Adaptive estimation for degenerate diffusion processes

Arnaud Gloter

Université Paris-Saclay, CNRS, Univ Evry, Laboratoire de Mathématiques et Modélisation d’Evry, 91037, Evry-Courcouronnes, France.
e-mail: arnaud.gloter@univ-evry.fr

and

Nakahiro Yoshida

Graduate School of Mathematical Sciences, University of Tokyo
3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan.
e-mail: nakahiro@ms.u-tokyo.ac.jp

url: https://www.ms.u-tokyo.ac.jp/~nakahiro/hp-naka-e

Abstract: We discuss parametric estimation of a degenerate diffusion system from time-discrete observations. The first component of the degenerate diffusion system has a parameter \(\theta_1 \) in a non-degenerate diffusion coefficient and a parameter \(\theta_2 \) in the drift term. The second component has a drift term parameterized by \(\theta_3 \) and no diffusion term. Asymptotic normality is proved in two different situations for an adaptive estimator for \(\theta_3 \) with some initial estimators for \((\theta_1, \theta_2)\), and an adaptive one-step estimator for \((\theta_1, \theta_2, \theta_3)\) with some initial estimators for them. Our estimators incorporate information of the increments of both components. Thanks to this construction, the asymptotic variance of the estimators for \(\theta_1 \) is smaller than the standard one based only on the first component. The convergence of the estimators for \(\theta_1 \) is much faster than the other parameters. The resulting asymptotic variance is smaller than that of an estimator only using the increments of the second component.

Keywords and phrases: Degenerate diffusion, one-step estimator, quasi-maximum likelihood estimator.

Received February 2020.

Contents

1 Introduction .. 1425
2 Assumptions .. 1427
3 Adaptive estimation of \(\theta_3 \) 1429
 3.1 Adaptive quasi-likelihood function for \(\theta_3 \) 1431
 3.2 Consistency of \(\theta_0^3 \) 1432

*This work was in part supported by Japan Science and Technology Agency CREST JP-MJCR14D7; Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research No. 17H01702 (Scientific Research); and by a Cooperative Research Program of the Institute of Statistical Mathematics.
In this article, we will discuss parametric estimation for a hypo-elliptic diffusion process. More precisely, given a stochastic basis $(\Omega, \mathcal{F}, F, P)$ with a right-continuous filtration $F = (F_t)_{t \in \mathbb{R}^+}$, where $\mathbb{R}^+ = [0, \infty)$, suppose that an F-adapted process $Z_t = (X_t, Y_t)$ satisfies the stochastic differential equation
\begin{align}
\left\{
\begin{array}{ll}
 dX_t &= A(Z_t, \theta_2)dt + B(Z_t, \theta_1)dw_t \\
 dY_t &= H(Z_t, \theta_3)dt.
\end{array}
\right.
\end{align}
(1.1)

Here $A : \mathbb{R}^{dz} \times \Theta_2 \to \mathbb{R}^{dX}$, $B : \mathbb{R}^{dz} \times \Theta_1 \to \mathbb{R}^{dX} \otimes \mathbb{R}^r$, $H : \mathbb{R}^{dz} \times \Theta_3 \to \mathbb{R}^{dY}$, and $w = (w_t)_{t \in \mathbb{R}^+}$ is an r-dimensional F-Wiener process. The spaces Θ_i ($i = 1, 2, 3$) are the unknown parameter spaces of the components of $\theta = (\theta_1, \theta_2, \theta_3)$ to be estimated from the data $(Z_{t_j})_{j=0,1,\ldots,n}$, where $t_j = jh$, $h = h_n$ satisfying $h \to 0$, $nh \to \infty$, and $nh^2 \to 0$ as $n \to \infty$.

Estimation theory has been well developed for diffusion processes. Even focusing on parametric estimation for ergodic diffusions, there is huge amount of studies: Kutoyants [27, 29, 28], Prakasa Rao [39, 40], Yoshida [50, 51, 52], Bibby and Sørensen [2], Kessler [24], Küchler and Sørensen [25], Genon–Catalot et al. [14], Gloter [16, 17, 19], Sakamoto and Yoshida [41], Uchida [45], Uchida and Yoshida [46, 47, 48], Kamatani and Uchida [23], De Gregorio and Iacus [10], Genon–Catalot and Larédo [15], Suzuki and Yoshida [44] among many others. Nakakita and Uchida [36] and Nakakita et al. [35] studied estimation under measurement error; related are Gloter and Jacod [20, 21]. Non parametric estimation for the coefficients of an ergodic diffusion has also been widely studied: Dalayan and Kutoyants [9], Kutoyants [29], Dalalyan [6], Dalalyan and Reiss [7, 8], Comte and Genon–Catalot [3], Comte et al. [4], Schmisser [43] to name a few. Historically attentions were paid to inference for non-degenerate cases.

Recently there is a growing interest in hypo-elliptic diffusions, that appear in various applied fields. Examples of the hypo-elliptic diffusion include the harmonic oscillator, the Van der Pol oscillator and the FitzHugh-Nagumo neuronal model; see e.g. León and Samson [30]. For parametric estimation of hypo-elliptic
diffusions, we refer the reader to Gloter [18] for a discretely observed integrated diffusion process, and Samson and Thieullen [42] for a contrast estimator. Comte et al. [5] gave adaptive estimation under partial observation. Recently, Ditlevsen and Samson [12] studied filtering and inference for hypo-elliptic diffusions from complete and partial observations. When the observations are discrete and complete, they showed asymptotic normality of their estimators under the assumption that the true value of some of parameters are known. Melnykova [33] studied the estimation problem for the model (1.1), comparing contrast functions and least square estimates. The contrast functions we propose in this paper are different from the one in [33]. Recently, Delattre et al. [11] gave a rate of convergence to a nonparametric estimator for the stationary distribution of a hypoelliptic diffusion.

In this paper, we will present several estimation schemes. Since we assume discrete-time observations of $Z=(Z_t)_{t \in \mathbb{R}^+}$, quasi-likelihood estimation for θ_1 and θ_2 is known; only difference from the standard diffusion case is the existence of the covariate $Y=(Y_t)_{t \in \mathbb{R}^+}$ in the equation of $X=(X_t)_{t \in \mathbb{R}^+}$ but it causes no theoretical difficulty. Thus, our first approach in Section 3 is toward estimation of θ_3 with initial estimators for θ_1 and θ_2. The idea for construction of the quasi-likelihood function in the elliptic case was based on the local Gaussian approximation of the transition density. Then it is natural to approximate the distribution of the increments of Y by that of the principal Gaussian variable in the expansion of the increment. However, this method causes deficiency, as we will observe there; see Section 8. We present a more efficient method by incorporating an additional Gaussian part from X. The error rate attained by the estimator for θ_3 is $n^{-1/2}h^{1/2}$ and it is much faster than the rate $(nh)^{-1/2}$ for θ_2 and $n^{-1/2}$ for θ_1. Section 4 treats some adaptive estimators using suitable initial estimators for $(\theta_1, \theta_2, \theta_3)$, and shows joint asymptotic normality. Then it should be remarked that the asymptotic variance of our estimator $\hat{\theta}_1$ for θ_1 has improved that of the ordinary volatility parameter estimator, e.g. $\hat{\theta}_0_1$ recalled in Section 3.4 that would be asymptotically optimal if the system consisted only of X. Section 2 collects the assumptions under which we will work. Section 5 offers several basic estimates to the increments of Z.

To investigate efficiency of the presented estimators, we need the LAN property of the exact likelihood function of the hypo-elliptic diffusion. Another important and natural question the reader must have is the asymptotic behavior of the joint quasi-maximum likelihood estimator based on a quasi-likelihood random field for the full parameter θ; an expression of the random field has already appeared in (4.2) essentially. In the present situation, the three parameters have different convergence rates and in particular the handling of θ_3 is not straightforward because for estimation of θ_3, the parameters (θ_1, θ_2) become nuisance, but any estimator of them has very large error compared with θ_3. The user could get some estimated value with the joint quasi-likelihood random field, however, there is no theoretical backing for such a scheme. Though somewhat sophisticated treatments are necessary, we can validate the joint quasi-maximum likelihood estimator and can show that the same asymptotic variance is attained, up to the first order, as the one-step quasi-likelihood estimator provided
in this article. We will discuss these problems elsewhere, while we recommend the reader to see Gloter and Yoshida [22] for more complete exposition including the non-adaptive approach and additional information.

2. Assumptions

We assume that Θ_i ($i = 1, 2, 3$) are bounded open domain in \mathbb{R}^{p_i}, respectively, and $\Theta = \prod_{i=1}^3 \Theta_i$ has a good boundary so that Sobolev’s embedding inequality (cf. Adams [1]) holds, that is, there exists a positive constant C_Θ such that

$$\sup_{\theta \in \Theta} |f(\theta)| \leq C_\Theta \sum_{k=0}^1 \| \partial_\theta^k f \|_{L^p(\Theta)}$$

(2.1)

for all $f \in C^1(\Theta)$ and $p > \sum_{i=1}^3 p_i$. If Θ has a Lipschitz boundary, then this condition is satisfied. Obviously, the embedding inequality (2.1) is valid for functions depending only on a part of components of θ. In this paper, giving priority to simplicity of presentation, we use Sobolev’s inequality to control the maximum of a random field though other embedding inequalities such as the GRR inequality improve the assumptions on differentiability of the coefficients of the stochastic differential equations.

In this paper, we will propose an estimator for θ and show its consistency and asymptotic normality.

Given a finite-dimensional real vector space E, denote by $C^{a,b}_{p}(\mathbb{R}^{d_z} \times \Theta_i; E)$ the set of functions $f : \mathbb{R}^{d_z} \times \Theta_i \to E$ such that f is continuously differentiable a times in $z \in \mathbb{R}^{d_z}$ and b times in $\theta_i \in \Theta_i$ in any order and f and all such derivatives are continuously extended to $\mathbb{R}^{d_z} \times \Theta_i$, moreover, they are of at most polynomial growth in $z \in \mathbb{R}^{d_z}$ uniformly in $\theta_i \in \Theta_i$.

Let $C = BB^*$,

where $*$ denotes the matrix transpose. We suppose that the process $(Z_t)_{t \in \mathbb{R}_+}$ generating the data satisfies the stochastic differential equation (1.1) for a true value $\theta^* = (\theta_1^*, \theta_2^*, \theta_3^*) \in \Theta_1 \times \Theta_2 \times \Theta_3$.

[A1] (i) $A \in C^{i_A,j_A}_{p}(\mathbb{R}^{d_z} \times \Theta_2; \mathbb{R}^{d_x})$ and $B \in C^{i_B,j_B}_{p}(\mathbb{R}^{d_z} \times \Theta_1; \mathbb{R}^{d_x} \otimes \mathbb{R}^r)$.

(ii) $H \in C^{i_H,j_H}_{p}(\mathbb{R}^{d_z} \times \Theta_3; \mathbb{R}^{d_Y})$.

We will denote F_x for $\partial_x F$, F_y for $\partial_y F$, and F_i for $\partial_{\theta_i} F$.

[A2] (i) $\sup_{t \in \mathbb{R}_+} \| Z_t \|_p < \infty$ for every $p > 1$.

(ii) There exists a probability measure ν on \mathbb{R}^{d_z} such that

$$\frac{1}{T} \int_0^T f(Z_t) \, dt \to^p \int f(z) \nu(dz) \quad (T \to \infty)$$

for any bounded continuous function $f : \mathbb{R}^{d_z} \to \mathbb{R}$.

(iii) The function $\theta_1 \mapsto C(Z_t, \theta_1)^{-1}$ is continuous on Θ_1 a.s., and
$$\sup_{\theta_1 \in \Theta_1} \sup_{t \in \mathbb{R}_+} \| \det C(Z_t, \theta_1)^{-1} \|^p < \infty$$
for every $p > 1$.

(iv) For the $\mathbb{R}^d \otimes \mathbb{R}^d$ valued function
$$V(z, \theta_1, \theta_3) = H_x(z, \theta_3)C(z, \theta_1)^{-1}H_x(z, \theta_3)^*,$$ \quad (2.2)
the function $(\theta_1, \theta_3) \mapsto V(Z_t, \theta_1, \theta_3)^{-1}$ is continuous on $\Theta_1 \times \Theta_3$ a.s., and
$$\sup_{(\theta_1, \theta_3) \in \Theta_1 \times \Theta_3} \sup_{t \in \mathbb{R}_+} \| \det V(Z_t, \theta_1, \theta_3)^{-1} \|^p < \infty$$
for every $p > 1$.

Remark 2.1. (a) It follows from [A2] that the convergence in [A2] (ii) holds for any continuous function f of at most polynomial growth.

(b) We implicitly assume the existence of $C(Z_t, \theta_1)^{-1}$ and $V(Z_t, \theta_1, \theta_3)^{-1}$ in (iii) and (iv) of [A2].

(c) Fatou’s lemma implies
$$\int |z|^p \nu(dz) + \sup_{\theta_1 \in \Theta_1} \int (\det C(z, \theta_1))^{-p} \nu(dz)$$
$$+ \sup_{(\theta_1, \theta_3) \in \Theta_1 \times \Theta_3} \int (\det V(z, \theta_1, \theta_3))^{-p} \nu(dz) < \infty$$
for any $p > 0$.

(d) Assumption [A2] is standard. Exponential ergodicity and boundedness of any order of moment of the process are also well known. For nondegenerate diffusions, see e.g. Pardoux and Veretennikov [38], Meyn and Tweedie [34] and Kusuoka and Yoshida [26] among many others. For damping Hamiltonian systems, we refer the reader to Wu [49]. The Lyapounov function method provides exponential mixing (even in the non-stationary case) and estimates of moments of the invariant probability measure up to any order. Wu’s paper investigated several examples including the van der Pol model. We are giving additional information in Delattre et al. [11].

Let
$$Y^{(1)}(\theta_1) = -\frac{1}{2} \int \left\{ \text{Tr}(C(z, \theta_1)^{-1} C(z, \theta_1^*)) - d_X + \log \frac{\det C(z, \theta_1)}{\det C(z, \theta_1^*)} \right\} \nu(dz).$$

Since $|\log x| \leq x + x^{-1}$ for $x > 0$, $Y^{(1)}(\theta_1)$ is a continuous function on Θ_1 well defined under [A1] and [A2]. Let
$$Y^{(2)}(\theta_2) = -\frac{1}{2} \int C(z, \theta_1^*)^{-1} \left[(A(z, \theta_2) - A(z, \theta_2^*)) \otimes^2 \right] \nu(dz),$$ \quad (2.3)
and
\[\Psi^{(3)}(\theta_3) = - \int 6V(z, \theta_3^*, \theta_3)^{-1} \left[(H(z, \theta_3) - H(z, \theta_3^*))^\otimes 2 \right] \nu(dz). \]

The random field \(\Psi^{(3)} \) is well defined under \([A1]\) and \([A2]\). Obviously, \(\nu \) depends on the value \(\theta^* \). We suppress \(\theta^* \) from notation since it is fixed in this article, where it is not necessary to change \(\theta^* \) differently from discussion of the asymptotic minimax bound for example.

We will assume all or some of the following identifiability conditions

\[[A3] \]

(i) There exists a positive constant \(\chi_1 \) such that
\[\Psi^{(1)}(\theta_1) \leq -\chi_1|\theta_1 - \theta_1^*|^2 \quad (\theta_1 \in \Theta_1). \]

(ii) There exists a positive constant \(\chi_2 \) such that
\[\Psi^{(2)}(\theta_2) \leq -\chi_2|\theta_2 - \theta_2^*|^2 \quad (\theta_2 \in \Theta_2). \]

(iii) There exists a positive constant \(\chi_3 \) such that
\[\Psi^{(3)}(\theta_3) \leq -\chi_3|\theta_3 - \theta_3^*|^2 \quad (\theta_3 \in \Theta_3). \]

In the hypoelliptic case, as it is the most interesting case, checking these identifiability conditions is usually easy since \(\nu \) is equivalent to or at least dominated by the Lebesgue measure and admits a density that is positive on a non-empty open set. Thus, identifiability is a problem of parameterization of the model. In particular, it is obvious that this condition causes no difficulty for linearly parametrized models often appearing in applications.

As already mentioned, we will assume that \(h \to 0, \; nh \to \infty \) and \(nh^2 \to 0 \) as \(n \to \infty \) throughout this article. The condition \(nh^2 \to 0 \) is a standard one called the condition for rapidly increasing experimental design (Prakasa Rao [40]). Yoshida [51] relaxed this condition to \(nh^3 \to 0 \), and Kessler [24] to \(nh^p \to 0 \) for any positive number \(p \). Uchida and Yoshida [48] carried out the Ibragimov-Has’minskii-Kutoyants program under the condition \(nh^p \to 0 \), with the so-called Quasi-Likelihood Analysis based on the polynomial type large deviation estimate for the quasi-likelihood random field (Yoshida [52]). It is well known that these approaches under \(nh^p \to 0 \) need more smoothness of the model than our assumptions because they inevitably involve higher-order expansions of the semigroup. In this paper, when estimating the order of a random variable, eventually we use \(n \to \infty, \; h \to 0, \; nh \to \infty \) or \(nh^2 \to 0 \), and that’s all. So, it is easy for the reader to recognize which convergence is used in each case. For example, if the reader finds \(O_p(\sqrt{nh}) \), then quite likely it will be estimated as \(o_p(1) \). However, we left traces as many as possible in the proof.

3. Adaptive estimation of \(\theta_3 \)

We denote \(U \otimes k \) for \(U \otimes \cdots \otimes U \) (\(k \)-times) for a tensor \(U \). For tensors \(S^1 = (S^1_1, \ldots, S^1_{d_1} ; j_1, \ldots, j_{k_1}) \), ..., \(S^m = (S^m_{m_1, \ldots, m_{d_m}} ; j_{m_1}, \ldots, j_{m_{k_m}}) \) and a tensor
$T = (T^{i_1,1,...,i_1,d_1,...,i_m,1,...,i_m,d_m})$, we write

$$T[S^1,\ldots,S^m] = T[S^1 \otimes \cdots \otimes S^m]$$

$$= \sum_{i_1,1,...,i_1,d_1,...,i_m,1,...,i_m,d_m} T^{i_1,1,...,i_1,d_1,...,i_m,1,...,i_m,d_m} S^1_{i_1,1,...,i_1,d_1;j_1,...,j_1,k_1} \cdots S^m_{i_m,1,...,i_m,d_m;j_m,1,...,j_m,k_m}.$$

This notation will be applied for a tensor-valued tensor T as well.

Remark 3.1. Clearly, this notation has an advantage over the notation by matrix product since the elements S^1,\ldots,S^m quite often have a long expression in the inference. The matrix notation repeats S^is twice for the quadratic form, thrice for the cubic form, and so on. This notation was introduced by [52] and already adopted by many papers, e.g., [45], [48], [53], [31], [23], [32], [13], [37], [36], [35], just to name a few.

