
Electronic Journal of Statistics
Vol. 14 (2020) 4421–4456
ISSN: 1935-7524
https://doi.org/10.1214/20-EJS1779

Estimation of extreme quantiles from

heavy-tailed distributions in a

location-dispersion regression model

Aboubacrène Ag Ahmad∗ , El Hadji Deme∗ , Aliou Diop∗
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Abstract: We consider a location-dispersion regression model for heavy-
tailed distributions when the multidimensional covariate is deterministic.
In a first step, nonparametric estimators of the regression and dispersion
functions are introduced. This permits, in a second step, to derive an es-
timator of the conditional extreme-value index computed on the residuals.
Finally, a plug-in estimator of extreme conditional quantiles is built using
these two preliminary steps. It is shown that the resulting semi-parametric
estimator is asymptotically Gaussian and may benefit from the same rate
of convergence as in the unconditional situation. Its finite sample properties
are illustrated both on simulated and real tsunami data.
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1. Introduction

The modeling of extreme events arises in many fields such as finance, insurance
or environmental science. A recurrent statistical problem is then the estima-
tion of extreme quantiles associated with a random variable Y , see the reference
books [1, 13, 24]. In many situations, Y is recorded simultaneously with a multi-
dimensional covariate x ∈ R

d, the goal being to describe how tail characteristics
such as extreme quantiles or small exceedance probabilities of the response vari-
able Y may depend on the explanatory variable x. Motivating examples include
the study of extreme rainfall as a function of the geographical location [17],
the assessment of the optimal cost of the delivery activity in postal services [7],
the analysis of longevity [30], the description of the upper tail of claim size
distributions [1], the modeling of extremes in environmental time series [37],
etc.

Here, we focus on the challenging situation where Y given x is heavy-tailed.
Without additional assumptions on the pair (Y, x), the estimation of extreme
conditional quantiles is addressed using nonparametric methods, see for instance
the recent works of [9, 19, 21]. These methods may however suffer from the curse
of dimensionality which is compounded in distribution tails by the fact that
observations are rare by definition. These difficulties can be partially overcome
by considering parametric models [11, 5]. Semi-parametric methods have also
been considered for trend modeling in extreme events [10, 27]: A nonparametric
regression model of the trend is combined with a parametric model for extreme
values.

Our approach belongs to this second line of works. We assume that the re-
sponse variable and the covariate are linked by a location-dispersion regression
model Y = a(x) + b(x)Z, see [39], where Z is a heavy-tailed random variable.
This model is flexible since (i) no parametric assumptions are made on a(·),
b(·) and Z, (ii) it allows for heteroscedasticity via the function b(·). Moreover,
another feature of this model is that Y inherits its tail behavior from Z and
thus does not depend on the covariate x. We propose to take profit of this im-
portant property to decouple the estimation of the nonparametric and extreme
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structures. As a consequence, we shall show that the resulting semi-parametric
estimators of extreme conditional quantiles of Y given x are asymptotically
Gaussian and may benefit from the same rate of convergence as in the un-
conditional situation. A similar idea is implemented in [29]: An extreme-value
distribution with constant extreme-value index is fitted to standardized rainfall
maxima. The theoretical study of heteroscedastic extremes has been initiated
in [26] and further developed in [12, 15] through the introduction of a propor-
tional tails model. The results were applied to trend detection in rainfalls and
stock market returns.

This paper is organized as follows. The location-dispersion regression model
for heavy-tailed distributions is presented in more details in Section 2. The asso-
ciated inference methods are described in Section 3: Estimation of the regression
and dispersion functions, estimation of the conditional tail-index and extreme
conditional quantiles. Asymptotic results are provided in Section 4 while the
finite sample behavior of the estimators is illustrated in Section 5 on simulated
data and in Section 6 on tsunami data. Proofs are postponed to the Appendix.

2. Location-dispersion regression model for heavy-tailed
distributions

We consider the class of location-dispersion regression models, where the relation
between a random response variable Y ∈ R and a deterministic covariate vector
x ∈ Π ⊂ R

d, d ≥ 1 is given by

Y = a(x) + b(x)Z. (2.1)

The real random variable Z is assumed to be heavy-tailed. Denoting by F̄Z its
survival function, one has

F̄Z(z) = z−1/γL(z), z > 0. (2.2)

Here, γ > 0 is called the conditional tail-index and L is a slowly-varying function
at infinity i.e. for all t > 0,

lim
z→∞

L(tz)

L(z)
= 1.

F̄Z is said to be regularly varying at infinity with index −1/γ. This property
is denoted for short by F̄Z ∈ RV−1/γ , see [3] for a detailed account on regular
variations. Model (2.1) has been introduced by [39] in the random design setting
where the location function a : Π → R and the scaling function b : Π →
R

+ \ {0} are referred to as the regression and dispersion functions respectively.
Combining (2.1) and (2.2) yields

F̄Y (y | x) := P(Y > y | x) = F̄Z

(
y − a(x)

b(x)

)
=

(
y − a(x)

b(x)

)−1/γ

L

(
y − a(x)

b(x)

)
,

(2.3)
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for y ≥ y0(x) > a(x) where the functions a(·), b(·) and the conditional tail-
index γ are unknown. We thus obtain a semi-parametric location-dispersion
regression model for the (heavy) tail of Y given x. The main assumption is that
the conditional tail-index γ is independent of the covariate. On the one hand,
the proposed semi-parametric heteroscedastic modeling offers more flexibility
than purely parametric approaches. On the other hand, the location-dispersion
structure may circumvent the curse of dimensionality and assuming a constant
conditional tail-index γ should yield more reliable estimates in small sample
contexts than purely nonparametric approaches. Let us also note that, from (2.2)
and (2.3), the regular variation property yields F̄Y (y | x)/F̄Z(y) → b(x)1/γ as
y → ∞. The location-dispersion regression model can thus be interpreted as a
particular case of the proportional tails model [12] with scedasis function b(·)1/γ .
The practical consequences of this point are further discussed in Section 5.

Starting with an independent n-sample {(Y1, x1), . . . , (Yn, xn)} from (2.1),
it is clear that, since Z is not observed, a(·) and b(·) may only be estimated
up to additive and multiplicative factors. This identifiability issue can be fixed
by introducing some constraints on the distribution of Z. To this end, for all
α ∈ (0, 1) consider qZ(α) = inf{z ∈ R; F̄Z(z) ≤ α} the αth quantile of Z and
let (μ1, μ2, μ3) ∈ (0, 1)3 such that μ3 < μ1 and

qZ(μ2) = 0 and qZ(μ3)− qZ(μ1) = 1. (2.4)

Let us note that the constraint (2.4) can always be fulfilled with i.e. μ3 = 1/4,
μ2 = 1/2 and μ1 = 3/4 up to an affine transformation of a(·), b(·) and Z such
that (2.1) holds. From (2.1), for all α ∈ (0, 1), the conditional quantile of Y
given x ∈ Π is

qY (α | x) = a(x) + b(x)qZ(α), (2.5)

and therefore the regression and dispersion functions are defined in an unique
way by

a(x) = qY (μ2 | x) and b(x) = qY (μ3 | x)− qY (μ1 | x), (2.6)

for all x ∈ Π. This remark is the starting point of the inference procedure
described hereafter.

3. Inference

Let us denote by λ the Lebesgue measure and ‖ · ‖ a norm on R
d, d ≥ 1.

Consider {(Y1, x1), . . . , (Yn, xn)} a n-sample from (2.1): Yi = a(xi) + b(xi)Zi,
i = 1, . . . , n where Z1, . . . , Zn are independent and identically distributed (iid)
from the heavy-tailed distribution (2.2). We assume that the design points xi,
i = 1, . . . , n are all distinct from each other and included in Π, a compact subset
of Rd whose Lebesgue measure of the boundary is zero. Let {Πi, i = 1, . . . , n}
be a partition of Π such that xi ∈ Πi. A three-stage inference procedure is
adopted: The regression and dispersion functions are estimated nonparamet-
rically in Paragraph 3.1, and the conditional tail-index is then computed from
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the residuals in Paragraph 3.2. Finally, the extreme conditional quantiles are de-
rived by combining a plug-in method with Weissman’s extrapolation device [40]
in Paragraph 3.3.

3.1. Estimation of the regression and dispersion functions

The proposed procedure relies on the choice of a smoothing estimator for the
conditional quantiles. Here, a kernel estimator for F̄Y (y | x) is considered (see
for instance [33, 34]). For all (x, y) ∈ Π× R let

ˆ̄Fn,Y (y | x) =
n∑

i=1

1{Yi>y}

∫
Πi

Kh(x− t)dt, (3.1)

where 1{·} is the indicator function, Kh(·) := K(·/h)/hd with K a density

function on R
d called a kernel. The associated smoothing parameter h = hn → 0

as n → ∞ is a nonrandom sequence called the bandwidth. The corresponding
estimator of qY (α | x) is defined for all (x, α) ∈ Π× (0, 1) by

q̂n,Y (α | x) = ˆ̄F←
n,Y (α | x) := inf{y; ˆ̄Fn,Y (y | x) ≤ α}. (3.2)

Nonparametric regression quantiles obtained by inverting a kernel estimator of
the conditional distribution function have been extensively investigated, see, for
example [2, 35, 38], among others. In view of (2.6), the regression and dispersion
functions are estimated by

ân(x) = q̂n,Y (μ2 | x) and b̂n(x) = q̂n,Y (μ3 | x)− q̂n,Y (μ1 | x), (3.3)

for all x ∈ Π.

3.2. Estimation of the conditional tail-index

The non-observed Z1, . . . , Zn are estimated by the residuals

Ẑi = (Yi − ân(xi))/b̂n(xi), (3.4)

for all i = 1, . . . , n where ân(·) and b̂n(·) are given in (3.3). In practice, non-
parametric estimators can suffer from boundary effects [6, 31] and therefore
only design points sufficiently far from the boundary of Π are considered. More
specifically, consider Π̃(n) = {x ∈ R

d, such that B(x, h) ⊂ Π} the erosion of the
set Π by the ball B(0, h) centered at 0 and with radius h, see [36] for further
details on mathematical morphology. Denote by In the set of indices associ-
ated with such design points In = {i ∈ {1, . . . , n} such that xi ∈ Π̃(n)} and let
mn = card(In). It can be shown that mn = n(1 +O(h)), see Lemma A.3 in the
Appendix.

