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Abstract: For any finite point set in D-dimensional space equipped with
the 1-norm, we present random linear embeddings to k-dimensional space,
with a new metric, having the following properties. For any pair of points
from the point set that are not too close, the distance between their images
is a strictly concave increasing function of their original distance, up to
multiplicative error. The target dimension k need only be quadratic in
the logarithm of the size of the point set to ensure the result holds with
high probability. The linear embeddings are random matrices composed of
standard Cauchy random variables, and the proofs rely on Chernoff bounds
for sums of iid random variables. The new metric is translation invariant,
but is not induced by a norm.
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1. Introduction

The Johnson-Lindenstrauss lemma [8] states that for a finite set of points P ⊂
RD and 0 < ε < 1, there are random linear maps F : RD → Rk satisfying, for
any x, y ∈ P ,

(1− ε) ‖x− y‖2 ≤ ‖F (x)− F (y)‖2 ≤ (1 + ε) ‖x− y‖2

with high probability, provided k = Θ(ε−2 ln |P |). It is sufficient to draw the
entries of F i.i.d. sub-Gaussian [13]. These random linear projections have pro-
vided improved worst case performance bounds for many problems in theoret-
ical computer science, machine learning, and numerical linear algebra. Ailon
and Chazelle [1] show how F may be computed quickly and apply it to the
approximate nearest-neighbor problem, working on the projected points F (P ).
Vempala [19] gives a review of problems that may be reduced to analyzing a set
of points P ⊂ R

D, so that after the random projection F : RD → R
k is applied,

the recovery of approximate solutions is possible with time and space bounds
depending on k, the target dimension, instead of D, the ambient dimension.
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In numerical linear algebra, Drineas et al. [5] use the lemma to approximate
the leverage scores of a given matrix A; such scores are used to inform subsam-
pling schemes for A, resulting in sketches Ã of smaller dimensions that preserve
desired properties of A. Drineas and Mahoney [6] give a further review of using
randomness in numerical linear algebra.

The Johnson-Lindenstrauss lemma is a metric embedding result; the map F
sends the finite metric space P ⊂ R

D induced by the 2-norm to a corresponding
metric space F (P ) ⊂ R

k, also induced by the 2-norm, such that distances are
preserved well. Ailon and Chazelle [1] also show that equipping the target space
R

k with the 1-norm is also possible; the target dimension is still proportional to
ln |P |, but the dependence on ε may be a bit worse. However, analogous results
using the 1-norm on the domain do not hold. For example, in [2] and [10], specific
N -point subsets of RD equipped with the 1-norm are shown to embed only in
Rk with k = N1/c2 if one requires

‖x− y‖1 ≤ ‖F (x)− F (y)‖1 ≤ c ‖x− y‖1 .

In particular, Brinkman and Charikar [2] show the target dimension k must be
at least N1/2−O(ε ln(1/ε)) if one wants c = 1 + ε.

In light of these negative results, people have tried estimating ‖x− y‖1 from
the coordinates of F (x)−F (y). When the entries of F are i.i.d. standard Cauchy
random variables, the coordinates are distributed i.i.d. like ‖x− y‖1 X with
X ∼ Cauchy (1). The median of ‖x− y‖1 |X| is ‖x− y‖1, so estimating the me-
dian from the coordinates of F (x)−F (y) would estimate the distance this way.
Indyk [7] considers the sample median as an estimator, while Li, Hastie, and
Church [12] consider 1-homogeneous functions of these coordinates for estima-
tors. None of the estimators considered are metrics on R

k. For nearest neighbor
methods, we should like to have a metric on the target space Rk and prefer a
low number of coordinates for each point.

Relaxing the problem as follows, we wish to find linear maps F : RD → R
k

satisfying, for any x, y ∈ P ,

(1− ε)μ(‖x− y‖1) ≤ ρ(F (x), F (y)) ≤ (1 + ε)μ(‖x− y‖1)

with high probability. We have changed the metric on R
k to ρ instead of the

one induced by the 1-norm, and we have introduced a nonlinear function μ in
place of the identity function. We want k = Θ(ε−2 lnc |P |), with c < 4 or better.

Here, μ : R+ → R+ is a concave increasing function with μ(0) = 0. Such μ
are called “metric preserving” by Corazza [4], for the following reason:

μ(‖x− y‖1) ≤ μ(‖x− z‖1) + μ(‖z − y‖1) for any x, y, z ∈ R
D,

that is, they admit a new metric on the space that is “compatible” with the old
one. In particular, spheres for the new metric about a particular point y ∈ RD,
that is, the level sets

{
x ∈ R

D | μ ◦ ‖x− y‖1 = t
}
, look like scaled versions of

spheres for the 1-norm (crosspolytopes) about that point; the scaling however is
nonlinear. The 1-norm is used here as an example, but any other input metric
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will still satisfy the triangle inequality under such μ. Not all metric preserv-
ing functions are concave increasing, but such a choice ensures the new metric
generates the same topology as the old one.

For us, the linear map F : RD → R
k will have entries Fij

i.i.d.∼ Cauchy (1),
and we introduce the metric ρ on R

k using an auxiliary function ξ:

ρ(x, y) :=
1

k

k∑
i=1

ξ(|xi − yi|)

with

ξ(λ) := ln(1 +
√
λ) +

1

2
ln(1 + λ) and μ(λ) := Eξ(λF11)

for λ > 0. Our main theorem has several regimes depending on how big ‖x− y‖1
can be. (See theorems 3.0.1, 3.0.3, and 3.0.9.) However, the primary result is as
follows.

Theorem 1.0.1. Let F , ρ, and μ be as above. Given N points P ⊂ R
D and

ε ∈ (0, 1),

μ

(‖x− y‖1
1 + ε

)
≤ ρ(F (x), F (y)) ≤ μ((1 + ε) ‖x− y‖1)

for all x, y ∈ P with ‖x− y‖1 ≥
√
1 + ε, provided

k =
C

ε2(1− ε)2
lnN.

Independent of its interest as an analog of the Johnson-Lindenstrauss lemma,
theorem 1.0.1 also contributes to the study of p-stable projections. In fact, we
make the following conjecture for 1 < p < 2 upon replacing the entries Fij of
F by i.i.d. standard p-stable random variables and setting μ(λ) = Eξ(λF11).
Just like the 1.0.1, the conjecture could have several parts based on how large
‖x− y‖p is, but the primary conjecture is as follows.

Conjecture 1.0.2. With F and μ modified as above, and ρ, ε, and k as in
theorem 1.0.1, the following bound holds

μ

(‖x− y‖p
1 + ε

)
≤ ρ(F (x), F (y)) ≤ μ

(
(1 + ε) ‖x− y‖p

)
for all x, y ∈ P with ‖x− y‖p = Ω(1).

The setup for the proof would be the same as for theorem 1.0.1, relying on
1st and 2nd moment estimates for ξ(λ |W |); however, because the density for a
p-stable random variable W is only implicitly defined, the needed 1st and 2nd
moment estimates are not so straightforward, but could be empirically found
on the computer using methods such as [3] to draw the p-stable random vari-
ables. This approach, in which we directly project the points from RD, may be
contrasted to embedding �Dp ↪→ �n1 and applying theorem 1.0.1 there. Pisier [17]
(see also [15, chapter 8] and [9, chapter 9]) shows that such embeddings exist
with distortion (1 + ε), with n proportional to D and depending on p and ε.
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2. Overview of the proof

In this section, we explain the choices for the function ξ and the metric ρ, as
well as the use of Cauchy random variables, outlining the proof along the way.

Consider a point v ∈ RD. The 1-stability of the Cauchy distribution dictates
that the coordinates of the projected point F (v) are Cauchy distributed: F (v)j ∼
‖v‖1 Xj with Xj

i.i.d.∼ Cauchy (1). The metric ρ is then an empirical mean:

ρ(F (v), 0) =
1

k

k∑
j=1

ξ(‖v‖1 Xj),

and if we marginalize out the Cauchy dependence, we recover the deterministic
function μ of ‖v‖1:

Eρ(F (v), 0) = Eξ(‖v‖1 X) =: μ(‖v‖1) for X ∼ Cauchy (1) .