Let

$$L_H(z,\theta_1,\theta_2,\theta_3) = H_x(z,\theta_3)[A(z,\theta_2)] + \frac{1}{2} H_{xx}(z,\theta_3)[C(z,\theta_1)] + H_y(z,\theta_3)[H(z,\theta_3)].$$

Define the \mathbb{R}^{d_Y}-valued function $G_n(z,\theta_1,\theta_2,\theta_3)$ by

$$G_n(z,\theta_1,\theta_2,\theta_3) = H(z,\theta_3) + \frac{h}{2} L_H(z,\theta_1,\theta_2,\theta_3).$$

Let

$$D_j(\theta_1,\theta_2,\theta_3) = \begin{pmatrix} h^{-1/2}(\Delta_j X - h A(Z_{i_{j-1}},\theta_2)) \\ h^{-3/2}(\Delta_j Y - h G_n(Z_{i_{j-1}},\theta_1,\theta_2,\theta_3)) \end{pmatrix}.$$ (3.2)

We will work with some initial estimators $\hat{\theta}_1^0$ for θ_1^0 and $\hat{\theta}_2^0$ for θ_2. The following standard convergence rates, in part or fully, will be assumed for these estimators:

[\textbf{A4]} (i) $\hat{\theta}_1^0 - \theta_1^* = O_p(n^{-1/2})$ as $n \to \infty$

(ii) $\hat{\theta}_2^0 - \theta_2^* = O_p(n^{-1/2}h^{-1/2})$ as $n \to \infty$

The expansions (5.1) and (5.6) with Lemma 5.5 suggest two approaches for estimating θ_3. The first approach is based on the likelihood of $\Delta_j Y$ only, without assistance of $\Delta_j X$. The second one uses the likelihood corresponding to $D_j(\theta_1,\theta_2,\theta_3)$. However, it is possible to show that the first approach gives less optimal asymptotic variance; see Section 8. So, we will take the second approach here.
3.1. Adaptive quasi-likelihood function for θ_3

Recall (2.2):

$$V(z, \theta_1, \theta_3) = H_x(z, \theta_3)C(z, \theta_1)H_x(z, \theta_3)^*.$$

Let

$$S(z, \theta_1, \theta_3) = \begin{pmatrix} C(z, \theta_1) & 2^{-1}C(z, \theta_1)H_x(z, \theta_3)^* \\ 2^{-1}H_x(z, \theta_3)C(z, \theta_1) & 3^{-1}H_x(z, \theta_3)C(z, \theta_1)H_x(z, \theta_3)^* \end{pmatrix}.$$

Then

$$S(z, \theta_1, \theta_3)^{-1} = \begin{pmatrix} S(z, \theta_1, \theta_3)^{1,1} & S(z, \theta_1, \theta_3)^{1,2} \\ S(z, \theta_1, \theta_3)^{2,1} & S(z, \theta_1, \theta_3)^{2,2} \end{pmatrix},$$

(3.3)

where

$$S(z, \theta_1, \theta_3)^{1,1} = C(z, \theta_1)^{-1} + 3H_x(z, \theta_3)^*V(z, \theta_1, \theta_3)^{-1}H_x(z, \theta_3),$$

$$S(z, \theta_1, \theta_3)^{1,2} = -6H_x(z, \theta_3)^*V(z, \theta_1, \theta_3)^{-1},$$

$$S(z, \theta_1, \theta_3)^{2,1} = -6V(z, \theta_1, \theta_3)^{-1}H_x(z, \theta_3)$$

and

$$S(z, \theta_1, \theta_3)^{2,2} = 12V(z, \theta_1, \theta_3)^{-1}.$$

Let

$$S(z, \theta_3) = S(z, \hat{\theta}_1^0, \theta_3).$$

Since the increment $\Delta_j Z = Z_{t_j} - Z_{t_{j-1}}$ is approximately conditionally Gaussian in short-term asymptotics, it seems natural to construct a likelihood function based on the local Gaussian approximation. Remark that

$$S(z, \theta_1, \theta_3) = \begin{pmatrix} B(z, \theta_1)B(z, \theta_1)^* & \sqrt{\pi}B(z, \theta_1)\kappa(z, \theta_1, \theta_3)^* \\ \sqrt{\pi}\kappa(z, \theta_1, \theta_3)B(z, \theta_1)^* & \kappa(z, \theta_1, \theta_3)\kappa(z, \theta_1, \theta_3)^* \end{pmatrix}$$

is the covariance matrix of the principal conditionally Gaussian part of $(\Delta_j X, \Delta_j Y)$ if properly scaled and evaluated at $z = Z_{t_{j-1}}$, and $(\theta_1, \theta_3) = (\hat{\theta}_1^0, \theta_3^*)$, where

$$\kappa(z, \theta_1, \theta_3) = 3^{-1/2}H_x(z, \theta_3)B(z, \theta_1).$$

(3.4)

See Lemmas 5.4 and 5.5.

We define a log quasi-likelihood function by

$$\hat{\mathcal{L}}_n^{(3)}(\theta_3) = -\frac{1}{2} \sum_{j=1}^n \left\{ \hat{S}(Z_{t_{j-1}}, \theta_3)^{-1}[D_j(\hat{\theta}_1^0, \hat{\theta}_2^0, \theta_3)^{\otimes 2}] + \log \det \hat{S}(Z_{t_{j-1}}, \theta_3) \right\}.$$

(3.5)

Let $\hat{\theta}_3^0$ be a quasi-maximum likelihood estimator (QMLE) for θ_3 for $\hat{\mathcal{L}}_n^{(3)}$, that is, $\hat{\theta}_3^0$ is a Θ_3-valued measurable mapping satisfying

$$\hat{\mathcal{L}}_n^{(3)}(\hat{\theta}_3^0) = \max_{\theta_3 \in \overline{\Theta}_3} \hat{\mathcal{L}}_n^{(3)}(\theta_3).$$

The QMLE $\hat{\theta}_3^0$ for $\hat{\mathcal{L}}_n^{(3)}$ depends on n as it does on the data $(Z_{t_j})_{j=0,1,...,n}$, $\hat{\theta}_1^0$ in the function \hat{S} also depends on $(Z_{t_j})_{j=0,1,...,n}$.

Adaptive estimation for degenerate diffusion processes 1431
3.2. Consistency of $\hat{\theta}_3^0$

Let

$$\gamma_n^{(3)}(\theta_3) = n^{-1} h \{ \hat{\gamma}_n^{(3)}(\theta_3) - \eta_n^{(3)}(\theta_3^*) \}.$$

Theorem 3.2. Suppose that [A1] with $(i_A, j_A, i_B, j_B, i_H, j_H) = (1, 1, 2, 1, 3, 1)$ and [A2] are satisfied. Then

$$\sup_{\theta_3 \in \Theta_3} |\gamma_n^{(3)}(\theta_3) - \gamma^{(3)}(\theta_3)| \rightarrow^p 0 \quad \text{as} \quad n \rightarrow \infty,$$

as $n \rightarrow \infty$, if $\hat{\theta}_1^0 \rightarrow^p \theta_1^*$ and $\hat{\theta}_2^0 \rightarrow^p \theta_2^*$. Moreover, $\hat{\theta}_3^0 \rightarrow^p \theta_3^*$ if [A3] (iii) is additionally satisfied.

Proof of Theorem 3.2 is in Section 6.

3.3. Asymptotic normality of $\hat{\theta}_3^0$

Let

$$\Gamma_{33} = \int S(z, \theta_1^*, \theta_3^*)^{-1} \left[\begin{pmatrix} 0 \\ \partial_3 H(z, \theta_3^*) \end{pmatrix} \right] \otimes_2 \nu(dz)$$

$$= \int 12 V(z, \theta_1^*, \theta_3^*)^{-1} [(\partial_3 H(z, \theta_3^*)) \otimes_2] \nu(dz)$$

$$= \int 12 \partial_3 H(z, \theta_3^*)^* V(z, \theta_1^*, \theta_3^*)^{-1} \partial_3 H(z, \theta_3^*) \nu(dz). \quad (3.7)$$

The following theorem provides asymptotic normality of $\hat{\theta}_3^0$. The convergence of $\hat{\theta}_3^0$ is much faster than other components of estimators. The proof of the following theorem and the definition of $M_n^{(3)}$ are in Section 6.3.

Theorem 3.3. Suppose that [A1] with $(i_A, j_A, i_B, j_B, i_H, j_H) = (1, 1, 2, 1, 3, 2)$, [A2], [A3] (iii) and [A4] are satisfied. Then

$$n^{1/2} h^{-1/2} (\hat{\theta}_3^0 - \theta_3^*) - \Gamma_{33}^{-1} M_n^{(3)} \rightarrow^p 0$$

as $n \rightarrow \infty$. In particular,

$$n^{1/2} h^{-1/2} (\hat{\theta}_3^0 - \theta_3^*) \rightarrow^d N(0, \Gamma_{33}^{-1})$$

as $n \rightarrow \infty$.

3.4. About initial estimators

Let

$$\hat{\gamma}_n^{(1)}(\theta_1) = -\frac{1}{2} \sum_{j=1}^{n} \left\{ C(Z_{t_{j-1}}, \theta_1) - h^{-1}(\Delta_j X)^{\otimes 2} \right\} + \log \det C(Z_{t_{j-1}}, \theta_1)$$
where $\Delta_jX = X_{t_j} - X_{t_{j-1}}$. It should be remarked that the present $\mathbb{H}_n^{(1)}(\theta_1)$ is different from the one given in (4.2) on p. 1436. Under $[A1]$ and $[A2]$ (iii), $\mathbb{H}_n^{(1)}$ is a continuous function on Θ_1 a.s.

Given the data $(Z_{t_j})_{j=0,1,\ldots,n}$, let us consider the quasi-maximum likelihood estimator (QMLE) $\hat{\theta}_1^n = \hat{\theta}_1^n$ for θ_1, that is, $\hat{\theta}_1^n$ is any measurable function of $(Z_{t_j})_{j=0,1,\ldots,n}$ satisfying

$$
\mathbb{H}_n^{(1)}(\hat{\theta}_1^n) = \max_{\theta_1 \in \Theta_1} \mathbb{H}_n^{(1)}(\theta_1) \quad a.s.
$$

Routinely, $n^{1/2}$-consistency and asymptotic normality of $\hat{\theta}_1^n$ can be established. We will give a brief for self-containedness and for the later use. Let

$$
\Gamma^{(1)}[u_1^{(2)}] = \frac{1}{2} \int_{\mathbb{R}^p} \text{Tr}\{C^{-1}(\partial_1 C)[u_1]C^{-1}(\partial_1 C)[u_1](z, \theta_1^*)\} \nu(dz) \quad (3.8)
$$

for $u_1 \in \mathbb{R}^p$. We will see the existence and positivity of $\Gamma^{(1)}$ in the following theorem. We refer the reader to Gloter and Yoshida [22] for a proof.

Theorem 3.4. (a) Suppose that $[A1]$ with $(i_A, j_A, i_B, j_B, i_H, j_H) = (0, 0, 1, 1, 0, 0)$, $[A2]$ (i), (ii), (iii), and $[A3]$ (i) are satisfied. Then $\theta_1^n \rightarrow^p \theta_1^*$ as $n \rightarrow \infty$.

(b) Suppose that $[A1]$ with $(i_A, j_A, i_B, j_B, i_H, j_H) = (1, 0, 2, 3, 0, 0)$, $[A2]$ (i), (ii), (iii), and $[A3]$ (i) are satisfied. Then $\Gamma^{(1)}$ exists and is positive-definite, and

$$
\sqrt{n}(\hat{\theta}_1^n - \theta_1^*) - (\Gamma^{(1)})^{-1}\hat{M}_n^{(1)} \rightarrow^p 0
$$

as $n \rightarrow \infty$, where

$$
\hat{M}_n^{(1)} = \frac{1}{2} n^{-1/2} \sum_{j=1}^n \left\{C^{-1}(\partial_1 C)(Z_{t_{j-1}} - \theta_1^*) \cdot \left[(n^{-1/2}B(Z_{t_{j-1}}, \theta_1^*)\Delta_j w)^{\otimes 2} - C(Z_{t_{j-1}}, \theta_1^*)\right]\right\}.
$$

Moreover, $M_n^{(1)} \rightarrow^d N_{p_1}(0, \Gamma^{(1)})$ as $n \rightarrow \infty$. In particular,

$$
\sqrt{n}(\hat{\theta}_1^n - \theta_1^*) \rightarrow^d N_{p_1}(0, (\Gamma^{(1)})^{-1})
$$

as $n \rightarrow \infty$.

Remark 3.5. It is possible to show that the quasi-Bayesian estimator (QBE) also enjoys the same asymptotic properties as the QMLE in Theorem 3.4, if we follow the argument in Yoshida [32]. This means we can use both estimators together with the estimator for θ_2 e.g. given in Section 3.4, to construct a one-step estimator for θ_3 based on the scheme presented in Section 3.1, and consequently we can construct a one-step estimator for $\theta = (\theta_1, \theta_2, \theta_3)$ by the method in Section 4.
We will recall a standard construction of estimator for \(\theta_2 \). As usual, the scheme is adaptive. Suppose that an estimator \(\hat{\theta}_2^0 \) based on the data
\((Z_{t_j})_{j=0,1,...,n}\) satisfies Condition [A4] (i), i.e.,
\[
\hat{\theta}_2^0 - \theta_2^* = O_p(n^{-1/2})
\]
as \(n \to \infty \). Obviously we can apply the estimator constructed above, but any estimator satisfying this condition can be used.

Define the random field \(\mathcal{H}_n^{(2)} \) on \(\mathfrak{T}_2 \) by
\[
\mathcal{H}_n^{(2)}(\theta_2) = \frac{1}{2} \sum_{j=1}^{n} C(Z_{t_{j-1}},\hat{\theta}_2^0)^{-1} \left[h^{-1}(\Delta_j X - hA(Z_{t_{j-1}}, \theta_2)) \right]^{\otimes 2}.
\] (3.9)

We will denote by \(\hat{\theta}_2^0 = \hat{\theta}_2^{0,n} \) any sequence of quasi-maximum likelihood estimator for \(\mathcal{H}_n^{(2)} \), that is,
\[
\mathcal{H}_n^{(2)}(\hat{\theta}_2^0) = \sup_{\theta_2 \in \mathfrak{T}_2} \mathcal{H}_n^{(2)}(\theta_2).
\]

Let \(\mathcal{V}_n^{(2)}(\theta_2) = T^{-1}(\mathcal{H}_n^{(2)}(\theta_2) - \mathcal{H}_n^{(2)}(\theta_2^*)) \), where \(T = nh \). The matrix \(\Gamma_{22} \) is defined by (4.1). Let
\[
\hat{\mathcal{M}}_n^{(2)} = T^{-1/2} \sum_{j=1}^{n} C(Z_{t_{j-1}},\theta_2^*)^{-1} \left[B(Z_{t_{j-1}}, \theta_2^*) \Delta_j w, \Delta_j w A(Z_{t_{j-1}}, \theta_2^*) \right]
\] (3.10)

See Gloter and Yoshida [22] for a proof of the following theorem.

Theorem 3.6. (a) Suppose that Conditions [A1] with \((i_A, j_A, i_B, j_B, i_H, j_H) = (1,1,2,1,0,0), [A2], [A3] (ii) and [A4] (i). Then \(\hat{\theta}_2^0 \to p \theta_2^* \) as \(n \to \infty \).

(b) Suppose that Conditions [A1] with \((i_A, j_A, i_B, j_B, i_H, j_H) = (1,3,2,1,0,0), [A2], [A3] (ii) and [A4] (i). Then
\[
(nh)^{1/2}(\hat{\theta}_2^0 - \theta_2^*) - \Gamma_{22}^{-1} \hat{\mathcal{M}}_n^{(2)} \to p 0
\]
as \(n \to \infty \). In particular,
\[
(nh)^{1/2}(\hat{\theta}_2^0 - \theta_2^*) \to d N(0, \Gamma_{22}^{-1})
\]
as \(n \to \infty \).

4. **Adaptive one-step estimator for \((\theta_1, \theta_2, \theta_3)\)**

In this section, we will consider a one-step estimator for \(\theta = (\theta_1, \theta_2, \theta_3) \) given an initial estimators \((\hat{\theta}_1^0, \hat{\theta}_2^0, \hat{\theta}_3^0)\) for \((\theta_1, \theta_2, \theta_3)\) based on \((Z_{t_j})_{j=0,1,...,n}\). We will assume the following rate of convergence for each initial estimator.
Adaptive estimation for degenerate diffusion processes

\[(i) \quad \hat{\theta}_0^1 - \theta^*_1 = O_p(n^{-1/2}) \text{ as } n \to \infty \]

\[(ii) \quad \hat{\theta}_0^2 - \theta^*_2 = O_p(n^{-1/2}h^{-1/2}) \text{ as } n \to \infty \]

\[(iii) \quad \hat{\theta}_0^3 - \theta^*_3 = O_p(n^{-1/2}h^{1/2}) \text{ as } n \to \infty. \]

Condition \[A^4 \] does not assume each initial estimator is attaining the optimal asymptotic variance, nor asymptotically normal. The quasi-maximum likelihood estimator \(\hat{\theta}_0^2 \) with respect to (3.9) is an option. Another choice of the initial estimator \(\hat{\theta}_0^2 \) is the simple least squares estimator using the coefficient A though it is less efficient than the quasi-maximum likelihood estimator for the first component of the model. Theorem 4.1 in this section shows the one-step estimator for \(\theta_2 \) recovers efficiency even if such a less efficient estimator is used as the initial estimator for \(\theta_2 \).

The initial estimator \(\hat{\theta}_0^3 \) is not necessarily the one defined in Section 3, though we already know that one satisfies \[A^4 \] (iii). That is, the initial estimator \(\hat{\theta}_0^3 \) used in this section is requested to attain the error rate \(n^{-1/2}h^{1/2} \) only, not to necessarily achieve the asymptotic variance equal to \(\Gamma_{33}^{-1} \) or less. We know there is an estimator of \(\theta_1 \) satisfying Condition \[A^4 \] (i) based on only the first equation of (1.1). It is known that its information cannot be greater than the matrix

\[
\frac{1}{2} \int \text{Tr}\{ (C^{-1}(\partial_1 C)C^{-1}\partial_1 C)(z, \theta^*_1) \} \nu(dz).
\]

It will be turned out that the amount of information is increased by the one-step estimator.

Let

\[
\Gamma_{11} = \frac{1}{2} \int \text{Tr}\{ S^{-1}(\partial_1 S)S^{-1}\partial_1 S(z, \theta^*_1, \theta^*_3) \} \nu(dz)
\]

\[
= \frac{1}{2} \int \left[\text{Tr}\{ (C^{-1}(\partial_1 C)C^{-1}\partial_1 C)(z, \theta^*_1) \} + \text{Tr}\{ (V^{-1}H_x(\partial_1 C)H_x^*V^{-1}H_x(\partial_1 C)H_x^*)(z, \theta^*_1, \theta^*_3) \} \right] \nu(dz).
\]

If \(H_x \) is an invertible (square) matrix, then \(\Gamma_{11} \) coincides with

\[
\int \text{Tr}\{ (C^{-1}(\partial_1 C)C^{-1}\partial_1 C)(z, \theta^*_1) \} \nu(dz).
\]

Otherwise, it is not always true.