Finally, let (kn) be an intermediate sequence of integers, i.e. such that 1 <
kn ≤ n, kn → ∞ and kn/n → 0 as n → ∞. The (kn + 1) top order statistics
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associated with the pseudo-observations Ẑi, i ∈ In are denoted by Ẑmn−kn,mn ≤
· · · ≤ Ẑmn,mn . The conditional tail-index is estimated using a Hill-type statis-
tic [28]:

γ̂n =
1

kn

kn−1∑
i=0

log Ẑmn−i,mn − log Ẑmn−kn,mn , (3.5)

built on non iid pseudo-observations.

3.3. Estimation of extreme conditional quantiles

Clearly, the purely nonparametric estimator (3.2) cannot estimate consistently
extreme quantiles of levels αn arbitrarily small. For instance, when nαn → 0,
the extreme quantile is likely to be larger than the maximum observation. In
such a case, an extrapolation technique is necessary to estimate the so-called
extreme conditional quantile qY (αn | x). To this end, we propose to take profit
of the structure of the location-dispersion regression model (2.5) to define the
plugin estimator

q̃n,Y (αn | x) = ân(x) + b̂n(x)q̂n,Z(αn), (3.6)

where ân(x) and b̂n(x) are given in (3.3) and q̂n,Z(αn) is the Weissman type
estimator [40]:

q̂n,Z(αn) = Ẑmn−kn,mn

(
αnmn

kn

)−γ̂n

. (3.7)

Again, it should be noted that q̂n,Z(αn) is computed from the non iid pseudo-

observations Ẑi, i ∈ In. Finally, by construction, the semi-parametric estima-
tor (3.6) cannot suffer from quantile crossing, a phenomenon which can occur
with quantile regression techniques.

4. Main results

The following general assumptions are required to establish the asymptotic be-
havior of the estimators. The first one gathers all the conditions to define a
location-dispersion regression model for heavy-tailed distributions in a multidi-
mensional fixed design setting.

(A.1) (Y1, x1), . . . , (Yn, xn) are independent observations from the location-
dispersion regression model for heavy-tailed distributions defined by (2.1),
(2.2) and (2.4) and such that

max
i=1,...,n

∣∣∣∣λ(Πi)−
λ(Π)

n

∣∣∣∣ = o(1/n), (4.1)

max
i=1,...,n

sup
(s,t)∈Π2

i

‖s− t‖ = O(n−1/d). (4.2)

We refer to [33, 34] for this definition of the multidimensional fixed design
setting.
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The second assumption is a regularity condition.

(A.2) The functions a(·) and b(·) are twice continuously differentiable on Π,
b(·) is lower bounded on Π, b(t) ≥ bm > 0 for all t ∈ Π, and the survival
function F̄Z(·) is twice continuously differentiable on R.

Under (A.1) and (A.2), the quantile function qZ(·) and the density fZ(·) =
−F̄ ′

Z(·) exist and we let HZ(·) := 1/fZ(qZ(·)) the quantile density function
and UZ(·) = qZ(1/·) the tail quantile function of Z. Moreover, the conditional
survival function of Y is twice continuously differentiable with respect to its
second argument. The next assumption is standard in the nonparametric kernel
estimation framework.

(A.3) K is a bounded and even density with symmetric support S ⊂ B(0, 1) the
unit ball of Rd and verifying the Lipschitz property: There exists cK > 0
such that

|K(u)−K(v)| ≤ cK‖u− v‖,

for all (u, v) ∈ S2.

Under (A.3), let ‖K‖∞ = supt∈S K(t) and ‖K‖2 =
(∫

S
K2(t)dt

)1/2
. Finally, a

second-order condition is introduced, see for instance [24, eq (3.2.5)]:

(A.4) For all t > 0, as z → ∞,

UZ(tz)

UZ(z)
− tγ ∼ A(z)tγ

tρ − 1

ρ
,

where γ > 0, ρ < 0 and A is a positive or negative function such that
A(z) → 0 as z → ∞.

From [3, Theorem 1.5.12], property (2.2) is equivalent to UZ ∈ RV γ , that is
UZ(tz)/UZ(z) → tγ as z → ∞ for all t > 0. The role of the second-order
condition (A.4) is thus to control the rate of the previous convergence thanks
to the function A(·). Moreover, it can be shown that |A| is regularly varying
with index ρ, see [24, Lemma 2.2.3]. It is then clear that ρ, referred to as the
(conditional) second-order parameter, is a crucial quantity, tuning the rate of
convergence of most extreme-value estimators, see [24, Chapter 3] for examples.
A list of distributions satisfying (A.4) is provided in Table 1 together with the
associated values of γ and ρ. Similarly to [34], the dimension d = 4 plays a
special role and we thus introduce for all d ≥ 1:

κ(d) =

∣∣∣∣ 4 if d ≤ 4
2d/(d− 2) if d ≥ 4.

Our first result states the joint asymptotic normality of the estimators (3.3) of
the regression and dispersion functions.

Theorem 4.1. Assume (A.1), (A.2), (A.3) hold and fZ(qZ(μj)) > 0 for
j ∈ {1, 2, 3}. If nhd → ∞ and nhd+κ(d) → 0 as n → ∞ then, for all sequence
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Table 1

A list of heavy-tailed distributions satisfying (A.4) with the associated values of γ and ρ.
Γ(·) and B(·, ·) denote the Gamma and Beta functions respectively.

Distribution Density function γ ρ
(parameters)

Generalised Pareto σ−1 (1 + ξt/σ)−1−1/ξ ξ −ξ
(σ, ξ > 0) (t > 0)

Burr αβtα−1 (1 + tα)−β−1 1/(αβ) −1/β
(α, β > 0) (t > 0)

Fréchet αt−α−1 exp
(
−t−α

)
1/α −1

(α > 0) (t > 0)

Fisher
(ν1/ν2)ν1/2

B(ν1/2, ν2/2)
tν1/2−1(1 + ν1t/ν2)−(ν1+ν2)/2 2/ν2 −2/ν2

(ν1, ν2 > 0) (t > 0)

Inverse Gamma
βα

Γ(α)
t−α−1 exp(−β/t) 1/α −1/α

(α, β > 0) (t > 0)

Student
1√
νπ

Γ
(
ν+1
2

)
Γ
(
ν
2

) (
1 +

t2

ν

)− ν+1
2

1/ν −2/ν

(ν > 0)

(tn) ⊂ Π̃(n),
√
nhd

b(tn)

(
ân(tn)− a(tn)

b̂n(tn)− b(tn)

)
d−→ N

(
0R2 , λ(Π)‖K‖22 Σ

)
,

where the coefficients of the (symmetric) matrix Σ are given by

Σ1,1 = μ2(1− μ2)H
2
Z(μ2),

Σ1,2 = μ2(1− μ1)HZ(μ1)HZ(μ2)− μ3(1− μ2)HZ(μ2)HZ(μ3),

Σ2,2 = μ1(1− μ1)H
2
Z(μ1)− 2μ3(1− μ1)HZ(μ1)HZ(μ3) + μ3(1− μ3)H

2
Z(μ3).

A uniform consistency result can also be established:

Theorem 4.2. Assume (A.1), (A.2) and (A.3) hold. If nhd/ logn → ∞ and
nhd+κ(d)/ log n → 0 as n → ∞, then,√

nhd

logn
max
i∈In

∣∣∣∣ ân(xi)− a(xi)

b(xi)

∣∣∣∣ = OP(1) and√
nhd

logn
max
i∈In

∣∣∣∣∣ b̂n(xi)− b(xi)

b(xi)

∣∣∣∣∣ = OP(1).

As a consequence of Theorem 4.2, one can prove that the residuals Ẑi =
(Yi − ân(xi))/b̂n(xi), see (3.4), are close to the unobserved Zi, i = 1, . . . , n.

Corollary 4.1. Under the assumptions of Theorem 4.2, for all i ∈ In,

|Ẑi − Zi| ≤ Rn,i(1 + |Zi|), where max
i∈In

Rn,i = OP

(√
log n

nhd

)
= oP(1).
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Our next main result provides the asymptotic normality of the conditional
tail-index estimator (3.5) and the Weissman estimator (3.7) computed on the
residuals.

Theorem 4.3. Assume (A.1)-(A.4) hold. Let (kn) be an intermediate se-
quence of integers such that nhd/(kn logn) → ∞, nhd+κ(d)/ logn → 0 and√
knA(n/kn) → β ∈ R as n → ∞. Then,

(i)
√
kn(γ̂n − γ)

d−→ N (β/(1− ρ), γ2).
(ii) For all sequence (αn) ⊂ (0, 1) such that nαn/kn → 0 and log(nαn)/

√
kn →

0 as n → ∞,

√
kn

log
(

kn

nαn

)( log q̂n,Z(αn)− log qZ(αn)

)
d−→ N (β/(1− ρ), γ2).

It appears that, in the location-dispersion regression model, the tail-index
can be estimated at the same rate 1/

√
kn as in iid case, see [22] for a review. As

expected, this semi-parametric framework is a more favorable situation than the
purely nonparametric one for the estimation of the conditional tail-index where
the rate of convergence 1/

√
knhd is impacted by the covariate, see for instance

[9, Corollary 1 & 2], [8, Theorem 3] and [21, Theorem 2]. To be more specific,
remark first that conditions nhd/(kn logn) → ∞ and nhd+κ(d)/ logn → 0 imply
that kn = o

(
(n/ logn)κ(d)/(d+κ(d))

)
. Second, following [24, Eq. (3.2.10)], if A

is a power function, then condition
√
knA(n/kn) → β as n → ∞ yields kn =

O
(
n−2ρ/(1−2ρ)

)
. As a conclusion, up to logarithmic factors, possible choices of

sequences are then

hn = n−1/(d+κ(d)) and kn = n1/(1+max{d/κ(d),−1/(2ρ)}). (4.3)

If ρ ≥ −κ(d)/(2d), the rate of convergence of γ̂n is thus nρ/(1−2ρ) up to loga-
rithmic factors which is the classical rate for estimators of the tail-index, see for
instance [25, Remark 3]. For instance, in the situation where the dimension of
the covariate is d ≤ 2, then the nρ/(1−2ρ) rate is reached as soon as ρ ≥ −1. This
corresponds to the challenging situation where a high bias is expected in the
estimation which may occur for most usual distributions, depending on their
shape parameters, see Table 1.

