1− ri)(2Si(0)− 1)) ≥
(
Cα

k + Cβ
k

)
k

1
2 ,

where Si(1) = P(h(pi) = 1 | ri = 1, {Mk}nk=1) is a measurement of the “signal
strength” from the non-nulls and Si(0) = P(h(pi) = 1 | ri = 0, {Mk}nk=1) is
from the nulls. Meanwhile the power is less than 1− β if

∀k ∈ {1, . . . , n} :∑
i∈Mk

(ri(2Si(1)− 1) + (1− ri)(2Si(0)− 1)) ≤
(
Cα

k − C1−β
k

)
k

1
2 .

Proof. Consider the re-scaled increment (h(pi∗k) + 1)/2 | Fk, which follows a
Bernoulli:

h(pi∗k) + 1

2
∼ riBer(Si∗k

(1)) + (1− ri)Ber(Si∗k
(0)).

So the cumulative sum Sk is a martingale with sub-Gaussian increments after
centering, with expected value

∑
i∈Mk

(ri(2Si(1)− 1) + (1− ri)(2Si(0)− 1)).
So the power of adaptively ordered martingale test is

P1 (∃k ∈ {1, . . . , n} : Sk ≥ uα(k))

= P1

(
∃k ∈ {1, . . . , n} : Sk −

∑
i∈Mk

[ri(2Si(1)− 1) + (1− ri)(2Si(0)− 1)]

≥ uα(k)−
∑
i∈Mk

[ri(2Si(1)− 1) + (1− ri)(2Si(0)− 1)]

)
.

The proof can be completed by following similar steps in the proof for martingale
Stouffer test (Section B.1.2).
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The effect of ordering. Define the Z-score as Zi = Φ−1(1 − pi) for each
hypothesis Hi. Under setting 1 in the main paper, Zi is a Gaussian with unit
variance and mean value μi. We consider the simple case where for all the non-
nulls μi = μ. The adaptively ordered martingale test orders the hypotheses
increasingly by g(pi), which is equivalent to ordering decreasingly by |Zi|. Fol-
lowing definition (11), the Z-scores for non-nulls have the same distribution as
Z(μ), and Z(j)(μ) is the Z-score of j-th non-null when they are ordered decreas-
ingly by |Zi|. We describe the effect of ordering by the size of the set Mk right
after the j-th non-null enters, denoted as M(j).

Lemma 2. The size of M(j) follows a Binomial distribution (up to a constant):

|M(j)| ∼ j + Bin
(
N0,P(|Z(0)| > |Z(j)(μ)|)

)
.

The size |M(j)| is uniformly upper bounded:

P1

(
∀j ∈ 1, . . . , N1 : |M(j)| ≤ j + tβ/N1

(N0, qj)
)
≥ 1− β,

where tβ/N1
(N0, qj) is β/N1-th upper quantile of Bin

(
N0,P(|Z(0)| > |Z(j)(μ)|)

)
.

Remark 4. Denote P (μ) = P(|Z(0)| ≥ |Z(μ)|). The quantile tβ/N1
(N0, qj) is

upper bounded by a ratio of P (μ)N0 (when P (μ)N0 > 1):

tβ/N1
(N0, qj) ≤

2 + 2
√
2 log(N1/β)

N1

[
N1+1−j

N1
− P (μ)

]2 max{P (μ)N0, 1},

for j = 1, . . . , �N1(1− P (μ)) + 1�.

Proof. In M(j), the number of non-nulls is known as j and the number of
nulls is random. The nulls in M(j) should have a higher absolute Z-score than
|Z(j)(μ)|. Note that the Z-scores of the nulls are i.i.d. standard Gaussians, so the
probability of a null to be in front of the j-th non-null is P(|Z(0)| > |Z(j)(μ)|) for
any nulls. Thus the number of nulls before the j-th non-null follows a binomial
distribution:∑

i:ri=0

1(|Zi(0)| > |Z(j)(μ)|) ∼ Bin
(
N0,P(|Z(0)| > |Z(j)(μ)|)

)
.

Thus, the size of M(j) is distributed as

|M(j)| ∼ j + Bin
(
N0,P(|Z(0)| > |Z(μπj )|)

)
.

By the Bonferroni correction, with high probability |M(j)| is upper bounded by

P1

(
∀j ∈ 1, . . . , N1 : |M(j)| ≤ j + tβ/N1

(N0, qj)
)
≥ 1− β,

where tβ/N1
(N0, qj) is β/N1-th upper quantile of Bin

(
N0,P(|Z(0)| > |Z(j)(μ)|)

)
.
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We further characterize the Binomial quantile tβ/N1
(N0, qj) (proof of Re-

mark 4). The quantile is upper bounded (by Chernoff inequality):

tβ/N1
(N0, qj) ≤ P(|Z(0)| > |Z(j)(μ)|)N0 +

√
2P(|Z(0)| > |Z(j)(μ)|)N0 log(

N1

β )

≤ (1 +
√
2 log(N1

β ))max{P(|Z(0)| > |Z(j)(μ)|)N0, 1}.

The proof completes by showing that the probability term P(|Z(0)| > |Z(j)(μ)|)
is upper bounded:

P(|Z(0)| > |Z(j)(μ)|) ≤
2P (μ)

N1

[
N1+1−j

N1
− P (μ)

]2 . (30)

The above bound (30) holds because the event |Z(0)| > |Z(j)(μ)| can be

viewed as comparing the absolute value of Z(0) with N1 Gaussians {Zi(μ)}N1
i=1

with the same distribution as Z(μ), and |Z(0)| is bigger than N1−j+1 of them.
The number of Zi(μ) that |Z(0)| > |Zi(μ)| follows a binomial distribution, with
probability P (|Z(0)| > |Z(μ)|) := P (μ). LetX be Bin(N1, P (μ)) and bound (30)
holds because

P(|Z(0)| > |Z(j)(μ)|) = P(X > N1 − j + 1)

≤ exp

{
− [N1(1− P (μ))− j + 1]2

2N1P (μ)(1− P (μ))

}
≤ exp

⎧⎪⎨⎪⎩−
N1

[
N1+1−j

N1
− P (μ)

]2
2P (μ)

⎫⎪⎬⎪⎭
≤ 2P (μ)

N1

[
N1+1−j

N1
− P (μ)

]2 ,
for j = 1, . . . , �N1(1 − P (μ)) + 1�. The proof of Remark 4 is completed by
plugging bound (30) in the upper bound for tβ/N1

(N0, qj).