Let

\[
\Gamma_{22} = \int S(z, \theta^*_1, \theta^*_3)^{-1} \left[\frac{\partial_2 A(z, \theta^*_2)}{2^{-1}\partial_2 L_H(z, \theta^*_1, \theta^*_2, \theta^*_3)} \right] \otimes^2 \nu(dz)
\]

\[
= \int \partial_2 A(z, \theta^*_2)^*C(z, \theta^*_1)^{-1}\partial_2 A(z, \theta^*_2) \nu(dz). \quad (4.1)
\]

Let \(\Gamma^J(\theta^*) = \text{diag}[\Gamma_{11}, \Gamma_{22}, \Gamma_{33}] \), where \(\Gamma_{33} \) is defined by (3.7).
We will use the following random fields:

\[
H_n^{(1)}(\theta_1) = -\frac{1}{2} \sum_{j=1}^n \left\{ S(Z_{t,j-1}, \theta_1, \hat{\theta}_3^0)^{-1} \left[D_j(\theta_1, \hat{\theta}_2^0, \hat{\theta}_3^0)^{\otimes 2} \right] + \log \det S(Z_{t,j-1}, \theta_1, \hat{\theta}_3^0) \right\} \tag{4.2}
\]

and

\[
H_n^{(2,3)}(\theta_2, \theta_3) = -\frac{1}{2} \sum_{j=1}^n \left[S(Z_{t,j-1}, \hat{\theta}_3^0)^{-1} \left[D_j(\hat{\theta}_1^0, \theta_2, \theta_3)^{\otimes 2} \right] \right]. \tag{4.3}
\]

Recall \(\hat{S}(z, \theta_3) = S(z, \hat{\theta}_3^0, \theta_3)\). To construct one-step estimators, we consider the functions

\[E_n(\theta_1) = \theta_1 - \left[\partial_1^2 H_n^{(1)}(\theta_1) \right]^{-1} \partial_1 H_n^{(1)}(\theta_1)\]

and

\[F_n(\theta_2, \theta_3) = \begin{pmatrix} \theta_2 \\ \theta_3 \end{pmatrix} - \left[\partial_2^2 F_n^{(2,3)}(\theta_2, \theta_3) \right]^{-1} \partial_2 F_n^{(2,3)}(\theta_2, \theta_3)\]

when both matrices \(\partial_1^2 H_n^{(1)}(\theta_1)\) and \(\partial_2^2 F_n^{(2,3)}(\theta_2, \theta_3)\) are invertible. Let

\[X_n^{(1)} = \{ \omega \in \Omega; \partial_1^2 H_n^{(1)}(\hat{\theta}_1^0) \text{ is invertible and } E_n(\hat{\theta}_1^0) \in \Theta_1 \}\]

and

\[X_n^{(2,3)} = \{ \omega \in \Omega; \partial_2^2 F_n^{(2,3)}(\hat{\theta}_2^0, \hat{\theta}_3^0) \text{ is invertible and } F_n(\hat{\theta}_2^0, \hat{\theta}_3^0) \in \Theta_2 \times \Theta_3 \}\].

Let \(X_n = X_n^{(1)} \cap X_n^{(2,3)}\). The event \(X_n\) is a statistic because it is determined by the data \((Z_{t,j})_{j=0,\ldots,n}\) only. For \((\theta_1, \theta_2, \theta_3)\), the one-step estimator \((\hat{\theta}_1, \hat{\theta}_2, \hat{\theta}_3)\) with the initial estimator \((\hat{\theta}_1^0, \hat{\theta}_2^0, \hat{\theta}_3^0)\) is defined by

\[
\begin{pmatrix} \hat{\theta}_1 \\ \hat{\theta}_2 \\ \hat{\theta}_3 \end{pmatrix} = \begin{pmatrix} \frac{E_n(\hat{\theta}_1^0)}{F_n(\hat{\theta}_2^0, \hat{\theta}_3^0)} \\ \frac{F_n(\hat{\theta}_2^0, \hat{\theta}_3^0)}{v} \end{pmatrix} \quad \text{on } X_n
\]

where \(v\) is an arbitrary value in \(\Theta\).

Let \(\hat{\gamma} = (\hat{\theta}_2, \hat{\theta}_3)^*\), \(\gamma^0 = (\hat{\theta}_2^0, \hat{\theta}_3^0)^*\) and \(\gamma^* = (\hat{\theta}_2^*, \hat{\theta}_3^*)^*\).

Let

\[
b_n = \begin{pmatrix} n^{-1/2} & 0 & 0 \\ 0 & n^{-1/2}h^{-1/2} & 0 \\ 0 & 0 & n^{-1/2}h^{1/2} \end{pmatrix}.
\]

We obtain a limit theorem for the joint adaptive one-step estimator.
Theorem 4.1. Suppose that \([A1]\) with \((i_A, j_A, i_B, j_B, i_H, j_H) = (1, 3, 2, 3, 2, 2)\), \([A2]\), \([A3]\) and \([A4^2]\) are satisfied. Then

\[
b_n^{-1}(\hat{\theta} - \theta^*) \to^d N(0, (\Gamma^J(\theta^*))^{-1})
\]
as \(n \to \infty\).

Condition \([A3]\) is used to ensure non-degeneracy of the information matrix. We will give a proof to Theorem 4.1 in Section 7.

5. Basic estimation of the increments

The following sections will be devoted to the proofs.

We have

\[
h^{-1/2} \Delta_j X = h^{-1/2} \int_{t_{j-1}}^{t_j} B(Z_t, \theta^*_1) dt + h^{-1/2} \int_{t_{j-1}}^{t_j} A(Z_t, \theta^*_2) dt
\]

where

\[
r_j^{(5.2)} = h^{-1/2} \int_{t_{j-1}}^{t_j} (B(Z_t, \theta^*_1) - B(Z_{t_{j-1}}, \theta^*_1)) dt
\]

\[
+ h^{-1/2} \int_{t_{j-1}}^{t_j} A(Z_t, \theta^*_2) dt
\]

Lemma 5.1. (a) Under \([A1]\) with \((i_A, j_A, i_B, j_B, i_H, j_H) = (0, 0, 0, 0, 0, 0)\) and \([A2]\) (i),

\[
\sup_{s,t \in \mathbb{R}_+} \|Z_s - Z_t\|_p = O(\Delta_1/2) \quad (\Delta \downarrow 0) \quad (5.3)
\]

for every \(p > 1\).

(b) Under \([A1]\) with \((i_A, j_A, i_B, j_B, i_H, j_H) = (0, 0, 1, 0, 0, 0)\) and \([A2]\) (i),

\[
\sup_n \sup_j \|r_j^{(5.2)}\|_p = O(h_1/2)
\]

for every \(p > 1\).

Proof. (a) is trivial. For (b), the first term on the right-hand side of (5.2) can be estimated by the Burkholder-Davis-Gundy inequality, Taylor’s formula for \(B(Z_t, \theta^*_1) - B(Z_{t_{j-1}}, \theta^*_1)\) and by (5.3).

We have

\[
h^{-1/2} \Delta_j X = h^{-1/2} \int_{t_{j-1}}^{t_j} B(Z_t, \theta^*_1) dt + h^{1/2} A(Z_{t_{j-1}}, \theta^*_2) + r_j^{(5.4)}
\]

where

\[
r_j^{(5.4)} = h^{-1/2} \int_{t_{j-1}}^{t_j} (A(Z_t, \theta^*_2) - A(Z_{t_{j-1}}, \theta^*_2)) dt.
\]
Lemma 5.2. \(r_j^{(5,4)} = O_{L^\infty}(h) \) uniformly, i.e.,

\[
\sup_n \sup_j \left\| r_j^{(5,4)} \right\|_p = O(h)
\]

(5.5)

for every \(p > 1 \) if \([A1]\) for \((i_A, j_A, i_B, j_B, i_H, j_H) = (1, 0, 0, 0, 0, 0)\) and \([A2]\) (i) hold.

Write

\[
\zeta_j = \sqrt{3} \int_{t_{j-1}}^{t_j} \int_{t_{j-1}}^{t_j} dw_s dt.
\]

Then \(E[\zeta_j^{ \otimes 2}] = h^3 I_r \) for the \(r \)-dimensional identity matrix \(I_r \).

The function \(G_n \) is defined in (3.1). Under sufficient smoothness of the coefficients, we have

\[
\begin{align*}
\Delta_j Y - hG_n(Z_{t_{j-1}}, \theta_1, \theta_2, \theta_3) \\
&= \Delta_j Y - hH(Z_{t_{j-1}}, \theta_3) - \frac{h^2}{2} L_H(Z_{t_{j-1}}, \theta_1, \theta_2, \theta_3) \\
&= hH(Z_{t_{j-1}}, \theta_3^*) - hH(Z_{t_{j-1}}, \theta_3) \\
&\quad + H_x(Z_{t_{j-1}}, \theta_3^*) B(Z_{t_{j-1}}, \theta_1^*) \int_{t_{j-1}}^{t_j} \int_{t_{j-1}}^{t_j} dw_s dt \\
&\quad + \int_{t_{j-1}}^{t_j} \int_{t_{j-1}}^{t_j} \{ H_x(Z_{s}, \theta_3^*) B(Z_{s}, \theta_1^*) - H_x(Z_{t_{j-1}}, \theta_3^*) B(Z_{t_{j-1}}, \theta_1^*) \} dw_s dt \\
&\quad + \int_{t_{j-1}}^{t_j} \int_{t_{j-1}}^{t_j} (L_H(Z_{s}, \theta_1^*, \theta_2^*, \theta_3^*) - L_H(Z_{t_{j-1}}, \theta_1, \theta_2, \theta_3)) ds dt \\
&= \{ hH(Z_{t_{j-1}}, \theta_3^*) - hH(Z_{t_{j-1}}, \theta_3) \} + \kappa(Z_{t_{j-1}}, \theta_1^*, \theta_2^*, \theta_3^*) \zeta_j \\
&\quad + \rho_j(\theta_1, \theta_2, \theta_3)
\end{align*}
\]

(5.6)

where \(\kappa(Z_{t_{j-1}}, \theta_1^*, \theta_2^*, \theta_3^*) \) is given in (3.4).

\[
\begin{align*}
\rho_j(\theta_1, \theta_2, \theta_3) &= \int_{t_{j-1}}^{t_j} \int_{t_{j-1}}^{t_j} \{ H_x(Z_{s}, \theta_3^*) B(Z_{s}, \theta_1^*) \\
&\quad - H_x(Z_{t_{j-1}}, \theta_3^*) B(Z_{t_{j-1}}, \theta_1^*) \} dw_s dt \\
&\quad + \int_{t_{j-1}}^{t_j} \int_{t_{j-1}}^{t_j} (L_H(Z_{s}, \theta_1^*, \theta_2^*, \theta_3^*) - L_H(Z_{t_{j-1}}, \theta_1, \theta_2, \theta_3)) ds dt.
\end{align*}
\]

(5.7)

Lemma 5.3. Suppose that \([A1]\) with \((i_A, j_A, i_B, j_B, i_H, j_H) = (1, 0, 1, 0, 3, 0)\) and \([A2]\) (i) are satisfied. Then

(a) \(\sup_n \sup_j \left\| \rho_j(\theta_1^*, \theta_2^*, \theta_3^*) \right\|_p = O(h^2) \) for every \(p > 1 \).

(b) \(\sup_n \sup_j \left\| \mathcal{D}_j(\theta_1^*, \theta_2^*, \theta_3^*) \right\|_p < \infty \) for every \(p > 1 \).
Proof. It is possible to show (a) by (5.7) and using the estimate (5.3) with the help of Taylor’s formula. Additionally to the representation (5.6), by using (5.1) and (5.2), we obtain (b).

We denote by \((B_x B)(z, \theta_2)\) the tensor defined by \((B_x B)(z, \theta_2)[u_1 \otimes u_2] = B_x(z, \theta_2)[u_2, B(z, \theta_2)[u_1]]\) for \(u_1, u_2 \in \mathbb{R}^r\). Moreover, we write \(\text{d}w_s \text{d}w_t\) for \(\text{d}w_s \otimes \text{d}w_t\), and

\[
(B_x B)(Z_{t_{j-1}}, \theta_2^*) \int_{t_{j-1}}^{t_j} \text{d}w_s \text{d}w_t
\]

for

\[
(B_x B)(Z_{t_{j-1}}, \theta_2^*) \left[\int_{t_{j-1}}^{t_j} \int_{t_{j-1}}^{t} \text{d}w_s \text{d}w_t \right].
\]

We will apply this rule in similar situations. Let

\[
L_B(z, \theta_1, \theta_2, \theta_3) = B_x(z, \theta_1)[A(z, \theta_2)] + \frac{1}{2} B_{xx}(z, \theta_1)[C(z, \theta_1)] + B_y(z, \theta_3)[H(z, \theta_3)].
\]

(5.8)

Lemma 5.4. Suppose that \([A1]\) with \((i_A, j_A, i_B, j_B, i_H, j_H) = (1, 1, 2, 0, 0, 0)\) and \([A2]\) (i) are satisfied. Then

\[
h^{-1/2}(\Delta_j X - hA(Z_{t_{j-1}}, \theta_2)) = \xi_j^{(5.10)} + \xi_j^{(5.11)} + r_j^{(5.12)}(\theta_2)
\]

(5.9)

where

\[
\xi_j^{(5.10)} = h^{-1/2} B(Z_{t_{j-1}}, \theta_1^*) \Delta_j w,
\]

(5.10)

\[
\xi_j^{(5.11)} = h^{-1/2} (B_x B)(Z_{t_{j-1}}, \theta_1^*) \int_{t_{j-1}}^{t_j} \int_{t_{j-1}}^{t} \text{d}w_s \text{d}w_t,
\]

(5.11)

and

\[
r_j^{(5.12)}(\theta_2) = h^{-1/2} \int_{t_{j-1}}^{t_j} \int_{t_{j-1}}^{t} ((B_x B)(Z_s, \theta_1^*) - (B_x B)(Z_{t_{j-1}}, \theta_1^*)) \text{d}w_s \text{d}w_t
\]

\[
+ h^{-1/2} \int_{t_{j-1}}^{t_j} \int_{t_{j-1}}^{t} L_B(Z_s, \theta_1^*, \theta_2^*, \theta_3^*) \text{d}s \text{d}w_t
\]

\[
+ h^{-1/2} \int_{t_{j-1}}^{t_j} (A(Z_t, \theta_2^*) - A(Z_{t_{j-1}}, \theta_2)) \text{d}t.
\]

(5.12)

Moreover,

\[
\sup_n \sup_j \|r_j^{(5.12)}(\theta_2^*)\|_p = O(h)
\]

(5.13)
Lemma 5.5. (a) Suppose that \([A1]\) with \((i_A, j_A, i_B, j_B, i_H, j_H) = (1, 1, 2, 1, 3, 0)\) and \([A2] (i)\) are satisfied. Then

\[
\Delta_j Y - hG\alpha(Z_{t_{j-1}}, \theta_1, \theta_2, \theta_3^*) = \xi_j^{(5.17)} + \xi_j^{(5.18)} + h^{1/2}r_j^{(5.15)}(\theta_1, \theta_2) + h^{3/2}r_j^{(5.20)}(\theta_1, \theta_2)
\]

where

\[
\xi_j^{(5.17)} = \kappa(Z_{t_{j-1}}, \theta_1^*, \theta_3^*) \xi_j,
\]

\[
\xi_j^{(5.18)} = ((H_x B)_{x} B)(Z_{t_{j-1}}, \theta_1^*, \theta_3^*) \int_{t_{j-1}}^{t_j} \int_{t_{j-1}}^{t} \int_{t_{j-1}}^{s} dw_x dw_y dt.
\]

\[
r_j^{(5.19)}(\theta_1, \theta_2) = h^{-3/2} \int_{t_{j-1}}^{t_j} \int_{t_{j-1}}^{t} \int_{t_{j-1}}^{s} \{(H_x B)_{x} B)(Z_r, \theta_1^*, \theta_3^*)
\]

\[
-((H_x B)_{x} B)(Z_{t_{j-1}}, \theta_1^*, \theta_3^*) \} dw_x dw_y dt,
\]

\[
+h^{-3/2} \int_{t_{j-1}}^{t_j} \int_{t_{j-1}}^{t} \int_{t_{j-1}}^{s} L_{H, B}(Z_r, \theta_1^*, \theta_2^* \theta_3^*) dr dw_x dt,
\]

\[
+h^{-3/2} \int_{t_{j-1}}^{t_j} \int_{t_{j-1}}^{t} \int_{t_{j-1}}^{s} L_H(Z_s, \theta_1, \theta_2, \theta_3^*) ds dt,
\]

\[
- L_H(Z_{t_{j-1}}, \theta_1, \theta_2, \theta_3^*) ds dt
\]

for every \(p > 1\), and

\[
|r_j^{(5.12)}(\theta_2)| \leq r_j^{(5.15)} \left\{ h^{1/2}|\theta_2 - \theta_3^*| + h \right\}
\]

with some random variables \(r_{n,j}^{(5.15)}\) satisfying

\[
\sup_n \sup_n \|r_{n,j}^{(5.15)}\|_p < \infty
\]

for every \(p > 1\).

Proof. The decomposition (5.9) is obtained by Itô’s formula. The estimate (5.13) is verified by (5.3) since \(\partial_x (B_x B)\) and \(\partial_z A\) are bounded by a polynomial in \(z\) uniformly in \(\theta\). The estimate (5.14) uses \(\partial_x A\) for \(\theta_2\) near \(\theta_3^*\) as well as \(\partial_z A\) evaluated at \(\theta_2^*\):

\[
|r_j^{(5.12)}(\theta_2)| 1_{|\theta_2 - \theta_3^*| < r} \leq r_{n,j}^{(5.15)} \left\{ h^{1/2}|\theta_2 - \theta_3^*| + h \right\} 1_{|\theta_2 - \theta_3^*| < r}
\]

with some positive constant \(r\) and some random variables \(r_{n,j}^{(5.15)}\) satisfying (5.15). The small number \(r\) was taken to ensure convexity of the vicinity of \(\theta_2^*\). For \(\theta_2\) such that \(|\theta_2 - \theta_3^*| \geq r\), the estimate (5.14) is valid by enlarging \(r_{n,j}^{(5.15)}\) if necessary. \(\square\)
with

\[L_{H_x B}(z, \theta_1, \theta_2, \theta_3) = (H_x B)_x(z, \theta_1, \theta_3) [A(z, \theta_2)] + \frac{1}{2} (H_x B)_{xx}(z, \theta_1, \theta_3) [C(z, \theta_1)] + (H_x B)_y(z, \theta_1, \theta_3) [H(z, \theta_3)], \]

and

\[r_{j}^{(5.20)}(\theta_1, \theta_2) = h^{-3/2} \int_{t_{j-1}}^{t_j} \int_{t_{j-1}}^{t_j} \left(L_H(Z_s, \theta^*_1, \theta^*_2, \theta^*_3) - L_H(Z_s, \theta_1, \theta_2, \theta^*_3) \right) ds dt. \] (5.20)

Moreover,

\[\sup_n \sup_j \sup_{(\theta_1, \theta_2) \in \Theta_1 \times \Theta_2} \left\| r_{j}^{(5.19)}(\theta_1, \theta_2) \right\|_p = O(h) \] (5.21)

for every \(p > 1 \), and

\[|r_{j}^{(5.20)}(\theta_1, \theta_2)| \leq h^{1/2} r_{n,j}^{(5.23)} \left\{ |\theta_1 - \theta^*_1| + |\theta_2 - \theta^*_2| \right\} \] (5.22)

for all \((\theta_1, \theta_2) \in \Theta_1 \times \Theta_2\) with some random variables \(r_{n,j}^{(5.23)} \) satisfying

\[\sup_n \sup_j \left\| r_{n,j}^{(5.23)} \right\|_p < \infty \] (5.23)

for every \(p > 1 \).