Theorem 4.4 states the asymptotic normality of the estimator (3.6) of extreme
conditional quantiles of Y | x.
Theorem 4.4. Assume (A.1)-(A.4) hold and fZ(qZ(μj)) > 0 for j ∈ {1, 2, 3}.
Let (kn) be an intermediate sequence of integers. Suppose nhd/(kn log n) → ∞,
nhd+κ(d) → 0 and

√
knA(n/kn) → β ∈ R as n → ∞. Then, for all sequences

(tn) ⊂ Π̃(n) and (αn) ⊂ (0, 1) such that nαn/kn → 0 and log(nαn)/
√
kn → 0 as

n → ∞,

√
kn

qZ(αn) log
(

kn

nαn

) ( q̃n,Y (αn | tn)− qY (αn | tn)
b(tn)

)
d−→ N (β/(1− ρ), γ2). (4.4)
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Remark that b(tn)qZ(αn) ∼ a(tn) + b(tn)qZ(αn) = qY (αn | tn) and there-
fore (4.4) can be rewritten as

√
kn

log
(

kn

nαn

) ( q̃n,Y (αn | tn)
qY (αn | tn)

− 1

)
d−→ N (β/(1− ρ), γ2).

As a comparison, the rate of convergence of purely nonparametric methods
involves an extra hd/2 factor, see for instance [18, Theorem 3] or [8, Theorem 3].
The location-dispersion regression model allows to dampen this vexing effect of
the dimensionality.

Finally, a uniform consistency result is also available:

Theorem 4.5. Assume (A.1)-(A.4) hold. Let (kn) be an intermediate se-
quence of integers. Suppose nhd/(kn logn) → ∞, nhd+κ(d)/ logn → 0 and√
knA(n/kn) → β ∈ R as n → ∞. Then, for all sequence (αn) ⊂ (0, 1) such

that nαn/kn → 0 and log(nαn)/
√
kn → 0 as n → ∞,

√
kn

qZ(αn) log
(

kn

nαn

)max
i∈In

∣∣∣∣ q̃n,Y (αn | xi)− qY (αn | xi)

b(xi)

∣∣∣∣ = OP(1).

5. Illustration on simulations

5.1. Experimental design

We propose to illustrate the finite-sample performance of the estimators of the
conditional tail-index and the extreme conditional quantiles on simulated data
from the location-dispersion regression model. For that purpose, set d = 2,
Π = [0, 1]2 and define the regression and dispersion functions respectively by
a(x) = 1− cos(π(x(1) +x(2))) and b(x) = exp(−(x(1) − 0.5)2− (x(2) − 0.5)2), for
x = (x(1), x(2)) ∈ Π. Let μ1 = 3/4, μ2 = 1/2 and μ3 = 1/4. Two distributions
are considered for the heavy-tailed random variable Z:

• Let Z0 be a standard Student-tν random variable where ν ∈ {1, 2, 4}
denotes the degrees of freedom (df) and introduce Z = Z0/(2qZ0(μ3)) the
associated rescaled Student random variable. Symmetry arguments yield
qZ(μ2) = 0, qZ(μ1) = −qZ(μ3) and qZ(μ3) = qZ0(μ3)/(2qZ0(μ3)) = 1/2
by construction. Therefore (2.4) holds. This choice also ensures that Z is
heavy-tailed with conditional tail-index γ = 1/ν and that the second-order
condition (A.4) holds with ρ = −2/ν, see Table 1.

• Let Z0 be a Burr random variable with parameters α ∈ {1, 2, 4} and β = 1.
We then introduce the translated and rescaled random variable

Z =
Z0 −

(
μ−1
2 − 1

)1/α
(
μ−1
3 − 1

)1/α −
(
μ−1
1 − 1

)1/α ,
such as (2.4) holds. The second-order condition (A.4) is also fulfilled with
γ = 1/α and ρ = −1, see Table 1.
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The design points xi, i = 1, . . . , n are chosen on a regular grid on the unit square
Π. The kernel function K is the product of two quartic (or biweight) kernels:

K(u, v) =

(
15

16

)2 (
1− u2

)2 (
1− v2

)2
1{|u|≤1}1{|v|≤1},

where (u, v) ∈ R
2. We set ‖x‖ = max(|x(1)|, |x(2)|) so that Π̃(n) = [h, 1−h]2. The

bandwidth is fixed to h∗
n = σn−1/6 following [4] and in accordance with (4.3),

where σ = 12−1/2 is the standard deviation of the coordinates of the design
points. This choice is optimal for density estimation in the Gaussian case, but
is also known to provide good results in other settings.

5.2. Graphical illustrations

In all the experiments, N = 100 replications of a dataset of size n = 10, 000 are
considered. The estimation results for the regression and dispersion functions
are depicted respectively on Figure 1 and Figure 2 in the situation where Z is
Student-tν distributed for ν ∈ {1, 2, 4}. The results are visually satisfying and
seem independent from the degrees of freedom. This conclusion was expected
since both estimators of a(·) and b(·) are based on non-extreme quantiles, they
are thus robust with respect to heavy tails.

As already noticed in Section 2, in the context of proportional tails, both
random variables Y and Z share the same conditional tail-index γ. This param-
eter can thus be estimated either by (3.5) (computed on the residuals Ẑi) or by
the classical Hill estimator (computed on the response variables Yi). The asso-
ciated estimation results are displayed on Figure 3 as functions of the sample
fraction kn. It first appears that working on the residuals provides much better
results in terms of bias than working on the initial response variable. Second,
the tail-index estimator (3.5) has a stronger bias for larger values of ν. These
empirical results are in line with the properties of the Student distribution. In-
deed, the second-order parameter ρ = −2/ν being increasing with ν, the bias of
the Hill-type estimator increases as well.

In practice, the estimation of the conditional tail-index and extreme condi-
tional quantiles require the selection of the sample fraction kn. This parameter
is selected using a mean-squared error criterion. Assuming that A(t) = ctρ, the
optimal value of kn is given by

k∗n =

(
γ2(1− ρ)2

−2ρc2

) 1
1−2ρ

n− 2ρ
1−2ρ ,

see [24, Section 3.2]. Since ρ may be difficult to estimate in practice, a miss-
specified value ρ = −1 is considered in several works dealing with bias reduction
of tail-index estimators, see for instance [14] or [23]. Letting moreover c =

√
2

and restricting ourselves to integer values, we end up with k∗n = �(γ̌n)2/3�
where γ̌ is a prior naive estimation of γ computed with kn = �n1/2� and where
�·� denotes the floor function. Such a choice of k∗n fulfils the assumptions of
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Fig 1. Simulation results obtained on a Student-tν distribution. From top to bottom, left
to right: Theoretical function a(·), and means over N = 100 replications of estimates ân(·)
computed on n = 10, 000 observations for ν ∈ {1, 2, 4}. X-axis and y-axis range between 0
and 1, z-axis range between 0 and 2.

Theorem 4.3–4.5 for all three considered Burr distributions and for Student-
tν distributions with ν ∈ {1, 2}. The constraints are violated in case of the
Student-t4 distribution in order to examine the robustness of the method with
respect to the choice of the pair (h, kn) which may be challenging in practice.
The estimated conditional quantiles qY (1/n | ·) of extreme level αn = 1/n are
displayed on Figure 4. As expected, the estimated extreme conditional quantiles
all share the same shape despite different variation ranges.

5.3. Quantitative assessment

In this section, we propose to highlight the performances of the extreme con-
ditional quantile estimator (3.6) thanks to a comparison with a purely non-
parametric one. The nonparametric estimator is based on the ideas of the
moving window approach introduced in [16]. For each x ∈ Π̃(n), a subsam-
ple

{
(Y �

i , x�
i )
}
i=1,...,n� = {(Yi, xi), 1 ≤ i ≤ n, s.t. ‖x− xi‖ < h} of size n� =
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Fig 2. Simulation results obtained on a Student-tν distribution. From top to bottom, left
to right: Theoretical function b(·), and means over N = 100 replications of estimates b̂n(·)
computed on n = 10, 000 observations for ν ∈ {1, 2, 4}. All three coordinates range between 0
and 1.

n�(x, h) is extracted from the initial sample. Letting k�
n = �

√
n��, the condi-

tional tail-index is estimated by the (local) Hill-type statistic

γ̂�
n (x) =

1

k�
n

k�
n −1∑
i=0

log Y �
n�−i,n� − log Y �

n�−k�
n ,n� ,

and the extreme conditional quantile qY (αn |x) is estimated by the associated
Weissman-type statistic:

q̂�
n,Y (αn |x) = Y �

n�−k�
n ,n�

(
αnn

�

k�
n

)−γ̂�
n (x)

.

Another option is to re-estimate γ and qY (αn |x) taking k⊕n = �(γ̂�
n (x)n�)2/3�

in the above two estimators. The associated estimator of the extreme quantile
is denoted by q̂⊕n,Y (αn |x). The comparison between the true and estimated ex-
treme conditional quantiles is based on a relative median-squared error (RMSE)
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Fig 3. Simulation results obtained on a Student-tν distribution for ν = 1 (left), ν = 2 (middle)
and ν = 4 (right). Mean estimate of the conditional tail-index (3.5) (continuous black line),
associated 95% empirical confidence intervals (dotted lines) and mean Hill estimate computed
on the response variable (continuous blue line), as functions of the sample fraction kn. The
true value γ = 1/ν is depicted by a red horizontal line.

