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Abstract: Several classical methods exist for controlling the false discov-
ery exceedance (FDX) for large-scale multiple testing problems, among
them the Lehmann-Romano procedure (Lehmann and Romano 2005) ([LR]
below) and the Guo-Romano procedure (Guo and Romano 2007) ([GR]
below). While these two procedures are the most prominent, they were
originally designed for homogeneous test statistics, that is, when the null
distribution functions of the p-values Fi, 1 ≤ i ≤ m, are all equal. In many
applications, however, the data are heterogeneous which leads to hetero-
geneous null distribution functions. Ignoring this heterogeneity induces a
lack of power. In this paper, we develop three new procedures that incorpo-
rate the Fi’s, while maintaining rigorous FDX control. The heterogeneous
version of [LR], denoted [HLR], is based on the arithmetic average of the
Fi’s, while the heterogeneous version of [GR], denoted [HGR], is based on
the geometric average of the Fi’s. We also introduce a procedure [PB], that
is based on the Poisson-binomial distribution and that uniformly improves
[HLR] and [HGR], at the price of a higher computational complexity. Per-
haps surprisingly, this shows that, contrary to the known theory of false
discovery rate (FDR) control under heterogeneity, the way to incorporate
the Fi’s can be particularly simple in the case of FDX control, and does not
require any further correction term. The performances of the new proposed
procedures are illustrated by real and simulated data in two important
heterogeneous settings: first, when the test statistics are continuous but
the p-values are weighted by some known independent weight vector, e.g.,
coming from co-data sets; second, when the test statistics are discretely dis-
tributed, as is the case for data representing frequencies or counts. Our new
procedures are implemented in the R package FDX, see Junge and Döhler
(2020).
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1. Introduction

1.1. Background

When many statistical tests are performed simultaneously, a ubiquitous way
to account for the erroneous rejections of the procedure is the false discovery
proportion (FDP), that is, the proportion of errors in the rejected sets, as in-
troduced in the seminal paper Benjamini and Hochberg (1995). Most of the
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related literature focuses on the expected value of this quantity, which is the
false discovery rate (FDR), e.g., building procedures that improve the original
Benjamini-Hochberg procedure by trying to adapt to some underlying structure
of the data. In particular, a fruitful direction is to take into account the heteroge-
neous structure of the different tests. Heterogeneity may originate from various
sources. The two main examples we have in mind, and which have been inten-
sively investigated in the statistical literature recently, is heterogeneity caused
by p-value weighting and discrete data.

Weighting p-values is a well-established and popular approach to improve the
performance of multiple testing procedures. It can be traced back to Holm (1979)
and that has been further developed specifically for FDR in, e.g., Genovese et al.
(2006); Blanchard and Roquain (2008); Hu et al. (2010); Zhao and Zhang (2014);
Ramdas et al. (2017). Here, the heterogeneity can be driven for instance by
sample size, groups, or more generally by some covariates. In particular, finding
optimal weighting in the sense of maximizing the number of true rejections
has been investigated in Wasserman and Roeder (2006); Rubin et al. (2006);
Roquain and van de Wiel (2009); Ignatiadis et al. (2016); Durand (2019). As
a result, the weighted p-values have heterogeneous null distribution functions
{Fi, 1 ≤ i ≤ m} that must be properly taken into account by multiple testing
procedures.

On the other hand, multiple testing for discrete distributions is a well iden-
tified research field (Tarone, 1990; Westfall and Wolfinger, 1997; Gilbert, 2005)
that has received a growing attention in the last decade, see e.g., Heyse (2011);
Heller and Gur (2011); Dickhaus et al. (2012); Habiger (2015); Chen et al.
(2015); Döhler (2016); Chen et al. (2018); Döhler et al. (2018); Durand et al.
(2019) and references therein. The most typical setting occurs when the data
for each test is given by a contingency table. In that situation, the heterogene-
ity is induced by the fact that marginal counts naturally vary from one table
to another. The approach is then to suitably combine the heterogeneous null
distributions in order to compensate the natural conservativeness of individual
discrete tests. Heyse (2011), for instance, uses the transform

F (t) = m−1
m∑
i=1

Fi(t), t ∈ [0, 1], (1)

and applies the BH procedure to the transformed p-values {F (pi), 1 ≤ i ≤ m}.
Unfortunately, this method does not rigorously control the FDR, as it has been
proven in Döhler (2016); Döhler et al. (2018). Appropriate corrections of the
F expression have been proposed in Döhler et al. (2018) in order to recover a
rigorous FDR control.