Proof of Theorem 5

Proof. Lemma 1 provides a condition for adaptively ordered martingale test to
have at least 1− β power given any choice of {Mk}nk=1, thus when {Mk}nk=1 is
random, the power is at least 1− β if

∃k ∈ {1, . . . , n} :∑
i∈Mk

(ri(2Si(1)− 1) + (1− ri)(2Si(0)− 1)) ≥
(
Cα

|Mk| + Cβ
|Mk|

)
(|Mk|)1/2,

(31)

where Si(0) and Si(1) as the probabilities conditioning on Mk are random.
Whether the above condition holds is not determinant, and Theorem 5 provides
a sufficient condition such that the above condition holds with high probability.
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First, for all the nulls,

Si(0) = P(h(pi) > 0|ri = 0, {Mk}nk=1)

(a)
= P(Zi > 0|ri = 0, {Mk}nk=1)

(b)
= P(Zi > 0|ri = 0) = 0.5,

where (a) is because by the definition of the Z-score, h(pi) > 0 is equivalent to
Zi > 0; and (b) is because {Mk}nk=1 is determined by |Zi| which is independent
of 1(Zi > 0) when ri = 0. Thus, (2Si(0)− 1)(1− ri) = 0 and in the above con-
dition the sum on the left-hand side only increases when a non-null enters Mk.
Therefore, the above condition is satisfied if and only if it is satisfied when a
non-null enters Mk:

∃j ∈ {1, . . . , N1} :
∑

i∈M(j)

ri(2Si(1)− 1) ≥
(
Cα

|M(j)| + Cβ
|M(j)|

)
(|M(j)|)1/2.

Second, the non-nulls in M(j) are the ones with j highest absolute Z-scores,
whose Z-scores are Z(1)(μ), . . . , Z(j)(μ). Thus,

∑
i∈M(j) riSi(1) can be expressed

as
∑j

s=1 P(Z(s)(μ) > 0), and the above condition can be rewritten as

∃j ∈ {1, . . . , N1} :

j∑
s=1

(
2P(Z(s)(μ) > 0)− 1

)
≥
(
Cα

|M(j)| + Cβ
|M(j)|

)
(|M(j)|)1/2.

The above condition holds with probability at least 1− β if

∃j ∈ {1, . . . , N1} :

j∑
s=1

(
2P(Z(s)(μ) > 0)− 1

)
≥
(
Cα

n + Cβ
n

)
(j + tβ/N1

(N0, qj))
1
2 ,

(32)

where Cα
n + Cβ

n ≥ Cα
|M(j)| + Cβ

|M(j)| and j + tβ/N1
(N0, qj) is the uniform upper

bound of |M(j)| by Lemma 2.
Overall when condition (32) as above holds, the probability of failing to reject

is less than the sum of (a) the probability that |M(j)| exceeds its upper bound,
which is less than β; and (b) the probability of not rejecting when condition (31)
is satisfied, which is also less than β; thus the power is at least 1−2β. The proof
of theorem 5 completes after replacing all β in condition (32) with β/2.

B.3. Proof of condition (13) in the main paper

Proof. Let j = N1/2 in Theorem 5, the power of adaptively ordered martingale
test is at least 1− β if

N1/2∑
s=1

(
2P(Z(s)(μ) > 0)− 1

)
≥
(
Cα

n + Cβ/2
n

) (
N1/2 + tβ/(2N1)

(
N0, qN1/2

))1/2
.

(33)
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First, the left-hand side can be lower bounded by

N1/2∑
s=1

(
2P(Z(s)(μ) > 0)− 1

)
≥ N1/2 · (2Φ(μ)− 1) = N1Φ(μ)−N1/2,

since the term 1
j

∑j
s=1

(
2P(Z(s)(μ) > 0)− 1

)
decreases in j and is minimum at

j = N1, whose value is

1

N1

N1∑
s=1

(
2P(Z(s)(μ) > 0)− 1

)
=

1

N1

N1∑
s=1

(
2E(1(Z(s)(μ) > 0))− 1

)
=

1

N1

(
2E

(
N1∑
s=1

1(Z(s)(μ) > 0)

)
−N1

)

=
1

N1
(2N1E (1(Z(μ) > 0))−N1) = 2Φ(μ)− 1.

Second on the right-hand side, tβ/(2N1)

(
N0, qN1/2

)
can be upper bounded (by

Chernoff inequality):

tβ/(2N1)

(
N0, qN1/2

)
≤ P(|Z(0)| > |Z(N1/2)(μ)|)N0

+
√

2P(|Z(0)| > |Z(N1/2)(μ)|)N0 log(2N1/β),

in which the probability term P(|Z(0)| > |Z(N1/2)(μ)|) can be further upper
bounded by

P(|Z(0)| > |Z(μπN1/2
)|) ≤ 2− 2Φ(μ),

since

P(|Z(0)| > |Z(μπN1/2
)|)

(a)

≤ 2P (μ)

N1

(
1− P (μ)− N1/2−1

N1

)2
(b)

≤ P (μ)
(c)

≤ 2− 2Φ(μ),

where (a) is in the proof of Remark 4 in Section B.2; (b) holds because of the

condition N1 ≥ 6
(
Cα

n + C
β/2
n

)2
and μ > 2 (an assumption we visit later); and

(c) is because P (μ) = P(|Z(0)| ≥ |Z(μ)|) = 2P(Z(0) ≥ |Z(μ)|), which is less
than 2P(Z(0) ≥ Z(μ)).

Plugging the lower bound of the left-hand side and the upper bound of the
right-hand side, condition (33) is implied by

(Φ(μ)− 1
2 )

2 ≥
(
Cα

n + Cβ/2
n

)2 4max{(1− Φ(μ))N0,
√
(1− Φ(μ))N0 log(

2N1

β )}
N2

1

+
(
Cα

n + Cβ/2
n

)2 N1/2

N2
1

.
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Given μ > 2 and N1 ≥ 6
(
Cα

n + C
β/2
n

)2
, the above condition holds if

1

(1− Φ(μ))

≥
(
Cα

n + Cβ/2
n

)2(28N0

N2
1

)
max

(
1,
(
Cα

n + Cβ/2
n

)2(28 log( 2N1

β )

N2
1

))
.