Table 2

Relative median squared errors associated with the estimation of the extreme conditional
quantile qY (1/n | ·). Results obtained with the semi-parametric estimator q̃n,Y and

comparison with the purely nonparametric ones (q̂�
n,Y , q̂⊕n,Y ).

n Student, ν = 1 Student, ν = 2 Student, ν = 4
400 0.547 (0.890, 0.976) 0.129 (0.643, 0.630) 0.062 (0.442, 0.458)

1, 600 0.138 (0.867, 0.893) 0.065 (0.533, 0.458) 0.020 (0.284, 0.352)
3, 600 0.145 (0.855, 0.837) 0.048 (0.477, 0.431) 0.012 (0.226, 0.306)
6, 400 0.061 (0.845, 0.776) 0.032 (0.456, 0.454) 0.011 (0.206, 0.253)

10, 000 0.045 (0.820, 0.723) 0.026 (0.425, 0.435) 0.013 (0.184, 0.222)

n Burr, α = 1, β = 1 Burr, α = 2, β = 1 Burr, α = 4, β = 1
400 0.525 (0.746, 0.588) 0.197 (0.329, 0.285) 0.104 (0.129, 0.176)

1, 600 0.182 (0.796, 0.637) 0.068 (0.348, 0.260) 0.038 (0.124, 0.168)
3, 600 0.157 (0.825, 0.625) 0.056 (0.333, 0.264) 0.023 (0.118, 0.149)
6, 400 0.096 (0.827, 0.591) 0.054 (0.311, 0.271) 0.020 (0.107, 0.122)

10, 000 0.070 (0.845, 0.563) 0.030 (0.301, 0.262) 0.023 (0.102, 0.107)

computed on the N = 100 replications and the mn design points in the square
Π̃(n):

median

⎧⎨
⎩median

⎧⎨
⎩
(
q̂
[r]
n,Y (αn |xi)

qY (αn |xi)
− 1

)2

, xi ∈ Π̃(n)

⎫⎬
⎭ , r ∈ {1, . . . , N}

⎫⎬
⎭ ,

where q̂
[r]
n,Y (αn | ·) denotes either q̃n,Y (αn | ·), q̂�

n,Y (αn | ·) or q̂⊕n,Y (αn | ·) com-
puted on the rth replication. Here, both Student-tν and Burr distributions
are considered with ν ∈ {1, 2, 4}, α ∈ {1, 2, 4}, β = 1, αn = 1/n and n ∈
{202, 402, 602, 802, 1002}. The RMSE are reported in Table 2. For all estima-
tors, it appears that the main driver of the relative error is the tail heaviness.
Unsuprisingly, the semi-parametric estimator q̃n,Y provides much better results
than the nonparametric ones q̂�

n,Y and q̂⊕n,Y : Its RMSE is smaller and converges
towards 0 at a faster rate when the sample size n increases.
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Fig 4. Simulation results obtained on a Student-tν distribution for ν = 1 (top), ν = 2 (middle)
and ν = 4 (bottom). Left panels: Theoretical quantiles qY (1/n | ·). Right panels: Means over
N = 100 replications of estimates q̃n,Y (1/n | .) computed on n = 10, 000 observations. X-axis
and y-axis range between 0 and 1, the scale of the z-axis is the same for theoretical and
estimated quantiles.

6. Tsunami data example

The proposed illustration is based on the “Tsunami Causes and Waves” dataset,
available at https://www.kaggle.com/noaa/seismic-waves. The data include
the maximum wave height recorded at several stations in the world where a
tsunami occured. We focus on the 2011 Tohoku tsunami, in Japan. This earth-
quake was the cause of the Fukushima Daiichi nuclear disaster. Indeed, a wave

https://www.kaggle.com/noaa/seismic-waves
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height greater than 15 meters (around 50 feet) flooded the nuclear plant, pro-
tected by a seawall of only 5.7 meters (19 feet). In this context, the estimation
of return levels of wave heights associated with small probability is a crucial
issue. Figure 5 (top-left panel) displays the maximum wave heights Y1, . . . , Yn

(in meters) recorded the 03/11/2011 at n = 5, 364 stations with respective lati-

tudes x
(1)
1 , . . . , x

(1)
n and longitudes x

(2)
1 , . . . , x

(2)
n . Note that the values of Y are

ranging from 0 to 55.88 meters (blue to red points). We propose to estimate an
extreme quantile of the wave height at each station, following the methodology
introduced in Section 3. The assumption of a constant conditional tail-index can
be checked thanks to the test statistic T4,n introduced in [12]:

T4,n =
1

m

m∑
i=1

(
γ̂pi

γ̂H
− 1

)2

.

The idea is to compare the Hill estimate γ̂H computed on the response vari-
ables with partial ones γ̂pi computed on non-overlapping blocks indexed by
i = 1, . . . ,m. Under the hypothesis that the conditional tail-index is constant

(and additional technical assumptions), it is then shown that knT4,n
d−→ χ2

m−1,
see [12] for details. Following the ideas of Paragraph 5.3, we set kn = k⊕n = 72
and we choose m = 4 blocks as in [12], leading to T4,n ≈ 2.14 and a p-value
around 0.54. The hypothesis of a constant conditional tail-index cannot be re-
jected, and our semi-parametric approach can thus be applied on these data.

To this end, a bandwidth has to be selected. Noticing that the standard devia-
tions of x(1) and x(2) are respectively 1.63 and 1.16, we fixed h∗

n = 1.63×n−1/6 �
0.4. We also set μ1 = 3/4, μ2 = 1/2 and μ3 = 1/4, these choices having no
consequence in practice. The regression and dispersion functions are then es-
timated via (3.3) and depicted on the bi-dimensional map (Figure 5, top-right
and bottom-left panels) and along the one-dimensional first principal axis (Fig-
ure 6, top panels). Note that the principal axis has been obtained by computing
the eigenvector associated with the largest eigenvalue of the covariance matrix

of the coordinates (x
(1)
i , x

(2)
i ), i = 1, . . . , n. It appears that ân(·) and b̂n(·) have

a similar shape with a peak in the neighbourhood of the epicenter, indicating a
strong heteroscedasticity of the observed phenomenon.

The residuals Ẑ1, . . . , Ẑn are then computed from (3.4). The common practice
is to use a graphical diagnosis to check whether these residuals have a heavy-
tailed behavior. Here, a quantile-quantile plot is adopted, see the bottom-right
panel of Figure 6. The log-excesses log(Ẑn−i+1,n/Ẑn−k∗

n+1,n) are plotted versus
the quantiles log(k∗n/i) of the standard exponential distribution, i = 1, . . . , k∗n.
Note that the number of upper order statistics k∗n = 82 is chosen following the
approach described in Paragraph 5.2. It appears that the resulting set of points
is close to the line of slope γ̂n (computed with k∗n = 82), which confirms that the
heavy-tailed assumption is reasonable in this case. The proposed estimator (3.5)
computed on the residuals as well as the Hill estimator computed on the out-
put variables are both depicted as functions of kn on the bottom-left panel of
Figure 6. The first one features a nice stable behavior, confirming the heavy-tail
assumption, and pointing towards a tail-index close to 0.25. As a comparison,
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Fig 5. Results on tsunami data. Top-left: Maximum wave height recorded at each station. Top-
right: Regression function estimate ân(·) at each station. Bottom-left: Dispersion function

estimate b̂n(·) at each station. Bottom-right: Quantile estimate q̃n,Y (10/n | ·) at each station.
On all the maps, smallest and largest values are respectively depicted in blue and red. The
straight line is the principal axis x(2) = 1.64x(1) + 80.35 computed on the coordinates of the
stations, and ∗ represents the epicenter of the earthquake.

the Hill estimator computed on the original output variables is less stable and
yields smaller results, in accordance with the negative bias observed on simu-
lated data (Section 5). Finally, the extreme conditional quantile estimator (3.6)
is evaluated at each station with the level αn = 10/n. The results are reported
in the bottom-right panel of Figure 5. The estimated quantiles of the maximum
wave height are ranging from 0 to 60.53 meters, with largest values close to
the epicenter. Note that such a quantile level means that the observed values
Y1, . . . , Yn should exceed the return levels q̃n,Y (αn | x1), . . . , q̃n,Y (αn | xn) ap-
proximately 10 times in the sample. In this particular example, there are 15
waves exceeding the return levels, this empirical result does not deviate too
much from the expected number of exceedances.
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Fig 6. Results on tsunami data. Top: Regression (left) and dispersion (right) function es-

timates ân(·) and b̂n(·) along the principal axis x(2) = 1.64x(1) + 80.35. The estimates at
each station (black +) are smoothed (red dashed line) for the visualization sake. The verti-
cal black line displays the projection of the epicenter on the principal axis. Bottom left: Hill
estimator (3.5) computed on the residuals (black line) and on the original output variables

(blue line) as a function of kn. Bottom right: Log-excesses log(Ẑn−i+1,n/Ẑn−k∗
n+1,n) of the

residuals versus log(k∗n/i), 1 ≤ i ≤ k∗n = 82. The straight line has slope γ̂n � 0.25.

Appendix A: Proofs

Technical lemmas are collected in Paragraph A.1 while preliminary results of
general interest are provided in Paragraph A.2. Finally, the proofs of the main
results are given in Paragraph A.3.

A.1. Auxiliary lemmas

The first result is an adaptation of Bochner’s lemma (for twice differentiable
functions) to the multidimensional fixed design setting.
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Lemma A.1. Let ψ(· | ·) : Rp × Π → R
+ be a positive, twice differentiable

(with respect to its second argument) function. Let us denote by H2[ψ](·, ·) the
Hessian matrix of ψ(· | ·) with respect to its second argument, and assume that
H2[ψ](·, ·) is continuous on R

p × Π. Let C be a compact subset of Rp. For all
sequences (tn) ⊂ Π̃(n) and (yn) ⊂ C, define

ψn(yn | tn) :=
n∑

i=1

ψ(yn | xi)

∫
Πi

Qh(tn − s)ds,

where xi ∈ Πi such that (4.1) and (4.2) hold, and Qh(·) = Q(·/h)/hd, where
Q is an even measurable positive function with symmetric support S ⊂ B(0, 1).
Then, letting ‖Q‖1 =

∫
S
Q(u)du, one has, as n → ∞,

ψn(yn | tn) = ‖Q‖1ψ(yn | tn) +O
(
n−1/d

)
+O(h2).