1.2. FDX control

A common criticism of FDR is that it captures only the average behavior of
the FDP. In particular, controlling the FDR does not prevent the FDP from
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possessing undesirable fluctuations and we may aim at stochastically controlling
the FDP in other ways. The most common alternative approach is to control
the false probability exceedance (FDX) by requiring

FDX = P(FDP > α) ≤ ζ. (2)

for α, ζ ∈ (0, 1). This corresponds to controlling the (1 − ζ)-quantile of the
FDP distribution at level α, see, e.g., Genovese and Wasserman (2004); Per-
one Pacifico et al. (2004); Korn et al. (2004); Lehmann and Romano (2005);
Genovese and Wasserman (2006); Romano and Wolf (2007); Guo et al. (2014);
Delattre and Roquain (2015) and see Tan et al. (2019); Basu et al. (2020) for
recent applications. Let us also mention that studying the probabilistic fluctu-
ations of the FDP process is of interest in its own, see, e.g., Neuvial (2008);
Roquain and Villers (2011); Delattre and Roquain (2011, 2016); Ditzhaus and
Janssen (2019) and that controlling these fluctuations is used for various aims,
as building FDP-confidence envelopes and post hoc bounds, see Genovese and
Wasserman (2006); Goeman and Solari (2011); Hemerik et al. (2019); Katsevich
and Ramdas (2020); Blanchard et al. (2020).

Among multiple testing procedures, step-down procedures have been shown
to be particularly useful for FDX control. Two prominent step-down procedures
have been proven to control the FDX under various distributional assumptions:

• The Lehmann-Romano procedure [LR], introduced in Lehmann and Ro-
mano (2005), is defined as the step-down procedure with critical values

τLR

� = ζ
�α��+ 1

m(�)
, 1 ≤ � ≤ m, (3)

where we denote
m(�) = m− �+ �α��+ 1. (4)

It has been shown to control the FDX under various dependence assump-
tions between the p-values, e.g., when each p-value under the null is inde-
pendent of the family of the p-values under the alternative (Theorem 3.1
in Lehmann and Romano (2005)), which we will refer to (Indep0) below,
or when the Simes inequality holds true among the family of true null
p-values (Theorem 3.2 in Lehmann and Romano (2005)). Note that under
the latter condition, it has also been proven later that the step-up version
of [LR], that is, the step-up procedure using the critical values (3) also
controls the FDX, see the proof of Theorem 3.1 in Guo et al. (2014).

• The procedure [LR] has been improved by the Guo-Romano procedure
[GR], see Guo and Romano (2007), defined as the step-down procedure
with critical values

τGR

� = max{t ∈ [0, 1] : P( Bin[m(�), t] ≥ �α��+ 1) ≤ ζ}, 1 ≤ � ≤ m,
(5)

where Bin[n, p] denotes any random variable following a binomial distri-
bution with parameters n and p. While rejecting more hypotheses than
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[LR], the procedure [GR] controls the FDX under a stronger assumption:
the null p-value family contains mutually independent variables and it is
independent of the alternative p-value family, which we refer to (Indep)
below.

1.3. Contributions

To our knowledge, FDX control under heterogeneity has been studied scarcely,
see Genovese et al. (2006); Basu et al. (2020), and in some specific situations
only. More precisely, Genovese et al. (2006) proposed such a control for weighted
p-values via an augmentation type approach (see e.g., Dudoit and van der Laan,
2007), while the procedure in Basu et al. (2020) is developed in an empirical
Bayes setting and thus corresponds to a Bayesian FDX control.