Given μ > 2 and N1 ≥ 6
(
Cα

n + C
β/2
n

)2
, indicating 1 − Φ(μ) ≤ e−μ2/2/2 and

log(2N1/β) <
N1

5 , we have a sufficient condition of the above condition:

2eμ
2/2 ≥ 28√

2π

(
Cα

n + Cβ/2
n

)2(N0

N2
1

)
,

which can be written as a condition on μ:

μ ≥
√

2 log

(
N0

N2
1

)
+ 4 log

(
Cα

n + C
β/2
n

)
+ 3.45.

Finally we complete the proof by noting that the above condition implies the
assumption μ ≥ 2 when N0 > 0.1N2

1 .

Remark 5. Condition (13) in the main paper falls within the “detectable region”
derived in the work of Donoho and Jin [4]: for any test for the problem of
detecting sparse Guassian mean (N1 ≤ n1/2), type-I error α and type-II error β
would be big such that α+ β → 1 when n → ∞ unless

μ ≥
√

log

(
n

N2
1

)
, when n1/4 ≤ N1 ≤ n1/2, (34)

μ ≥
√
2(
√

logn−
√
logN1), when 1 < N1 < n1/4. (35)

Proof. First note that condition (13) in the main paper indicates

μ ≥
√

2 log

(
n

N2
1

)
,

for any N1 ≤ n1/2, since√
2 log

(
N0

N2
1

)
+ 4 log

(
Cα

n + C
β/2
n

)
+ 3.45

≥
√
2 log

(
N0

N2
1

)
+ 4 log (C1

1 + C1
1 ) + 3.45 =

√
2 log

(
n

N2
1

− 1

N1

)
+ 8.6

≥
√
2 log

(
n

2N2
1

)
+ 8.6 ≥

√
2 log

(
n

N2
1

)
,
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when 2 ≤ N1 ≤ n1/2 and it is obvious when N1 = 1. So when n1/4 ≤ N1 ≤ n1/2,
condition (13) is a subset in the detectable region (34).

When 1 < N1 < n1/4, denote N1 = na where 0 < a < 1/4. The detectable
region (35) can be written as

μ ≥ (1−
√
a)
√

2 logn,

which is implied by condition (13), since√
2 log

(
n

N2
1

)
=

√
1− 2a

√
2 logn ≥ (1−

√
a)
√

2 logn,

when a < 1/4. Hence condition (13) is a subset of the detectable region (34)
and (35).

Appendix C: Power guarantees in the online setting

This section proves the power guarantees in the online setting for three meth-
ods: the martingale Stouffer test, the adaptively ordered martingale test, and a
benchmark, the online Bonferroni method.

C.1. Proof of Theorem 6

The power guarantee for the martingale Stouffer test in the online setting follows
the same steps as that in the batch setting (Section B.1.2), except that the range
of k is changed from {1, . . . , n} to {1, 2, . . .}. We present the proof of the power
guarantee for the online Bonferroni method as follows.

First, we derive an upper bound on the power of the online Bonferroni test.
Recall the Z-score Zk = Φ−1(1 − pk), which follows a Gaussian distribution
Zk ∼ N(rkμk, 1). The power of rejecting the k-th hypothesis at αk is

P(pk < αk) = P(Zk > Φ−1(1− αk)) = 1− Φ[Φ−1(1− αk)− rkμk],

and the overall power of the online Bonferroni is upper bounded by a union of
rejecting individual hypotheses:

P(∃k ∈ N : pk < αk) ≤
∞∑
k=1

P(pk < αk) =
∞∑
k=1

1− Φ[Φ−1(1− αk)− rkμk]. (36)

To upper bound the overall power, we claim the following upper bound on
individual power of any hypothesis k, which is in the ratio of the individual
significance level αk.

Lemma 3. Given any constant C ∈ (e1/4, 1), if the alternative mean is upper
bounded:

rkμk ≤ 1

4Φ−1(1− αk)
, (37)
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the power of rejecting individual hypothesis k is upper bounded:

1− Φ[Φ−1(1− αk)− rkμk] ≤ C · αk,

for large k such that αk < a(C), where the threshold a(C) increases in C. For
example, a(2) > 0.3.

Proof. Consider the ratio of individual power over αk:

1− Φ
[
Φ−1(1− αk)− 1

4Φ−1(1−αk)

]
αk

,

which converges to e1/4 as αk → 0 by L’Hospital’s rule:

lim
αk→0

1− Φ
[
Φ−1(1− αk)− 1

4Φ−1(1−αk)

]
αk

= lim
αk→0

φ
[
Φ−1(1− αk)− 1

4Φ−1(1−αk)

]
φ [Φ−1(1− αk)]

(
1 +

1

4 (Φ−1(1− αk))
2

)
= e1/4.

We observe through simulations that the threshold a(C) ≥ 0.3 when C ≥ 2.

In the following, we derive sufficient conditions for the power of the online
Bonferroni to be less than 1 − β (i.e., the complement of necessary conditions
to have at least 1− β power), separately under the case of dense non-nulls and
sparse non-nulls.

Proof of Theorem 6. Dense non-nulls. First, consider the dense case where
the number of non-nulls are infinite,

∑∞
k=1 rk = ∞. The power of the online

Bonferroni is less than 1− β when

∞∑
k=1

1− Φ[Φ−1(1− αk)− rkμk] ≤ 1− β,

which holds if for each individual hypothesis k with a positive error budget (i.e.,
αk > 0), the power of rejection is bounded

1− Φ
[
Φ−1(1− αk)− rkμk

]
≤ 1− β

α
αk, (38)

where the upper bound 1−β
α αk is chosen to satisfy two conditions: (a) the overall

power is less than 1−β:
∑∞

k=1
1−β
α αk ≤ 1−β and (b) individual power bound is

larger than the corresponding error control level, 1−β
α αk > αk, so that the above

condition is not trivially satisfied in the case of a null: rkμk = 0. By Lemma 3,
the above bound on individual power holds when rkμk satisfy condition (37)
and αk < 0.3 (Notice that here the constant in the lemma is C = 1−β

α ≥ 4, so
threshold a (C) > 0.3).
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To further characterize condition (37) on rkμk, we consider a baseline se-
quence where α∗

k = (6/π2)α/k2, which sums to α. For an arbitrary sequence
{αk}∞k=1 that sums to α, apply the condition for the baseline sequence, rkμk ≤

1
4Φ−1(1−α∗

k)
, and the power for each hypothesis k is still upper bounded. Partic-

ularly, this upper bound differs by whether αk ≤ α∗
k or αk > α∗

k:

1− Φ

[
Φ−1(1− αk)−

1

2Φ−1(1− α∗
k)

]
≤ 1− Φ

[
Φ−1(1− α∗

k)−
1

2Φ−1(1− α∗
k)

]
≤ Cα∗

k, if αk ≤ α∗
k;

1− Φ

[
Φ−1(1− αk)−

1

2Φ−1(1− α∗
k)

]
≤ 1− Φ

[
Φ−1(1− αk)−

1

2Φ−1(1− αk)

]
≤ Cαk, if αk > α∗

k,

for k such that max{αk, α
∗
k} ≤ a(C), and hence,

1− Φ

[
Φ−1(1− αk)−

1

2Φ−1(1− α∗
k)

]
≤ Cmax{α∗

k, αk} ≤ C(α∗
k + αk).