Proof. Consider the expansion

ψn(yn | tn)− ‖Q‖1ψ(yn | tn)

=

n∑
i=1

ψ(yn | xi)

∫
Πi

Qh(tn − s)ds− ‖Q‖1ψ(yn | tn)

=

∫
Π

ψ(yn | s)Qh(tn − s)ds− ‖Q‖1ψ(yn | tn)

+

n∑
i=1

ψ(yn | xi)

∫
Πi

Qh(tn − s)ds−
∫
Π

ψ(yn | s)Qh(tn − s)ds

=: Tn,1 + Tn,2

and let us first focus on Tn,1. The change of variable u = (tn − s)/h yields

Tn,1 =

∫
(tn−Π)/h

ψ(yn | tn − uh)Q(u)du− ‖Q‖1ψ(yn | tn).

Let us remark that x ∈ B(0, 1) implies tn − xh ∈ B(tn, h) ⊂ Π since tn ∈ Π̃(n)

and by definition of the erosion. As a consequence, S ⊂ B(0, 1) ⊂ (tn − Π)/h
and therefore

Tn,1 =

∫
S

[ψ(yn | tn − uh)− ψ(yn, tn)]Q(u)du.

Let ∇2[ψ](·, ·) denote the gradient of ψ(· | ·) with respect to its second argument
and let 〈·, ·〉 be the usual dot product on R

d. A second order Taylor expansion
yields, for all yn ∈ C,

ψ(yn | tn − uh)− ψ(yn | tn) = h〈∇2[ψ](yn, tn), u〉+O(h2),

since H2[ψ](·, ·) is bounded on compact sets. Remarking that
∫
S
uQ(u)du = 0

shows that
Tn,1 = O(h2). (A.1)



4440 A. A. Ahmad et al.

Let us now turn to the second term

Tn,2 =

n∑
i=1

∫
Πi

[ψ(yn | xi)− ψ(yn | s)]Qh(tn − s)ds.

Since ψ(· | ·) is continuously differentiable with respect to its second argument,
there exists cψ > 0 such that

|Tn,2| ≤
n∑

i=1

∫
Πi

|ψ(yn | xi)− ψ(yn | s)|Qh(tn − s)ds

≤ cψ

n∑
i=1

∫
Πi

‖xi − s‖Qh(tn − s)ds. (A.2)

Moreover, under assumption (4.2),

|Tn,2| =
n∑

i=1

∫
Πi

Qh(tn − s)ds O
(
n−1/d

)

=

∫
Π

Qh(tn − s)ds O
(
n−1/d

)
= O

(
n−1/d

)
. (A.3)

Finally, collecting (A.1) and (A.3), the conclusion follows.

As a consequence of Lemma A.1, the asymptotic bias and variance of the
estimator (3.1) of the conditional survival function can be derived.

Lemma A.2. Suppose (A.1), (A.2) and (A.3) hold. Let (tn) ⊂ Π̃(n) and
(yn) ⊂ C be two nonrandom sequences with C a compact subset of R.

(i) Then,

E

(
ˆ̄Fn,Y (yn | tn)

)
= F̄Y (yn | tn) +O

(
n−1/d

)
+O(h2).

(ii) If, moreover, nhd → ∞ as n → ∞ and lim inf FY (yn | tn)F̄Y (yn | tn) > 0,
then

var
(
ˆ̄Fn,Y (yn | tn)

)
∼ λ(Π)‖K‖22

nhd
FY (yn | tn)F̄Y (yn | tn),

where FY is the conditional cumulative distribution function associated
with F̄Y .

Proof. (i) Clearly,

E

[
ˆ̄Fn,Y (yn | tn)

]
=

n∑
i=1

F̄Y (yn | xi)

∫
Πi

Kh(tn − s)ds,

and the conclusion follows from Lemma A.1 applied with p = 1.
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(ii) As a consequence of the independence assumption,

var
(
ˆ̄Fn,Y (yn | tn)

)
=

n∑
i=1

F̄Y (yn | xi)Sn,i −
n∑

i=1

F̄ 2
Y (yn | xi)Sn,i =: Tn,1 − Tn,2,

where

Sn,i :=

(∫
Πi

Kh(tn − s)ds

)2

=
1

h2d

∫
Πi

∫
Πi

K

(
tn − s1

h

)
K

(
tn − s2

h

)
ds1ds2.

(A.4)
Let us write

K

(
tn − s2

h

)
= K

(
tn − s1

h

)
+

[
K

(
tn − s2

h

)
−K

(
tn − s1

h

)]
,

with, under (A.3) and (4.2),∣∣∣∣K
(
tn − s2

h

)
−K

(
tn − s1

h

)∣∣∣∣ ≤ cK‖s2 − s1‖
h

= O

(
1

n1/dh

)
,

uniformly on (s1, s2) ∈ Π2
i and i = 1, . . . , n. It thus follows from (4.1) that Sn,i

can be rewritten as

1

h2d

∫
Πi

∫
Πi

[
K2

(
tn − s1

h

)
+K

(
tn − s1

h

)
O

(
1

n1/dh

)]
ds1ds2 (A.5)

=
λ(Π)

nh2d

∫
Πi

K2

(
tn − s

h

)
ds (1 + o(1)) +O

(
1

n1+1/dh2d+1

)∫
Πi

K

(
tn − s

h

)
ds

=
λ(Π)‖K‖22

nhd

∫
Πi

Mh(tn − s)ds (1 + o(1)) +O

(
1

n1+1/dhd+1

)∫
Πi

Kh (tn − s) ds,

where we have defined M(·) = K2(·)/‖K2‖1 = K2(·)/‖K‖22. Replacing in Tn,1

yields

Tn,1 =
λ(Π)‖K‖22

nhd

{
n∑

i=1

F̄Y (yn | xi)

∫
Πi

Mh(tn − s)ds (1 + o(1))

+ O

(
1

n1/dh

) n∑
i=1

F̄Y (yn | xi)

∫
Πi

Kh(tn − s)ds

}
.

Applying Lemma A.1 with p = 1 twice and recalling that nhd → ∞ as n → ∞
entail

Tn,1 =
λ(Π)‖K‖22

nhd

(
F̄Y (yn | tn) (1 + o(1)) +O(h2) +O

(
1

n1/d

))

=
λ(Π)‖K‖22

nhd
F̄Y (yn | tn) (1 + o(1)),
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under the assumption lim inf FY (yn | tn)F̄Y (yn | tn) > 0. Similarly,

Tn,2 =
λ(Π)‖K‖22

nhd
F̄ 2
Y (yn | tn) (1 + o(1)) ,

and the conclusion follows:

Tn,1 − Tn,2 =
λ(Π)‖K‖22

nhd
F̄Y (yn | tn)FY (yn | tn) (1 + o(1)),

under the assumption lim inf FY (yn | tn)F̄Y (yn | tn) > 0.

Finally, Lemma A.3 is an adaptation of [20, Lemma A.3]. It permits to de-
rive the error made on the estimation of the order statistics Zmn−i,mn , i =
0, . . . ,mn − 1 from the error made on the unsorted Zi, i ∈ In.

Lemma A.3. Recall that In = {i ∈ {1, . . . , n} such that xi ∈ Π̃(n)} and mn =
card(In). Assume nhd → ∞ as n → ∞.

(i) Then, mn = n(1 +O(h)).
(ii) Consider (kn) an intermediate sequence of integers. If, for all i ∈ In,

|Ẑi − Zi| ≤ Rn,i (1 + |Zi|), with maxi∈In Rn,i
P−→ 0, then

max
0≤i≤kn

∣∣∣∣∣log Ẑmn−i,mn

Zmn−i,mn

∣∣∣∣∣ = OP

(
max
i∈In

Rn,i

)
.

Proof. (i) Let Cn = Π \ Π̃(n), Jn = {i ∈ {1, . . . , n} such that xi ∈ Cn} and
Nn := card(Jn). For all i ∈ Jn, xi ∈ Cn and nhd → ∞ together with (4.2)
entail that Πi ⊂ Cn, for n large enough. Therefore, as the sets Πi are disjoint:∑

i∈Jn

λ(Πi) ≤ λ(Cn) = λ(Π)− λ(Π̃(n)) = O(h),

in view of the absolute continuity of the erosion with respect to Lebesgue mea-
sure, see [32]. From (4.1), λ(Πi) ∼ λ(Π)/n uniformly on i = 1, . . . , n and thus
Nn = O(nh). Therefore, mn = n−Nn = n(1 +O(h)) as n → +∞.

(ii) The conclusion follows by remarking that in view of (2.2) the distribution
of Z has an infinite upper endpoint and by applying [20, Lemma 3].

A.2. Preliminary results

Let ∨ (resp. ∧) denote the maximum (resp. the minimum). The next proposi-
tion provides a joint asymptotic normality result for the estimator (3.1) of the
conditional survival function evaluated at points depending on n.

Proposition A.1. Assume (A.1), (A.2) and (A.3) hold. Let (tn) ⊂ Π̃(n)

and (αj)j=1,...,J a strictly decreasing sequence in (0, 1). For all j ∈ {1, . . . , J},
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define yj,n = qY (αj | tn) + b(tn)εj,n, where εj,n → 0 as n → ∞. If nhd → ∞
and nhd+κ(d) → 0 as n → ∞, then{

√
nhd

[
ˆ̄Fn,Y (yj,n | tn)− F̄Y (yj,n | tn)

]}
j=1,...,J

d−→ N
(
0RJ , λ(Π)‖K‖22 B

)
,

where Bk,l = αk∨�(1− αk∧�) for all (k, �) ∈ {1, . . . , J}2.