We can now outline the proof as follows: let x− y = v ∈ R
D. The projection

map F : RD → R
k is linear and the metric ρ is translation invariant, so our goal

is to show μ(‖v‖1) ≈ ρ(F (v), 0) or upon setting ‖v‖1 = λ,

μ(λ) ≈ 1

k

k∑
j=1

ξ(λXj)

with high probability. As usual, we use the exponential Markov inequality and
the i.i.d. assumption to estimate

P

⎧⎨
⎩1

k

k∑
j=1

ξ(λ |Xj |)− μ(λ) > t

⎫⎬
⎭ ≤

(
e−st

Ees
(
ξ(λ|X|)−μ(λ)

))k

with a similar setup for the lower tail. However, Cauchy random variables X
only have finite fractional moments,

E |X|b < ∞ only for |b| < 1,

so the presence of ξ(λ |X|) in the exponential requires ξ(λ) = c ln(o(λ)) when λ
is large. Our choice of ξ ensures this behavior:

ξ(λ) = ln(1 +
√
λ) +

1

2
ln(1 + λ) ≤ 2 ln(1 +

√
λ),

while the presence of the “1+” in the logarithms ensures ξ is nonnegative, in-
creasing, and sends 0 to 0. The function ξ is thus subadditive and preserves the
triangle inequality:

ξ(|xi − yi|) ≤ ξ(|xi − zi|) + ξ(|zi − yi|),

ensuring ρ is a metric on R
k. Because μ is the expectation of ξ, it inherits these

properties, so that μ ◦ ‖‖1 induces a metric on the original space R
D.
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We show in sections 4 and 5 that our tail bounds take the following form: To
be concrete, here is the upper tail case, but the other lower tail cases are similar

min
s

e−sΔ
Ees

(
ξ(λ|X|)−μ(λ)

)
≤ exp

(
− Δ2

4(V 2 +A)

)
()

with Δ depending on μ(λ), the function V 2 giving an upper bound for the 2nd
moment or the variance of ξ(λ |X|), and the auxiliary function A(λ), derived
from tail estimates for ξ(λ |X|). The particular form of ξ was chosen to give
explicit control over all these quantities as λ varies, allowing us to obtain bounds
on equation () that only weakly depend on λ.

We arrive at the particular form () for the tail bounds by estimating the
moment generating function as follows, taking the upper tail as an example:
with Y = ξ(λ |X|) − μ(λ), we split E exp(sY ) into two terms and desire each
to be bounded by something quadratic in s: for the 1st term, using a 2nd order
Taylor expansion for the exponential,

E exp(sY )I {sY ≤ 1} ≤ 1 + s2EY 2 ≤ 1 + s2V 2

while for the 2nd term, we use integration by parts, eventually showing

E exp(sY )I {sY > 1} = eP {Y > 1/s}+
∫ ∞

1

etP {Y > t/s} dt ≤ s2A(λ).

We can show the integrand decays exponentially in t using our choice of ξ and
the explicit density for the Cauchy distribution:

P {Y > t/s} = P {ξ(λ |X|) > μ(λ) + t/s}

≤ P

{
2 ln(1 +

√
λ |X|) > μ(λ) + t/s

}
≤ C(λ)e−t/s

with C depending on λ and μ(λ). We can then combine these estimates and
optimize in s:

min
s

e−sΔ
E exp(sY ) ≤ min

s
e−sΔ exp(s2V 2 + s2A(λ)) = exp

(
−Δ2

4(V 2 +A(λ))

)
,

using s = Δ/(2(V 2 +A(λ))).
The tail probabilities now have the form

P

⎧⎨
⎩
∣∣∣∣∣∣
1

k

k∑
j=1

ξ(λ |Xj |)− μ(λ)

∣∣∣∣∣∣ > Δ

⎫⎬
⎭ ≤ 2 exp

(
−k

Δ2

4(V 2 +A(λ))

)

for a single λ corresponding to a single vector v = x−y ∈ R
D. There are at most(

N
2

)
pairs of points from P , so we would want to choose the target dimension as

k = (c+ 2) ln(N)
4(V 2 +A(λ))

Δ2
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to ensure with probability at least 1−N−c,∣∣∣∣∣∣
1

k

k∑
j=1

ξ(λ |Xj |)− μ(λ)

∣∣∣∣∣∣ ≤ Δ

for all pairs of points simultaneously. However, the error Δ and the target dimen-
sion k both depend on λ, so we require uniform estimates for these quantities.
We find these by breaking up the possible values for λ into three regimes: small,
medium, and big

Our choice of ξ provides an explicit function for μ := Eξ(λ |X|), (lemma A.1.1)

μ(λ) :=
1

2
ln(1 + λ2) + atanh

( √
2λ

1 + λ

)
with atanh(x) :=

∞∑
j=0

x2j+1

2j + 1

for |x| < 1. The big regime has μ behaving like the log term, while the medium
and small regimes have it behaving like Θ(

√
2λ). The choice of ξ also gives us a

bound on the variance (corollary A.3.2)

Var(ξ(λ |X|)) ≤ min

{
π2

2
, 2E ln(1 + λ |X|)

}
.

The constant bound, independent of λ, is used for the big regime, while the
expectation bound provides finer control on the variance when λ is small, via
another explicit function, lemma A.3.3, of λ.

For the big regime, taking Δ as

μ((1 + ε)λ)− μ(λ) and μ(λ)− μ((1 + ε)−1λ),

both of which are bounded by lemma A.2.1, together with the constant bound
for the variance give theorem 3.0.1, as A(λ) is bounded here.

For the medium and small regimes, we take Δ = εμ(λ) and use corollary A.3.4
to bound V 2/μ(λ)2. The split between medium and small regimes occurs because
of the ln(λ) term in that ratio: the target dimension has Δ2 ∼ λ on the bottom,
while the upper tail bound 4.0.1 required s∗ to only have Δ on top

s∗ = Δ/(2(V 2 +A(λ))) < 1/2.

This mismatch in powers of Δ forces us to choose a cutoff λ; because A(λ) (and
V 2) have terms proportional to λ, the above inequality can only hold for λ not
too small. This gives the ln(ε2/3) term in theorem 3.0.3 for the medium regime.

For the small regime, there is no such restriction on s for the lower tail
bound 5.0.2, but the target dimension still grows like ln(1/λ) as λ decreases
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(See lemma 3.0.5.). We stop that growth by fixing a particular λ0, showing that
for all smaller λ, the (1− ε) error has a suitable replacement in theorem 3.0.9.
The key is lemma 3.0.7: we choose λ0 so that λ0 maxi |Xi| < 1/6 with high
probability, making both ξ(λ |Xi|) and μ(λ) behave like Θ(

√
λ) =

√
ηΘ(

√
λ0) for

λ = ηλ0 with η ∈ (0, 1). Because λ0 turns out to be Θ(1/(N c+2k)), the − ln(λ0)
in the target dimension forces k = Θ(ε−2 ln2(N c+2)), a quadratic dependence
on ln(N).

We finish the proofs in the next section, while the upper and lower tail es-
timates are provided in sections 4 and 5. We collect the estimates on the 1st
and 2nd moments in appendix A, and ancillary identities for those estimates in
appendix B.

3. Finishing the proof

We now tie down the target dimension k. Recall P is a set of N points in R
D,

and F : RD → Rk is a matrix of i.i.d. Cauchy (1) entries. In what follows, the
estimates are not sharp.

Theorem 3.0.1 (Big Regime). For ε ∈ (0, 1) and ‖x− y‖1 ≥
√
1 + ε,

μ

(‖x− y‖1
1 + ε

)
≤ ρ

(
F (x), F (y)

)
≤ μ

(
(1 + ε) ‖x− y‖1

)
for all x, y ∈ P with probability at least 1−N−c provided

k ≥ C

ε2(1− ε)2
ln(N c+2) with C = 64

(
π2

2
+

16
√
2

eπ
eatanh 1/

√
2

)
.

Remark 3.0.2. The constants are not expected to be sharp; C is computed so
that k is uniformly bounded with respect to ‖x− y‖1 ≥

√
1 + ε.

Proof. Let λ = ‖x− y‖1. We want to use the lower and upper tail estimates
from lemmas 5.0.1 and 4.0.1, so it remains to verify

s∗ =
Δ

2(V 2 +A(λ))
≤ 1/2

with Δ either

μ(λ)− μ
(
(1 + ε)−1λ

)
or μ

(
(1 + ε)λ

)
− μ(λ).

By lemma A.2.1, the differences Δ are at most ε for λ ≥
√
1 + ε, while the upper

bound for the variance of ξ(λ |X|) is V 2 = π2/2 by corollary A.3.2. Because
ε < 1, we then certainly have s∗ < 1/2.

As explained in section 2, the target dimension k is chosen to ensure the
union bound is at most N−c for both tails combined. The choice of C comes
from the lower bound for the Δ’s from lemma A.2.1 and the larger of the two
A(λ) functions in lemmas 5.0.1 and 4.0.1.
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Theorem 3.0.3 (Medium Regime). For ‖x− y‖1 ∈ [ε2/3,
√
1 + ε] and ε ∈

(0, 1),

(1− ε)μ
(
‖x− y‖1

)
≤ ρ

(
F (x), F (y)

)
≤ (1 + ε)μ

(
‖x− y‖1

)
for all x, y ∈ P with probability at least 1−N−c provided

k =
4 ln(N c+2)

ε2

(
C +

8

π

(
1− ln(ε2/3)

))
with C bounded.