Choose the constant C = 1−β
2α (with a(C) > 0.3), and the overall power is upper

bounded by 1− β:

∞∑
k=1

1− Φ

[
Φ−1(1− αk)−

1

2Φ−1(1− α∗
k)

]
≤ 1− β

2α
(2α) = 1− β,

if (a) the significance levels are small: max{αk, α
∗
k} ≤ 0.3 for all k = 1, 2, . . .,

which holds since α ≤ (1 − β)/4 ≤ 0.25; and (b) the alternative mean rkμk

satisfies condition (37) for the baseline sequence, which holds when

rkμk ≤ 0.25

(√
2 log

(
k2

α

))−1

,

where the bound decreases at the rate of
(√

log k
)−1

.
Sparse non-nulls. Suppose the sequence {αk}∞k=1 is nonincreasing. A

stronger necessary condition can be derived if the non-nulls are sparse in the
sense that there exists an upper bound M such that

∑∞
k=1 rk ≤ M < ∞.

We separately discuss the set of nulls {k : rk = 0}, and the set of small
and large αk. Let k∗ = M2/α, and define the sets of large and small αk as
L(k∗) := {k ≤ k∗ : rk = 1} and S(k∗) := {k > k∗ : rk = 1}. The power would
be less than 1− β if∑

rk=0

1− Φ[Φ−1(1− αk)− rkμk] ≤ α, and (39)
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k∈L(k∗)

1− Φ[Φ−1(1− αk)− rkμk] ≤ 2α, and (40)

∑
k∈S(k∗)

1− Φ[Φ−1(1− αk)− rkμk] ≤ 1− β − 3α. (41)

Power bound (39) for the nulls (rk = 0) holds because individual power equals αk

and
∑

rk=0 αk ≤ α. Power bound (40) for large αk holds if we bound the power
of each individual hypothesis k ∈ L(k∗):

1− Φ[Φ−1(1− αk)− rkμk] ≤ 2αk,

which can be rewritten as

rkμk ≤ Φ−1(1− αk)− Φ−1(1− 2αk).

Note that the above bound on rkμk decreases in αk and that the set of αk for
k ∈ L(k∗) is lower bounded because L(k∗) has finite number of hypotheses.
Thus, the above condition holds if for k ∈ L(k∗), all rkμk are smaller than the
bound corresponding to the smallest significance level in L(k∗), which is αk∗ :

rkμk ≤ Φ−1 (1− αk∗)− Φ−1 (1− 2αk∗) ,

where k∗ = M2/α. Notice that Φ−1 (1− x) is a convex function and its deriva-

tive is −
(
φ(Φ−1 (1− x)

)−1
, so we have

Φ−1 (1− αk∗)− Φ−1 (1− 2αk∗) ≥
(
φ(Φ−1 (1− 2αk∗)

)−1
αk∗ ≥ 0.4

√
αk∗ ,

and power bound (40) for large αk holds when rkμk ≤ 0.4
√
αk∗ .

For small αk, a sufficient condition for the power bound (41) is

1− Φ[Φ−1(1− αk)− rkμk] ≤
1− β − 3α

M
,

for all k ∈ S(k∗) using the fact that the number of hypotheses in S(k∗) is smaller
than M . The above condition can be rewritten as

rkμk ≤ Φ−1(1− αk)− Φ−1

(
1− 1− β − 3α

M

)
.

To characterize the rate of the above bound, recall that the sequence {αk}∞k=1

decreases and sums to α, so αk ≤ α/k for any k = 1, 2, . . .. Thus, the above
condition on rkμk holds when

rkμk ≤
√

log

(
k

4α

)
−
√
2 log

(
M

2(1− β − 3α)

)
,

where the threshold increases at the rate of
√
log k. We note that the above

threshold is positive for k ∈ S(k∗), since k > k∗ and k
4α > M2

4α2 ≥ M2

4(1−β−3α)2 , so

that the condition on rkμk is nontrivial.
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We also demonstrate that the necessary condition for dense non-nulls is fairly
tight when all the hypotheses are non-null.

Lemma 4. Suppose the sequence {αk}∞k=1 decreases at a slow rate,

α1 = 0 and αk = A/[k(log k)2] for k > 1,

with constant A = α/
(∑∞

k=2 1/[k(log k)
2]
)
such that

∑∞
k=1 αk = α. The power

of the online Bonferroni test is one if all hypotheses are non-null for k > 1 and

the mean value decreases: μk = (log k)
−1/c

for any c > 2.

Proof. Let Zk = Φ−1(1 − pk) ∼ N(μk, 1) and Xk = Zk − μk ∼ N(0, 1). The
power of the online Bonferroni test is

P(∃k ∈ N : Zk ≥ Φ−1(1− αk)) = P(∃k ∈ N : Xk ≥ Φ−1(1− αk)− μk)

= 1−
∞∏
k=1

Φ
[
Φ−1 (1− αk)− μk

]
. (42)

Intuitively, the power would not converge to one when Φ
[
Φ−1 (1− αk)− μk

]
�

(1−αk) (the case with μk = 0) since 1−
∏∞

k=1(1−αk) ≤
∑∞

k=1 αk ≤ α, but could
be one when Φ

[
Φ−1 (1− αk)− μk

]
� 1− αk. To quantify this comparison, we

consider the following ratio:

bk :=
1− Φ

[
Φ−1 (1− αk)− μk

]
αk

,

and the power could be one when bk is large. Indeed, we claim that bk increases
at a rate faster than log k, or equivalently, (log k)/bk → 0. It can be verified by
L’Hospital’s rule:

lim
k→∞

(log k)/bk = lim
k→∞

αk log k

1− Φ [Φ−1 (1− αk)− μk]

= lim
k→∞

φ
[
Φ−1 (1− αk)

]
φ [Φ−1 (1− αk)− μk]

log k + αk

k

/
∂αk

∂k

1 + φ [Φ−1 (1− αk)]
∂μk

∂k

/
∂αk

∂k

,

where for large k, we have Φ−1 (1− αk) ≥
√
log k and

φ
[
Φ−1 (1− αk)

]
φ [Φ−1 (1− αk)− μk]

≤ 2 exp{−(log k)1/2−1/c};

log k +
αk

k

/∂αk

∂k
≤ 2 log k;

1 + φ
[
Φ−1 (1− αk)

] ∂μk

∂k

/
∂αk

∂k
≥ 1.