(b) Suppose that \([A_1]\) with \((i_A, j_A, i_B, j_B, i_H, j_H) = (1, 1, 2, 1, 2, 0)\) and \([A_2]\) \((i)\) are satisfied. Then there exist random variables \(r_{n,j}^{(5.24)} \) and a number \(\rho \) such that

\[\sup_{\theta_3 \in \Theta_3} |D_j(\theta_1, \theta_2, \theta_3) - D_j(\theta^*_1, \theta^*_2, \theta_3)| \leq h^{1/2} r_{n,j}^{(5.24)} \left\{ |\theta_1 - \theta^*_1| + |\theta_2 - \theta^*_2| \right\} \]

for all \((\theta_1, \theta_2) \in B((\theta^*_1, \theta^*_2), \rho)\) and that

\[\sup_n \sup_j \left\| r_{n,j}^{(5.24)} \right\|_p < \infty \] (5.24)

for every \(p > 1 \).

Proof. By (5.6), we have

\[\Delta_j Y - hG_n(Z_{t_{j-1}}, \theta_1, \theta_2, \theta^*_3) = \xi_j^{(5.17)} + \rho_j^{(5.17)}(\theta_1, \theta_2, \theta^*_3) \] (5.25)
and
\[
\rho_j(\theta_1, \theta_2, \theta_3^*) = \int_{t_{j-1}}^{t_j} \int_{t_{j-1}}^{t_j} \{ H_x(Z_s, \theta_3^*) B(Z_s, \theta_3^*) - H_x(Z_{t_{j-1}}, \theta_3^*) B(Z_{t_{j-1}}, \theta_3^*) \} \, dw_s \, dt
+ \int_{t_{j-1}}^{t_j} \int_{t_{j-1}}^{t_j} \{ L_H(Z_s, \theta_1^*, \theta_2^*, \theta_3^*) - L_H(Z_{t_{j-1}}, \theta_1^*, \theta_2^*, \theta_3^*) \} \, ds \, dt.
\]

Then the decomposition (5.16) is obvious. The first and third terms on the right-hand side of (5.19) can be estimated with Taylor’s formula and (5.3), and the second term is easy to estimate. Thus, we obtain (5.21). Since \(\partial(\theta_1, \theta_2) L_H(z, \theta_1, \theta_2, \theta_3^*) \) is bounded by a polynomial in \(z \) uniformly in \((\theta_1, \theta_2)\), there exist random variables \(r^{(5.23)}_{n,j} \) that satisfy (5.22) and (5.23). First show (5.22) on the set \(\{(\theta_1, \theta_2) - (\theta_1^*, \theta_2^*) < r\} \), next see this estimate is valid on \((\Theta_1 \times \Theta_2) \setminus \{(\theta_1, \theta_2) - (\theta_1^*, \theta_2^*) < r\} \) by redefining \(r^{(5.23)}_{n,j} \) if necessary. We obtained (a). The assertion (b) is easy to verify with (5.6), (5.7) and Lemma 5.4.

Lemma 5.6. Suppose that \([A1]\) with \((i_A, j_A, i_B, j_B, i_H, j_H) = (0, 0, 0, 2, 1)\) and \([A2]\) (i) are satisfied. Then

\[
\sup_{(\theta_1, \theta_2) \in \Theta_1 \times \Theta_2} |D_j(\theta_1, \theta_2, \theta_3) - D_j(\theta_1, \theta_2, \theta_3^*)| \leq h^{-1/2} r^{(5.26)}_{n,j} |\theta_3 - \theta_3^*|
\]

for some random variables \(r^{(5.26)}_{n,j} \) such that

\[
\sup_n \sup_j \| r^{(5.26)}_{n,j} \|_p < \infty \tag{5.26}
\]

for every \(p > 1 \).

Proof.

\[
D_j(\theta_1, \theta_2, \theta_3) - D_j(\theta_1, \theta_2, \theta_3^*) = \begin{cases} 0 \\ h^{-1/2} (H(Z_{t_{j-1}}, \theta_3^*) - H(Z_{t_{j-1}}, \theta_3)) \\ + h^{1/2} (L_H(Z_{t_{j-1}}, \theta_1, \theta_2, \theta_3^*) - L_H(Z_{t_{j-1}}, \theta_1, \theta_2, \theta_3)) \end{cases}
\]

Therefore the lemma is obvious. Apply the Taylor formula for the argument \(\theta_3 \) if \(\theta_3 \) and \(\theta_3^* \) are close, otherwise and if necessary, redefine \(r^{(5.26)}_{n,j} \). \(\square \)
6. Proof of Theorems 3.2 and 3.3

6.1. Proof of Theorem 3.2

Lemma 6.1. Suppose that $[A1]$ with $(i_A, j_A, i_B, j_B, i_H, j_H) = (0, 0, 0, 1, 1, 1)$ and $[A2]$ (i), (iii) and (iv) are fulfilled. Then

$$\sup_{t \in \mathbb{R}^+} \sup_{(\theta_1, \theta_3) \in \Theta_1 \times \Theta_3} \left\{ |S(Z_t, \theta_1, \theta_3)| + \det S(Z_t, \theta_1, \theta_3)^{-1} \right\} < \infty$$

for every $p > 1$

Proof. By $[A2]$ (iii) and (iv), $\det S(Z_{t_j}, \theta_1, \theta_3)^{-1}$ as well as $S(Z_{t_j}, \theta_1, \theta_3)$ are fulfilled. Then

$$\sup_{t \in \mathbb{R}^+} \sup_{(\theta_1, \theta_3) \in \Theta_1 \times \Theta_3} \left\{ \left| \frac{\partial}{\partial \theta_1} S(Z_t, \theta_1, \theta_3) \right| \right\} < \infty$$

for every $p > 1$ by Sobolev's inequality. The inequality

$$\sup_{t \in \mathbb{R}^+} \sup_{(\theta_1, \theta_3) \in \Theta_1 \times \Theta_3} \left\| S(Z_t, \theta_1, \theta_3) \right\|_p < \infty$$

for every $p > 1$ is rather easy to show. \hfill \Box

Proof of Theorem 3.2. We have

$$\gamma_n^{(3)}(\theta_3) = -\frac{1}{2n} \sum_{j=1}^n \hat{S}(Z_{t_j-}, \theta_3)^{-1} \left[(h^{1/2}\delta_j(\hat{\theta}_1^0, \hat{\theta}_2^0, \theta_3))^{\otimes 2} \right] + n^{-1} h R_n^{(6.1)}(\theta_3),$$

where

$$\delta_j(\theta_1, \theta_2, \theta_3) = -D_j(\theta_1, \theta_2, \theta_3) + D_j(\theta_1, \theta_2, \theta_3^*)$$

and

$$R_n^{(6.1)}(\theta_3) = h^{-1/2} \sum_{j=1}^n \hat{S}(Z_{t_j-}, \theta_3)^{-1} \left[h^{1/2} \delta_j(\hat{\theta}_1^0, \hat{\theta}_2^0, \theta_3), D_j(\hat{\theta}_1^0, \hat{\theta}_2^0, \theta_3^*) \right]$$

$$-\frac{1}{2} \sum_{j=1}^n \left(\hat{S}(Z_{t_j-}, \theta_3)^{-1} - \hat{S}(Z_{t_j-}, \theta_3^*)^{-1} \right) \left[D_j(\hat{\theta}_1^0, \hat{\theta}_2^0, \theta_3^*)^{\otimes 2} \right]$$
\[
\frac{1}{2} \sum_{j=1}^{n} \log \frac{\det \hat{S}(Z_{t,j-1}, \theta_3)}{\det \hat{S}(Z_{t,j-1}, \theta_3^*)} \tag{6.1}
\]

By Lemma 5.3 (b), Lemma 5.5 (b), Lemma 5.6 and Lemma 6.1, we obtain
\[n^{-1} h \sup_{\theta_3 \in \Theta_3} \left| R_n^{(6.1)}(\theta_3) \right| = O_P(h^{1/2}) + O_P(h) = O_P(h^{1/2}).\]

By definition,
\[h^{1/2} \delta_j(\hat{\theta}_0^1, \hat{\theta}_0^2, \theta_3) = \left(\begin{array}{c}
0
\delta_j H(Z_{t,j-1}, \theta_3) - H(Z_{t,j-1}, \theta_3^*)
\frac{1}{2} (L_H(Z_{t,j-1}, \hat{\theta}_0^1, \hat{\theta}_0^2, \theta_3) - L_H(Z_{t,j-1}, \hat{\theta}_0^1, \hat{\theta}_0^2, \theta_3^*)
\end{array} \right) \right). \tag{6.2}
\]

Since the functions \(A(z, \theta_2), H(z, \theta_3), \) and \(L_H(z, \theta_1, \theta_2, \theta_3)\) are dominated by a polynomial in \(z\) uniformly in \(\theta\), by using the above formula, it is easy to show
\[h^{1/2} \sup_{\theta_3 \in \Theta_3} \left| Y_n^{(3)}(\theta_3) - Y_n^{(6.3)}(\theta_3) \right| = O_P(h^{1/2}) \tag{6.3}
\]
for
\[Y_n^{(6.3)}(\theta_1, \theta_3) = - \frac{1}{2n} \sum_{j=1}^{n} S(Z_{t,j-1}, \theta_1, \theta_3)^{-1} \left[\begin{array}{c}
H(Z_{t,j-1}, \theta_3) - H(Z_{t,j-1}, \theta_3^*)
\end{array} \right] \right]. \tag{6.4}
\]

The derivative \(\partial_i S_x(z, \theta_1, \theta_3)\) is dominated by a polynomial in \(z\) uniformly in \(\theta\). Therefore
\[h^{1/2} \sup_{\theta_3 \in \Theta_3} \left| Y_n^{(6.3)}(\hat{\theta}_0^1, \theta_3) - Y_n^{(6.3)}(\theta_1, \theta_3) \right| \rightarrow P 0. \tag{6.5}
\]

Finally, the estimate (5.3) gives
\[h^{1/2} \sup_{\theta_3 \in \Theta_3} \left| Y_n^{(6.3)}(\theta_1, \theta_3) \right| \rightarrow P 0. \tag{6.6}
\]

Now (3.6) follows from (6.2), (6.4), (6.5) and [A2] (ii) since \(\partial_i H(z, \theta_1, \theta_3) (i = 0, 1)\) are dominated by a polynomial in \(z\) uniformly in \(\theta_3\). Then the convergence \(\hat{\theta}_0^3 \rightarrow P \theta_3\) as \(n \rightarrow \infty\) is obvious under Condition [A3] (iii). \(\square\)
6.2. Random fields

Let
\[\tilde{D}_j(\theta'_1, \theta'_2, \theta'_3) = D_j(\theta'_1, \theta'_2, \theta'_3) + \tilde{D}_j(\theta_1^*, \theta_2^*, \theta_3^*) - D_j(\theta_1^*, \theta_2^*, \theta_3^*) \]
where
\[\tilde{D}_j(\theta_1^*, \theta_2^*, \theta_3^*) = \begin{pmatrix} \xi_j^{(5.10)} + \xi_j^{(5.11)} \\ h^{-3/2}(\xi_j^{(5.17)} + \xi_j^{(5.18)}) \end{pmatrix}. \]

To solve the problem, we need to exploit stochastic orthogonality between random fields. Though this technique is standard, to carry out it as visibly as possible, we necessarily introduce various random fields below. These symbols are useful to clarify which parameters are replaced in the formula and which order of error is caused, also to make big formulas compact and to avoid repetition of them. The following random fields depend on \(n \).

\[\Psi_{3,1}(\theta_1, \theta_3, \theta'_1, \theta'_2, \theta'_3) = \sum_{j=1}^{n} S(Z_{t_{j-1}}, \theta_1, \theta_3)^{-1} \left[D_j(\theta'_1, \theta'_2, \theta'_3), \begin{pmatrix} 0 \\ \partial_3 H(Z_{t_{j-1}}, \theta_3) \end{pmatrix} \right], \]

\[\Psi_{3,1}(\theta_1, \theta_3, \theta'_1, \theta'_2, \theta'_3) = \sum_{j=1}^{n} S(Z_{t_{j-1}}, \theta_1, \theta_3)^{-1} \left[\tilde{D}_j(\theta'_1, \theta'_2, \theta'_3), \begin{pmatrix} 0 \\ \partial_3 H(Z_{t_{j-1}}, \theta_3) \end{pmatrix} \right], \]

\[\Psi_{3,2}(\theta_1, \theta_2, \theta_3, \theta'_1, \theta'_2, \theta'_3) = \sum_{j=1}^{n} S(Z_{t_{j-1}}, \theta_1, \theta_3)^{-1} \left[D_j(\theta'_1, \theta'_2, \theta'_3), \begin{pmatrix} 0 \\ 2^{-1} h \partial_3 L H(Z_{t_{j-1}}, \theta_1, \theta_2, \theta_3) \end{pmatrix} \right], \]

\[\Psi_{3,3}(\theta_1, \theta_2, \theta_3, \theta'_1, \theta'_2, \theta'_3) = \frac{1}{2} \sum_{j=1}^{n} (S^{-1}(\partial_3 S)S^{-1})(Z_{t_{j-1}}, \theta_1, \theta_3)[D_j(\theta'_1, \theta'_2, \theta'_3) \otimes 2 - S(Z_{t_{j-1}}, \theta_1, \theta_3)], \]

\[\Psi_{3,3,1}(\theta_1, \theta_2, \theta_3) = -\sum_{j=1}^{n} S(Z_{t_{j-1}}, \theta_1, \theta_3)^{-1} \left[\begin{pmatrix} \partial_3 H(Z_{t_{j-1}}, \theta_3) \\ +2^{-1} h \partial_3 L H(Z_{t_{j-1}}, \theta_1, \theta_2, \theta_3) \end{pmatrix} \right] \otimes 2, \]
\[\Psi_{33,2}(\theta_1, \theta_2, \theta_3, \theta'_1, \theta'_2, \theta'_3) \]
\[
= \sum_{j=1}^{n} S(Z_{t_{j-1}}, \theta_1, \theta_3)^{-1} \left[D_j(\theta'_1, \theta'_2, \theta'_3) \right.
\left. \otimes \left(\partial^2 \mathcal{H}(Z_{t_{j-1}}, \theta_3) + 2^{-1} h \partial^2 \mathcal{H}(Z_{t_{j-1}}, \theta_1, \theta_2, \theta_3) \right) \right].
\]

\[\Psi_{33,3}(\theta_1, \theta_3) \]
\[
= -\frac{1}{2} \sum_{j=1}^{n} \left\{ (S^{-1}(\partial_3 S)^{-1})(Z_{t_{j-1}}, \theta_1, \theta_3) \left[\partial_3 S(Z_{t_{j-1}}, \theta_1, \theta_3) \right] \right\},
\]

\[\Psi_{33,4}(\theta_1, \theta_2, \theta_3, \theta'_1, \theta'_2, \theta'_3) \]
\[
= -2 \sum_{j=1}^{n} S^{-1}(\partial_3 S)^{-1}(Z_{t_{j-1}}, \theta_1, \theta_3) \left[D_j(\theta'_1, \theta'_2, \theta'_3) \right.
\left. \otimes \left(\partial_3 \mathcal{H}(Z_{t_{j-1}}, \theta_3) + 2^{-1} h \partial_3 \mathcal{H}(Z_{t_{j-1}}, \theta_1, \theta_2, \theta_3) \right) \right].
\]

\[\Psi_{33,5}(\theta_1, \theta_3, \theta'_1, \theta'_2, \theta'_3) \]
\[
= \frac{1}{2} \sum_{j=1}^{n} \partial_3 \left\{ (S^{-1}(\partial_3 S)^{-1})(Z_{t_{j-1}}, \theta_1) \right\}
\left. \cdot \left[D_j(\theta'_1, \theta'_2, \theta'_3)^{\otimes 2} - S(Z_{t_{j-1}}, \theta_1, \theta_3) \right] \right. .
\]

6.3. Proof of Theorem 3.3

Let
\[
M_n^{(3)} = n^{-1/2} \sum_{j=1}^{n} S(Z_{t_{j-1}}, \theta_1^*, \theta_3^*)^{-1} \left[\begin{array}{c}
\left(h^{-1/2} B(Z_{t_{j-1}}, \theta_2^*) \Delta_j^w \right) \\
\left(h^{-3/2} K(Z_{t_{j-1}}, \theta_1^*, \theta_3^*) \zeta_j \right)
\end{array} \right] \otimes \left(\partial_3 \mathcal{H}(Z_{t_{j-1}}, \theta_3^*) \right).
\]

Lemma 6.2. Suppose that [A1] with \((i_A, j_A, i_B, j_B, i_H, j_H) = (1, 1, 2, 1, 3, 1), [A2] and [A4] are satisfied. Then
\[
n^{-1/2} h^{1/2} \partial_3 \mathbb{E}_n^{(3)}(\theta_3^*) - M_n^{(3)} = o_p(1)
\]
as \(n \to \infty\).
Proof. From (3.5) and (3.2), we have

\[n^{-1/2} h^{1/2} \partial_3^{\Psi_3} (\theta_3^*) = R_n^{(6.7)}(\hat{\theta}_1^0, \hat{\theta}_2^0) + R_n^{(6.8)}(\hat{\theta}_1^0, \hat{\theta}_2^0) + R_n^{(6.9)}(\hat{\theta}_1^0, \hat{\theta}_2^0) \]

(6.6)

where

\[R_n^{(6.7)}(\hat{\theta}_1^0, \hat{\theta}_2^0) = n^{-1/2} \Psi_{3,1}(\hat{\theta}_1^0, \theta_3^*, \hat{\theta}_1^0, \hat{\theta}_2^0, \theta_3^*) \]