The global aim of our paper is to provide a general view on (frequentist)
FDX control under heterogeneity by incorporating the null distribution func-
tions {Fi, 1 ≤ i ≤ m} of the p-values. To this end, we introduce suitable modifi-
cations of procedures [LR] and [GR]. More specifically, the contributions of this
work are as follows:

• we introduce the heterogeneous Lehmann Romano procedure [HLR], which
controls the FDX under (Indep0) and is a uniform improvement of [LR]
(when the marginals of the null p-values are super-uniform, see (SuperUnif)
further on);

• we introduce the heterogeneous Guo Romano procedure [HGR], which
controls the FDX under (Indep) and is a uniform improvement of [GR]
(under (SuperUnif));

• at the price of additional computational complexity, we introduce the
Poisson-binomial procedure [PB], which controls the FDX under (Indep)
and is a uniform improvement of [HLR] and [HGR];

• we apply this new technology to weighted p-values to provide the first
weighted procedures that control the FDX (to our knowledge), called
[wLR] and [wGR]. They are able to improve their non-weighted coun-
terparts [LR] and [GR], respectively, see Section 4;

• in the discrete context, the new induced procedures [DLR], [DGR] are
shown to be uniform improvements with respect to the continuous pro-
cedures [LR] and [GR], respectively. To the best of our knowledge, these
are the first FDX controlling procedures tailored specifically to discrete
p-value distributions. The improvement can be substantial, as we show
both with simulated and real data examples, see Section 5.

The paper is organized as follows: Section 2 introduces the statistical setting,
the procedures and FDX criterion, as well as a shortcut to compute our step-
down procedures without evaluating the critical values. Section 3 is the main
section of the paper, which introduces the new heterogeneous procedures and
establishes their FDX controlling properties. Our methodology is then applied
in two particular frameworks: new weighted procedures controlling the FDX
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are derived in Section 4 while Section 5 is devoted to the case where the tests
are discrete. Both sections include numerical illustrations. A discussion is pro-
vided in Section 6 and most of technical details are deferred to Appendix A.
Appendix B gives additional numerical details for the simulations.

2. Framework

2.1. Setting

We use here a classical formal setting for heterogeneous nulls, see e.g., Döhler
et al. (2018). We observe X, defined on an abstract probabilistic space, valued in
an observation space (X ,X) and generated by a distribution P that belongs to
a set P of possible distributions. We consider m null hypotheses for P , denoted
H0,i, 1 ≤ i ≤ m, and we denote the corresponding set of true null hypotheses
by H0(P ) = {1 ≤ i ≤ m : H0,i is satisfied by P}. We also denote by H1(P )
the complement of H0(P ) in {1, . . . ,m} and by m0(P ) = |H0(P )| the number
of true nulls.

We assume that there exists a set of p-values that is, a set of random variables
{pi(X), 1 ≤ i ≤ m}, valued in [0, 1]. We introduce the following dependence
assumptions between the p-values:

for all P ∈ P , {pi(X), i ∈ H0(P )} is independent of {pi(X), i ∈ H1(P )};

(Indep0)

(Indep0) holds and for all P ∈ P , {pi(X), i ∈ H0(P )}
consists of independent variables.

(Indep)

Note that (Indep0) and (Indep) are both satisfied when all the p-values pi(X),
1 ≤ i ≤ m, are mutually independent in the model P . The (maximum) null
cumulative distribution function of each p-value is denoted

Fi(t) = sup
P∈P : i∈H0(P )

{PX∼P (pi(X) ≤ t)}, t ∈ [0, 1], 1 ≤ i ≤ m. (6)

We let F = {Fi, 1 ≤ i ≤ m} that we assume to be known and we consider the
following possible situations for the functions in F :

for all i ∈ {1, . . . ,m}, Fi is continuous on [0, 1] (Cont)

for all i ∈ {1, . . . ,m}, there exists some finite set Ai ⊂ [0, 1] such that
Fi is a step function, right continuous, that jumps only at some points of Ai.

(Discrete)

The case (Discrete) typically arises when for all P ∈ P and i ∈ {1, . . . ,m},
PX∼P (pi(X) ∈ Ai) = 1 for some given finite sets Ai ⊂ [0, 1]. Throughout the
paper, we will assume that we are either in the case (Cont) or (Discrete) and
we denote A = ∪m

i=1Ai, with by convention Ai = [0, 1] when (Cont) holds. For
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comparison with the homogeneous case, we will also make use of the following
classical assumption:

for all i ∈ {1, . . . ,m}, Fi(t) ≤ t for all t ∈ [0, 1]. (SuperUnif)

Remark 2.1. Condition (Discrete) above requires that the sets Ai are finite.
While this condition is met, e.g., when Fisher’s exact tests are performed, it
is not satisfied for other classical discrete tests, as the one-sided Poisson test
for instance. Interestingly, we can also deal with such cases, because all our
results remain valid when the sets Ai are countable with zero as only possible
accumulation point.