Thus, limk→∞(log k)/bk ≤ limk→∞
4 log k

exp{(log k)1/2−1/c} = 0 for any c > 2. In other

words, we have proved that bk/ log k → ∞.
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The power (42) is one if
∏∞

k=1 Φ
[
Φ−1 (1− αk)− μk

]
= 0, or equivalently,

∞∑
k=1

log Φ
[
Φ−1 (1− αk)− μk

]
= −∞, (43)

where for large k, we have

log Φ
[
Φ−1 (1− αk)− μk

]
= log(1− bkαk) ≤ −bkαk

≤ −A log k/[k(log k)2] = −A/(k log k).

Condition (43) holds because
∑∞

k=1 −A/(k log k) = −∞; and thus, we prove
that the power of the online Bonferroni test is one.

C.2. Proof of Theorem 7

Theorem 7 is a simplified version of the following Theorem 9 (by Claim 1).
Before stating Theorem 9, we first define the distinction measure D(c) as

D(c) =
P(|Z(μ)| > c)

P(|Z(0)| > c)
,

where c is the screening parameter in the online adaptively ordered martingale
test. Bigger D(c) indicates bigger distinction. Further denote N1(k) =

∑k
i=1 ri

as the number of non-nulls after k hypotheses arrive and N0(k) =
∑k

i=1 1 − ri
as for the nulls.

Theorem 9. The adaptively ordered martingale test with type-I error α and
threshold c guarantees 1− β power if

∃k ∈ N :(2S(μ, c)− 1)

(
N1(k)−

C
β/3
k

√
N1(k)

2P(|Z(μ)| > c)

)

≥ Cα
k + C

β/3
k

P1/2(|Z(μ)| > c)

[
N1(k) +D−1(c)N0(k) +

C
β/3
k k1/2

2P(|Z(μ)| > c)

]1/2
,

where S(μ; c) = P(Z(μ) > 0 | |Z(μ)| > c).

Proof. Denote Mk as the set of hypotheses that pass screening (|Zi| > c) after
k hypotheses arrive. By extending Lemma 1 from k = 1, . . . , n to k = 1, 2, . . .,
the power of adaptively ordered martingale test is at least 1− β if

∃k ∈ N :
∑
i∈Mk

(ri(2Si(1)− 1) + (1− ri)(2Si(0)− 1))

≥
(
Cα

|Mk| + Cβ
|Mk|

)
(|Mk|)1/2, (44)
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where for the passed non-nulls, Si(1) = P(h(pi) = 1 | ri = 1, i ∈ Mi), which can
be written in terms of Zi as P(Zi > 0 | ri = 1, |Zi| > c) = S(μ, c), and for passed
the nulls, Si(0) = P(Zi > 0 | ri = 0, |Zi| > c) = P(Z(0) > 0 | |Z(0)| > c) = 0.5.
By the lemmas presented below, the right-hand side is upper bounded by

|Mk| ≤P(|Z(μ)| > c)
(
N1(k) +D−1(c)N0(k)

)
+

Cβ
k

2
k1/2,

with probability 1− β (Lemma 5). The left-hand side is lower bounded by∑
i∈Mk

(2Si(1)− 1)ri = (2S(μ, c)− 1)
∑
i∈Mk

ri

≥ (2S(μ, c)− 1)

(
P(|Z(μ)| > c)N1(k)−

Cβ
k

2

√
N1(k)

)
,

with probability 1 − β (Lemma 6). The condition in Theorem 9 results from
plugging the bounds of both sides into condition (44).

Overall, when the condition in Theorem 9 holds, the probability of failing to
reject is less than the sum of (a) the probability that the upper bound for the
right-hand side is violated, which is less than β/3; (b) the probability that the
lower bound for the left-hand side is violated, which is less than β/3; and (c)
the probability of not rejecting when condition (44) is satisfied, which is less
than β/3; thus the power is at least 1− β.

Lemma 5. The size of Mk in the online setting is uniformly upper bounded:

P1

(
∀k ∈ N : |Mk| − E(|Mk|) ≤

Cβ
k

2
k1/2

)
≥ 1− β,

where

E(|Mk|) = P(|Z(μ)| > c)
(
N1(k) +D−1(c)N0(k)

)
.

Proof. The probability of a hypothesis Hi passing screening is P(|Z(μ)| > c)
when Hi is a non-null, and P(|Z(0)| > c) when Hi is a null. Denote Xi as the

indicator of whether Hi passes the screening, then |Mk| =
∑k

i=1 Xi. Because
Xi are independent and each Xi is a mixture of two Bernoullis (of value {0, 1}),
the size |Mk| is a martingale with 1

4 -subGaussian increment. Therefore,

P1

(
∀k ∈ N : |Mk| − E(|Mk|) ≤

uβ(k)

2

)
≥ 1− β,

where uβ(k) is the upper bound for Gaussian increment martingale as test (6)
in the main paper. The expected value is

E(|Mk|) =
k∑

i=1

riP(Z(μ)| > c) + (1− ri)P(|Z(0)| > c)

= P(|Z(μ)| > c)
(
N1(k) +D−1(c)N0(k)

)
,

which completes the proof.
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Lemma 6. The number of non-nulls in Mk is uniformly lower bounded:

P1

(
∀k ∈ N,

∑
i∈Mk

ri − E(
∑
i∈Mk

ri) ≥ −Cβ
k

2
(N1(k))

1/2

)
≥ 1− β,

where

E(
∑
i∈Mk

ri) = P(|Z(μ)| > c)N1(k).

The proof follows the same steps as in Lemma 5, by considering only the
non-nulls, or equivalently assuming ri = 1 for all i.

Claim 1. The condition of adaptively ordered martingale test to have 1 − β
power in Theorem 7 implies that in Theorem 9.