(6.7)

\[R_n^{(6.8)}(\hat{\theta}_1^0, \hat{\theta}_2^0) = n^{-1/2} \Psi_{3,2}(\hat{\theta}_1^0, \theta_3^*, \hat{\theta}_1^0, \hat{\theta}_2^0, \theta_3^*) \]

(6.8)

and

\[R_n^{(6.9)}(\hat{\theta}_1^0, \hat{\theta}_2^0) = n^{-1/2} h^{1/2} \Psi_{3,3}(\hat{\theta}_1^0, \theta_3^*, \hat{\theta}_1^0, \hat{\theta}_2^0, \theta_3^*) \]

(6.9)

We have

\[\mathcal{D}_j(\hat{\theta}_1^0, \hat{\theta}_2^0, \theta_3^*) - \mathcal{D}_j(\hat{\theta}_1^0, \theta_3^*, \theta_3^*) \]

\[= -h^{1/2} \left(\frac{A(Z_{t-j-1}, \hat{\theta}_1^0) - A(Z_{t-j-1}, \theta_3^*)}{2^{-1} H_x(Z_{t-j-1}, \theta_3^*)} \left[A(Z_{t-j-1}, \hat{\theta}_2^0) - A(Z_{t-j-1}, \theta_2^*) \right] \right) \]

and so only by algebraic computation we obtain

\[\hat{S}(Z_{t-j-1}, \theta_3^*)^{-1} \left[\mathcal{D}_j(\hat{\theta}_1^0, \hat{\theta}_2^0, \theta_3^*) - \mathcal{D}_j(\hat{\theta}_1^0, \theta_3^*, \theta_3^*) \right] \left(\begin{array}{c} 0 \\ \partial_3 H(Z_{t-j-1}, \theta_3^*) \end{array} \right) \]

\[= 0. \]

(6.10)

Applying Lemma 5.5 (b) under [A4], and next using the results in Lemmas 5.4 and 5.5, we see

\[R_n^{(6.7)}(\hat{\theta}_1^0, \hat{\theta}_2^0) = n^{-1/2} \Psi_{3,1}(\hat{\theta}_1^0, \theta_3^*, \theta_3^*, \hat{\theta}_1^0, \hat{\theta}_2^0, \theta_3^*) + O_p(h^{1/2}) \]

\[= n^{-1/2} \Psi_{3,1}(\hat{\theta}_1^0, \theta_3^*, \theta_3^*, \theta_3^*, \hat{\theta}_2^0, \theta_3^*) + o_p(1) \]

(6.11)

since \((nh^2)^{1/2} = o(1)\). Consider the random field

\[\Phi_n^{(6.12)}(u_1) = n^{-1/2} \{ \Psi_{3,1}(\theta_1^*, \theta_3^*, \theta_3^*, \theta_2^*, \theta_3^*) - \Psi_{3,1}(\theta_1^*, \theta_3^*, \theta_3^*, \theta_2^*, \theta_3^*) \} \]

(6.12)

on \{u_1 \in \mathbb{R}^p; |u_1| < 1\} for any sequence of positive numbers \(r_n \to 0\). Sobolev’s inequality gives

\[\sup_{u_1: |u_1| < 1} |\Phi_n^{(6.12)}(u_1)| = o_p(1) \]
with the help of orthogonality. In particular,
\[R_n^{(6.7)}(\hat{\theta}_1^0, \hat{\theta}_2^0) = n^{-1/2}\overline{\Psi}_{3,1}(\theta_1^*, \theta_3^*, \theta_1^*, \theta_2^*, \theta_3^*) + o_p(1). \]

(6.13)

This implies
\[R_n^{(6.7)}(\hat{\theta}_1^0, \hat{\theta}_2^0) = M_n^{(3)} + o_p(1). \]

Simpler is that
\[R_n^{(6.8)}(\hat{\theta}_1^0, \hat{\theta}_2^0) = O_p(n^{1/2}h). \] Similarly,
\[R_n^{(6.9)}(\hat{\theta}_1^0, \hat{\theta}_2^0) = n^{-1/2}\overline{h}^{1/2}\overline{\Psi}_{3,3}(\theta_1^*, \theta_3^*, \theta_1^*, \theta_2^*, \theta_3^*) + O_p(h^{1/2}) \]

Thus, we obtained the result.

In what follows, we quite often use the estimates in Lemma 6.1 without mentioning it explicitly.

Lemma 6.3. Suppose that [A1] with \((i_A, j_A, i_B, j_B, i_H, j_H) = (1, 1, 2, 1, 3, 2)\), [A2] and [A4] are satisfied. Then

\[\sup_{\theta_3 \in B_n} \left| n^{-1/2} h \overline{\partial}_3^{i_3} \overline{\Psi}_n^{(3)}(\theta_3) + \Gamma_{33} \right| \rightarrow^p 0 \]

for any sequence of balls \(B_n\) in \(\mathbb{R}^p\) shrinking to \(\theta_3^*\).

Proof. We have
\[n^{-1/2} h \overline{\partial}_3^{i_3} \overline{\Psi}_n^{(3)}(\theta_3) = n^{-1} \overline{\Psi}_{3,1}(\hat{\theta}_1^0, \hat{\theta}_2^0, \theta_3) + n^{-1/2} h \overline{\Psi}_{3,2}(\hat{\theta}_1^0, \hat{\theta}_2^0, \theta_3, \hat{\theta}_1^0, \hat{\theta}_2^0, \theta_3) + n^{-1} h \overline{\Psi}_{3,3}(\hat{\theta}_1^0, \theta_3) + n^{-1/2} h \overline{\Psi}_{3,4}(\hat{\theta}_1^0, \hat{\theta}_2^0, \theta_3, \hat{\theta}_1^0, \hat{\theta}_2^0, \theta_3) + n^{-1} h \overline{\Psi}_{3,5}(\theta_1^0, \theta_3, \theta_1^0, \theta_2^0, \theta_3). \]

For \(D_3(\hat{\theta}_1^0, \hat{\theta}_2^0, \theta_3)\) in the above expression, we use Lemma 5.5 (b) to replace \(\hat{\theta}_i^0\) by \(\theta_i^*\) for \(i = 1, 2\), and Lemma 5.6 to replace \(\theta_3 \in B_n\) by \(\theta_3^*\) with an error uniform in \(\theta_3 \in B_n\). Next we use Lemma 5.3 (b). Then

\[n^{-1} h \overline{\partial}_3^{i_3} \overline{\Psi}_n^{(3)}(\theta_3) = -n^{-1} \sum_{j=1}^n \overline{S}(Z_{t_j-1}, \theta_3)^{-1} \left[\begin{array}{c} 0 \\ 0 \\ \vdots \\ \overline{\partial}_3 H(Z_{t_j-1}, \theta_3) \end{array} \right] \left[\begin{array}{c} 0 \\ 0 \\ \vdots \\ \overline{\partial}_3 H(Z_{t_j-1}, \theta_3) \end{array} \right] \]

\[+ r_n^{(6.14)}(\theta_3) \]

where

\[\sup_{\theta_3 \in B_3} \left| r_n^{(6.14)}(\theta_3) \right| = o_p(1). \]

(6.14)

Now we obtain the result by using [A2] and estimating the functions \(\overline{\partial}_3 S\) and \(\overline{\partial}_3 H\) uniformly in \((\theta_1, \theta_3)\).

Now Theorem 3.3 follows from Lemmas 6.2 and 6.3.
7. Proof of Theorem 4.1

Let us prepare the following random fields.

\[
\Psi_2(\theta_1, \theta_2, \theta_3, \theta'_1, \theta'_2, \theta'_3) = \sum_{j=1}^{n} S(Z_{t_{j-1}}, \theta_1, \theta_3)^{-1} \left[D_j(\theta'_1, \theta'_2, \theta'_3) \otimes \left(\frac{\partial A(Z_{t_{j-1}}, \theta_2)}{2^{1-1} \partial_2 L_{H}(Z_{t_{j-1}}, \theta_1, \theta_2, \theta_3)} \right) \right],
\]

\[
\tilde{\Psi}_2(\theta_1, \theta_2, \theta_3, \theta'_1, \theta'_2, \theta'_3) = \sum_{j=1}^{n} S(Z_{t_{j-1}}, \theta_1, \theta_3)^{-1} \left[\tilde{D}_j(\theta'_1, \theta'_2, \theta'_3) \otimes \left(\frac{\partial A(Z_{t_{j-1}}, \theta_2)}{2^{1-1} \partial_2 L_{H}(Z_{t_{j-1}}, \theta_1, \theta_2, \theta_3)} \right) \right],
\]

\[
\Psi_3(\theta_1, \theta_2, \theta_3, \theta'_1, \theta'_2, \theta'_3) = \sum_{j=1}^{n} S(Z_{t_{j-1}}, \theta_1, \theta_3) \left[D_j(\theta'_1, \theta'_2, \theta'_3) \otimes \left(\frac{\partial A(Z_{t_{j-1}}, \theta_2)}{2^{1-1} \partial_2 L_{H}(Z_{t_{j-1}}, \theta_1, \theta_2, \theta_3)} \right) \right],
\]

\[
\tilde{\Psi}_3(\theta_1, \theta_2, \theta_3, \theta'_1, \theta'_2, \theta'_3) = \sum_{j=1}^{n} S(Z_{t_{j-1}}, \theta_1, \theta_3) \left[\tilde{D}_j(\theta'_1, \theta'_2, \theta'_3) \otimes \left(\frac{\partial A(Z_{t_{j-1}}, \theta_2)}{2^{1-1} \partial_2 L_{H}(Z_{t_{j-1}}, \theta_1, \theta_2, \theta_3)} \right) \right].
\]
Let
\[M_n^{(1)} = \frac{1}{2} n^{-1/2} \sum_{j=1}^{n} (S^{-1}(\partial_1 S) S^{-1})(Z_{t_j-1}, \theta^*_1, \theta^*_3) \]
\[\cdot [\tilde{D}_j(\theta^*_1, \theta^*_2, \theta^*_3)^{\otimes 2} - S(Z_{t_j-1}, \theta^*_1, \theta^*_3)]. \]

Let \(U \) be an open ball in \(\mathbb{R}^{p_2+p_3} \) centered at \(\gamma^* \) such that \(U \subset \Theta_2 \times \Theta_3 \). Let \(\chi_n^{(2,3)} = \chi_n^{(2,3)} \cap \{ \gamma^0 \in U \} \).

Lemma 7.1. Suppose that \([A1]\) with \((i_A, j_A, i_B, j_B, i_H, j_H) = (1, 2, 1, 3, 1), [A2] (i), (iii), (iv) and \([A4\]) are satisfied. Then
\[n^{-1/2} h^{-1/2} \partial_2 \chi_n^{(2,3)}(\gamma^0) = O_p(1) \]
as \(n \to \infty \).

Proof. By using Lemma 5.6 and Lemma 5.5 (b) together with the convergence rate of the initial estimators, we have
\[n^{-1/2} h^{-1/2} \partial_2 \chi_n^{(2,3)}(\gamma^0) = n^{-1/2} \Psi_2(\theta^0, \theta^1, \delta^0, \delta_0, \delta_2, \delta_3) \]
\[= n^{-1/2} \Psi_2(\theta^0, \theta^1, \delta^0, \delta_0, \delta_2, \delta_3) + O_p(1) \]
\[= n^{-1/2} \Psi_2(\theta^0, \theta^1, \delta^0, \delta_0, \delta_2, \delta_3) + O_p(1) \]
by Lemma 5.4 and Lemma 5.5 (a).

The open ball of radius \(r \) centered at \(\theta \) is denoted by \(U(\theta, r) \). Define the random field
\[\Phi_n^{(7,1)}(\theta) = n^{-1/2} \Psi_2(\theta_1, \theta_2, \theta_3, \theta^*_1, \theta^*_2, \theta^*_3) \quad (7.1) \]
on \(\Theta = (\theta_1, \theta_2, \theta_3) \subset U(\theta^*, r) \) for a small number \(r \) such that \(U(\theta^*, r) \subset \Theta \). With the Burkholder-Davis-Gundy inequality and in particular twice differentiability of \(A \) in \(\theta_2 \), we obtain
\[\sup_n \sum_{i=0,1} \sup_{\theta \in B(\theta^*, r)} \| \partial^2 \Phi_n^{(7,1)}(\theta) \|_p < \infty \]
for every \(p > 1 \). Therefore, Sobolev’s inequality ensures
\[\sup_n \left\| \sup_{\theta \in U(\theta^*, r)} |\Phi_n^{(7,1)}(\theta)| \right\|_p < \infty \]
Consequently,
\[\Phi_n^{(7,1)}(\theta^0, \theta^0, \delta_3^0) \mathbf{1}_{\{ (\delta_1^0, \delta_2^0, \delta_3^0) \in U(\theta^*, r) \}} = O_p(1). \]
This completes the proof. \(\square \)

Lemma 7.2. Suppose that \([A1]\) with \((i_A, j_A, i_B, j_B, i_H, j_H) = (1, 1, 2, 1, 3, 2), [A2] (i), (iii), (iv) and \([A4]\) are satisfied. Then
\[n^{-1/2} h^{1/2} \partial_3 \chi_n^{(2,3)}(\gamma^0) = O_p(1) \]
as \(n \to \infty \).
Proof. The proof is similar to that of Lemma 7.1. First,
\[n^{-1/2} h^{1/2} \partial_3 \Phi_{3}(\gamma) = n^{-1/2} \Psi_{3}(\theta_0, \theta_2, \theta_3, \theta_1, \theta_2, \theta_3) \]
\[= n^{-1/2} \Psi_{3}(\theta_0, \theta_2, \theta_3, \theta_1, \theta_2, \theta_3) + O_p(1). \]
Then we can show the lemma in the same fashion as Lemma 7.1 with a random field.

Let
\[B_n = U(\theta^*, n^{-1/2} \log(nh)) \times U(\theta^*_2, (nh)^{-1/2} \log(nh)) \times U(\theta^*_3, n^{-1/2} h^{1/2} \log(nh)). \]
\[B'_n = U(\theta^*_2, (nh)^{-1/2} \log(nh)) \times U(\theta^*_3, n^{-1/2} h^{1/2} \log(nh)) \]
and
\[B''_n = U(\theta^*_1, n^{-1/2} \log(nh)) \times U(\theta^*_3, n^{-1/2} h^{1/2} \log(nh)). \]

We will use the following random fields.
\[\Phi_{22,1}(\theta_1, \theta_3, \theta'_1, \theta'_2, \theta'_3) \]
\[= -\sum_{j=1}^{n} S(Z_{t_j-1}, \theta_1, \theta_3)^{-1} \left[\partial_2 A(Z_{t_j-1}, \theta'_2) \right. \]
\[\left. - 2^{-1} \partial_2 L_H(Z_{t_j-1}, \theta'_1, \theta'_2, \theta'_3) \right] \]
\[\otimes \left(\frac{\partial^2 A(Z_{t_j-1}, \theta'_3)}{2^{-1} H_A(Z_{t_j-1}, \theta'_3)} \left[\partial^2 A(Z_{t_j-1}, \theta'_3) \right] \right), \]
\[\Phi_{22,2}(\theta_1, \theta_3, \theta'_1, \theta'_2, \theta'_3, \theta''_2, \theta''_3) \]
\[= \sum_{j=1}^{n} S(Z_{t_j-1}, \theta_1, \theta_3)^{-1} \left[D_j(\theta'_1, \theta'_2, \theta'_3) \right. \]
\[\left. \otimes \left(\frac{\partial^2 A(Z_{t_j-1}, \theta''_2)}{2^{-1} H_A(Z_{t_j-1}, \theta''_3)} \left[\partial^2 A(Z_{t_j-1}, \theta''_3) \right] \right) \right), \]
\[\Phi_{23,1}(\theta_1, \theta_3, \theta'_1, \theta'_2, \theta'_3, \theta''_2, \theta''_3) \]
\[= -\sum_{j=1}^{n} S(Z_{t_j-1}, \theta_1, \theta_3)^{-1} \left[\partial_2 A(Z_{t_j-1}, \theta'_3) \right. \]
\[\left. \otimes \left(\frac{\partial^2 A(Z_{t_j-1}, \theta''_2)}{2^{-1} H_A(Z_{t_j-1}, \theta''_3)} \left[\partial^2 A(Z_{t_j-1}, \theta''_3) \right] \right) \right). \]
\[\Phi_{23,2}(\theta_1, \theta_3, \theta'_1, \theta'_2, \theta''_1, \theta''_2, \theta''_3) \]
\[= \sum_{j=1}^{n} S(Z_{t_{j-1}}, \theta_1, \theta_3) \left[D_j(\theta'_1, \theta'_2, \theta'_3) \right. \]
\[\left. \otimes \left(2^{-1} \partial_3 H_x(Z_{t_{j-1}}, \theta''_2) \left[\partial_2 A(Z_{t_{j-1}}, \theta''_2) \right] \right) \right], \]
\[\Phi_{33,1}(\theta_1, \theta_3, \theta'_1, \theta'_2, \theta''_3) \]
\[= -\sum_{j=1}^{n} S(Z_{t_{j-1}}, \theta_1, \theta_3) \left[D_j(\theta'_1, \theta'_2, \theta'_3) \right. \]
\[\left. \otimes \left(\partial_2^2 H(Z_{t_{j-1}}, \theta''_3) + 2^{-1} h \partial_2^2 L_H(Z_{t_{j-1}}, \theta''_2, \theta''_3) \right) \right]. \]

Lemma 7.3. Suppose that \([A1]\) with \((i_A, j_A, i_B, j_B, i_H, j_H) = (1, 3, 2, 1, 3, 1), [A2] and [A4]\) are satisfied. Then
\[\sup_{(\theta_2, \theta_3) \in B'_{n}} \left| n^{-1} h^{-1} \partial_2^2 \| h^{(2,3)}(\theta_2, \theta_3) + \Gamma_{22} \right| \rightarrow^p 0 \]
as \(n \rightarrow \infty.\)

Proof. We have
\[n^{-1} h^{-1} \partial_2^2 \| h^{(2,3)}(\theta_2, \theta_3) = n^{-1} \Phi_{22,1}(\tilde{\theta}'_1, \tilde{\theta}'_3, \tilde{\theta}_1, \theta_2, \theta_3) \]
\[+ n^{-1} h^{-1/2} \Phi_{22,2}(\tilde{\theta}'_1, \tilde{\theta}_3, \tilde{\theta}_2, \theta_1, \theta_2, \theta_3) \] (7.2)

Apply Lemma 5.6 and Lemma 5.5 (b) to obtain
\[\sup_{(\theta_1, \theta_3) \in B'_{n}} \sup_{(\theta'_1, \theta'_2, \theta''_3) \in B_{n}} \sup_{(\theta''_1, \theta''_2) \in B_{n}} \left| n^{-1} h^{-1/2} \Phi_{22,2}(\theta_1, \theta_3, \theta'_1, \theta'_2, \theta''_1, \theta''_2, \theta''_3) \right. \]
\[\left. - n^{-1} h^{-1/2} \Phi_{22,2}(\theta_1, \theta_3, \theta'_1, \theta''_3, \theta''_2, \theta''_2, \theta''_3) \right| \]
\[= o_p(1). \] (7.3)

Here we used the assumption that the functions are bounded by a polynomial in \(z\) uniformly in the parameters, and the count
\[n^{-1} h^{-1/2} \times n \times h^{-1/2} \times n^{-1/2} h^{1/2} \log(nh) = \frac{\log(nh)}{\sqrt{nh}}. \]
to estimate the error when replacing θ_3' by θ_3^*, as well a similar count when replacing (θ_1', θ_2') by (θ_1^*, θ_2^*).