Remark 3.0.4. We have not been able to establish an upper bound result

ρ(F (x), F (y)) ≤ (1 + ε)μ(‖x− y‖1)

with high probability when ‖x− y‖ < ε2/3. Our proofs break down or require
a much higher estimate for the target dimension k. We conjecture that k =
O(ln2(N c)/ε2) still suffices, in light of theorem 3.0.9 for the small regime.

Proof. With λ = ‖x− y‖1, we take Δ = εμ(λ). By lemma 3.0.5, the lower
bound for ρ(F (x), F (y)) requires an initial estimate for the target dimension of
k̃ = 2 ln(N c+2)ε−2C(1− ln(λ∗)) with λ∗ the smallest λ we wish to consider. The
upper bound will force our choice of λ∗.

We now want to use the upper tail estimate from lemma 4.0.1. It remains to
check

s∗ =
εμ(λ)

2(V 2 +A(λ))
≤ 1/2,

and it suffices to show εμ(λ)/A(λ) ≤ 1. With b = 16e/(π(e − 1)2) ≈ 4.7 from
A(λ), we use lemma A.1.2 for the upper bound for μ(λ) to find, after some
estimation,

εμ(λ)

A(λ)
≤ ε

√
1 + λ2

b

(
3√
2

1

(1 + λ)
√
λ
+

λ

2

)
≤

{
.7ε if λ ∈ [1,

√
1 + ε]

1 if λ ∈ [ε2/3, 1]
,

recalling ε ∈ (0, 1).
Using the expression for A(λ), we now have the following estimate for the

target dimension. Because V 2 is an estimate on the variance now, we can remove
the 1+’s from corollary A.3.4 to find

k =
4 ln(N c+2)

ε2

(
9

2
(
√
1 + ε+ 4/π) + 2 +

8

π

(
1− ln(ε2/3)

)
+

b

2
(1 +

√
1 + ε)2

)

using μ(λ) ≥
√
2λ/(1 + λ) from remark A.1.3. The b dependent term here is

enough to ensure k ≥ k̃, so both sides of the inequality for ρ(F (x), F (y)) hold
with high probability and this dimension k.

The following two lemmas lead to theorem 3.0.9, which shows that a lower
bound for ρ(F (x), F (x)) continues to hold for all ‖x− y‖1 < 2.
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Lemma 3.0.5. For ε ∈ (0, 1) and 0 < ‖x− y‖1 ∈ [λ∗, 2),

(1− ε)μ
(
‖x− y‖1

)
≤ ρ

(
F (x), F (y)

)
for all x, y ∈ P with probability at least 1−N−c provided

k =
2 ln(N c+2)

ε2

(
C +

8

π

(
1− ln(λ∗)

))
with C bounded.

Remark 3.0.6. The estimates are not sharp.

Proof. With λ = ‖x− y‖1, we take Δ = εμ(λ). Using corollary A.3.4 and the
lower tail esimate from lemma 5.0.2, the target dimension is

k =
2 ln(N c+2)

ε2
max

{
1 + (9/2)(2 + 4/π), 3 + (8/π)

(
1− ln(λ∗)}

to ensure the bound holds with probability at least 1 − N−c for all pairs of
points.

Lemma 3.0.7. For 1 ≤ i ≤ k, let Xi
i.i.d.∼ Cauchy (1). For 0 < ε < 1 and

0 < λ0 ≤ 1, suppose

(1− ε)μ(λ0) ≤
1

k

k∑
i=1

ξ(λ0 |Xi|)

and λ0 maxi |Xi| ≤ c0 ≤ 1/6.
Then if 0 < η < 1, the same Xi also satisfy

(1− ε′)μ(ηλ0) ≤
1

k

k∑
i=1

ξ(ηλ0 |Xi|)

with ε′ depending on ε, c0, and λ0. If λ0 ≤ ε2, then we can have

1− ε′ = (1− ε)
1− ε2/

√
2

1 + 3ε2
.

Remark 3.0.8. Analogous upper bounds are also possible, with a similar proof.

Proof. A fourth order Taylor expansion with Lagrange remainder shows

√
a ≤ ξ(a) ≤

√
a(1 + a/2) for 0 ≤ a ≤ 1/6.

Because maxi |Xi| ≤ c0 ≤ 1/6 and 0 < η < 1, we invoke the above inequality
twice to find

√
η

1 + λ0c0/2
ξ(λ0 |Xi|) ≤

√
η

1 + λ0 |Xi| /2
ξ(λ0 |Xi|) ≤ ξ(ηλ0 |Xi|).
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By assumption, summing over i and dividing by k yields

(1− ε)

√
η

1 + λ0c0/2
μ(λ0) ≤

1

k

k∑
i=1

ξ(ηλ0 |Xi|)

We finish by using remark A.1.3 (twice) to “absorb”
√
η into μ,

√
ημ(λ0) ≥

√
2ηλ0

1 + λ0
≥ μ(ηλ0)

1 + λ0

1 + ηλ0

1 + ηλ0(1 + 1/
√
2)

≥ μ(ηλ0)

1 + λ0
(1− ηλ0/

√
2)

Theorem 3.0.9 (Small Regime). For ε ∈ [N−(c+2)/2, 1] and all ‖x− y‖1 < 2,
the following bound holds:

(1− ε)
1− ε2/

√
2

1 + 3ε2
μ(‖x− y‖1) ≤ ρ(F (x), F (y)),

with probability at least 1−N−c, provided

k =
C ln2(N c+2)

ε2
.

Proof. We can use lemma 3.0.5 with λ∗ = λ0 to cover all distances ‖x− y‖1
down to λ0. We then choose λ0 in order to extend the lower bound to distances
smaller than λ0, using lemma 3.0.7.

Concretely, recall from section 2 that because F is a linear map of i.i.d.
Cauchy entries,

ρ(F (x/η), F (y/η)) ∼ 1

k

k∑
i=1

ξ(λ0 |Xi|) and ρ(F (x), F (y)) ∼ 1

k

k∑
i=1

ξ(ηλ0 |Xi|)

with the same Xi
i.i.d.∼ Cauchy (1). Let Z = max1≤i≤k |Xi|. To use lemma 3.0.7,

we just need to ensure λ0Z ≤ 1/6 with high probability. By the independence
of the Xi,

P {λ0Z ≤ 1/6} =
(
1− (2/π) arctan(6λ0)

)k ≥ 1− k(12/π)λ0.

So set λ0 = π/(12N c+2k). Choosing k according to lemma 3.0.5 with λ0 = λ∗,
we have the following inequality for the target dimension

k ≥ 2 ln(N c+2)

ε2

(
C +

8

π

(
1− ln(π/(12N c+2k))

))
.

Taking k = C ln2(N c+2)/ε2 satisfies the above, provided ε2 > N−c−2, say. We
now have the conditions of lemma 3.0.7 satisfied for all

(
N
2

)
pairs of points, with

probability at least 1−N−c, and λ0 < ε2.
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4. Upper tails

In the following lemmas, the estimates are not sharp.

Lemma 4.0.1 (General Upper Tail). With Y = Eξ(λ |X|) − μ(λ) and V 2 ≥
Var(ξ(λ |X|)),

min
s

e−sΔ
E exp(sY ) ≤ exp

(
−Δ2

4(V 2 +A(λ))

)

and is minimized at s∗ with

A(λ) =
16e

π(e− 1)2

√
λ2

1 + λ2
provided s∗ =

Δ

2(V 2 +A(λ))
≤ 1/2.

Proof. From the discussion in section 2, we just need to establish the A(λ)
function for the integration by parts terms. To ensure E exp(sY ) is finite, we
require s < 1. For 1 > s > 0 and t > 1, we then estimate, with w = μ+ t/s,

P {ξ(λ |X|) > w} ≤ P

{
2 ln(1 +

√
λ |X|) > w

}
≤ 2

π
arctan

(
λ

(exp(w/2)− 1)2

)
,

and for all w ≥ w0 may be bounded by

≤ 2

π

λ

(exp(w/2)− 1)2
≤ 2λ

π

e−w

(1− exp(−w0/2))2
=: C(λ)e−t/s.

We shall choose w0 and hence C(λ) a bit later; note that C(λ) contains the
factor e−μ.