2.2. False discovery exceedance and step-down procedures

In general, a multiple testing procedure is defined as a random subset R =
R(X) ⊂ {1, . . . ,m} which corresponds to the indices of the rejected nulls. For
α ∈ (0, 1), the false discovery exceedance of R is defined as follows:

FDXα(R,P ) = PX∼P

(
|R(X) ∩H0(P )|

|R(X)| ∨ 1
> α

)
, P ∈ P . (7)

In this paper, we consider particular multiple testing procedures, called step-
down procedures. Given some p-value family (pi)1≤i≤m and some non-decreasing
sequence (τ�)1≤�≤m ∈ [0, 1]m, the step-down procedure with critical values
(τ�)1≤�≤m ∈ [0, 1]m rejects the null hypotheses corresponding to the set

R = {i ∈ {1, . . . ,m} : pi(X) ≤ τ�̂} where (8)

�̂ = max{� ∈ {0, . . . ,m} : ∀�′ ≤ �, pσ(�′) ≤ τ�′}, (convention pσ(0) = 0),
(9)

for which pσ(1) ≤ · · · ≤ pσ(m) denotes the p-values {pi(X), 1 ≤ i ≤ m} ordered
increasingly (for some data-dependent permutation σ).

2.3. Transformation function family and computational shortcut

In this paper, the critical values will be obtained by inverting specific functionals,
that is,

τ� = ξ−1
� (ζ) = max{t ∈ A : ξ�(t) ≤ ζ}, (τ� = 0 if the set is empty), 1 ≤ � ≤ m,

(10)
for ξ� : [0, 1] �→ [0,∞), 1 ≤ � ≤ m, a given set of functions. In order for (10) to
be well-defined and the corresponding � �→ τ� to be non-decreasing, we will say
that the function set {ξ�, 1 ≤ � ≤ m} is a transformation function family if it
satisfies the following conditions:

for all � ∈ {1, . . . ,m}, ξ� is a non-decreasing function;
for all t ∈ [0, 1] and all � ∈ {1, . . . ,m− 1}, we have ξ�+1(t) ≤ ξ�(t);
in case (Cont), for all � ∈ {1, . . . ,m}, ξ� is continuous on [0, 1].

(11)
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For instance, the critical values of the procedure [LR] can be rewritten as (10)
for the functions

ξLR

� (t) =
m(�)

�α��+ 1
t, t ∈ [0, 1], 1 ≤ � ≤ m. (12)

We easily check that the function set {ξLR

� , 1 ≤ � ≤ m} is a family of transfor-
mation functions (in the sense of (11)). Indeed, m−�+i

i is non-increasing both
in � ∈ {1, . . . ,m} and i ∈ {1, . . . , �αm�+ 1}. A second example is given by the
procedure [GR] for which

ξGR

� (t) = P(Bin[m(�), t] ≥ �α��+ 1), 1 ≤ � ≤ m, t ∈ [0, 1], (13)

can be proved to form a family of transformation functions. Indeed, the only non-
obvious argument to prove (11) is that for a fixed t ∈ [0, 1], and � ∈ {1, . . . ,m−1}
we have ξGR

�+1(t) ≤ ξGR

� (t). This is due to the fact that P(Bin[m− �+ i, t] ≥ i) =
P( Bin[m− �+ i, 1− t] ≤ m− �) is non-increasing both in i and �.

Finally, because of the inversion, computing the critical values via (10) can
be time consuming. Fortunately, computing the critical values is actually not
necessary if we are solely interested in determining the rejection set R given
by (8). As the following result shows, we can determine R by working directly
with the transformation functions.