Proof. Let us first remark that, for all j ∈ {1, . . . , J}, in view of (2.5), the
sequence yj,n = a(tn) + b(tn)(qZ(αj) + εj,n) is bounded since a(·) and b(·) are
continuous functions defined on compact sets and because εj,n → 0 as n → ∞.
Besides, from (2.3), FY (yj,n | tn) = FZ(qZ(αj) + εj,n) → 1− αj > 0 as n → ∞
and thus the assumptions of Lemma A.2(i,ii) are satisfied. Now, let β �= 0 in
R

J , J ≥ 1 and consider the random variable

Γn =

J∑
j=1

βj

{
ˆ̄Fn,Y (yj,n | tn)− F̄Y (yj,n | tn)

}

=

J∑
j=1

βj

{
ˆ̄Fn,Y (yj,n | tn)− E

(
ˆ̄Fn,Y (yj,n | tn)

)}

+

J∑
j=1

βj

{
E

(
ˆ̄Fn,Y (yj,n | tn)

)
− F̄Y (yj,n | tn)

}
=: Γn,1 + Γn,2.

The random term can be expanded as

Γn,1 =
n∑

i=1

∫
Πi

Kh(tn − s)ds
J∑

j=1

βj

{
1{Yi>yj,n} − E

(
1{Yi>yj,n}

)}
=:

n∑
i=1

Ti,n.

By definition, E(Γn,1) = 0, and by independence of Y1, . . . , Yn,

var(Γn,1) =

n∑
i=1

(∫
Πi

Kh(tn − s)ds

)2

var

⎛
⎝ J∑

j=1

βj1{Yi>yj,n}

⎞
⎠ =: βtC(n)β,

where C(n) is the matrix whose coefficients are defined for all (k, �) ∈ {1, . . . , J}2
by

C
(n)
k,� =

n∑
i=1

Sn,i cov
(
1{Yi>yk,n}, 1{Yi>y�,n}

)
, (A.6)

with Sn,i being defined in (A.4) and expanded as (A.5):

Sn,i =
λ(Π)‖K‖22

nhd

∫
Πi

Mh(tn−s)ds(1+o(1))+O

(
1

n1+1/dhd+1

)∫
Πi

Kh(tn−s)ds,
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see the proof of Lemma A.2. Straightforward calculations yield

cov
(
1{Yi>yk,n}, 1{Yi>y�,n}

)
= F̄Y (yk,n ∨ y�,n | xi)− F̄Y (yk,n | xi)F̄Y (y�,n | xi)

= F̄Y (yk,n ∨ y�,n | xi)− F̄Y (yk,n ∨ y�,n | xi)F̄Y (yk,n ∧ y�,n | xi)

= F̄Y (yk,n ∨ y�,n | xi)FY (yk,n ∧ y�,n | xi)

=: ϕ(yk,n, y�,n | xi), (A.7)

where ϕ : R2 × Π → [0, 1] is defined by ϕ(·, · | .) = F̄Y (· ∨ · | ·)FY (· ∧ · | ·).
Replacing in (A.6) yields

C
(n)
k,� =

λ(Π)‖K‖22
nhd

n∑
i=1

ϕ(yk,n, y�,n | xi)

∫
Πi

Mh(tn − s)ds (1 + o(1))

+ O

(
1

n1+1/dhd+1

) n∑
i=1

ϕ(yk,n, y�,n | xi)

∫
Πi

Kh(tn − s)ds

=
λ(Π)‖K‖22

nhd

[
ϕ(yk,n, y�,n | tn) +O(h2) +O(n−1/d)

]
(1 + o(1))

+ O

(
1

n1+1/dhd+1

)[
ϕ(yk,n, y�,n | tn) +O(h2) +O(n−1/d)

]

=
λ(Π)‖K‖22

nhd
[ϕ(yk,n, y�,n | tn)(1 + o(1)) +O(h2) +O(n−1/d)],(A.8)

from Lemma A.1 applied twice with p = 2 and recalling that nhd → ∞. Besides,
let us remark that, in view of (2.5),

yk,n − y�,n = b(tn)(qZ(αk)− qZ(α�) + εk,n − ε�,n)

= b(tn)(qZ(αk)− qZ(α�))(1 + o(1)),

as n → ∞. Therefore, assuming for instance k < � implies αk > α� and thus
qZ(αk) < qZ(α�) leading to yk,n < y�,n for n large enough. More generally, yk,n∨
y�,n = yk∨�,n and yk,n ∧ y�,n = yk∧�,n for n large enough and thus ϕ(yk,n, y�,n |
tn) = F̄Y (yk∨�,n | tn)FY (yk∧�,n | tn). From (2.3) and (2.5), we have

F̄Y (yk,n | tn) = F̄Z

(
yk,n − a(tn)

b(tn)

)
= F̄Z (qZ(αk) + εk,n) = αk + o(1),

in view of the continuity of F̄Z . As a result,

ϕ(yk,n, y�,n | tn) → Bk,� = αk∨�(1− αk∧�) as n → ∞. (A.9)

Collecting (A.8) and (A.9), one has

C
(n)
k,� =

λ(Π)‖K‖22
nhd

Bk,�(1 + o(1))
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and therefore

var(Γn,1) ∼
λ(Π)‖K‖22

nhd
βtBβ, (A.10)

where B is the matrix defined by the Bk,� coefficients. The proof of the asymp-
totic normality of Γn,1 is based on Lyapounov criteria for triangular arrays of
independent random variables:

n∑
i=1

E|Ti,n|3
/

(var(Γn,1))
3/2 → 0 (A.11)

as n → ∞. Let us highlight that the random variables Ti,n, i = 1, . . . , n, are
bounded:

|Ti,n| ≤
∫
Πi

Kh(tn − s)ds

J∑
j=1

βj

∣∣1{Yi>yj,n} − E
(
1{Yi>yj,n}

)∣∣

≤ λ(Π)‖K‖∞
nhd

J∑
j=1

|βj | (1 + o(1)) =: ζn (A.12)

in view of (A.3) and (4.1). As a consequence, one has

n∑
i=1

E|Ti,n|3 ≤ ζn

n∑
i=1

E(T 2
i,n) = ζn

n∑
i=1

var(Ti,n) = ζn var(Γn,1),

leading to
n∑

i=1

E|Ti,n|3
/

(var(Γn,1))
3/2 = O

(
(nhd)−1/2

)
,

from (A.10) and (A.12). It is thus clear that (A.11) holds under the assumption
nhd → ∞ and √

nhdΓn,1
d−→ N

(
0, λ(Π)‖K‖22 βtBβ

)
. (A.13)

Let us now turn to the nonrandom term. Lemma A.2(i) together with the as-
sumptions nhd → ∞ and nhd+κ(d) → 0 as n → ∞ entail

√
nhd|Γn,2| ≤

√
nhd

J∑
j=1

|βj |
∣∣∣E( ˆ̄Fn,Y (yj,n | tn)

)
− F̄Y (yj,n | tn)

∣∣∣
= O(

√
nhd+κ(d)) = o(1). (A.14)

Finally, collecting (A.13) and (A.14),
√
nhdΓn converges to a centered Gaussian

random variable with variance λ(Π)‖K‖22 βtBβ, and the result follows.

The following proposition provides the joint asymptotic normality of the esti-
mator (3.2) of conditional quantiles. It can be read as an adaptation of classical
results [2, 35, 38] to the location-dispersion regression model in the multivariate
fixed design setting.
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Proposition A.2. Assume (A.1), (A.2) and (A.3) hold. Let (tn) ⊂ Π̃(n) and
(αj)j=1,...,J a strictly decreasing sequence in (0, 1) such that fZ(qZ(αj)) > 0 for
all j ∈ {1, . . . , J}. If nhd → ∞ and nhd+κ(d) → 0 as n → ∞, then{√

nhd

b(tn)

[
q̂n,Y (αj | tn)− qY (αj | tn)

]}
j=1,...,J

d−→ N
(
0RJ , λ(Π)‖K‖22 C

)
,

where C is the covariance matrix defined for all (k, �) ∈ {1, . . . , J}2 by Ck,� =
αk∨�(1− αk∧�)HZ(αk)HZ(α�).

Proof. Let s = (s1, . . . , sJ ) ∈ R
J , and for all j = 1, . . . , J ,

εj,n := sj/
√
nhd,

νj,n := b(tn)εj,n,

yj,n = qY (αj | tn) + νj,n,

Vj,n :=
√
nhd

[
ˆ̄Fn,Y (yj,n | tn)− F̄Y (yj,n | tn)

]
,

vj,n :=
√
nhd

[
αj − F̄Y (yj,n | tn)

]
.

These notations yield

Wn(s) := P

⎛
⎝ J⋂

j=1

{√
nhd

b(tn)

(
q̂n,Y (αj | tn)− qY (αj | tn)

)
≤ sj

}⎞⎠

= P

( J⋂
j=1

{
Vj,n ≤ vj,n

})
.

From (2.3) and (2.5), the nonrandom term can be rewritten as

vj,n =
√
nhd

(
αj − F̄Z

(
yj,n − a(tn)

b(tn)

))
=

√
nhd(αj − F̄Z (qZ(αj) + εj,n)).

Since F̄Z(·) is differentiable, for all j ∈ {1, . . . , J}, there exists θj,n ∈ (0, 1) such
that

vj,n = sjfZ (qZ(αj) + θj,nεj,n) =
sj

HZ(αj)
(1 + o(1)), (A.15)

in view of the continuity of fZ(·) and since εj,n → 0 as n → ∞. Let us
now turn to the random term. Recalling that, for all j = 1, . . . , J , yj,n =
qY (αj | tn) + b(tn)εj,n, with εj,n → 0 as n → ∞, Proposition A.1 entails that
{Vj,n}j=1,...,J converges to a centered Gaussian random vector with covariance
matrix λ(Π)‖K‖22 B. Taking account of (A.15) yields that Wn(s) converges to
the cumulative distribution function of a centered Gaussian distribution with
covariance matrix λ(Π)‖K‖22 C, evaluated at s, which is the desired result.