With Y = ξ(λ |X|) − μ(λ), we can now estimate the integration by parts
terms

E exp(sY )I {sY > 1} = eP {Y > 1/s}+
∫ ∞

1

etP {Y > t/s} dt

as at most

eC(λ)e−1/s + C(λ)

∫ ∞

1

et(1−1/s) dt = eC(λ)
e−1/s

1− s
≤ 4

e
C(λ)

s2

1− s

using e−1/s ≤ (2/e)2s2 and s ∈ (0, 1). Assuming s ≤ 1/2, we can now write, for
a suitable upper bound A(λ),

E exp(sY ) ≤ 1 + V 2s2 +
8

e
C(λ)s2 ≤ 1 + s2(V 2 +A(λ)),

and we may optimize in s

min
s

e−sΔ
E exp(sY ) ≤ min

s
e−sΔ+s2(V 2+A) = exp

(
−Δ2

4(V 2 +A)

)
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at

s∗ =
Δ

2(V 2 +A)
.

It remains to choose w0 and hence A(λ). Recalling the formula for μ either
from section 2 or directly from lemma A.1.1, we can lower bound w = μ(λ) +
t/s ≥ (1/2) ln(1 + λ2) + 2 ≥ 2 provided s ≤ 1/2. Choosing w0 = 2,

8

e
C(λ) ≤ 16

πe

λ

(1 + λ2)1/2
1

(1− 1/e)2
=

16e

π(e− 1)2

√
λ2

1 + λ2
=: A(λ).

5. Lower tails

Unlike for the upper tails, we can control the lower tails for the full range
of λ. We address λ bounded away from 0 using the same techniques as for
the upper tail. The lower tail proof for small λ simplifies because ξ(λ |X|) is
nonnegative, so that there is no restriction on optimizing s in the moment
generating function.

In the following lemmas, the estimates are not sharp.

Lemma 5.0.1 (Lower Tail, Big Regime). With Y = Eξ(λ |X|) − μ(λ) and
V 2 ≥ Var(ξ(λ |X|)),

min
s

e−sΔ
E exp(−sY ) ≤ exp

(
−Δ2

4(V 2 +A(λ))

)

and is minimized at s∗ with

A(λ) =
16

eπ
eatanh(1/

√
2)

√
1 + λ2

λ2
provided s∗ =

Δ

2(V 2 +A(λ))
≤ 1/2.

Proof. Just as in the upper tail computations,

E exp(−sY )I {−sY ≤ 1} ≤ E(1− sY + (−sY )2) = 1 + V 2s2.

and

E exp(−sY )I {−sY > 1} ≤ eP {−Y > 1/s}+
∫ ∞

1

exp(t)P {−Y > t/s} dt.

We shall again determine the function A(λ) by estimating a tail, but now it is
the lower tail

P {−Y > t/s} = P {ξ(λ |X|) < μ− t/s} .

By subadditivity of
√
a,

ξ(a) = ln(1 +
√
a) +

1

2
ln(1 + a) ≥ ln(

√
1 + a) +

1

2
ln(1 + a) = ln(1 + a).
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We now can estimate

P {−Y > t/s} <
2

π
arctan

(
e−t/s e

μ

λ

)
<

2

π

eμ

λ
e−t/s =: C(λ)e−t/s.

We can then upper bound the integration by parts terms just like in the proof
for the upper tail lemma 4.0.1. Assuming s ≤ 1/2, we choose an upper bound
A(λ) for (8/e)C(λ) and arrive at

min
s

e−sΔ
E exp(−sY ) ≤ exp

(
−Δ2

4(V 2 +A(λ))

)

To find A(λ), note that μ(λ) ≤ atanh(1/
√
2) + (1/2) ln(1 + λ2), so that

8

e
C(λ) ≤ 16

eπ
eatanh(1/

√
2)

√
1 + λ2

λ2
=: A(λ)

which is bounded for λ away from 0.

Lemma 5.0.2 (Lower Tail, Small Regimes). With Y = Eξ(λ |X|) − μ(λ) and
V 2 ≥ Eξ(λ |X|)2,

min
s

e−sΔ
E exp(−sY ) ≤ exp

(
−Δ2

2V 2

)

Proof. Because ξ(λ |X|) is nonnegative, we can use the 2nd order Taylor expan-
sion of exp(−x) to write

e−sΔ+sμ
E exp(−sξ(λ |X|)) ≤ e−sΔ+sμ(1− sμ+

s2

2
V 2) = e−sΔ+s2V 2/2

and we can then optimize s in the usual way.
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Appendix A: The first and second moments

Here we derive the explicit formula for μ(λ) = Eξ(λ |X|) in lemma A.1.1 and
the upper bounds V 2 for Var(ξ(λ |X|)) in corollary A.3.2. Some of this work is



4374 M. P. Casey

a bit tedious, but it will allow us to give explicit upper bounds on the target
dimension

k = C
V 2 +A

Δ2
.

We need bounds for μ(λ) when λ is small (remark A.1.3) as well as lower bounds
for the Δ’s

μ((1 + ε)λ)− μ(λ) and μ(λ)− μ((1 + ε)−1λ)

when λ is “large” (lemma A.2.1).
Because the Cauchy density has particularly simple behavior when extended

to the complex plane, we heavily rely on complex analysis techniques. We chose
ξ to be the linear combination

ξ(λ |X|) = ln(1 +
√

λ |X|) + 1

2
ln(1 + λ |X|)

as it will simplify the estimates as well as be easy to compute using a pair
of contour integrals. For both moments, the contour integral setup below will
greatly facilitate computations; in particular, it will allow us to avoid estimating

E ln2(1 +
√
λ |X|) and E ln2(1 + λ |X|)

individually, which while possible, is not necessary for our results.

Proposition A.0.1 (Contour Integral Setup). For λ > 0, b > 0, and X ∼
Cauchy (1),

E lnb(1 +
√
λ |X|) = lnb(1 +

√
iλ) + lnb(1 +

√
−iλ)

− 1

2
E lnb(1 + i

√
λ |X|)− 1

2
E lnb(1− i

√
λ |X|).

Remark A.0.2. The task is then to simplify the complex logarithms on the right
hand side when particular values of b are chosen. We shall choose b = 1 and
b = 2 in the next sections.

Proof. We want to compute

I(λ) := E lnb(1 +
√

λ |X|) = 2

π

∫ ∞

0

lnb(1 +
√
λx)

1 + x2
dx

via contour integration. Extending to z ∈ C− (−∞, 0], let

f(z) :=
2

π

lnb(1 +
√
λz)

1 + z2

which has simple poles at z = ±i.
We shall compute I(λ) be using two different contours that both traverse the

interval [0, R] in the positive direction. Specifically, C+ is oriented counterclock-
wise, while C− is oriented clockwise, setting

C+ := [0, R] ∪ C+(R) ∪ C+
ε (R) and C− := [0, R] ∪ C−(R) ∪ C−

ε (R)
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with “large” arcs
C±(R) :=

{
Re±iθ | 0 ≤ θ ≤ π − ε

}
and segments rotating as ε → 0 to the negative real axis

C±
ε (R) :=

{
re±i(π−ε) | R ≥ r ≥ 0

}
.

Check that

lim
R→∞

∫
C±(R)

f(z) dz = 0.

Keeping in mind the orientations of the contours, the residue theorem dictates
for R > 1,∫

C+

f(z) dz = 2πi resz=i f(z)

= 2πi lim
z→i

(z − i)
2

π

lnb(1 +
√
λz)

(z − i)(z + i)
= 2 lnb(1 +

√
λi)

and similarly∫
C−

f(z) dz = −2πi lim
z→−i

(z − (−i))
2

π

lnb(1 +
√
λz)

(z − i)(z + i)
= 2 lnb(1 +

√
−iλ).

It remains to show that

lim
R→∞

lim
ε→0

(∫
C+
ε (R)

f(z) dz +

∫
C−
ε (R)

f(z) dz

)

= E lnb(1 + i
√
λ |X|) + E lnb(1− i

√
λ |X|).

For these C±
ε (R) integrals, note that√

re±i(π−ε) =
√
re∓iε/2e±iπ/2 = ±i

√
re∓iε/2,

which approaches ±i
√
r when ε → 0. Consequently, when z = rei(π−ε) =

−re−iε, we can use the dominated convergence theorem to conclude

lim
ε→0

∫
C+
ε (R)

f(z) dz = lim
ε→0

∫ 0

R

f(−re−iε) (−e−iε)dr

= lim
ε→0

∫ R

0

2

π

e−iε lnb(1 + i
√
λre−iε/2)

1 + r2e−2iε
dr

=

∫ R

0

2

π

lnb(1 + i
√
λr)

1 + r2
dr,

checking that the integrand is bounded by a summable one when ε < π/8 say.
Sending R → ∞ recovers

lim
R→∞

lim
ε→0

∫
C+
ε (R)

f(z) dz = E lnb(1 + i
√

λ |X|).
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Similar reasoning applies to the C−
ε (R) integral to yield

lim
R→∞

lim
ε→0

∫
C−
ε (R)

f(z) dz = E lnb(1− i
√
λ |X|)

Putting everything together, we have

2 lnb(1 +
√
iλ) + 2 lnb(1 +

√
−iλ)

= 2I(λ) + E lnb(1 + i
√
λ |X|) + E lnb(1− i

√
λ |X|)

that is

lnb(1 +
√
iλ) + lnb(1 +

√
−iλ)

= I(λ) +
1

2
E lnb(1 + i

√
λ |X|) + 1

2
E lnb(1− i

√
λ |X|)

as claimed.