Proposition 2.1. Let us consider any transformation function family {ξ�, 1 ≤
� ≤ m} and the corresponding critical values τ�, 1 ≤ � ≤ m, defined by (10).
Then, for all P ∈ P, with P -probability 1, the step-down procedure R with
critical values (τ�)1≤�≤m can equivalently be written as

R = {i ∈ {1, . . . ,m} : p̃i ≤ ζ}; (14)

p̃i = max
1≤�≤m
pσ(�)≤pi

{ξ�(pσ(�))}, 1 ≤ i ≤ m. (15)

Proposition 2.1 is proved in Appendix A.2.

3. New FDX controlling procedures

In this section, we introduce new procedures R that control the false discovery
exceedance at some level ζ ∈ (0, 1), that is,

for all P ∈ P , FDXα(R,P ) ≤ ζ, (16)

while incorporating the family {Fi, 1 ≤ i ≤ m} in an appropriate way.

3.1. Tool

Our main mathematical tool is the following bound: For any step-down proce-
dure R with critical values τ = (τ�)1≤�≤m, we have

sup
P∈P

{FDXα(R,P )} ≤ B(τ, α) (17)
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for B(τ, α) = sup
1≤�≤m

sup
P∈P

|H0(P )|≤m(�)

PX∼P

⎛
⎝ ∑

i∈H0(P )

1{pi(X) ≤ τ�} ≥ �α��+ 1

⎞
⎠ .

(18)

Inequality (17) is valid under the distributional assumption (Indep0). This
bound comes from a reformulation of Theorem 5.2 in Roquain (2011) in our
heterogenous framework, see Theorem A.1 in Appendix A below. Our new pro-
cedures are derived by further upper-bounding B(τ, α) via various probabilistic
devices. More specifically, we will introduce several transformation function fam-
ilies {ξ�, 1 ≤ � ≤ m} such that for all τ = {τ�}�,

B(τ, α) ≤ sup
1≤�≤m

{ξ�(τ�)}.

According to (17), the step-down procedure using the corresponding critical
values (10) will then control the FDX in the sense of (16).

3.2. Heterogeneous Lehmann-Romano procedure

By using the Markov inequality, we obtain

B(τ, α) ≤ sup
1≤�≤m

sup
P∈P

|H0(P )|≤m(�)

∑
i∈H0(P ) Fi(τ�)

�α��+ 1
= sup

1≤�≤m

∑m(�)
j=1 F(j)(τ�)

�α��+ 1
, (19)

where F(1)(t) ≥ · · · ≥ F(m)(t) denotes the values of {Fi(t), 1 ≤ i ≤ m} ordered
decreasingly. Bounding the above quantity by ζ entails the following procedure.

Definition 3.1. The heterogeneous Lehmann-Romano procedure, denoted by
[HLR], is defined as the step-down procedure using the critical values defined by

τHLR

� = max{t ∈ A : ξHLR

� (t) ≤ ζ}, 1 ≤ � ≤ m; (20)

ξHLR

� (t) =

∑m(�)
j=1 F(j)(t)

�α��+ 1
, 1 ≤ � ≤ m, t ∈ [0, 1], (21)

where F(1)(t) ≥ · · · ≥ F(m)(t) denotes the values of {Fi(t), 1 ≤ i ≤ m} ordered
decreasingly and m(�) is defined by (4).

The quantity ξHLR

� (t) is thus similar to ξLR

� (t), in which t has been replaced
by the average of the m(�) largest values of {Fi(t), 1 ≤ i ≤ m}. To check that
the set {ξHLR

� , 1 ≤ � ≤ m} is a transformation function family in the sense

of (11), we note that 1
m(�)

∑m(�)
j=1 F(j)(t) is non-increasing in � (averaging on

smaller values makes the average smaller) and continuous in t under (Cont)
(because t �→ (Fi(t))1≤i≤m is continuous in that case and x ∈ (Rm, ‖ · ‖∞) �→
N−1

∑N
k=1 x(k) ∈ (R, |·|) is 1-Lipschitz for any N ∈ {1, . . . ,m}, see Lemma A.2).

In the classical case (SuperUnif), we have ξHLR

� (t) ≤ ξLR

� (t) for all t ∈ [0, 1]
and 1 ≤ � ≤ m. Hence, [HLR] is less conservative than [LR] in that situation.
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A technical detail is that this only holds almost surely because the range A
in (20) can be different from [0, 1] in the case (Discrete). We have established
the following result.