Proof. First, the condition in Theorem 9 can be written as a quadratic inequality
on N1(k),

∃k ∈ N :(2S(μ, c)− 1)2[0.9N1(k)]
2

≥

(
Cα

k + C
β/3
k

)2
P(|Z(μ)| > c)

(
(1−D−1(c))N1(k) +D−1(c)k +

C
β/3
k k1/2

2P(|Z(μ)| > c)

)
,

by noting that N1(k)−
C

β/3
k

√
N1(k)

2P(|Z(μ)|>c) ≥ 0.9N1(k) since the condition in Theorem 7

guarantees N1(k) ≥
(

C
β/3
k

0.2P(|Z(μ)|>c)

)2

(a claim we visit later).

Solve the quadratic inequality for N1(k) to get a sufficient condition of the
above one:

2N1(k) ≥

(
Cα

k + C
β/3
k

)2
S̃(μ, c)

(1−D−1(c))

+

⎧⎪⎨⎪⎩
(
Cα

k + C
β/3
k

)4
S̃2(μ, c)

(
1−D−1(c)

)2
+ 4

(
Cα

k + C
β/3
k

)2
S̃(μ, c)

D−1(c)k

+

(
Cα

k + C
β/3
k

)2
S̃(μ, c)

C
β/3
k

2P(|Z(μ)| > c)
k1/2

⎫⎪⎬⎪⎭
1/2

,

where S̃(μ, c) = [0.9(2S(μ, c)−1)]2P(|Z(μ)| > c) and D−1(c) = 2Φ(−c)
Φ(μ−c)+Φ(−μ−c) .

Note that under the square root, the last two terms involving k is upper bounded
by

4

(
Cα

k + C
β/3
k

)2
S̃(μ, c)

D−1(c)k +

(
Cα

k + C
β/3
k

)2
S̃(μ, c)

C
β/3
k

2P(|Z(μ)| > c)
k1/2
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=

(
Cα

k + C
β/3
k

)2
S̃(μ, c)(Φ(μ− c) + Φ(−μ− c))

(
8Φ(−c)k +

C
β/3
k

2
k1/2

)

≤

(
Cα

k + C
β/3
k

)2
S̃(μ, c)(Φ(μ− c) + Φ(−μ− c))

9Φ(−c)k =
9
(
Cα

k + C
β/3
k

)2
D−1(c)

2S̃(μ, c)
k,

when k ≥
(

C
β/3
k

2Φ(−c)

)2

. By the fact that
√
a+ b ≤ √

a+
√
b for a, b > 0, an upper

bound on the right-hand side is

2
1−D−1(c)

S̃(μ, c)

(
Cα

k + C
β/3
k

)2
+ 3(Cα

k + C
β/3
k )

√
D−1(c)/2

S̃1/2(μ, c)
k1/2.

Thus, the above condition on N1(k) is implied by

∃k ≥
(

C
β/3
k

2Φ(−c)

)2

: N1(k) ≥ B̃(μ; c)
(
Cα

k + C
β/3
k

)2
+A(μ; c)(Cα

k + C
β/3
k )k1/2,

where A(μ; c) = 3/2

√
D−1(c)/2

S̃1/2(μ,c)
and B̃(μ; c) = 1−D−1(c)

S̃(μ,c)
.

Finally we review the assumptions made throughout the proof: (a) we assume

N1(k) ≥
(

C
β/3
k

0.2P(|Z(μ)|>c)

)2

, which is implied if B̃(μ, c) is adjusted to B(μ, c) as

defined in Theorem 7; and (b) we assume k ≥
(

C
β/3
k

2Φ(−c)

)2

, which holds when

k ≥ T (β; c); adjusting for these assumptions results in the condition in Theo-
rem 7.

Appendix D: Choices for the uniform bounds in the martingale
Stouffer test

The martingale Stouffer test has the general form:

∃k ∈ N :

k∑
i=1

Φ−1(1− pi) ≥ uα(k),

where uα(k) is the uniform bound for a martingale with standard Gaussian
increment. We present four bounds from the work of Howard et al. [9, 10],

1. a linear bound

uα(k) =

√
− logα

2m
k +

√
−m logα

2
, (45)

where m ∈ R+ is a tuning parameter that determines the time at which
the bound is tightest: a larger m results in a lower slope but a larger offset,
making the bound loose early on.
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2. a curved bound from polynomial stitching method

uα(k) = 1.7

√
k

(
log log(2k) + 0.72 log

5.2

α

)
. (46)

3. a curved bound from discrete mixture method

uα(k) = inf

{
s ∈ R :

∞∑
i=0

ωi exp{λis− ψ(λi)k} ≥ 1/α

}
, (47)

where λi = 1.1−(i+1/2)λmax and ωi = 1.1−(i+1)λmaxf(1.05λi)/10, in which

λmax =
√

2 logα−1 and f(x) = 0.4
10≤x≤λmax

x log1.4(eλmax/x)
.

4. a curved bound from inverted stitching method (for finite time)

uα(k) = 2.42
√
k log log(ek) + 4.7, k = 1, 2, . . . , 104, (48)

where the time limit 104 is chosen as the number of hypotheses in the
following simulation.

We use simulations to explore two choices in the martingale Stouffer test: (1) the
choice of parameter m in the linear bound (45); and (2) the choice among the
above four types of bound.

Choice of the parameter m in the linear bound. A good choice of pa-
rameter m should make the bound tight at where most non-nulls appear; thus,
it depends on how the non-nulls distribute. A smaller m results in a faster slope
but a tighter bound at front, so it is desired when the non-nulls are gathered at
front; and vice versa.

We seek for a robust value of m such that the resulting test has relatively
high power under different non-null sparsity. The following constructed simula-
tion is used for exploring bounds in both the martingale Stouffer test and the
martingale Fisher test (introduced in Appendix E).

Setting 2. Consider the hypothesis of testing if a Gaussian has zero mean
as in Setting 1 in the main paper. In total n = 104 samples are simulated,
with 100 from the non-null distribution N(1.5, 1) and the rest from the null
N(0, 1). The non-null sparsity varies by restricting the range where the non-
nulls randomly distribute. The non-null range is set as H1 to Hl and we test
values l = 100, 103, 2 × 103, . . . , 104. We define the non-null sparisty as l

n and
a bigger value indicates a more sparse non-null distribution.

We compare three choices of m = n/4, n/2, 3n/4, with an oracle benchmark
of m = l (whose corresponding bound is the tightest right after all the non-nulls
appear). The choice of m = n/4 leads to the highest power, which is also close
to the oracle benchmark (see Figure 12a).
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Fig 12. Testing martingale Stouffer test using linear bound (45) with different choices of
parameter m across varying non-null sparsity. The choice m = n/4 leads to the highest
power.