The following proposition provides a uniform consistency result for the esti-
mator (3.2) of conditional quantiles of Y given a sequence of multidimensional
design points in Π̃(n), i.e. not too close from the boundary of Π.
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Proposition A.3. Assume (A.1), (A.2) and (A.3) hold. Suppose nhd/ logn →
∞ and nhd+κ(d)/ logn → 0 as n → ∞. Then, for all α ∈ (0, 1),√

nhd

log n
max
i∈In

∣∣∣∣ q̂n,Y (α | xi)− qY (α | xi)

b(xi)

∣∣∣∣ = OP(1).

Proof. Let vn = (nhd/ logn)1/2 and for all (ε, α) ∈ (0, 1)2, consider

κ1(ε, α) = 2‖K‖2 (λ(Π)α(1− α) (1− log(ε/2)))
1/2

,

κ2(α) = λ(Π)α(1− α)‖K‖22,
M(ε, α) = κ1(ε, α)HZ(α).

Let us also introduce, for all i ∈ In,

q±i,n = qY (α | xi)±M(ε, α)b(xi)/vn,

α±
i,n = α− E

(
ˆ̄Fn,Y

(
q±i,n | xi

))
,

ξ±i,n =
(
ˆ̄Fn,Y − E

ˆ̄Fn,Y

) (
q±i,n | xi

)
,

so that the following expansion holds:

δn := P

(
vnmax

i∈In

∣∣∣∣ q̂n,Y (α | xi)− qY (α | xi)

b(xi)

∣∣∣∣ ≥ M(ε, α)

)

= P

(⋃
i∈In

{
q̂n,Y (α | xi) ≥ q+i,n

}
∪
{
q̂n,Y (α | xi) ≤ q−i,n

})

= P

(⋃
i∈In

{
α ≤ ˆ̄Fn,Y

(
q+i,n | xi

)}
∪
{
α ≥ ˆ̄Fn,Y

(
q−i,n | xi

)})

= P

(⋃
i∈In

{
α+
i,n ≤ ξ+i,n

})
+ P

(⋃
i∈In

{
α−
i,n ≥ ξ−i,n

})

=: δ+n + δ−n .

Let us focus on the first term. Assumption nhd/ logn → ∞ entails that vn → ∞
as n → ∞ and thus q+i,n is bounded. Therefore Lemma A.2(i) shows that

α+
i,n = α− F̄Y

(
q+i,n | xi

)
+O(h2) +O(n−1/d)

= F̄Z(qZ(α))− F̄Z

(
qZ(α) +

M(ε, α)

vn

)
+O(h2) +O(n−1/d)

=
M(ε, α)

vn
fZ

(
qZ(α) +

M(ε, α)

vn
θ

)
+O(h2) +O(n−1/d),

for some θ ∈ (0, 1), and the continuity of fZ(·) then yields

α+
i,n =

M(ε, α)

vnHZ(α)
(1 + o(1)) +O(h2) +O(n−1/d) =

κ1(ε, α)

vn
(1 + o(1)) , (A.16)
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in view of the assumption nhd+κ(d)/ logn → 0 as n → ∞. As a consequence,

δ+n = P

(⋃
i∈In

{
ξ+i,n ≥ κ1(ε, α)

vn
(1 + o(1))

})

≤
∑
i∈In

P

(
ξ+i,n ≥ κ1(ε, α)

vn
(1 + o(1))

)
. (A.17)

Moreover,

P

(
ξ+i,n ≥ κ1(ε, α)

vn
(1 + o(1))

)
=: P

⎛
⎝ n∑

j=1

X̃j ≥
κ1(ε, α)

vn
(1 + o(1))

⎞
⎠ , (A.18)

where, for all j = 1, . . . , n, the random variables

X̃j :=
[
1{Yj>q+i,n}

− P
(
Yj > q+i,n | xi

)] ∫
Πj

Kh(xi − s)ds

are independent, centered and bounded from (4.1):

|X̃j | ≤
∫
Πj

Kh(xi − s)ds ≤ λ(Π)‖K‖∞
nhd

(1 + o(1)).

Lemma A.2(ii) entails

n∑
j=1

E(X̃2
j ) = var

⎛
⎝ n∑

j=1

X̃j

⎞
⎠ = var

[
ˆ̄Fn,Y

(
q+i,n | xi

)]

=
λ(Π)F̄Y

(
q+i,n | xi

)
FY

(
q+i,n | xi

)
nhd

‖K‖22(1 + o(1)),

=
κ2(α)

nhd
(1 + o(1)),

since α+
i,n → 0 as n → ∞ from (A.16) and thus F̄Y

(
q+i,n | xi

)
→ α as n → ∞ in

view of the continuity of F̄Y (· | xi). Bernstein’s inequality for bounded random
variables yields

(A.18) ≤ exp

(
− κ2

1(ε, α) log n

2κ2(α) +
2κ1(ε,α)(1+o(1))

3vn

(1 + o(1))

)

= exp

(
−κ2

1(ε, α) log n

2κ2(α)
(1 + o(1))

)
= exp [−2 (1− log(ε/2)) logn (1 + o(1))]

≤ exp [− (1− log(ε/2)) logn] , (A.19)

for n large enough. Collecting (A.17)-(A.19) leads to

δ+n ≤ n exp [− (1− log(ε/2)) logn] = exp (log(ε/2) logn) ≤ ε/2
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for n large enough. The proof that δ−n ≤ ε/2 follows the same lines. As a
conclusion, we have shown that, for all α ∈ (0, 1) and ε ∈ (0, 1) there exists
M(ε, α) > 0 such that

P

⎛
⎝
√

nhd

logn
max
i∈In

∣∣∣∣ q̂n,Y (α | xi)− qY (α | xi)

b(xi)

∣∣∣∣ ≥ M(ε, α)

⎞
⎠ ≤ ε,

which is the desired result.

A.3. Proofs of main results

The proof of Theorem 4.1 directly relies on Proposition A.2:

Proof of Theorem 4.1. Let us remark that

√
nhd

b(tn)

(
ân(tn)− a(tn)

b̂n(tn)− b(tn)

)
= Ωξn,

where Ω =

(
0 1 0
1 0 −1

)
and ξn =

√
nhd

b(tn)

⎛
⎝q̂n,Y (μ3 | tn)− qY (μ3 | tn)
q̂n,Y (μ2 | tn)− qY (μ2 | tn)
q̂n,Y (μ1 | tn)− qY (μ1 | tn)

⎞
⎠.

Proposition A.2 with J = 3 and αj = μj , j = 1, . . . , J yields that ξn converges
in distribution to the N

(
0R3 , λ(Π)‖K‖22 C

)
distribution where C is given by⎛

⎝ μ1μ̄1H
2
Z(μ1) μ2μ̄1HZ(μ2)(HZ(μ1) μ3μ̄1HZ(μ3)HZ(μ1)

μ2μ̄1HZ(μ2)HZ(μ1) μ2μ̄2H
2
Z(μ2) μ3μ̄2HZ(μ2)HZ(μ3)

μ3μ̄1HZ(μ3)HZ(μ1) μ3μ̄2HZ(μ2)HZ(μ3) μ3μ̄3H
2
Z(μ3)

⎞
⎠ ,

with μ̄j = 1− μj , j = 1, 2, 3. Therefore, Ωξn
d−→ N (0R2 , λ(Π)‖K‖22 ΩCΩt) and

the conclusion follows from ΩCΩt = Σ.

Theorem 4.2 is a straightforward consequence of Proposition A.3:

Proof of Theorem 4.2. Remarking that

max
i∈In

∣∣∣∣ ân(xi)− a(xi)

b(xi)

∣∣∣∣ = max
i∈In

∣∣∣∣ q̂n,Y (μ2 | xi)− qY (μ2 | xi)

b(xi)

∣∣∣∣ ,
the first part of the result is a consequence of Proposition A.3 applied with
α = μ2. Similarly,

max
i∈In

∣∣∣∣∣ b̂n(xi)− b(xi)

b(xi)

∣∣∣∣∣ ≤ max
i∈In

∣∣∣∣ q̂n,Y (μ3 | xi)− qY (μ3 | xi)

b(xi)

∣∣∣∣
+ max

i∈In

∣∣∣∣ q̂n,Y (μ1 | xi)− qY (μ1 | xi)

b(xi)

∣∣∣∣ ,
and the conclusion follows from Proposition A.3 with α ∈ {μ3, μ1}.
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Proof of Corollary 4.1. Remark that for all i ∈ In, one has

|Ẑi − Zi| =

∣∣∣∣∣Yi − ân(xi)

b̂n(xi)
− Zi

∣∣∣∣∣ =
∣∣∣∣∣a(xi)− ân(xi)

b̂n(xi)
+

b̂n(xi)− b(xi)

b̂n(xi)
Zi

∣∣∣∣∣
≤

∣∣∣∣∣ b(xi)

b̂n(xi)

∣∣∣∣∣
(∣∣∣∣ ân(xi)− a(xi)

b(xi)

∣∣∣∣+
∣∣∣∣∣ b̂n(xi)− b(xi)

b(xi)

∣∣∣∣∣ |Zi|
)

≤
∣∣∣∣∣ b(xi)

b̂n(xi)

∣∣∣∣∣max

{∣∣∣∣ ân(xi)− a(xi)

b(xi)

∣∣∣∣ ;
∣∣∣∣∣ b̂n(xi)− b(xi)

b(xi)

∣∣∣∣∣
}
(1 + |Zi|)

=:

∣∣∣∣∣ b(xi)

b̂n(xi)

∣∣∣∣∣max
{∣∣∣ξ(a)i,n

∣∣∣ ; ∣∣∣ξ(b)i,n

∣∣∣} (1 + |Zi|) .

Let us define, for all i ∈ In,

ξ
(a)
i,n =

ân(xi)− a(xi)

b(xi)
, ξ

(b)
i,n =

b̂n(xi)− b(xi)

b(xi)
and

Rn,i =

∣∣∣∣∣ b(xi)

b̂n(xi)

∣∣∣∣∣max
{∣∣∣ξ(a)i,n

∣∣∣ ; ∣∣∣ξ(b)i,n

∣∣∣} .