Proposition 3.1. In the setting defined in Section 2.1, the procedure [HLR]
satisfies the following

• Under (Indep0), [HLR] controls the FDX in the sense (16);
• Under (SuperUnif), the set of nulls rejected by [HLR] contains the one of

[LR] with P -probability 1, for all P ∈ P.

3.3. Poisson-binomial procedure

Here, we propose to bound (18) by using the Poisson-binomial distribution.
To this end, recall that the Poisson-Binomial distribution of parameters π =
(πi)1≤i≤n ∈ [0, 1]n, denoted PBin[π] below, corresponds to the distribution
of

∑n
i=1 εi, where the εi are all independent and each εi follows a Bernoulli

distribution of parameter πi for 1 ≤ i ≤ n.
First note that for all i ∈ H0(P ) and t ∈ [0, 1], we have that 1{pi(X) ≤ t} is

stochastically upper bounded by a Bernoulli variable of parameter Fi(t), see (6).
As a consequence, by assuming (Indep), we have for all critical values (τ�)1≤�≤m,

B(τ, α) ≤ sup
1≤�≤m

sup
A⊂{1,...,m}
|A|≤m(�)

P (PBin [(Fi(τ�))i∈A] ≥ �α��+ 1)

= sup
1≤�≤m

P
(
PBin

[
(F(j)(τ�))1≤j≤m(�)

]
≥ �α��+ 1

)
. (22)

Bounding the latter by ζ leads to the following procedure.

Definition 3.2. The Poisson-binomial procedure, denoted by [PB], is defined
as the step-down procedure using the critical values

τPB

� = max{t ∈ A : ξPB

� (t) ≤ ζ}, 1 ≤ � ≤ m; (23)

ξPB

� (t) = P
(
PBin

[
(F(j)(t))1≤j≤m(�)

]
≥ �α��+ 1

)
, 1 ≤ � ≤ m, t ∈ [0, 1],

(24)

where F(1)(t) ≥ · · · ≥ F(m)(t) denotes the values of {Fi(t), 1 ≤ i ≤ m} ordered
decreasingly and m(�) is defined by (4).

Let us now check that {ξPB

� , 1 ≤ � ≤ m} is a transformation function family,
that is, it satisfies (11). The continuity assumption holds because, under (Cont),
the mapping t ∈ [0, 1] �→ (F(j)(t))1≤j≤m(�) is continuous (argument similar to
above) and the cumulative distribution function of PBin[π] is a continuous
function of π ∈ [0, 1]n. The monotonic property ξHGR

�+1 (t) ≤ ξHGR

� (t) comes from

the fact that the probability P(PBin
[
(F(j)(t))1≤j≤m−�+i

]
≥ i) is equal to

P(PBin
[
(1− F(j)(t))1≤j≤m−�+i

]
≤ m − �), which is non-increasing both in

i and �.
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In addition, under (SuperUnif), the distribution PBin
[
(F(j)(t))1≤j≤m(�)

]
is

stochastically smaller than the distribution Bin[m(�), t]. We have proved the
following holds.

Proposition 3.2. In the setting defined in Section 2.1, the procedure [PB] sat-
isfies the following

• Under (Indep), [PB] controls the FDX in the sense (16);
• Under (SuperUnif), the set of nulls rejected by [PB] contains the one of

[GR] with P -probability 1, for all P ∈ P.

Note that the procedure [PB] relies on Poisson-binomial tail probabilities,
see (24), which is computationally more demanding than using the binomial
distribution. Nevertheless, algorithms are available and implemented in software
for determining these probabilities (see Junge (2020) and the references given
there). The critical values in (23) can subsequently be determined by using a
standard numerical root finding algorithm (for details, see (Junge and Döhler,
2020)).

To avoid determining Poisson-binomial tail probabilities, we can use a slightly
conservative approach, only relying on the binomial distribution, which we de-
scribe in the next section.