Fig 13. Comparison of the aforementioned four bounds (45)-(48) for the martingale Stouffer
test.

Choice of the uniform bound. The four bounds presented above can be
generally classified as two types: linear and curved. Curved bounds have a slower
increasing rate O(

√
k log log(k)) than the linear bound, indicating a tighter

bound for large enough k, but they are usually looser for small k (Figure 13b).

Under the batch setting where the number of hypotheses n is finite, we use
the simulation setting 2, and the linear bound (45) (with m = n/4) results in
the highest power (Figure 13a). Similar to tuning the parameter m in the linear
bound, we explored to tune the implicit parameters in the curved bound, and yet
the linear bound still has the highest power. However, under the online setting
where new hypotheses keep arriving, the tests with curved bounds are expected
to need less time (number of hypotheses) on average to reach rejection.
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Appendix E: Martingale Fisher test

The batch test by Fisher [7] calculates Sn = −2
∑n

i=1 log pi. Since the distribu-
tion of Sn under the global null is χ2

2n (chi-square with 2n degree of freedom),
the batch test rejects when Sn is bigger than the 1 − α quantile for χ2

2n. To
design the martingale test, simply observe that {Sk}k∈I is a martingale whose
increments f(pi) = −2 log pi are χ2

2 under the global null (after centering as
Sk − 2k). Similar to the martingale Stouffer test, there are several types of uni-
form boundaries uα(k) for chi-square increment martingales from the work of
Howard et al. [9, 10]. We present two types: a sub-exponential (linear) bound-
ary, and a sub-Gamma (curved) boundary. The general form of the martingale
Fisher test rejects the global null if

∃k ∈ N : −2

k∑
i=1

log pi − 2k ≥ uα(k), (49)

where examples of uα(k) include

1. a sub-exponential linear boundary

uα(k) =

((
1.41m

xm,α
+ 2

)
log

(
1 +

1.41xm,α

m

)
− 2

)
(k −m) + 2.82xm,α,

(50)

where xm,α = min
{
x : exp

{
−0.71x+ m

2 log(1 + 1.41x
m )

}
≤ α
}
; and

2. a sub-Gamma curved boundary

uα(k) = 4.07

√
k

(
log log(2k) + 0.72 log

5.2

α

)
(51)

+ 9.66

(
log log(2k) + 0.72 log

5.2

α

)
.

The linear bound contains a parameter m with the same interpretation as m
in the linear bound (5) for martingale Stouffer test (in the main paper): it
determines the time at which the bound is tightest — a larger m results in a
lower slope but a larger offset, making the bound loose early on. Based on the
simulation results in Figure 14a, we suggest a default value of m = n/4 if the
number of hypotheses n is finite, but it should be chosen based on the time by
which we expect to have encountered most non-nulls (if any).

The power of the martingale Fisher test using linear and curved bounds
are compared under different non-null sparsity (using simulation setting 2). The
curve bound loses power quickly when non-null is rather sparse (see Figure 15a),
consistent with the comparison between linear and curved bounds for the mar-
tingale Stouffer test in Appendix D.
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Fig 14. Testing the martingale Fisher test using the linear bound (50) with different choices
of parameter m across varying non-null sparsity. The choice m = n/4 leads to the highest
power.

Fig 15. Comparison of the aforementioned two bounds (50) and (51) for the martingale
Fisher test.

Appendix F: Martingale chi-squared test

The chi-squared test calculates Sn =
∑n

i=1

[
Φ−1(1− pi)

]2
. Since the distribu-

tion of Sn under the global null is χ2
n (a chi-square with n degrees of freedom),

the batch test rejects when Sn is bigger than the 1 − α quantile for χ2
n. To

design the martingale test, simply observe that {Sk − k}k∈I is a martingale,

whose increment
[
Φ−1(1− pi)

]2 − 1 is distributed as χ2
1 (minus one) under the

global null. Similar to the martingale Stouffer test and martingale Fisher test
(in Appendix D and E), there are several linear and curved boundaries uα(k)
for chi-square increment martingales from the work of Howard et al. [9, 10].
We present two types: a sub-exponential (linear) boundary, and a sub-Gamma
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(curved) boundary. The general form of the martingale chi-square test rejects
the global null if

∃k ∈ N :
k∑

i=1

[
Φ−1(1− pi)

]2 − k ≥ uα(k), (52)

where examples of uα(k) include

1. a sub-exponential linear boundary

uα(k) =

((
m

2xm,α
+ 1

)
log

(
1 +

2xm,α

m

)
− 1

)
(k −m) + 2xm,α, (53)

where xm,α = min
{
x : exp

{
−x

2 + m
4 log(1 + 2x

m )
}
≤ α
}
; and

2. a sub-Gamma curved boundary

uα(k) = 3.42

√
k

(
log log(2k) + 0.72 log

5.2

α

)
(54)

+ 9.66

(
log log(2k) + 0.72 log

5.2

α

)
.

We expect the discussions on parameter m in the linear bound and on the com-
parison between the linear and curved bounds to be similar to that in the mar-
tingale Stouffer test (Appendix D) and the martingale Fisher test (Appendix E).
If testing the martingale chi-squared test by the same numerical experiment in
Setting 2, m = n/4 should lead to high power for various degrees of sparsity;
and the linear bound should be tighter than the curved bound for most time
k ≤ 104, and hence lead to higher power when non-null is rather sparse.

Appendix G: Bayesian modeling for the posterior probability of
being non-null

Modeling the posterior probabilities of being non-null. Define the Z-
score for hypothesis Hi be Zi = Φ−1(1− pi). Instead of modeling the p-values,
we choose to model the Z-scores since under setting 1 in the main paper they
are distributed as a Gaussian either under the null or the alternative:

H0 : Zi ∼ N(0, 1) versus H1 : Zi ∼ N(μ, 1),

where μ is the mean value for all the non-nulls. We model Zi by a mixture of
Guassians:

Zi ∼ (1− qi)N(0, 1) + qiN(μ, 1), with qi ∼ Bernoulli(πi),

where qi is the indicator of whether the hypothesis Hi is a true non-null.
The non-null structures are imposed by the constraints on non-null proba-

bility πi. In our examples, the blocked non-null structure is encoded by fitting
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non-null probabilities πi as a smooth function of the hypothesis position (co-
variates) xi, specifically as a logistic regression model on a spline basis:

πi = πβ(xi) =
1

1 + exp(−βφ(xi))
, (55)

where φ(xi) is a spline basis. The hierarchical structure is imposed by a partial
ordering constraint on πi:

πi ≥ πj , if i is the parent of j, (56)

when the probability of being non-null decreases down the tree (πi ≥ πj if the
probability increases).