A.1. 1st moment

Recall from definition B.1.6 that atanh(x) may be defined by the power series

atanh(x) =

∞∑
j=0

x2j+1

2j + 1
for |x| < 1.

Lemma A.1.1. If λ > 0 and X ∼ Cauchy (1), then

E ln(1 +
√

λ |X|) = atanh

( √
2λ

1 + λ

)
+

1

2
ln(1 + λ2)− 1

2
E ln(1 + λ |X|)

that is,

μ(λ) := Eξ(λ |X|) = atanh

( √
2λ

1 + λ

)
+

1

2
ln(1 + λ2).

Proof. Starting from proposition A.0.1 with b = 1,

E ln(1 +
√

λ |X|)

= ln(1 +
√
iλ) + ln(1 +

√
−iλ)− 1

2
E ln(1 + i

√
λ |X|)− 1

2
E ln(1− i

√
λ |X|).

By lemma B.1.7 and the atanh addition formula B.1.8,

ln(1 +
√
λi) + ln(1 +

√
−λi)

= atanh(
√
λi) + atanh(

√
−λi) +

1

2
ln(1− (

√
λi)2) +

1

2
ln(1− (

√
−λi)2)
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= atanh

( √
iλ+

√
−iλ

1 +
√
iλ
√
−iλ

)
+

1

2
ln(1− iλ) +

1

2
ln(1− (−iλ))

= atanh

( √
2λ

1 + λ

)
+

1

2
ln(1− (iλ)2)

= atanh

( √
2λ

1 + λ

)
+

1

2
ln(1 + λ2).

By remark B.0.10,

ln(1 + i
√
λ |X|) + ln(1− i

√
λ |X|) = ln(1− (i

√
λ |X|)2) = ln(1 + λ |X|).

Consequently,

E ln(1 +
√

λ |X|) + 1

2
E ln(1 + λ |X|) = atanh

( √
2λ

1 + λ

)
+

1

2
ln(1 + λ2)

as claimed.

We use the following lemma to show that μ(λ) = Θ(
√
λ) as well when λ is

small.

Lemma A.1.2. For λ > 0,

√
2λ

1 + λ
< atanh

( √
2λ

1 + λ

)
<

√
2λ

1 + λ

(
1 +

1

2
ln

(
1 +

2λ

1 + λ2

))
<

3√
2

√
λ

1 + λ

and approaches 0 as λ → ∞. Further, for any λ ≤ λ0 ≤ 1,

√
2λ

1 + λ
< atanh

( √
2λ

1 + λ

)
<

√
2λ

1 + λ

(
1 +

1

2
ln

(
1 +

2λ0

1 + λ2
0

))
.

Remark A.1.3. By lemma A.1.1, we now also have the bound

√
2λ

1 + λ
≤ μ(λ) ≤

√
2λ

1 + λ

(
1 +

λ0

1 + λ2
0

)
+

λ2

2
≤ 3√

2

√
λ

1 + λ
+

λ2

2
.

using ln(1 + x) ≤ x twice.

Proof. The limit for large λ is immediate. From the power series for atanh,
conclude atanh(x) > x for x > 0. We can also give the upper bound

atanh(x) =
∞∑
j=0

x2j+1

2j + 1
= x

∞∑
j=0

(x2)j

2j + 1
≤ x

⎛
⎝1 +

1

2

∞∑
j=1

(x2)j

j

⎞
⎠

= x

(
1− 1

2
ln(1− x2)

)
.
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So,

atanh

( √
2λ

1 + λ

)
≤

√
2λ

1 + λ

(
1 +

1

2
ln
(
1 +

2λ

1 + λ2

))

Noting that λ/(1 + λ2) is strictly increasing for λ ∈ (0, 1), we can fix the λ2

term at a particular constant.

A.2. Estimating deviations of the mean

We derive the estimates used in the large scale concencentration proofs given
above. Both differences

μ((1 + ε)λ)− μ(λ) and μ(λ)− μ((1 + ε)−1λ)

are controlled by lemma A.2.1 by requiring λ ≥
√
1 + ε. Because

μ(λ) = atanh

( √
2λ

1 + λ

)
+

1

2
ln(1 + λ2)

both deviations will be sums of two terms, an atanh term and a ln term.

Lemma A.2.1. For 1 ≤ a and 1/
√
a ≤ λ,

a− 1 > μ(aλ)− μ(λ) ≥ a− 1

4
(1− (a− 1))

Proof. We shall show that for λ ≥ 1/
√
a, the difference in the atanh terms is

nonpositive. We then immediately have the upper bound

μ(aλ)− μ(λ) ≤ 1

2
ln

(
1 +

(a2 − 1)λ2

1 + λ2

)
< ln(a) ≤ a− 1.

On the other hand, because λ ≥ 1/
√
a, the ln contribution also has the lower

bound

1

2
ln

(
1 +

(a2 − 1)λ2

1 + λ2

)
≥ 1

2
ln

(
1 +

(a2 − 1)(1/a)

1 + 1/a

)
=

1

2
ln (1 + (a− 1))

≥ (a− 1)

2

(
1− a− 1

2

)

using a 2nd order Taylor series with Lagrange remainder in the last line, recalling
a ≥ 1 here.

For the lower bound for μ(aλ)−μ(λ), it remains to control how negative the
atanh contribution is. With

u =

√
2aλ

1 + aλ
and v =

√
2λ

1 + λ
,
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we can use the atanh addition formula B.1.8,

atanh(u)− atanh(v) = atanh(u) + atanh(−v) = atanh

(
u+ (−v)

1 + u(−v)

)

for u, v ∈ (−1, 1), which is the case for us here. After some simplification, we
recover

u− v

1− uv
= (

√
a− 1)

√
2λ

1− λ
√
a

(1− λ
√
a)2 + λ(1 + a)

which is negative for λ ≥ 1/
√
a. Because atanh is an odd function, taking it of

the above gives a negative contribution for such λ. Use the AM-GM inequality
to upper bound

− u− v

1− uv
≤

√
a− 1√

2
√
1 + a

=: w,

then use the estimate

atanh(w) ≤ w

1− w2
=

(
√
a− 1)

√
2
√
1 + a

(1 +
√
a)2

≤
√
a− 1

2

as the remaining factor is seen to be decreasing for a ≥ 1 upon taking logarithms.
Using

√
a ≤ 1 + (a− 1)/2, we finally have.

μ(aλ)− μ(λ) ≥ (a− 1)

2

(
1− a− 1

2

)
−

√
a− 1

2
≥ a− 1

4
(1− (a− 1)).

A.3. 2nd moment

To estimate the 2nd moment Eξ2(λ |X|), note that for any a, b > 0, the AM-GM
inequality gives (a+ b)2 ≤ 2(a2 + b2), so that

Eξ2(λ |X|) = E

(
ln(1 +

√
λ |X|) + 1

2
ln(1 + λ |X|)

)2

≤ E

(
2 ln2(1 +

√
λ |X|) + 1

2
ln2(1 + λ |X|)

)
.

It turns out this last expression also arises from a contour integral.

Lemma A.3.1. If λ > 0 and X ∼ Cauchy (1), then

E

(
2 ln2(1 +

√
λ |X|) + 1

2
ln2(1 + λ |X|)

)

= 2E arctan2(
√

λ |X|) + μ2(λ)−
(
arctan(λ)− h(

√
λ)
)2

with

h(
√
λ) =

π

2
+ arctan

(√
λ√
2
− 1√

2λ

)
.



4380 M. P. Casey

Proof. The computations will be a bit more involved than those for the first
moment. Starting from proposition A.0.1 with b = 2,

E ln2(1 +
√

λ |X|)
= ln2(1 +

√
iλ) + ln2(1 +

√
−iλ)

− 1

2
E ln2(1 + i

√
λ |X|)− 1

2
E ln2(1− i

√
λ |X|),

that is,

E2 ln2(1 +
√

λ |X|) + E ln2(1 + i
√
λ |X|) + E ln2(1− i

√
λ |X|)

= 2 ln2(1 +
√
iλ) + 2 ln2(1 +

√
−iλ).

By lemma A.3.5,

E ln2(1 + i
√
λ |X|) + E ln2(1− i

√
λ |X|)

= E
1

2
ln2(1 + (

√
λ |X|)2)− 2E arctan2(

√
λ |X|)

= E
1

2
ln2(1 + λ |X|)− 2E arctan2(

√
λ |X|).