We apply Lemmas 5.4 and 5.5 (a) to obtain

$$
\sup_{(\theta_1, \theta_3) \in B_n} \sup_{(\theta_1', \theta_3', \theta_2', \theta_3'' \in B_n)} |n^{-1}h^{-1/2} \Phi_{22,2} (\theta_1, \theta_3, \theta_1', \theta_2', \theta_3'') |
$$

$$
= O_p((nh)^{-1/2} \log(nh)) = o_p(1). \tag{7.4}
$$

Since $\tilde{D}_{j}(\theta_1', \theta_2', \theta_3^*)$ in $\tilde{\Phi}_{22,2}$ are martingale differences with respect to a suitable filtration, we can conclude by the random field argument with the Sobolev space of index $(1, p)$, $p > 1$, that

$$
\sup_{(\theta_1, \theta_3) \in B_n} \sup_{(\theta_1', \theta_3', \theta_2', \theta_3'' \in B_n)} |n^{-1}h^{-1/2} \tilde{\Phi}_{22,2} (\theta_1, \theta_3, \theta_1', \theta_2', \theta_3'') |
$$

$$
= O_p((nh)^{-1/2}) = o_p(1). \tag{7.5}
$$

On the other hand,

$$
\sup_{(\theta_2, \theta_3) \in B_n} \left| n^{-1} \Phi_{22,1} (\theta_1, \theta_3, \theta_1', \theta_2') - n^{-1} \Phi_{22,1} (\theta_1^*, \theta_2^*, \theta_3^*) \right| = o_p(1) \tag{7.6}
$$

From (7.2)-(7.6) and [A4] (i), (iii), we obtain

$$
\sup_{(\theta_2, \theta_3) \in B_n} \left| n^{-1}h^{-1} \partial_{22,1}^{(2,3)}(\theta_2, \theta_3) - n^{-1} \Phi_{22,1} (\theta_1^*, \theta_2^*, \theta_3^*) \right| = o_p(1). \tag{7.7}
$$

Now the assertion of the lemma is easy to obtain if one uses [A1], [A2] and Lemma 5.1. \[\square\]

Let

$$
i(z, \theta) = \left(\begin{array}{c}
\partial_2 A(z, \theta_2) O \\
2^{-1} \partial_2 L_H (z, \theta_1,\theta_2, \theta_3)\end{array} \right) S(z, \theta_1, \theta_3)^{-1} \\
\times \left(\begin{array}{c}
\partial_2 A(z, \theta_2) O \\
2^{-1} \partial_2 L_H (z, \theta_1,\theta_2, \theta_3)
\end{array} \right) \partial_3 H (z, \theta_3) \right).
$$

Then simple calculus with (3.3) and

$$
\partial_2 L_H (z, \theta_1, \theta_2, \theta_3) = H_s (z, \theta_3) [\partial_2 A(z, \theta_2)]
$$
Lemma 7.5. Suppose that
\[i(z, \theta) = \text{diag}[i(z, \theta)_{22}, i(z, \theta)_{33}], \quad \text{(7.9)} \]
where
\[i(z, \theta)_{22} = \partial_2 A(z, \theta) \ast C(z, \theta_1)^{-1} \partial_2 A(z, \theta_2) \]
and
\[i(z, \theta)_{33} = 12 \partial_3 H(z, \theta_3) \ast V(z, \theta_1, \theta_3)^{-1} \partial_3 H(z, \theta_3). \]

Lemma 7.4. Suppose that [A1] with \((i_A, j_A, i_B, j_B, i_H, j_H) = (1, 1, 2, 1, 3, 1), [A2] and [A4b] are satisfied. Then
\[\sup_{(\theta_2, \theta_3) \in B_n^p} |n^{-1} \partial_3 \partial_2 \ast \Phi_i^{(2,3)}(\theta_2, \theta_3)| \to 0 \]
as \(n \to \infty\).

Proof. From (7.8), we see
\[S(z, \theta_1, \theta_3)^{-1} \left[\begin{pmatrix} 0 \\ \partial_3 H(z, \theta_3) \end{pmatrix} : \begin{pmatrix} 2^{-1} \partial_2 A(z, \theta_2) \\ - \partial_1 A(z, \theta_2) \end{pmatrix} \right] = 0. \]
Then,
\[n^{-1} \partial_3 \partial_2 \ast \Phi_i^{(2,3)}(\theta_2, \theta_3) = n^{-1} h \Phi_{23,1}(\hat{\theta}_1, \theta_3, \hat{\theta}_2, \theta_2, \theta_3, \theta_3) + \mathcal{E}_n(\theta_2, \theta_3) \]
\[+ n^{-1} h^{1/2} \Phi_{23,2}(\hat{\theta}_1, \hat{\theta}_2, \theta_2, \theta_3, \theta_2, \theta_3) \]
where
\[\sup_{(\theta_2, \theta_3) \in B_n^p} |\mathcal{E}_n(\theta_2, \theta_3)| = O_p(n^{-1/2} h^{1/2}) \]
as \(n \to \infty\). Indeed, first replace \(\hat{S}(Z_{t_{i-1}}, \hat{\theta}_3)^{-1}\) by \(\hat{S}(Z_{t_{i-1}}, \theta_3)^{-1}\), and next use the above equality to remove the term \(\partial_3 H(Z_{t_{i-1}}, \theta_3)\). Now it is not difficult to show the desired result. \(\square\)

Lemma 7.5. Suppose that [A1] with \((i_A, j_A, i_B, j_B, i_H, j_H) = (1, 1, 2, 1, 3, 2), [A2] and [A4b] are satisfied. Then
\[\sup_{(\theta_2, \theta_3) \in B_n^p} |n^{-1} h \partial_3 \ast \Phi_i^{(2,3)}(\theta_2, \theta_3) + \Gamma_{33}| \to 0 \]
as \(n \to \infty\).

Proof. By definition,
\[n^{-1} h \partial_3 \ast \Phi_i^{(2,3)}(\theta_2, \theta_3) = n^{-1} \Phi_{33,1}(\hat{\theta}_1, \hat{\theta}_3, \hat{\theta}_2, \theta_2, \theta_3) \]
\[+ n^{-1} h^{1/2} \Phi_{33,2}(\hat{\theta}_1, \hat{\theta}_2, \theta_2, \theta_3, \hat{\theta}_1, \theta_2, \theta_3) \]
\(\Phi_{33,1}\) involves the first derivative \(\partial_3\), and \(\Phi_{33,2}\) does the second derivative \(\partial_3^2\).
First applying Lemma 5.6 and Lemma 5.5 (b), and next Lemma 5.3 (b), we
Suppose that Lemma 7.7.

Proof. By Lemmas 7.1 and 7.2, where and by Lemma 7.6,

\[\sup_{(\theta_2, \theta_3) \in B_n'} \left| n^{-1/2} \Phi_{33,2}(n^{-1/2} \Phi_{33,2}(\theta_2, \theta_3)) \right| + O_p(n^{-1/2}h^{1/2} \log(nh)) = O_p(h^{1/2}). \]

Moreover, it is easy to show

\[\sup_{(\theta_2, \theta_3) \in B_n'} \left| n^{-1/2} \Phi_{33,1}(\theta_2, \theta_3) + \Gamma_{33} \right| \rightarrow^p 0 \]

from [A1], [A2] and [A4] with the aid of Lemma 5.1.

Let

\[a_n = \left(\begin{array}{cc} n^{-1/2}h^{-1/2} & 0 \\ 0 & n^{-1/2}h^{1/2} \end{array} \right). \]

Lemma 7.6. Suppose that [A1] with \((i_A, j_A, i_B, j_B, i_H, j_H) = (1, 3, 2, 1, 3, 2), [A2] and [A4] are satisfied. Then

\[\sup_{(\theta_2, \theta_3) \in B_n'} \left| a_n O_{(\theta_2, \theta_3)}^{(2,3)}(\theta_2, \theta_3) + \Gamma^{(2,3)}(\theta^*) \right| \rightarrow^p 0 \]

where

\[\Gamma^{(2,3)}(\theta^*) = \left(\begin{array}{cc} \Gamma_{22} & O \\ O & \Gamma_{33} \end{array} \right). \]

Proof. The convergence (7.10) follows from Lemmas 7.3, 7.4 and 7.5.

Lemma 7.7. Suppose that [A1] with \((i_A, j_A, i_B, j_B, i_H, j_H) = (1, 3, 2, 1, 3, 2), [A2] and [A4] are satisfied. If \(\Gamma^{(2,3)}(\theta^*)\) is invertible, then \(P[\chi_{n}^{(2,3)}] \rightarrow 1\) as \(n \rightarrow \infty\).

Proof. By Lemmas 7.1 and 7.2,

\[a_n \partial_{(\theta_2, \theta_3)}^{(2,3)}(\theta^*) = O_p(1) \]

and by Lemma 7.6,

\[(a_n \partial_{(\theta_2, \theta_3)}^{(2,3)}(\theta^*))^{-1} = O_p(1). \]

Therefore,

\[(\partial_{(\theta_2, \theta_3)}^{(2,3)}(\theta^*))^{-1} \partial_{(\theta_2, \theta_3)}^{(2,3)}(\theta^*)^{-1} = O_p((nh)^{-1/2}) \]

as \(n \rightarrow \infty\). This means \(P[\chi_{n}^{(2,3)}] \rightarrow 1\).
Let
\[M_n^{(2)} = n^{-1/2} \sum_{j=1}^{n} S(Z_{t_{j-1}}, \theta_1^*, \theta_3^*)^{-1} \left[\left(\begin{array}{c} h^{-1/2} B(Z_{t_{j-1}}, \theta_1^*) \Delta_j w \\ h^{-3/2} \kappa(Z_{t_{j-1}}, \theta_1^*, \theta_3^*) \zeta_j \end{array} \right) \otimes \left(\begin{array}{c} \partial_2 A(Z_{t_{j-1}}, \theta_2^*) \\ 2^{-1} \partial_2 L_H(Z_{t_{j-1}}, \theta_1^*, \theta_2^*, \theta_3^*) \end{array} \right) \right] \]
\[= n^{-1/2} \sum_{j=1}^{n} C(Z_{t_{j-1}}, \theta_1^*)^{-1} \left[h^{-1/2} B(Z_{t_{j-1}}, \theta_1^*) \Delta_j w, \ \partial_2 A(Z_{t_{j-1}}, \theta_2^*) \right]. \]

(7.11)

Lemma 7.8. Suppose that [A1] with \((i_A, j_A, i_B, j_B, i_H, j_H) = (1, 1, 2, 1, 3, 1)\), [A2] and [A4] are satisfied. Then
\[n^{-1/2} h^{-1/2} \partial_2 \hat{p}_{n}^{(2, 3)}(\theta_2^*, \theta_3^*) - M_n^{(2)} \to^p 0 \]
as \(n \to \infty\).

Proof. By using Lemma 5.5 (b) together with the convergence rate of the estimators \(\hat{\theta}_1^0\) and \(\hat{\theta}_3^0\), and next by Lemma 5.5 (a) and Lemma 5.4, we have
\[n^{-1/2} h^{-1/2} \partial_2 \hat{p}_{n}^{(2, 3)}(\theta_2^*, \theta_3^*) \]
\[= n^{-1/2} \sum_{j=1}^{n} \hat{S}(Z_{t_{j-1}}, \hat{\theta}_3^0)^{-1} \left[\mathcal{D}_j(\hat{\theta}_1^0, \theta_2^*, \theta_3^*) \right. \]
\[\otimes \left(\begin{array}{c} \partial_2 A(Z_{t_{j-1}}, \theta_2^*) \\ 2^{-1} \partial_2 L_H(Z_{t_{j-1}}, \theta_1^0, \theta_2^*, \theta_3^*) \end{array} \right) \]
\[= n^{-1/2} \sum_{j=1}^{n} \hat{S}(Z_{t_{j-1}}, \hat{\theta}_3^0)^{-1} \left[\mathcal{D}_j(\theta_1^*, \theta_2^*, \theta_3^*) \right. \]
\[\otimes \left(\begin{array}{c} \partial_2 A(Z_{t_{j-1}}, \theta_2^*) \\ 2^{-1} \partial_2 L_H(Z_{t_{j-1}}, \theta_1^0, \theta_2^*, \theta_3^*) \end{array} \right) \]
\[+ O_p(h^{1/2}) \]
\[= n^{-1/2} \sum_{j=1}^{n} \hat{S}(Z_{t_{j-1}}, \theta_3^*)^{-1} \left[\hat{D}_j(\theta_1^*, \theta_2^*, \theta_3^*) \right. \]
\[\otimes \left(\begin{array}{c} \partial_2 A(Z_{t_{j-1}}, \theta_2^*) \\ 2^{-1} \partial_2 L_H(Z_{t_{j-1}}, \theta_1^0, \theta_2^*, \theta_3^*) \end{array} \right) \]
\[+ O_p(\sqrt{nh}) + O_p(h^{1/2}). \]

(7.12)

Here we used the derivative \(\partial_1 H\).
We consider the random field
\[\Phi_n^{(7.13)}(u_1) = n^{-1/2} \bar{\Phi}_2(\theta_1(u_1), \theta_2^*, \theta_3^*, \theta_1^*, \theta_2^*, \theta_3^*) \]
(7.13)
on \{ u_1 \in \mathbb{R}^p_1; |u_1| < 1 \}, where \(\theta_1(u_1) = \theta_1^* + n^{-1/2} (\log n) u_1 \). Then \(L^p \)-estimate of
\[\phi_i^p \{ \Phi_n^{(7.13)}(u_1) - \Phi_n^{(7.13)}(0) \} \quad (i = 0, 1) \]
yields
\[\sup_{u_1 \in U(0,1)} |\Phi_n^{(7.13)}(u_1) - \Phi_n^{(7.13)}(0)| \to^p 0, \]
in particular,
\[\Phi_n^{(7.13)}(u_1^1) - \Phi_n^{(7.13)}(0) \to^p 0 \]
where \(u_1^1 = n^{1/2} (\log n)^{-1} (\hat{\theta}_1 - \theta_1^*) \). Obviously, \(M_n^{(2)} - \Phi_n^{(7.13)}(0) \to^p 0 \). Since the first term on the right-hand side of (7.12) is nothing but \(\Phi_n^{(7.13)}(u_1^1) \) on an event the probability of which goes to 1, we have already obtained the result.

Lemma 7.9. Suppose that \([A1]\) with \((i_A, j_A, i_B, j_B, i_H, j_H) = (1, 1, 2, 1, 3, 1), [A2] and [A4] are satisfied. Then
\[n^{-1/2} h^{1/2} \partial_3 \hat{\Phi}_3^{(2,3)}(\theta_2^*, \theta_3^*) - M_n^{(3)} \to^p 0 \]
as \(n \to \infty \).

Proof. We have
\[
n^{-1/2} h^{1/2} \partial_3 \hat{\Phi}_3^{(2,3)}(\theta_2^*, \theta_3^*) = n^{-1/2} \sum_{j=1}^n S(Z_{t_{j-1}}, \hat{\theta}_1^0, \hat{\theta}_3^0) [D_j(\hat{\theta}_1^0, \theta_2^*, \theta_3^*)] \otimes \left(\partial_3 H(Z_{t_{j-1}}, \theta_3^*) + 2^{-1} h \partial_3 L_H(Z_{t_{j-1}}, \hat{\theta}_1^0, \theta_2^*, \theta_3^*) \right).
\]
Then this lemma can be proved in the same way as Lemma 7.8.

Let
\[M_n^{(2,3)} = \begin{pmatrix} M_n^{(2)} \\ M_n^{(3)} \end{pmatrix}. \]
Combining Lemmas 7.8 and 7.9, with the identity in the proof of Lemma 7.4, we obtain the following lemma.

Lemma 7.10. Suppose that \([A1]\) with \((i_A, j_A, i_B, j_B, i_H, j_H) = (1, 1, 2, 1, 3, 1), [A2] and [A4] \) are satisfied. Then
\[a_n \partial(\theta_2, \theta_3) \hat{\Phi}_3^{(2,3)}(\theta_2^*, \theta_3^*) - M_n^{(2,3)} \to^p 0 \]
and \(M_n^{(2,3)} \to^d N(0, \Gamma^{(2,3)}(\theta^*)) \) as \(n \to \infty \). In particular,
\[a_n \partial(\theta_2, \theta_3) \hat{\Phi}_3^{(2,3)}(\theta_2^*, \theta_3^*) \to^d N(0, \Gamma^{(2,3)}(\theta^*)) \]
as \(n \to \infty \).
Theorem 7.11. Suppose that $[A1]$ with $(i_A, j_A, i_B, j_B, i_H, j_H) = (1, 3, 2, 1, 3, 2),$ $[A2]$ and $[A4]$ are satisfied. If $\Gamma^{(2,3)}(\theta^*)$ is invertible, then

$$a_n^{-1}(\hat{\gamma} - \gamma^*) - (\Gamma^{(2,3)}(\theta^*))^{-1}M_n^{(2,3)} \to P 0$$

(7.14)
as $n \to \infty$. In particular,

$$a_n^{-1}(\hat{\gamma} - \gamma^*) \to d N(0, (\Gamma^{(2,3)}(\theta^*))^{-1})$$

(7.15)
as $n \to \infty$.

Proof. Let

$$\mathcal{X}_{n}^{(2,3)} = \mathcal{X}_{n}^{(2,3)} \cap \{(\hat{\theta}_1, \hat{\gamma}) \in B_n \}$$

$$\cap \{ \sup_{\gamma \in \mathcal{B}_n} |a_n \partial_{(\hat{\theta}_2, \hat{\theta}_3)}^{(2,3)}(\gamma) a_n + \Gamma^{(2,3)}(\theta^*)| < c \}.$$

Here c is a positive constant and we will make it sufficiently small. Then

$$P[\mathcal{X}_{n}^{(2,3)}] \to 1$$

thanks to Lemmas 7.7 and 7.6. On the event $\mathcal{X}_{n}^{(2,3)}$, we apply Taylor’s formula to obtain

$$a_n^{-1}(\hat{\gamma} - \gamma^*)$$

$$= \left[a_n \partial_{(\hat{\theta}_2, \hat{\theta}_3)}^{2(2,3)}(\hat{\gamma}) a_n \right]^{-1} \left\{ - a_n \partial_{(\hat{\theta}_2, \hat{\theta}_3)}^{(2,3)}(\hat{\gamma}) + a_n \int_0^1 \left[\partial_{(\hat{\theta}_2, \hat{\theta}_3)}^{2(2,3)}(\hat{\gamma}) - \partial_{(\hat{\theta}_2, \hat{\theta}_3)}^{(2,3)}(\hat{\gamma}(u)) \right] du a_n a_n^{-1}(\hat{\gamma} - \gamma^*) \right\}$$

where $\hat{\gamma}(u) = \gamma^* + u(\hat{\gamma} - \gamma^*)$. Then Lemmas 7.6 and 7.10 give (7.14). Then the martingale central limit theorem gives (7.15).