3.4. Heterogeneous Guo-Romano procedure

In this section, we further upper-bound (25) by using that any PBin [(πi)1≤i≤n]

variable is stochastically upper-bounded by a Bin
[
n, 1− (

∏n
i=1(1− πi))

1/n
]

variable (see Example 1.A.25 in Shaked, M. and Shanthikumar, J.G., 2007).
This yields

B(τ, α) ≤ sup
1≤�≤m

P
(
Bin

[
m(�), F̃m(�)(τ�)

]
≥ �α��+ 1

)
, (25)

where we let

F̃j(t) = 1−

⎛
⎝ j∏

j′=1

(1− F(j′)(t))

⎞
⎠

1/j

, 1 ≤ j ≤ m, t ∈ [0, 1], (26)

where F(1)(t) ≥ · · · ≥ F(m)(t) denotes the values of {Fi(t), 1 ≤ i ≤ m} ordered
decreasingly.

This reasoning suggests another heterogeneous procedure, based on the bi-
nomial distribution. Since [GR] also uses the binomial device, we name this new
procedure the heterogeneous Guo-Romano procedure.

Definition 3.3. The heterogeneous Guo-Romano procedure, denoted by [HGR],
is defined as the step-down procedure using the critical values defined by

τHGR

� = max{t ∈ A : ξHGR

� (t) ≤ ζ}, 1 ≤ � ≤ m; (27)
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ξHGR

� (t) = P
(
Bin

[
m(�), F̃m(�)(t)

]
≥ �α��+ 1

)
, 1 ≤ � ≤ m, t ∈ [0, 1], (28)

where F̃j(t) is defined in (26) and m(�) is defined by (4).

The condition (11) also holds in that case. However, the proof of monotonicity
of ξHGR

� (t) is slightly more involved than above and is deferred to Lemma A.1. In

addition, since under (SuperUnif) we have F̃m(�)(t) ≤ t, we deduce that [HGR],
although more conservative than [PB], is still an uniform improvement over
[GR].

Proposition 3.3. In the setting defined in Section 2.1, the procedure [HGR]
satisfies the following

• Under (Indep), [HGR] controls the FDX in the sense (16);
• Under (SuperUnif), the set of nulls rejected by [HGR] contains the one of

[GR] with P -probability 1, for all P ∈ P.

Remark 3.1. The numerical results in Sections 4 and 5 suggest that the con-
servatism of [HGR] with respect to [PB] is usually quite small. In addition, since
the computational effort required by [HGR] is comparable to that of [GR], the
gain in efficiency may be great, especially for large m. We therefore think that
[HGR] may be especially useful for very high dimensional heterogeneous data.

Remark 3.2. We can also define a non-adaptive version of [HGR], defined
as the step-down procedure of critical values (10) based on the transformation
functional

ξ�(t) = P
(
Bin

[
m, F̃ (t)

]
≥ �α��+ 1

)
, 1 ≤ � ≤ m, t ∈ [0, 1],

where F̃ (t) = 1 −
(∏m

j=1(1− Fj(t))
)1/m

. While being more conservative than

[HGR], it still controls the FDX in the sense (16). Hence, while controlling
the FDR for heterogeneous tests is linked to the arithmetic average of the Fi’s
(see Section 1.1) and requires some additional modifications (see Döhler et al.,
2018), our results show that FDX control is linked to simple geometric averaging
without the need of any additional correction.

4. Application to weighting

It is well known that p-value weighting can improve the power of multiple testing
procedures, see e.g., Genovese et al. (2006); Roquain and van de Wiel (2009);
Ignatiadis et al. (2016); Durand (2019); Ramdas et al. (2017) and references
therein. However, to the best of our our knowledge, except for the augmenta-
tion approach described in Genovese et al. (2006), no methods are available
that incorporate weighting for FDX control. We show in this section that such
methods can be obtained directly from the bounds on B(τ, α) introduced in
Section 3.
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Throughout this section, we consider the standard setting for which we have
at hand a p-value family satisfying (Cont) and (SuperUnif). As explained in our
introduction section (see references therein), while the null distributions of the
p-values are typically uniform, the point is that they can have heterogeneous
alternative distributions, so that it could be desirable to weigh the p-values in
some way. For this, we consider a fixed weight vector (wi)1≤i≤m ∈ R

m
+ . The

ordered weights are denoted w(1) ≥ w(2) ≥ · · · ≥ w(m), the average weight is
denoted w = m−1