For the residue terms, we use lemma A.3.6:

2 ln2(1 +
√
iλ) + 2 ln2(1 +

√
−iλ)

=
1

4
ln2(1 + λ2)− arctan2(λ)

+ ln(1 + λ2)g(
√
λ) + 2 arctan(λ)h(

√
λ) + g2(

√
λ)− h2(

√
λ)

with

g(
√
λ) = atanh

( √
2λ

1 + λ

)
and h(

√
λ) =

π

2
+ arctan

(√
λ√
2
− 1√

2λ

)
.

Recalling our computation of μ(λ) in lemma A.1.1, we can further simplify:

2 ln2(1 +
√
iλ) + 2 ln2(1 +

√
−iλ)

=

(
1

4
ln2(1 + λ2) + ln(1 + λ2)g(

√
λ) + g2(

√
λ)

)
− arctan2(λ) + 2 arctan(λ)h(

√
λ)− h2(

√
λ)

= μ2(λ)− arctan2(λ) + 2 arctan(λ)h(
√
λ)− h2(

√
λ)

Putting everything together we may conclude

E

(
2 ln2(1 +

√
λ |X|) + 1

2
ln2(1 + λ |X|)

)

= 2E arctan2(
√

λ |X|) + μ2(λ)−
(
arctan(λ)− h(

√
λ)
)2
.
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Corollary A.3.2 (The Variance Is Bounded). For λ > 0 and X ∼ Cauchy (1),

Var(ξ(λ |X|)) ≤ min

{
2E ln(1 + λ |X|), π

2

2

}
.

Proof. Just note that for ν > 0,

arctan2(
√
ν) ≤ min

{
ln(1 + ν),

π2

4

}
.

The constant follows from arctan(x) ≤ π/2 for all x ∈ R, while the ln(1 + ν)
bound follows from comparing derivatives, noting that both functions take 0
when ν = 0.

For quantitative estimates for the 2nd moment and the variance, we make
the E ln(1 + λ |X|) term explicit in the above bound.

Lemma A.3.3. For λ ≥ 0 and X ∼ Cauchy (1),

E ln(1 + λ |X|) = − 2

π
ln(λ) arctan(λ) +

1

2
ln(1 + λ2) +

2

π
Ti2(λ).

Proof. From lemma B.0.1

E ln(1 + λ |X|) = 2

π

1

2i
(Li2(1 + iλ)− Li2(1− iλ))

We use the reflection formula B.2.1 to expand the dilogarithm terms.
Recall from lemma B.2.1, for z ∈ (C− R) ∪ (0, 1),

Li2(z) + Li2(1− z)− Li2(1) = − ln(z) ln(1− z).

Consequently, using definition B.1.3 for Ti2,

1

2i
(Li2(1 + iλ)− Li2(1− iλ))

=
1

2i

(
− ln(−iλ) ln(1 + iλ)− Li2(−iλ) + Li2(1)

)
− 1

2i

(
− ln(iλ) ln(1− iλ)− Li2(iλ) + Li2(1)

)
=

1

2i
ln(λ)(ln(1− iλ)− ln(1 + iλ)) +

π

4
(ln(1− iλ) + ln(1 + iλ)) + Ti2(λ)

By lemma B.0.9 (really the remark there) and the definition of arctan,

1

2i
(Li2(1 + iλ)− Li2(1− iλ)) = − ln(λ) arctan(λ) +

π

4
ln(1 + λ2) + Ti2(λ).

Thus,

E ln(1 + λ |X|) = 2

π

1

2i
(Li2(1 + iλ)− Li2(1− iλ))

= − 2

π
ln(λ) arctan(λ) +

1

2
ln(1 + λ2) +

2

π
Ti2(λ).



4382 M. P. Casey

Corollary A.3.4. For 0 < λ < 2

Eξ2(λ |X|)
μ(λ)2

≤
{
1 + 2

(
λ+ 4

π

(
1− ln(λ)

))
for λ ∈ (0, 1]

1 + 9
2

(
λ+ 4

π

)
for λ ∈ (1, 2)

.

Proof. By corollary A.3.2 and lemma A.3.3, we have

Eξ2(λ |X|) ≤ ln(1 + λ2) +
4

π
Ti2(λ)−

4

π
ln(λ) arctan(λ) + μ2(λ)

≤ λ2 +
4

π
λ− 4

π
λ ln(λ) + μ2(λ)

because Ti2(λ) is an alternating series with terms of decreasing magnitude for
λ < 2 and that for λ ≤ 1, ln(λ) is nonnegative. For λ ∈ (1, 2), we can drop the
ln(λ) term for an upper bound. Consequently, using μ(λ) ≥

√
2λ/(1 + λ) from

remark A.1.3,
Eξ2(λ |X|)

μ(λ)2
≤ 1 + 2

(
λ+

4

π

(
1− ln(λ)

))
for λ ≤ 1, and

Eξ2(λ |X|)
μ(λ)2

≤ 1 +
9

2

(
λ+

4

π

)
for λ ∈ (1, 2).

Lemma A.3.5. For r > 0,

ln2(1 + ir) + ln2(1− ir) =
1

2
ln2(1 + r2)− 2 arctan2(r).

Proof. We are adding complex conjugates, so the left hand side is

2� ln2(1 + ir) = 2�
(
1

2
ln(1 + r2) + i arctan(r)

)2

= 2

(
1

4
ln2(1 + r2)− arctan2(r)

)
=

1

2
ln2(1 + r2)− 2 arctan2(r).

Lemma A.3.6. For ν > 0,

ln2(1 + ν
√
i) + ln2(1 + ν

√
−i)

=
1

8
ln2(1 + ν4)− 1

2
arctan2(ν2)

+
1

2
ln(1 + ν4)g(ν) + arctan(ν2)h(ν) +

1

2
(g2(ν)− h2(ν))

with

g(ν) = atanh

(
ν
√
2

1 + ν2

)
and h(ν) =

π

2
+ arctan

(
ν√
2
− 1

ν
√
2

)
.
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Proof. Using lemma B.1.7,

ln2(1 + ν
√
i) =

(
atanh(ν

√
i) +

1

2
ln(1− iν2)

)2

= atanh2(ν
√
i) + atanh(ν

√
i) ln(1− iν2) +

1

4
ln2(1− iν2)

and similarly

ln2(1 + ν
√
−i) =

(
atanh(ν

√
−i) +

1

2
ln(1 + iν2)

)2

= atanh2(ν
√
−i) + atanh(ν

√
−i) ln(1 + iν2) +

1

4
ln2(1 + iν2)

Adding yields several terms:

1 (ν) :=
1

4
ln2(1 + iν2) +

1

4
ln2(1− iν2)

2 (ν) := atanh(ν
√
i) ln(1− iν2) + atanh(ν

√
−i) ln(1 + iν2)

3 (ν) := atanh2(ν
√
i) + atanh2(ν

√
−i)

From lemma A.3.5,

1 (ν) =
1

4

(
1

2
ln2(1 + ν4)− 2 arctan2(ν2)

)
=

1

8
ln2(1 + ν4)− 1

2
arctan2(ν2).

We also have

2 (ν) = atanh(ν
√
i)

(
1

2
ln(1 + ν4)− i arctan(ν2)

)

+ atanh(ν
√
−i)

(
1

2
ln(1 + ν4) + i arctan(ν2)

)

=
1

2
ln(1 + ν4)

(
atanh(ν

√
i) + atanh(ν

√
−i)

)
− i arctan(ν2)

(
atanh(ν

√
i)− atanh(ν

√
−i)

)
=

1

2
ln(1 + ν4)g(ν) + arctan(ν2)h(ν).

Let

g(ν) := atanh(ν
√
i) + atanh(ν

√
−i)

= atanh

(
ν(
√
i+

√
−i)

1 + ν2
√
−i2

)
= atanh

(
ν
√
2

1 + ν2

)

by the atanh addition formula B.1.8, as
√
±i = (1 ± i)/

√
2 are conjugates of

each other.
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Let
h(ν) := −i

(
atanh(ν

√
i)− atanh(ν

√
−i)

)
.

Then

g2(ν)− h2(ν)

= atanh2(ν
√
i) + atanh2(ν

√
−i) + 2 atanh(ν

√
i) atanh(ν

√
−i)

+
(
atanh(ν

√
i)− atanh(ν

√
−i)

)2
= 2

(
atanh2(ν

√
i) + atanh2(ν

√
−i)

)
= 2 3 (ν).

So we are left to understand h(ν). By lemma A.3.7, it is

h(ν) =
π

2
+ arctan

(
ν√
2
− 1

ν
√
2

)
.