The following notation for random fields will be used.

$$\Psi_{1,1}(\theta_1, \theta_2, \theta_3, \theta'_1, \theta'_2, \theta'_3)$$

$$= \sum_{j=1}^{n} S(Z_{i_{j-1}}, \theta_1, \theta_3)^{-1} \left[D_j(\theta'_1, \theta'_2, \theta'_3) \left[2^{-1} \partial_1 L_H(Z_{i_{j-1}}, \theta_1, \theta_2, \theta_3) \right] \right]$$

$$= \sum_{j=1}^{n} S(Z_{i_{j-1}}, \theta_1, \theta_3)^{-1} \left[D_j(\theta'_1, \theta'_2, \theta'_3) \otimes \left(4^{-1} H_{\text{ex}}(z, \theta_3)[\partial_1 C(Z_{i_{j-1}}, \theta_1)] \right) \right],$$

$$\Psi_{1,2}(\theta_1, \theta_3, \theta'_1, \theta'_2, \theta'_3)$$

$$= \frac{1}{2} \sum_{j=1}^{n} (S^{-1}(\partial_1 S)S^{-1})(Z_{i_{j-1}}, \theta_1, \theta_3) \left[D_j(\theta'_1, \theta'_2, \theta'_3)^{\otimes 2} - S(Z_{i_{j-1}}, \theta_1, \theta_3) \right],$$
We sometimes keep parameters in notation even when some of them do not appear in a specific expression of the formula, if such an expression is not necessary for later use; e.g., \(\Psi_{1,1} \) does not depend on \(\theta_2 \) in fact.

Lemma 7.12. Suppose that [A1] with \((i_A, j_A, i_B, j_B, i_H, j_H) = (1, 1, 2, 3, 3, 1) \), [A2] and [A4\(^2\)] are satisfied. Then, for any sequence of positive numbers \(r_n \) tending to 0,

\[
\sup_{\theta_1 \in U(\theta_1^*, r_n)} |n^{-1} \partial_1^2 \Phi_n^{(1)}(\theta_1) + \Gamma_{11}| \to^p 0 \quad (7.16)
\]

as \(n \to \infty \).

Proof. By definition,

\[
n^{-1} \partial_1^2 \Phi_n^{(1)}(\theta_1) = -n^{-1} h \Psi_{11,1}(\theta_1, \hat{\theta}_3^0, \theta_1, \hat{\theta}_2^0, \hat{\theta}_3^0) + n^{-1} h^{1/2} \Psi_{11,2}(\theta_1, \hat{\theta}_3^0, \theta_1, \theta_2^0, \hat{\theta}_4^0, \theta_1, \theta_2^0, \hat{\theta}_3^0) + \frac{1}{2} n^{-1} \Psi_{11,3}(\theta_1, \hat{\theta}_3^0, \theta_1, \hat{\theta}_2^0, \hat{\theta}_3^0)
\]

\[
+ \frac{1}{2} n^{-1} \Psi_{11,4}(\theta_1, \hat{\theta}_3^0) \quad \text{(this term will remain)}
\]

\[
n^{-1} h^{1/2} \Psi_{11,5}(\theta_1, \hat{\theta}_3^0, \theta_1, \hat{\theta}_2^0, \hat{\theta}_4^0, \theta_1, \theta_2^0, \hat{\theta}_3^0)
\]
Lemma 7.13. Suppose that \(\theta \) for \(1 \leq n \leq A. \) Gloter and N. Yoshida

regularity indices (We remark that the used lemmas and appearing functions here require the

Proof. We have the expression

\[
\sup_{\theta_1 \in U(\theta_1^*, r_n)} \left| n^{-1} \partial_{\theta_1}^2 \hat{h}_n^{(1)}(\theta_1) + \Gamma_{11} \right|
\leq O_p(h)
\]

\[
+ n^{-1} h^{1/2} \sup_{\theta_1 \in U(\theta_1^*, r_n)} \left| \Psi_{11.2}(\theta_1, \hat{\theta}_0^0, \hat{\theta}_1^0, \hat{\theta}_2^0, \hat{\theta}_3^0, \theta_1, \hat{\theta}_0^0, \hat{\theta}_3^0) \right|
\]

\[
+ O_p(n^{-1/2} + h^{1/2}) \quad \text{(Lemmas 5.6 and 5.5(b))}
\]

\[
+ n^{-1} \sup_{\theta_1 \in U(\theta_1^*, r_n)} \left| \Psi_{11.3}(\theta_1, \hat{\theta}_0^0, \hat{\theta}_1^0, \hat{\theta}_2^0, \theta_3^0, \theta_1, \hat{\theta}_0^0, \hat{\theta}_3^0) \right|
\]

\[
+ O_p(h^{1/2} + n^{-1/2}) \quad \text{(Lemmas 5.6 and 5.5(b))}
\]

\[
= O_p(h)
\]

\[
+ O_p(1) \quad \text{(Lemma 5.3(b))}
\]

\[
+ O_p(h^{1/2}) + O_p(n^{-1/2}) + O_p(r_n)
\]

\[
\text{random field argument with orthogonality}
\]

\[
+ o_p(1) \quad \text{(Lemma 5.1(a))}
\]

\[
+ O_p(h^{1/2}) \quad \text{(Lemma 5.5(b))}
\]

\[
= o_p(1)
\]

We remark that the used lemmas and appearing functions here require the

regularity indices \((i_A, j_A, i_B, j_B, i_H, j_H)\) for \([A1]\) as follows: \((1, 0, 1, 0, 3, 0)\) for

Lemma 5.3(b); \((1, 1, 2, 1, 2, 0)\) for Lemma 5.5(b); \((0, 0, 0, 2, 1)\) for Lemma 5.6; \(j_B = 3, j_H = 1\) for random field argument for \(\Psi_{11.3}.\)

Lemma 7.13. Suppose that \([A1]\) with \((i_A, j_A, i_B, j_B, i_H, j_H) = (1, 1, 2, 1, 2, 1),\)

\([A2]\) and \([A4]\) are satisfied. Then

\[
n^{-1/2} \partial_{\theta_1} \hat{h}_n^{(1)}(\theta_1) = O_p(1)
\]

(7.17)

as \(n \to \infty.\)

Proof. We have the expression

\[
n^{-1/2} \partial_{\theta_1} \hat{h}_n^{(1)}(\theta_1) = n^{-1/2} h^{1/2} \Psi_{11.1}(\hat{\theta}_0^0, \hat{\theta}_0^0, \hat{\theta}_1^0, \hat{\theta}_1^0, \hat{\theta}_3^0, \hat{\theta}_3^0) + n^{-1/2} \Psi_{11.2}(\hat{\theta}_1^0, \hat{\theta}_0^0, \hat{\theta}_1^0, \hat{\theta}_2^0, \hat{\theta}_3^0).\]

We use \([A4]\) together with Lemmas 5.6 and 5.5 (b) to show

\[
n^{-1/2} h^{1/2} \Psi_{11.1}(\hat{\theta}_0^0, \hat{\theta}_0^0, \hat{\theta}_1^0, \hat{\theta}_1^0, \hat{\theta}_3^0, \hat{\theta}_3^0) + n^{-1/2} \Psi_{11.2}(\hat{\theta}_1^0, \hat{\theta}_0^0, \hat{\theta}_1^0, \hat{\theta}_2^0, \hat{\theta}_3^0).
\]
Lemma 7.14. Suppose that

\[\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \left(S^{-1}(t_{j-1} S^{-1}) (Z_{t_{j-1}}, \theta_1^*, \theta_3^*) + r_n^{(3)} u_3 \right) = 0 \]

and

\[n^{-1/2} \Psi_{1,1}(\tilde{\theta}_1^0, \tilde{\theta}_2^0, \tilde{\theta}_3^0) = n^{-1/2} \Psi_{1,2}(\tilde{\theta}_1^0, \tilde{\theta}_3^0) + O_p(1) \]

\[\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \left(S^{-1}(t_{j-1} S^{-1}) (Z_{t_{j-1}}, \theta_1^*, \theta_3^*) + r_n^{(3)} u_3 \right) = 0 \]

\[\frac{1}{n} \sum_{j=1}^{n} \left(\tilde{\theta}_1^j - \theta_1 \right) = 0 \]

and

\[n^{-1/2} \Psi_{1,2}(\tilde{\theta}_1^0, \tilde{\theta}_3^0) = n^{-1/2} \Psi_{1,2}(\tilde{\theta}_1^0, \tilde{\theta}_3^0) + O_p(1) \]

\[\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \left(S^{-1}(t_{j-1} S^{-1}) (Z_{t_{j-1}}, \theta_1^*, \theta_3^*) + r_n^{(3)} u_3 \right) = 0 \]

as \(n \to \infty \). Here random field argument was used.

Lemma 7.14. Suppose that \([A1]\) with \((i_A, j_A, i_B, j_B, i_H, j_H) = (1, 1, 2, 1, 3, 1)\), \([A2]\) and \([A4^2]\) are satisfied. Then

\[n^{-1/2} \partial_i \hat{I}_n^{(1)}(\theta_1^*) - M_n^{(1)} \to_p 0 \]

as \(n \to \infty \). In particular,

\[n^{-1/2} \partial_i \hat{I}_n^{(1)}(\theta_1^*) \to_d N(0, \Gamma_{11}) \]

as \(n \to \infty \).

Proof. We have

\[E_j(\theta_2, \theta_3) := D_j(\theta_1^*, \theta_2, \theta_3) - D_j(\theta_1^*, \theta_3^*) \]

\[= \left(\begin{array}{c}
\frac{1}{h^{1/2}} (A(Z_{t_{j-1}}, \theta_2^*) - A(Z_{t_{j-1}}, \theta_2)) \\
\frac{1}{h^{1/2}} (H(Z_{t_{j-1}}, \theta_3^*) - H(Z_{t_{j-1}}, \theta_3)) \\
+ 2^{-1} h^{1/2} (L_H(Z_{t_{j-1}}, \theta_1^*, \theta_2^*, \theta_3^*) - L_H(Z_{t_{j-1}}, \theta_1^*, \theta_2, \theta_3))
\end{array} \right) .
\]

Define the random field \(\Xi_n(u_2, u_3) \) on \((u_2, u_3) \in U(0, 1)^2 \) by

\[\Xi_n(u_2, u_3) = n^{-1/2} \sum_{j=1}^{n} \left(S^{-1}(t_{j-1} S^{-1}) (Z_{t_{j-1}}, \theta_1^*, \theta_3^*) + r_n^{(3)} u_3 \right) \]

where \(r_n^{(2)} = (nh)^{-1/2} \log(nh) \) and \(r_n^{(3)} = n^{-1/2} h^{1/2} \log(nh) \). Then the Burkholder-Davis-Gundy inequality gives

\[\lim_{n \to \infty} \sup_{(u_2, u_3) \in U(0, 1)^2} \sum_{i=0,1} \| \partial_i^{(u_2, u_3)} \Xi_n(u_2, u_3) \|_p = 0, \]

which implies

\[\sup_{(u_2, u_3) \in U(0, 1)^2} | \Xi_n(u_2, u_3) | \to_p 0, \]
and hence under \([A4^*]\),
\[
n^{-1/2} \sum_{j=1}^{n} (S^{-1}(\partial_1 S)S^{-1})(Z_{t_{j-1}}, \theta_1^*, \theta_0^0) \left[D_j(\theta_1^*, \theta_2^*, \theta_3^*) \otimes E_j(\theta_2^0, \theta_3^0) \right] \rightarrow^p 0
\]
(7.20)
as \(n \rightarrow \infty\). It is easier to see
\[
n^{-1/2} \sum_{j=1}^{n} (S^{-1}(\partial_1 S)S^{-1})(Z_{t_{j-1}}, \theta_1^*, \theta_0^0) [E_j(\theta_2^0, \theta_3^0) \otimes 2] \rightarrow^p 0
\]
(7.21)
as \(n \rightarrow \infty\). From (7.20) and (7.21),
\[
n^{-1/2} \Psi_{1,2}(\theta_1^*, \theta_2^0, \theta_3^0, \theta_1^*, \theta_2^0, \theta_3^0) = \Psi_{1,2}(\theta_1^*, \theta_2^0, \theta_3^0, \theta_1^*, \theta_2^0, \theta_3^0) + o_p(1)
\]
(7.22)
as \(n \rightarrow \infty\), where the last equality is by \([A4^*]\).

On the other hand, by \([A4^*]\) and Lemmas 5.6 and 5.5 (b), we obtain
\[
n^{-1/2} h^{1/2} \Psi_{1,1}(\theta_1^*, \theta_2^0, \theta_3^0, \theta_1^*, \theta_2^0, \theta_3^0) = n^{-1/2} h^{1/2} \Psi_{1,1}(\theta_1^*, \theta_2^0, \theta_3^0, \theta_1^*, \theta_2^0, \theta_3^0) + o_p(1).
\]
(7.23)
By random field argument applied to the first term on the right-hand side of (7.23),
\[
n^{-1/2} h^{1/2} \Psi_{1,1}(\theta_1^*, \theta_2^0, \theta_3^0, \theta_1^*, \theta_2^0, \theta_3^0) = o_p(1).
\]
(7.24)
Consequently, from (7.22) and (7.24), we obtain the convergence (7.18) since
\[
n^{-1/2} \partial_1 \mathcal{H}_n^{(1)}(\theta_1^*) = n^{-1/2} h^{1/2} \Psi_{1,1}(\theta_1^*, \theta_2^0, \theta_3^0, \theta_1^*, \theta_2^0, \theta_3^0) + n^{-1/2} \Psi_{1,2}(\theta_1^*, \theta_2^0, \theta_3^0, \theta_1^*, \theta_2^0, \theta_3^0) = M_n^{(1)} + o_p(1)
\]
by using Lemmas 5.4 and 5.5 (a). Convergence (7.19) follows from this fact and Lemma 5.1 with \([A2]\),

Proof of Theorem 4.1. Let
\[
\mathcal{X}_n^{***} = \mathcal{X}_n^{(1)} \cap \mathcal{X}_n^{**(2,3)} \cap \left\{ \sup_{\theta_1 \in B_n'} \left| n^{-1} \partial_1 \mathcal{H}_n^{(1)}(\theta_1) + \Gamma_{11} \right| < c_1 \right\}
\]
where \(B_n' = U(\theta_1^*, n^{-1/2} \log n)\), and \(c_1\) is a sufficiently small number such that \(|\Lambda + \Gamma_{11}| < c_1\) implies \(\det \Lambda \neq 0\) for any \(p_1 \times p_1\) matrix \(\Lambda\). We obtain \(P[\mathcal{X}_n^{***}] \rightarrow 1\) from Lemmas 7.13 and 7.12 as well as the proof of Lemma 7.11.
For large \(n \), on the event \(\mathcal{X}_n^{***} \), we apply Taylor’s formula to obtain
\[
n^{1/2}(\hat{\theta}_1 - \theta^*_1)
= \left[n^{-1} \partial^2_\theta \hat{h}_n^{(1)}(\hat{\theta}) \right]^{-1} - n^{-1/2} \partial_{\theta_1} \hat{H}_n^{(1)}(\theta^*_1)
+ n^{-1} \int_0^1 \left[\partial^2_{\theta_1} \hat{h}_n^{(1)}(\hat{\theta}_1) - \partial^2_{\theta_1} \hat{H}_n^{(1)}(\hat{\theta}_1(u)) \right] du \ n^{1/2}(\hat{\theta}_1^0 - \theta^*_1)
\]
where \(\hat{\theta}_1(u) = \theta^*_1 + u(\theta^*_0 - \theta^*_1) \). Then we obtain
\[
n^{1/2}(\hat{\theta}_1 - \theta^*_1) - \Gamma^{-1}_{11} M^{(1)}_n \to^p 0
\] (7.25)
as \(n \to \infty \) from Lemmas 7.12 and 7.14. Therefore the convergence of \(b_n^{-1}(\hat{\theta} - \theta^*) \) follows from the martingale central limit theorem and the relations (7.14) and (7.25).

\[\square\]

8. Discussion on the estimation of \(\theta_3 \) when only information of \(\Delta_j Y \) is available

In Sections 3 and 4, the estimators for \(\theta_3 \) used the information of \(\Delta_j X \) as well as \(\Delta_j Y \), given covariates \((Z_k)_{j=n, \ldots, n}\). Then a natural question is what occurs when only the information of \(\Delta_j Y \), i.e., the martingale part of \(\Delta_j Y \), is available?

It is possible to construct a QMLE \(\hat{\theta}_3 \) for \(\theta_3 \) based on the quasi-log likelihood function
\[
\mathcal{H}_n^{(3)}(\theta_3)
= -\frac{1}{2} \sum_{j=1}^n \left\{ 3V(Z_{t_{j-1}}, \hat{\theta}_1^0, \theta_3)^{-1} \left[\left(h^{-3/2}(\Delta_j Y - hG_n(Z_{t_{j-1}}, \hat{\theta}_1^0, \hat{\theta}_2^0, \theta_3)) \right)^{\otimes 2} \right] + \log \det(3^{-1}V(Z_{t_{j-1}}, \hat{\theta}_1^0, \theta_3)) \right\}
\]
with some initial estimators \(\hat{\theta}_i^0 \) for \(\theta_i \), \(i = 1, 2, 3 \).

Let
\[
\gamma_n^{(3)}(\theta_3) = n^{-1} h \left\{ \mathcal{H}_n^{(3)}(\theta_3) - \mathcal{H}_n^{(3)}(\theta^*_3) \right\}
\]
and let
\[
\gamma^{(3)}(\theta_3) = -\frac{3}{2} \int V(z, \theta^*_1, \theta_3)^{-1} \left[\left(H(z, \theta_3) - H(z, \theta^*_3) \right)^{\otimes 2} \right] \nu(dz).
\]

Consistency of \(\hat{\theta}_3 \) is obtained if the initial estimators are consistent.