On the one hand, Theorem 4.2 entails

max
i∈In

Rn,i ≤ max
i∈In

∣∣∣∣∣ b(xi)

b̂n(xi)

∣∣∣∣∣max

{
max
i∈In

∣∣∣ξ(a)i,n

∣∣∣ ; max
i∈In

∣∣∣ξ(b)i,n

∣∣∣}

= max
i∈In

∣∣∣∣∣ b(xi)

b̂n(xi)

∣∣∣∣∣OP

(√
log n

nhd

)
.

On the other hand,

P

(
max
i∈In

∣∣∣∣∣ b(xi)

b̂n(xi)

∣∣∣∣∣ ≥ 2

)
= P

(
max
i∈In

∣∣∣∣∣ 1

1 + ξ
(b)
i,n

∣∣∣∣∣ ≥ 2

)
≤ P

(
max
i∈In

∣∣∣ξ(b)i,n

∣∣∣ ≥ 1

2

)

≤ P

⎛
⎝
√

nhd

logn
max
i∈In

∣∣∣ξ(b)i,n

∣∣∣ ≥ 1

2

√
nhd

logn

⎞
⎠ .

Again, Theorem 4.2 shows that the following uniform consistency holds: For all
ε > 0, there exists M(ε) > 0 such that

P

⎛
⎝
√

nhd

log n
max
i∈In

∣∣∣ξ(b)i,n

∣∣∣ ≥ M(ε)

⎞
⎠ ≤ ε.

Now, for n large enough, (nhd/ log n)1/2 > 2M(ε) so that

P

(
max
i∈In

∣∣∣∣∣ b(xi)

b̂n(xi)

∣∣∣∣∣ ≥ 2

)
≤ P

⎛
⎝max

i∈In

√
nhd

logn

∣∣∣ξ(b)i,n

∣∣∣ ≥ M(ε)

⎞
⎠ ≤ ε,
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i.e. maxi∈In |b(xi)/b̂n(xi)| = OP(1). As a result,

max
i∈In

Rn,i = OP

(√
logn

nhd

)
,

which completes the proof of the corollary.

Proof of Theorem 4.3. (i) Let us consider the expansion√
kn(γ̂n − γ) =

√
kn(γ̂n − γ̃n) +

√
kn(γ̃n − γ) =: Υ1,n +Υ2,n,

where

γ̃n =
1

kn

kn−1∑
i=0

logZmn−i,mn − logZmn−kn,mn

is the Hill estimator computed on the unobserved random variables Z1, . . . , Zn.
Recall that mn = card(In) where In = {i ∈ {1, . . . , n} such that xi ∈ Π̃(n)}.
The first term is controlled by remarking that

|Υ1,n| =
√
kn|γ̂n − γ̃n| ≤

√
kn max

0≤i≤kn

∣∣∣∣∣log Ẑmn−i,mn

Zmn−i,mn

∣∣∣∣∣
= OP

(√
kn log n

nhd

)
= oP(1), (A.20)

from Corollary 4.1 and Lemma A.3(ii). Let us now focus on Υ2,n. Remarking
that mn ∼ n as n → ∞ in view of Lemma A.3(i), it is clear that mn/kn → ∞
as n → ∞. Besides, since |A| ∈ RVρ, we thus have A(mn/kn) ∼ A(n/kn) as
n → ∞. Therefore,

√
knA(mn/kn) → β as n → ∞ and, since Z1, . . . , Zn are

iid from (2.2), classical results on Hill estimator apply, see for instance [24,
Theorem 3.2.5], leading to

Υ2,n
d−→ N (β/(1− ρ), γ2). (A.21)

The conclusion follows from (A.20) and (A.21).
(ii) Let us introduce vn =

√
kn/ log(kn/(nαn)) and consider the Weissman

estimator computed on the unobserved random variables Z1, . . . , Zn:

q̃n,Z(αn) = Zmn−k,mn

(
αnmn

kn

)−γ̃n

.

The following expansion holds:

vn(log q̂n,Z(αn)− log qZ(αn)) = vn(log q̂n,Z(αn)− log q̃n,Z(αn))

+ vn(log q̃n,Z(αn)− log qZ(αn))

=: T1,n + T2,n,
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with

|T1,n| ≤ vn

∣∣∣∣∣log Ẑmn−kn,mn

Zmn−kn,mn

∣∣∣∣∣+ vn|γ̂n − γ̃n|
∣∣∣∣log

(
αnmn

kn

)∣∣∣∣ =: T1,1,n + T1,2,n.

First, T1,1,n is controlled by Corollary 4.1 and Lemma A.3(ii) together with the
assumptions kn logn/(nh

d) → 0 and kn/(nαn) → ∞ as n → ∞,

T1,1,n =

√
kn

log
(

kn

nαn

)OP

(√
logn

nhd

)
=

√
kn logn

nhd
OP

⎛
⎝ 1

log
(

kn

nαn

)
⎞
⎠ = oP(1).

(A.22)
Second, since mn ∼ n as n → ∞ (see Lemma A.3(i)),

T1,2,n = |Υ1,n|(1 + oP(1)) = oP(1), (A.23)

in view of (A.20). Collecting (A.22) and (A.23) yields

T1,n = vn(log q̂n,Z(αn)− log q̃n,Z(αn)) = oP(1). (A.24)

Let us now focus on T2,n. As a consequence of [24, Theorem 4.3.8], Weissman
estimator inherits its asymptotic distribution from Hill estimator:

vn

(
q̂n,Z(αn)

qZ(αn)
− 1

)
d−→ N (β/(1− ρ), γ2),

in view of (A.21). As a result,

T2,n
d−→ N (β/(1− ρ), γ2). (A.25)

The conclusion follows from (A.24) and (A.25).

Proof of Theorem 4.4. Let vn =
√
kn/ log(kn/(nαn)) and consider the following

expansion:

vn
b(tn)qZ(αn)

(q̃n,Y (αn | tn)− qY (αn | tn))

=
vn

qZ(αn)

(
ân(tn)− a(tn)

b(tn)

)
+ vn

(
b̂n(tn)− b(tn)

b(tn)

)
+ vn

b̂n(tn)

b(tn)

(
q̂n,Z(αn)

qZ(αn)
− 1

)

=:

√
kn

nhd ξ
(a)
n

qZ(αn) log
(

kn

nαn

) +

√
kn

nhd ξ
(b)
n

log
(

kn

nαn

) + vn
b̂n(tn)

b(tn)

(
q̂n,Z(αn)

qZ(αn)
− 1

)
.

From Theorem 4.1, one has ξ
(a)
n :=

√
nhd

(
ân(tn)−a(tn)

b(tn)

)
= OP(1), ξ

(b)
n :=

√
nhd

(
b̂n(tn)−b(tn)

b(tn)

)
= OP(1) and thus,

√
kn

nhd ξ
(a)
n

qZ(αn) log
(

kn

nαn

) +

√
kn

nhd ξ
(b)
n

log
(

kn

nαn

) P−→ 0,



Extreme quantiles in a location-dispersion regression model 4453

in view of kn/(nh
d) → 0, qZ(αn) → ∞ and nαn/kn → 0 as n → ∞. In addition,

since ξ
(b)
n = OP(1), it follows that

b̂n(tn)

b(tn)
= 1 +

ξ
(b)
n√
nhd

P−→ 1. (A.26)

Besides, from Theorem 4.3(ii),

vn

(
q̂n,Z(αn)

qZ(αn)
− 1

)
= vn (log q̂n,Z(αn)− log qZ(αn)) (1 + oP(1))

d−→ N (β/(1− ρ), γ2), (A.27)

and collecting (A.26) and (A.27) yields

vn
b̂n(tn)

b(tn)

(
q̂n,Z(αn)

qZ(αn)
− 1

)
d−→ N (β/(1− ρ), γ2).

The conclusion follows.

Proof of Theorem 4.5. Recall that vn =
√
kn/ log(kn/(nαn)). The proof follows

the same lines as the one of Theorem 4.4:

vn
qZ(αn)

max
i∈In

∣∣∣∣ q̃n,Y (αn | xi)− qY (αn | xi)

b(xi)

∣∣∣∣
≤ vn

qZ(αn)
max
i∈In

∣∣∣∣ ân(xi)− a(xi)

b(xi)

∣∣∣∣+ vnmax
i∈In

∣∣∣∣∣ b̂n(xi)− b(xi)

b(xi)

∣∣∣∣∣
+ vn

∣∣∣∣ q̂n,Z(αn)

qZ(αn)
− 1

∣∣∣∣max
i∈In

∣∣∣∣∣ b̂n(xi)

b(xi)

∣∣∣∣∣ .
From Theorem 4.2,

vn
qZ(αn)

max
i∈In

∣∣∣∣ ân(xi)− a(xi)

b(xi)

∣∣∣∣+ vnmax
i∈In

∣∣∣∣∣ b̂n(xi)− b(xi)

b(xi)

∣∣∣∣∣ P−→ 0,

since qZ(αn) → ∞ and under the two assumptions that nhd/(kn logn) → ∞
and nαn/kn → 0 as n → ∞. In addition,

max
i∈In

∣∣∣∣∣ b̂n(xi)

b(xi)

∣∣∣∣∣ ≤ max
i∈In

∣∣∣∣∣ b̂n(xi)

b(xi)
− 1

∣∣∣∣∣+ 1 = OP(1), (A.28)

from Theorem 4.2, and

vn

∣∣∣∣ q̂n,Z(αn)

qZ(αn)
− 1

∣∣∣∣ = vn |(log q̂n,Z(αn)− log qZ(αn))(1 + oP(1))| = OP(1),

(A.29)
in view of Theorem 4.3(ii). Collecting (A.28) and (A.29) yields

vn

∣∣∣∣ q̂n,Z(αn)

qZ(αn)
− 1

∣∣∣∣max
i∈In

∣∣∣∣∣ b̂n(xi)

b(xi)

∣∣∣∣∣ = OP(1)

and the conclusion follows.
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