Lemma A.3.7. For ν > 0,

h(ν) := −i
(
atanh(ν

√
i)− atanh(ν

√
−i)

)
=

π

2
+ arctan

(
ν√
2
− 1

ν
√
2

)
.

Remark A.3.8. For ν < 1, we can rewrite the above as

π

2
− arctan

(
1− ν2

ν
√
2

)
= arctan

(
ν
√
2

1− ν2

)
.

Proof. We cannot directly use the atanh addition formula because there is a
singularity when ν crosses 1. However, by definition of atanh B.1.6, we can
convert h(ν) as follows, using

√
−i = −i

√
i

h(ν) := −i
(
atanh(ν

√
i)− atanh(ν

√
−i)

)
= −i

(
− i arctan(iν

√
i)− (−i) arctan(iν

√
−i)

)
= − arctan(iν

√
i) + arctan(ν

√
i).

We now use the inversion formula B.3.1 for arctan.

h(ν) = − arctan(iν
√
i) +

π

2
− arctan(1/(ν

√
i))

=
π

2
−

(
arctan(iν

√
i) + arctan(−i

√
i/ν)

)
The following identity holds

(
arctan(iν

√
i) + arctan(−i

√
i/ν)

)
= − arctan

(
ν√
2
− 1

ν
√
2

)
,

because both analytic expressions are 0 at ν = 1, and their derivatives match
for ν > 0.
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Appendix B: Polylogarithms and their friends

The polylogarithms Lib(z) arise when we compute or estimate the first and
second moments of the coordinate projections; they will help us give quantitative
bounds which are needed in some of the proofs. References for polylogarithms
are [11] and [14].

As initial motivation for studying such functions, we have the following
lemma.

Lemma B.0.1. Let X ∼ Cauchy (1) and ν > 0. Then for b > −1,

E lnb(1 + ν |X|) = Γ(b+ 1)

iπ
(Lib+1(1 + iν)− Lib+1(1− iν)).

Proof. We have

Ib(ν) := E lnb(1 + ν |X|) = 2

π

∫ ∞

0

lnb(1 + νx)

1 + x2
dx

Change variables u = 1 + νx and then t = ln(u) to find

Ib(ν) =
2ν

π

∫ ∞

0

tbet

(et − (1 + iν))(et − (1− iν))
dt.

Using partial fractions, we may write

Ib(ν) =
1

iπ

∫ ∞

0

tb
2iνet

(et − (1 + iν))(et − (1− iν))
dt

=
1

iπ

∫ ∞

0

tb(1 + iν)

et − (1 + iν)
− tb(1− iν)

et − (1− iν)
dt

=
Γ(b+ 1)

iπ
(Lib+1(1 + iν)− Lib+1(1− iν)).

by definition B.0.7. The polylogarithms are defined because ν > 0, and if b > 0,
the value at ν = 0 is also defined.

General references for complex analysis are [18] for proofs and [16] for in-
tuition. If z = x + iy ∈ C with x, y ∈ R, then �(z) := x and �(z) := y. If
z = reiθ = x + iy ∈ C, denote z∗ = re−iθ = x − iy for the complex conjugate.
Further |z|2 = zz∗ = x2 + y2. Thus, if w = seiφ, we have

(zw)∗ = (rsei(θ+φ))∗ = rse−i(θ+φ) = z∗w∗.

Further, if w �= 0, ∣∣∣ z
w

∣∣∣2 =
zz∗

ww∗ =
r2

s2
=

|z|2

|w|2
.

For us, analytic functions are synonymous with holomorphic ones. We shall
be using two theorems from complex analysis repeatedly. Cf. [18, page 52, 96].
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Theorem B.0.2 (Analytic Continuation). Let f and g be analytic functions in
a connected open subset Ω of C. If f(z) = g(z) for all z in a non-empty open
subset of Ω, then f(z) = g(z) throughout Ω.

Theorem B.0.3 (Primitives). Let f be an analytic function in a simply con-
nected subset Ω of C. Then for z0, z ∈ Ω, the function

F (z) :=

∫ z

z0

f(w) dw =

∫
γ

f(w) dw

is analytic too, with γ any path from z0 to z lying in Ω.

Definition B.0.4 (The Logarithm). For z = reiθ ∈ C − (−∞, 0], define (the
principle branch of) the logarithm of z, ln(z) as

ln(z) := ln(r) + iθ =

∫ z

1

dw

w

for any path from 1 to z in C− (−∞, 0].

Remark B.0.5. Note that ln(z∗) = ln(r)− iθ = ln(z)∗. The map w �→ 1/w takes
C− (−∞, 0] to itself; for if w = seiφ, with |φ| < π, then 1/w = (1/s)e−iφ which
also lives in C − (−∞, 0]. With this choice of principle branch, the logarithm
still satisfies − ln(1/w) = ln(w) via

− ln(1/w) = −(ln(1/s) + i(−φ)) = ln(s) + iφ = ln(w).

Similarly, note that if �(z),�(w) > 0, then zw = rsei(θ+φ) with |θ + φ| < π
so arg(zw) = θ + φ and

ln(zw) = ln(rs) + i(θ + φ) = ln(z) + ln(w)

in this case. However, the general identity ln(z1z2) = ln(z1) + ln(z2) does not
hold.

Definition B.0.6 (The Polylogarithm of Order 1). Define the polylogarithm
of order 1, Li1(z) as

Li1(z) :=

∞∑
j=1

zj

j
for |z| < 1

and

Li1(z) := − ln(1− z) = ln

(
1

1− z

)
for z ∈ C− [1,∞).

For general z, the domain makes sense, as 1 − z = −(z − 1) ∈ C − (−∞, 0]
for the z in question. Recall when |z| < 1,

− ln(1− z) =

∞∑
j=1

zj

j
,
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noting that both sides agree when z = 0, and upon differentiating,

d

dz

∞∑
j=1

zj

j
=

∞∑
j=0

zj =
1

1− z
=

d

dz
(− ln(1− z))

which means − ln(1− z) and the sum differ by a constant, namely 0.
The order of the polylogarithms may be extended; the general integral form

below will be useful for some of the computations later.

Definition B.0.7. For b > 0, define the polylogarithm of order b as

Lib(z) :=

∞∑
j=1

zj

jb
for |z| < 1

and

Lib(z) :=
1

Γ(b)

∫ ∞

0

ztb−1

et − z
dt =

1

Γ(b)

∫ ∞

0

ztb−1e−t

1− e−tz
dt.

for z ∈ C− [1,∞).

The nonintegral order polylogarithms also extend to the unit circle when the
order is greater than 1.

Lemma B.0.8. For b > 1 and z ∈ C with |z| = 1,

Lib(z) < b.

Proof. By definition,

Lib(z) =
∞∑
j=1

zj

jb
so that when |z| = 1, |Lib(z)| ≤

∞∑
j=1

|z|j

jb
=

∞∑
j=1

1

jb

The series is finite because b > 1; concretely, by the integral test (because 1/xb

is convex),

∞∑
j=1

1

jb
= 1 +

∞∑
j=2

1

jb
≤ 1 +

∫ ∞

1

1

xb
dx = 1 + (b− 1)

−1

xb−1
|∞1 = b < ∞.

Lemma B.0.9. For z ∈ (C− R) ∪ (−1, 1) and b > 0,

Lib(z) + Lib(−z) =
1

2b−1
Lib(z

2).

If b > 1, the equality also holds when z = ±1.

Remark B.0.10. When b = 1, recover

ln(1− z) + ln(1 + z) = −
(
Li1(z) + Li1(−z)

)
= −Li1(z

2) = ln(1− z2).
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Proof. First assume |z| < 1. From the power series,

Lib(z) + Lib(−z) =

∞∑
j=1

zj + (−z)j

jb
=

∞∑
j=1

zj
1 + (−1)j

jb

= 2

∞∑
j=1

z2j

(2j)b
=

1

2b−1

∞∑
j=1

(z2)j

jb
=

1

2b−1
Lib(z

2).

Both sides are analytic functions on (C−R)∪(−1, 1), so by analytic continuation,
the identity continues to hold there. If b > 1, the power series are also defined
at z = ±1.

A useful property of the polylogarithms and the logarithm that we shall use
repeatedly in computations is that they are all symmetric about the real axis,
that is, Lib(z

∗)∗ = Lib(z) or concretely

�Lib(z
∗) = �Lib(z) and �Lib(z

∗) = −�Lib(z).

Powers and polynomials of such functions also have this property. Intuitively this
symmetry follows from the real coeffecients in their power series expansions, so
that Li(x) ∈ R when x < 1. Rigorously, we use the Schwarz reflection principle;
because Lib(z) is analytic in C − [1,∞) when 0 ≤ arg(z) < π and real valued
on (−∞, 1), Lib(z) may be extended to the rest of C − [1,∞) in an analytic
fashion. Analytic continuation then dictates that this extension coincides with
the original definition of Lib(z). See [18] pages 57–59 for the Schwarz reflection
principle, page 56 for showing the integral definitions of Lib(z) are analytic, and
page 52 for the principle of analytic continuation.