An EM framework for the posterior probabilities of being non-null.
An EM algorithm is used to train the model because masked p-values are mod-
eled. Specifically, we treat p-values as the hidden variables, and the masked
p-values g(p) as observed. In terms of the Z-score Zi, Zi is a hidden variable

and the observed variable Z̃i is its absolute value |Zi| (if pi is masked).

Define a sequence of hypothetical labels wi = 1(Zi = Z̃i), and the likelihood

of data (Z̃i, wi, qi) is

l(Z̃i, wi, qi) = wiqi log(πiφ(Z̃i − μ)) + wi(1− qi) log((1− πi)φ(Z̃i))

+ (1− wi)qi log(πiφ(−Z̃i − μ))

+ (1− wi)(1− qi) log((1− πi)φ(−Z̃i)),

where φ(·) is the PDF of a standard Gaussian.
The E-step updates wi, qi. Notice that wi and qi are not independent, so we

update the joint distribution of (wi, qi), namely parameters

wiqi =: ai, wi(1− qi) =: bi, (1− wi)qi =: ci, (1− wi)(1− qi) =: di,

where ai + bi + ci + di = 1. For a simple expression of the updates, we define

L
(
Z̃i, μ, πi

)
:= πiφ(Z̃i − μ)) + (1− πi)φ(Z̃i)

+ πiφ(−Z̃i − μ) + (1− πi)φ(−Z̃i).

For hypothesis i whose p-value is masked, the updates are

ai,new = E[wiqi | Z̃i] =
πiφ(Z̃i − μ)

L
(
Z̃i, μ, πi

) ;
bi,new = E[wi(1− qi) | Z̃i] =

(1− πi)φ(Z̃i)

L
(
Z̃i, μ, πi

) ;
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ci,new = E[(1− wi)qi | Z̃i] =
πiφ(−Z̃i − μ)

L
(
Z̃i, μ, πi

) ;

di,new = E[(1− wi)(1− qi) | Z̃i] =
(1− πi)φ(−Z̃i)

L
(
Z̃i, μ, πi

) .

If the p-value is unmasked for hypothesis i, we have wi = 1 and the updates are

ai,new =

⎛⎝1 +
(1− πi)φ

(
Z̃i

)
πiφ
(
Z̃i − μ

)
⎞⎠−1

;

bi,new = 1− ai,new; ci,new = 0; di,new = 0.

In the M-step, parameters μ and πi are updated. The update for μ is

μnew = argmin
μ

∑
i

l(Z̃i) =

∑
(ai − ci)Z̃i∑
(ai + ci)

.

The update for πi depends on the non-null structure, which encodes different
constraints on πi. Under the block non-null structure, updating πi corresponds
to updating β in model (55) for πβ(xi). The update is equivalent to fitting ai+ci
by a logistic regression:

(βnew) = argmax
β

∑
i

(ai + ci) log πβ(xi) + (bi + di) log(1− πβ(xi))

= argmax
β

∑
i

(ai + ci) log πβ(xi) + (1− ai − ci) log(1− πβ(xi)),

and πi,new = πβnew(xi). Under the hierarchical structure, updating πi is equiv-
alent to fitting a partial isotonic regression on ai + ci (Barlow [3], Theorem 3.1
and Robertson [21], Theorem 1.5.1):

(πi,new) = argmax
partial ordered{πi}

∑
i

(ai + ci) log πi + (1− ai − ci) log(1− πi)

= argmin
partial ordered{πi}

∑
i

(ai + ci − πi)
2,

where the partial ordering is defined in statement (56).
Suppose we wish to model the alternative mean μ differently for individual

hypotheses. In that case, we can think of the alternative mean as a parametric
function of the covariates: μi = μγ(xi) where the vector γ denotes the param-
eters. A simple example is a linear function: μγ(xi) = γTxi. The updates in
the E-step is the same as above with μ replaced by μγ(xi). In the M-step, the
update for μi corresponds to the update for γ:

(γnew) = argmax
γ

∑
i

ai

(
Z̃i − μγ(xi)

)2
+ ci

(
−Z̃i − μγ(xi)

)2
,
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Fig 16. Power of the interactively ordered martingale test (IMT), AW-Fisher, and weighted-
HC when the non-null cluster is in the center of a 10 × 10 grid. IMT and AW-Fisher both
have high power, but the AW-Fisher has a high computational cost.

which is equivalent to the solution of a least square regression to a set of pseudo
responses {Z̃1, . . . , Z̃n,−Z̃1, . . .− Z̃n} with weights {a1, . . . , an, c1, . . . , cn}. We
use the EM algorithm with constant μ for the experiments in our paper, because
it tends to be robust to heterogeneous alternative mean values in simulations.

Appendix H: Comparison with alternative methods

We compared the interactive test with the adaptive weighted Fisher test (AW-
Fisher) and weighted Higher Criticism (weighted-HC) in the example of a grid
of hypotheses. Our simulation considers a small grid (10× 10) because the AW-
Fisher test has a very high computational cost. We used the R package AWFisher
by Huo et al. (2020) [11], which refers to a base library of null distributions for
cases with less than 100 hypotheses; it took 6373.5 CPU hours using AMD
Opteron(tm) Processor (1.4GHz) to complete the base library. Without such a
base library, the computational complexity of the AW-Fisher test is O(2n), and
roughly O(n log(n)) for our interactive test.

As described in Section 5.1, we simulated a non-null cluster is in the center
of the hypothesis grid. The weights in HC use the oracle information of the non-
null position and is set to 1 for the non-nulls and 0.5 for others. Since we have
included several simulations to compare the interactively ordered martingale
test with martingale Stouffer test and Stouffer’s test in Section 5, above in
Figure 16, we only focus on the comparison among the interactive test, AW-
Fisher and weighted-HC. Although the AW-Fisher test achieves similar power
as the interactively ordered martingale test, it has very high computational cost
as described above. Also, we remark that one main advantage of the interactive
test we propose is that it can incorporate various types of prior knowledge and
covariates in a data-dependent way. Meanwhile, most existing methods require
the analyst to commit to one structure or prior knowledge before observing
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the p-values. For example, the weighted-HC might achieve higher power with a
different set of weights, but the weights need to be specified ahead of time.
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