Proposition 8.1. Suppose that [A1] with \((i_A, j_A, i_B, j_B, i_H, j_H) = (1, 1, 2, 1, 3, 1)\) and [A2] (i), (ii), (iii) are satisfied. Then
\[
\sup_{\theta_3 \in \Theta_3} \left| \gamma_n^{(3)}(\theta_3) - \gamma^{(3)}(\theta_3) \right| \to^p 0
\] (8.1)
as \(n \to \infty \), if \(\hat{\theta}_1^0 \to^p \theta^*_1 \) and \(\hat{\theta}_2^0 \to^p \theta^*_2 \). Moreover, \(\hat{\theta}_3 \to^p \theta^*_3 \) if [A3] (iii) is additionally satisfied.
Proof. We have a decomposition of \(Y^{(3)}_n(\theta_3) \):

\[
Y^{(3)}_n(\theta_3) = \frac{1}{2n} \sum_{j=1}^n 3V(Z_{t_{j-1}}, \hat{\theta}_1^0, \theta_3) - \frac{1}{2n} \sum_{j=1}^n 3V(Z_{t_{j-1}}, \hat{\theta}_1^0, \hat{\theta}_2^0, \theta_3) + R^{(8.3)}_n(\theta_3) \tag{8.2}
\]

where

\[
R^{(8.3)}_n(\theta_3) = \frac{h}{n} \sum_{j=1}^n 3V(Z_{t_{j-1}}, \hat{\theta}_1^0, \hat{\theta}_2^0, \theta_3) - \frac{h}{n} \sum_{j=1}^n 3V(Z_{t_{j-1}}, \hat{\theta}_1^0, \hat{\theta}_2^0, \hat{\theta}_3^* - \hat{\theta}_3^*) \tag{8.3}
\]

Applying Lemma 5.5 (a), we see the first sum on the right-hand side of (8.3) is \(O_p(h^{1/2}) \) and the second sum is \(O_p(h) \) as \(n \to \infty \). These estimates are uniform in \(\theta_3 \in \Theta_3 \). In particular, \(\sup_{\theta_3 \in \Theta_3} |R^{(8.3)}_n(\theta_3)| = o_p(1) \). For the first sum on the right-hand side of (8.2), one can remove the terms involving \(L_H(Z_{t_{j-1}}, \hat{\theta}_1^0, \hat{\theta}_2^0, \theta_3) \) uniformly in \(\theta_3 \). Then, similarly to the proof of Theorem 3.2, the convergence (8.1) follows from (8.2), (5.3), [42] (ii) and consistency of the initial estimators. Remark that in the last part, we used tightness of \(\{Y^{(3)}_n\}_{n \in \mathbb{N}} \) derived by the estimate of \(\partial_3 H \).

To go further, some consideration is needed for the initial estimator \(\hat{\theta}_2^0 \). In our question, mathematically, the “martingale part” of \(\hat{\theta}_2^0 \) must be orthogonal to that of \(\Delta Y \). Otherwise, the information of \(\Delta_j Y \) is mixed and it is out of the question. To avoid self-contradiction, we can not consider the initial estimator \(\hat{\theta}_2^0 \) that uses the first chaos of \(\{w_t\}_{t \in [0, nh]} \), that gives additional information to \(\Delta_j Y \). In order to understand this, it is necessary to go back to the proof of Theorem 3.6 though omitted in this article. In reality, the orthogonality means that the estimator \(\hat{\theta}_2^0 \) is a function of a prior information, e.g., an estimator based on the data sampled at time \(jh \) (\(j = 0, -1, -2, ..., -m_n \)) when the process \(Z \) is extended as a stationary process on \(\mathbb{R} \). The ideal case is we know the value \(\theta_2^* \) a priori, that is, \(\hat{\theta}_2^0 = \theta_2^* \). Even when \(\theta_2^* \) is unknown, if \(\hat{\theta}_2^0 \) is naturally constructed from the data \(Z_{t_j} \) (\(j = 0, -1, -2, ..., -m_n \)) for example, the case where \(m_n/n \to \infty \) is the same in the first order inference, while they are distinguishable in the
higher-order inference (Sakamoto and Yoshida [41]). Then, under a certain set of conditions, we have
\[n^{1/2}h^{-1/2}(\hat{\theta}_3 - \theta_3^*) \rightarrow_d N(0, 4\Gamma_{33}^{-1}). \]
(8.4)

Therefore \(\hat{\theta}_3^0 \) is superior to \(\hat{\theta}_3 \). Remark that \(\hat{\theta}_3^0 \) was given an initial estimator of \(\theta_2 \) with error rate \(O_p((nh)^{-1/2}) \) but not given the above \(\hat{\theta}_2^0 \) having the faster rate \(O_p((m,n,h)^{-1/2}) \). In what follows, we will consider slightly more general \(\hat{\theta}_2^0 \) and show a convergence including (8.4) as a special case.

\[[A4^\ast] \]
(i) \(\hat{\theta}_1^0 - \theta_1^* = O_p(n^{-1/2}) \) as \(n \rightarrow \infty \).

(ii) \(\hat{\theta}_2 \) is \(\mathcal{F}_0 \)-measurable and
\[\sqrt{n}h(\hat{\theta}_2 - \theta_2^*) \rightarrow_d \mathcal{L} \]
as \(n \rightarrow \infty \) for some random variable \(\mathcal{L} \).

Lemma 8.2. Suppose that [A1] with \((i_A, j_A, i_B, j_B, i_H, j_H) = (1, 2, 2, 1, 3, 1), [A2] and [A4^\ast] are satisfied. Then
\[n^{-1/2}h^{1/2}\partial_3 \mathcal{H}_n^{(3)}(\theta_3^*) \rightarrow_d \mathcal{N} + \mathcal{A} \]
(8.5)
as \(n \rightarrow \infty \), where \(\mathcal{N} \sim N(0, 4^{-1}\Gamma_{33}) \) independent of \(\mathcal{L} \), and
\[\mathcal{A} = \frac{3}{2} \int V(z, \theta_1^*, \theta_2^*)^{-1}[H_x(z, \theta_3^*)\partial_2 A(z, \theta_2^*)]_{\nu(dz)}. \]

Proof. We have the following decomposition:
\[n^{-1/2}h^{1/2}\partial_3 \mathcal{H}_n^{(3)}(\theta_3^*) = R_n^{(8,7)}(\hat{\theta}_1^0, \hat{\theta}_1^0) + R_n^{(8,8)}(\hat{\theta}_1^0, \hat{\theta}_2^0) + R_n^{(8,9)}(\hat{\theta}_1^0, \hat{\theta}_2^0, \hat{\theta}_2^0) + R_n^{(8,10)}(\hat{\theta}_1^0, \hat{\theta}_2^0, \hat{\theta}_2^0) \]
(8.6)
where
\[R_n^{(8,7)}(\hat{\theta}_1^0, \hat{\theta}_1^0) = n^{-1/2} \sum_{j=1}^{n} 3V(Z_{t_{j-1}}, \theta_1^0, \theta_3^*)^{-1} \left[h^{-3/2}(\Delta_j Y - hG_n(Z_{t_{j-1}}, \theta_1^0, \theta_2^0, \theta_3^*)) \right] \otimes \partial_3 H(Z_{t_{j-1}}, \theta_3^*), \]
(8.7)
\[R_n^{(8,8)}(\hat{\theta}_1^0, \hat{\theta}_2^0) = -n^{-1/2} \sum_{j=1}^{n} 3V(Z_{t_{j-1}}, \theta_1^0, \theta_3^*)^{-1} \left[2^{-1}h^{1/2}H_x(Z_{t_{j-1}}, \theta_3^*) [A(Z_{t_{j-1}}, \theta_2) - A(Z_{t_{j-1}}, \theta_2^*)] \right] \otimes \partial_3 H(Z_{t_{j-1}}, \theta_3^*), \]
(8.8)
Then we have the following estimates:

\[R_n^{(8.9)}(\theta_1, \theta_2, \theta_1^o, \theta_2^o) \]

\[= n^{-1/2} \sum_{j=1}^n 3V(Z_{t_j-1}, \theta_1, \theta_3^*)^{-1} \left[h^{-3/2}(\Delta_j Y - hG_n(Z_{t_j-1}, \theta_1^o, \theta_2^o, \theta_3^*)) \right. \]
\[\left. + 2^{-1}h^3L_H(Z_{t_j-1}, \theta_1, \theta_2, \theta_3^*) \right] \tag{8.9} \]

and

\[R_n^{(8.10)}(\theta_1, \theta_2, \theta_1^o, \theta_2^o) \]

\[= \frac{3}{2} n^{-1/2} h^{1/2} \sum_{j=1}^n (V^{-1}(\partial_3 V)V^{-1})(Z_{t_j-1}, \theta_1, \theta_3^*) \]
\[\cdot \left\{ \left[h^{-3/2}(\Delta_j Y - hG_n(Z_{t_j-1}, \theta_1^o, \theta_2^o, \theta_3^*)) \right] \otimes 2 \right. \]
\[\left. - 3^{-1}V(Z_{t_j-1}, \theta_1^o, \theta_2^o, \theta_3^*) \right\}. \tag{8.10} \]

Then we have the following estimates:

\[R_n^{(8.7)}(\hat{\theta}_1^o, \hat{\theta}_2^o) \]

\[= R_n^{(8.7)}(\theta_1^o, \theta_2^o) + O_p(h^{1/2}) \ (\text{Lemma 5.5 (b) and [A4*] (ii))} \]
\[= n^{-1/2} \sum_{j=1}^n 3V(Z_{t_j-1}, \hat{\theta}_1^o, \theta_3^*)^{-1} \left[h^{-3/2}(\xi_j^{(5.17)} + \xi_j^{(5.18)}), \right. \]
\[\left. \partial_3 H(Z_{t_j-1}, \theta_3^*) \right] + O_p(\sqrt{\Delta_0}) \ (\text{Lemma 5.5 (a))} \]
\[= n^{-1/2} \sum_{j=1}^n 3V(Z_{t_j-1}, \theta_1^o, \theta_3^*)^{-1} \]
\[\cdot \left[h^{-3/2}k(Z_{t_j-1}, \theta_1^o, \theta_3^*)\xi_j, \partial_3 H(Z_{t_j-1}, \theta_3^*) \right] \]
\[+ o_p(1) \ (\text{random field argument, and orthogonality between } \{\xi_j^{(5.18)}\}_j). \tag{8.11} \]

and

\[R_n^{(8.8)}(\hat{\theta}_1^o, \hat{\theta}_2^o) \]

\[= -n^{-1/2} \sum_{j=1}^n 3V(Z_{t_j-1}, \hat{\theta}_1^o, \theta_3^*)^{-1} \]
\[\cdot \left[2^{-1}h^{1/2}H_x(Z_{t_j-1}, \theta_3^*) [A(Z_{t_j-1}, \hat{\theta}_2^o) - A(Z_{t_j-1}, \theta_3^*)], \partial_3 H(Z_{t_j-1}, \theta_3^*) \right] \]
\[= -n^{-1} \sum_{j=1}^n 3V(Z_{t_j-1}, \hat{\theta}_1^o, \theta_3^*)^{-1} \]
Lemma 8.3. Suppose that

\[\partial_3 H(Z_{t_{j-1}}, \theta_3^*) \left[\int_0^1 \partial_2 A(Z_{t_{j-1}}, \theta_2^* + s(\theta_2^0 - \theta_2^*)) ds \sqrt{n}h(\theta_2^0 - \theta_2^*) \right], \]

\[= A[\sqrt{n}h(\theta_2^0 - \theta_2^*)] + o_p(1) \quad \text{(use [A2] and } \partial_2^2 A). \quad (8.12) \]

Moreover,

\[R_n^{(8.9)}(\theta_1^0, \theta_2^0, \theta_1^0, \theta_2^0) = R_n^{(8.9)}(\theta_1^*, \theta_2^*, \theta_1^*, \theta_2^*) + O_p(h) \]

([A4*], Lemmas 5.3 (b) and 5.5 (b))

\[= O_p(h) \quad \text{(orthogonality and Lemma 5.3 (b))} \quad (8.13) \]

and

\[R_n^{(8.10)}(\theta_1^0, \theta_1^0, \theta_2^0) = O_p(h^{1/2}). \quad (8.14) \]

We apply the martingale central limit theorem to (8.11), and use [A4*] (ii) to (8.12). Then we obtain the convergence (8.5) from [A4*] (8.6) and (8.11) (8.14).

\[\text{Lemma 8.3. Suppose that [A1] with } (i_A, j_A, i_B, j_B, i_H, j_H) = (1, 1, 2, 1, 3, 2), [A2] \text{ and [A4*] are satisfied. Then} \]

\[\sup_{\theta_3 \in B_n} \left| n^{-1} h \partial_3^2 H_n^{(3)}(\theta_3) + 4^{-1} \Gamma_{33} \right| \to^p 0 \]

for any sequence of balls \(B_n \) in \(\mathbb{R}^3 \) shrinking to \(\theta_3^* \).

\[\text{Proof. A useful decomposition in this situation is:} \]

\[n^{-1} h \partial_3^2 H_n^{(3)}(\theta_3) = n^{-1} R_{33,1}(\theta_3) + n^{-1} h^{1/2} R_{33,2}(\theta_3) + n^{-1} h R_{33,3}(\theta_3) \]

\[+ n^{-1} h^{1/2} R_{33,4}(\theta_3) + n^{-1} h R_{33,5}(\theta_3), \]

where

\[R_{33,1}(\theta_3) = - \sum_{j=1}^n 3V(Z_{t_{j-1}}, \theta_1^0, \theta_3^0)^{-1} \]

\[\cdot \left[(\partial_3 H(Z_{t_{j-1}}, \theta_3) + 2^{-1} h \partial_3 L_H(Z_{t_{j-1}}, \theta_1^0, \theta_2^0, \theta_3))^2 \right], \]

\[R_{33,2}(\theta_3) = \sum_{j=1}^n 3V(Z_{t_{j-1}}, \theta_1^0, \theta_3^0)^{-1} [h^{-3/2}(\Delta_3 Y - h G_n(Z_{t_{j-1}}, \theta_1^0, \theta_2^0, \theta_3))], \]

\[\partial_3^2 H(Z_{t_{j-1}}, \theta_3) + 2^{-1} h \partial_3^2 L_H(Z_{t_{j-1}}, \theta_1^0, \theta_2^0, \theta_3)], \]

\[R_{33,3}(\theta_3) = - \frac{1}{2} \sum_{j=1}^n (V^{-1}(\partial_3 V) V^{-1})(Z_{t_{j-1}}, \theta_1^0, \theta_3^0) [\partial_3 V(Z_{t_{j-1}}, \theta_1^0, \theta_3)^2], \]
\[R_{33,4}(\theta_3) = -6 \sum_{j=1}^{n} (V^{-1}(\partial_3 V)V^{-1})(Z_{t_{j-1}}, \hat{\theta}_1^0, \theta_3) \]
\[
\cdot \left[h^{-3/2}(\Delta_j Y - hG_n(Z_{t_{j-1}}, \hat{\theta}_1^0, \hat{\theta}_2^0, \theta_3)), \partial_3 H(Z_{t_{j-1}}, \theta_3) + 2^{-1}h\partial_3 L_H(Z_{t_{j-1}}, \hat{\theta}_1^0, \hat{\theta}_2^0, \theta_3) \right]
\]

and
\[R_{33,5}(\theta_3) = \frac{1}{2} \sum_{j=1}^{n} \partial_3 \{ (V^{-1}(\partial_3 V)V^{-1})(Z_{t_{j-1}}, \hat{\theta}_1^0, \theta_3) \} \]
\[
\cdot \left[3 \left\{ h^{-3/2}(\Delta_j Y - hG_n(Z_{t_{j-1}}, \hat{\theta}_1^0, \hat{\theta}_2^0, \theta_3)) \right\}^2 \right.
\]
\[- V(Z_{t_{j-1}}, \hat{\theta}_1^0, \theta_3) \].

Obviously,
\[\sup_{\theta_3 \in B_n} |n^{-1}h R_{33,3}(\theta_3)| = O_p(h) \]

By using Lemma 5.5 (b) with [A4*] (only rates of convergence), Lemma 5.3 (b), and orthogonality, we see
\[\sup_{\theta_3 \in B_n} |n^{-1}h^{1/2} R_{33,4}(\theta_3)| = O_p(n^{-1/2}h^{1/2}) + O_p(\text{diam}B_n) + O_p(h) = o_p(1) \]

and similarly
\[\sup_{\theta_3 \in B_n} |n^{-1}h R_{33,5}(\theta_3)| = O_p(n^{-1/2}h) + O_p(\text{diam}B_n) + O_p(h) = o_p(1). \]

Estimate of \(R_{33,2}(\theta_3) \) is similar to that of \(R_{33,4}(\theta) \):
\[\sup_{\theta_3 \in B_n} |n^{-1}h^{1/2} R_{33,2}(\theta_3)| = o_p(1). \]

Using \(\partial_3^i H \) \((i = 1, 2)\) and \(\partial_3 H_x \) for tightness, we obtain
\[\sup_{\theta_3 \in B_n} |n^{-1} R_{33,1}(\theta_3) - n^{-1} R_{33,1}(\theta_3^*)| = o_p(1). \]

Moreover, it is easy to see
\[\sup_{\theta_3 \in B_n} |n^{-1} R_{33,1}(\theta_3^*) + 4^{-1} \Gamma_{33}| = o_p(1). \]

Thus, the proof is completed. \(\square \)

Remark that Condition [A4] is sufficient for Lemma 8.3 since only rate of convergence of \(\hat{\theta}_1^0 \) and \(\hat{\theta}_2^0 \) used in the above proof. Denote by \(\mathcal{L}\{\xi\} \) the distribution of a random variable \(\xi \). A “convolution theorem” follows from Proposition 8.1 and Lemmas 8.2 and 8.3.
Theorem 8.4. Suppose that [A1] with \((i_A, j_A, i_B, j_B, i_H, j_H) = (1, 2, 2, 1, 3, 2) \), [A2], [A3] (iii) and [A4∗] are satisfied. Then

\[
\frac{1}{2} h^{-1/2} (\hat{\theta}_3 - \theta_3^*) \to^d N(0, 4\Gamma_{33}^{-1}) \ast L\{4\Gamma_{33}^{-1} A\}
\]

as \(n \to \infty \).

The convergence (8.4) is a special case of Theorem 8.4 when \(L = 0 \) a.s. Like Hájek, the result shows the superiority of \(\hat{\theta}_3 \) to \(\hat{\theta}_0^3 \).

Apart from this problem, we can also ask what occurs if we use \(\hat{\theta}_0^2 \) depending on \((X_{t_j})_{j=0,...,n} \). It is natural but another question. The resulting \(\hat{\theta}_3 \) obviously exploits \(\Delta_j X \) through \(\hat{\theta}_0^2 \). Moreover, \(\hat{\theta}_3 \) must initially pay \(4\Gamma_{33}^{-1} \), as it can be observed in the above proof. This means \(\hat{\theta}_3 \) does not dominate \(\theta_3^0 \), besides, if \(\hat{\theta}_0^2 \) performs well having a small asymptotic variance, then \(\hat{\theta}_3 \) is not admissible (in the sense of the decision theory) at least locally in \(\Theta_3 \). Furthermore, the behavior of \(\hat{\theta}_3 \) strongly depends on that of the error of \(\hat{\theta}_0^2 \). In other words, the asymptotic property of \(\hat{\theta}_3 \) cannot separate from the properties of the initial estimators even when their convergence rates are ensured.

References

pletely or partially observed hypoelliptic diffusion. *Stochastic Processes and their Applications* 122 2521–2552. MR2926166