B.1. Arctan and the inverse tangent integrals

The function t �→ arctan(t) is proportional to the distribution function of |X|
with X ∼ Cauchy (1). It is then perhaps not surprising that arctan and its
relatives arise in working with functions of Cauchy random variables. We outline
the properties we shall be using here.

The following definition is opaque but most useful to us.

Definition B.1.1. Define arctan(z) as

arctan(z) :=

∞∑
j=0

(−1)j
z2j+1

2j + 1
for |z| < 1,

and

arctan(z) =

∫ z

0

1

1 + w2
dw for z ∈ (C− iR) ∪ (−i, i).

Equivalently,

arctan(z) :=
1

2i
(ln(1 + iz)− ln(1− iz)) =

1

2i
(Li1(iz)− Li1(−iz)).
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Remark B.1.2. From the integral formulation, we also immediately have, with
v = −w,

arctan(−z) =

∫ −z

0

1

1 + w2
dw = −

∫ z

0

1

1 + (−v)2
dv = − arctan(z).

The last definition for arctan(z) follows from

d

dz

1

2i
(ln(1 + iz)− ln(1− iz)) =

1

2i

(
i

1 + iz
− (−i)

1− iz

)

=
1

2

(
1

1 + iz
+

1

1− iz

)
=

1

1 + z2
=

d

dz
arctan(z)

and that arctan(0) = 0.

We can generalize.

Definition B.1.3. For z ∈ C−iR∪(−i, i) and b > 0, define the inverse tangent
integral of order b as

Tib(z) :=

∞∑
j=0

(−1)j
z2j+1

(2j + 1)b
for |z| < 1

and

Tib(z) =
Lib(iz)− Lib(−iz)

2i
for z ∈ C− iR ∪ (−i, i).

Remark B.1.4. Note if |y| < 1, we find

Lib(iy)− Lib(−iy) =

∞∑
j=1

(iy)j − (−iy)j

jb
=

∞∑
j=1

ij
yj

jb
(1− (−1)j)

= 2

∞∑
j=0

i2j+1 y2j+1

(2j + 1)b
= 2i

∞∑
j=0

(−1)j
y2j+1

(2j + 1)b
=: 2iTib(y) ∈ iR.

Hence,

Tib(y) =
Lib(iy)− Lib(−iy)

2i

when |y| < 1 and b > 0. The right hand side continues to make sense for
y ∈ (C− iR) ∪ (−i, i), so we may define

Tib(z) :=
Lib(iz)− Lib(−iz)

2i

as an analytic function on z ∈ (C − iR) ∪ (−i, i) that agrees with the power
series on the interior of the unit circle.

Remark B.1.5. In particular, we have Ti1(z) = arctan(z).

To focus on the behavior of arctan on (−i, i) which was not addressed in
the inversion formula B.3.1, we change points of view through a rotation of the
complex plane.
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Definition B.1.6. Define the function atanh as

atanh(x) =

∞∑
j=0

x2j+1

2j + 1
for |x| < 1,

and as

atanh(z) =

∫ z

0

1

1− w2
dw = −i arctan(iz) for z ∈ (C− R) ∪ (−1, 1).

or equivalently as

atanh(z) =
1

2
(ln(1 + z)− ln(1− z)) =

1

2
(Li1(z)− Li1(−z)).

To see that the definitions are consistent, note first from the power series,
atanh(0) = 0 = arctan(0), while on the other hand,

d

dz
(−i) arctan(iz) =

(−i)

1 + (iz)2
(i) =

1

1− z2
=

d

dz
atanh(z).

Lemma B.1.7. Let z ∈ (C− R) ∪ (−1, 1) then

ln(1 + z) = atanh(z) +
1

2
ln(1− z2).

Proof. Just split into even and odd degree terms.

Li1(z) =

∞∑
j=1

zj

j
=

∞∑
j=0

z2j+1

(2j + 1)
+

∞∑
j=1

z2j

(2j)
= atanh(z) +

1

2

∞∑
j=1

(z2)j

j

= atanh(z) +
1

2
Li1(z

2).

The equality extends to (C− R) ∪ (−1, 1) as both sides are analytic there. We
now have

ln(1+z) = −Lib(−z) = − atanh(−z)+
1

2
ln(1−(−z)2) = atanh(z)+

1

2
ln(1+z2)

as desired.

Here is the addition formula.

Lemma B.1.8 (Atanh Addition Formula). If −1 < x, y < 1,

atanh(x) + atanh(y) = atanh

(
x+ y

1 + xy

)
.

If z ∈ C− R,

atanh(z) + atanh(z∗) = atanh

(
2�(z)
1 + |z|2

)
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Proof. Because atanh is odd, the addition formula also covers subtraction too.
Check that

d

dz
atanh

(
z + w

1 + zw

)
=

1

1− z2
=

d

dz
atanh(z).

So

atanh

(
z + w

1 + zw

)
= atanh(z) + c

with c a constant. Taking z = 0 forces c = atanh(w) as desired.
For z, w ∈ (C− R) ∪ (−1, 1), let

f(z, w) :=
z + w

1 + zw
.

We want to know when f(z, w) also lies in the domain of atanh. When w = z∗,∣∣∣∣ z + z∗

1 + zz∗

∣∣∣∣ ≤ 2 |�(z)/ |z||
1
|z| + |z|

≤ 2
1
|z| + |z|

≤ 1√
|z| / |z|

= 1.

by the AM-GM inequality. The equality case occurs just if |z| = 1, but in that
case, |�(z)| / |z| < 1 as z = ±1 is not allowed for atanh. We are thus ok for all
z ∈ (C− R) ∪ (−1, 1) in this w = z∗ case.

When x, y ∈ (−1, 1), we may consider

∂xf(x, y) =
1

1 + xy
− (x+ y)

(1 + xy)2
y =

1

(1 + xy)2
(1+xy−xy−y2) =

1− y2

(1 + xy)2
> 0

and by symmetry, ∂yf(x, y) > 0. So f is increasing in each of the individual
coordinates. In particular, when −1 < x < y < 1,

2x

1 + x2
= f(x, x) < f(x, y) < f(y, y) =

2y

1 + y2
.

For each permutation of x, y, and 0, check that

|f(x, y)| < 2t

1 + t2
< 1 with t = max {|x| , |y|} ,

by the AM-GM inequality, with strict inequality because |x| , |y| < 1.

B.2. Dilogarithm properties

The dilogarithm is the polylogarithm of order 2.

Lemma B.2.1 (Reflection Formula). For z ∈ (C− R) ∪ (0, 1),

Li2(z) + Li2(1− z)− Li2(1) = − ln(z) ln(1− z).
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Proof. (Compare to [11, page 5].) Consider

d

dz
(Li2(z) + Li2(1− z)) =

Li1(z)

z
+

Li1(1− z)

1− z
(−1) =

− ln(1− z)

z
+

ln(z)

1− z
.

On the other hand,

d

dz
(− ln(z) ln(1− z)) =

− ln(1− z)

z
+

ln(z)

1− z
.

Because the domain (C − R) ∪ (0, 1) is simply connected and the derivative
above is analytic there, we have

− ln(z) ln(1− z) + ln(z0) ln(1− z0)

= Li2(z) + Li2(1− z)− (Li2(z0) + Li2(1− z0))

for some z0 which we may take to lie on (0, 1). Taking the limit as z0 → 0 is
safe, as the Taylor series for ln(1 − z0) ensures ln(z0) ln(1− z0) → 0, while the
dilogarithm is continuous on (−∞, 1]. Hence,

− ln(z) ln(1− z) = Li2(z) + Li2(1− z)− Li2(1)

as desired. Note that proving the identity via integration by parts has to make
this same limiting argument.

B.3. Inversion formulas

The following lemma allows us to describe the survival function of |X| with
X ∼ Cauchy (1) in a convenient way. Note that the survival function for |X|
will only consider z = x > 0.

Lemma B.3.1. For z ∈ C− iR,

arctan(z) + arctan

(
1

z

)
=

{
π/2 if �(z) > 0

−π/2 if �(z) < 0.

Remark B.3.2. On the imaginary axis, arctan(ir) = i atanh(r) and atanh is
only defined for r ∈ (−1, 1) so 1/r does not make sense there. Consequently
the domain in question has two connected components, so different constants
should not be unexpected.

Proof. First note that the left hand side is a constant

d

dz

(
arctan(z) + arctan

(
1

z

))
=

1

1 + z2
+

1

1 + z−2

−1

z2
= 0.

The constant is determined by representative points z = ±1 in the right and
left hand planes respectively.
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