∑m
i=1 wi and the average over the j largest weights is denoted

by wj = j−1
∑j

j′=1 w(j′).
Since the heterogeneous procedures [HLR], [PB] and [HGR] introduced in

Section 3 yield valid control for any collection of distribution functions {Fi, 1 ≤
i ≤ m}, it is possible to use very flexible weighting schemes. In order to limit the
scope of this paper, we consider only two simple types of weighting approaches
in more detail:

• for arithmetic mean weighting (abbreviated in what follows as AM), we
define the weighted p-value family as

pwi = pi w̄/wi, 1 ≤ i ≤ m. (29)

The weighted p-values thus have the heterogeneous distribution functions

FAM
i (t) =

(wi

w̄
t
)
∧ 1, t ∈ [0, 1], 1 ≤ i ≤ m, (30)

under the null. This corresponds to classical weighting approaches estab-
lished in the multiple testing literature for various criteria, like FWER
and FDR control.

• for geometric mean weighting (abbreviated as GM), we define

pwi = 1− (1− pi)
w̄/wi , 1 ≤ i ≤ m. (31)

The weighted p-values therefore have the following heterogeneous distri-
bution functions under the null:

FGM
i (t) = 1− (1− t)wi/w̄, t ∈ [0, 1], 1 ≤ i ≤ m. (32)

Thus, combining these two weighting approaches with the three heterogeneous
procedures introduced in the previous section yields a total of six weighted
procedures which we discuss in more detail below. Note that a Taylor expansion
yields FAM

i (t) ≈ FGM
i (t) for small values of t. Therefore, we expect that AM

and GM procedures will yield similar rejection sets for small p-values.

4.1. Weighted Lehmann-Romano procedures

Applying the strategy of Section 3.2 with the c.d.f. set {FAM
i , 1 ≤ i ≤ m}, we

can use the transformation function family given by

ξwLR-AM

� (t) =
m(�)

�α��+ 1
×

wm(�)

w̄
t, 1 ≤ � ≤ m, t ∈ [0, 1].
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This gives rise to an FDX controlling procedure, which we call the AM-weighted
Lehmann-Romano procedure, denoted by [wLR-AM]. It is defined as the step-
down procedure using the weighted p-values (29) and the critical values

τwLR-AM

� = ζ
�α��+ 1∑m(�)
j=1 w(j)

w̄ = τLR

� · w̄

wm(�)
, 1 ≤ � ≤ m.

In particular, if the weight vector is uniform, that is, wi = 1 for all i, then
[wLR-AM] reduces to [LR].

Similarly to above, applying the strategy of Section 3.2 with the c.d.f. set
{FGM

i , 1 ≤ i ≤ m} yields the transformation function family

ξwLR-GM

� (t) =
1

�α��+ 1

m(�)∑
j=1

(1− (1− t)w(j)/w̄), 1 ≤ � ≤ m, t ∈ [0, 1].

This gives rise to an FDX controlling procedure, which we call the GM-weighted
Lehmann-Romano procedure, denoted by [wLR-GM]. It is defined as the step-
down procedure using the weighted p-values (31) and the critical values

τwLR-GM

� = max{t ∈ [0, 1] : ξwLR-GM

� (t) ≤ ζ}, 1 ≤ � ≤ m.

In general, no domination relationship holds between the procedures
[wLR-GM] and [wLR-AM]. Finally, again, in case of uniform weighting,
[wLR-GM] reduces to [LR].

4.2. Weighted Poisson-binomial procedures

Applying the strategy of Section 3.3 with the c.d.f. sets {FAM
i , 1 ≤ i ≤ m} and

{FGM
i , 1 ≤ i ≤ m}, we can use the two transformation function families given

by

ξwPB-AM

� (t) = P

(
PBin

[((w(j)

w̄
t
)
∧ 1

)
1≤j≤m(�)

]
≥ �α��+ 1

)
;

ξwPB-GM

� (t) = P
(
PBin

[
(1− (1− t)w(j)/w̄)1≤j≤m(�)

]
≥ �α��+ 1

)
,

for 1 ≤ � ≤ m, t ∈ [0, 1], to define new step-down procedures, denoted [wPB-AM]
and [wPB-GM] respectively, that both ensure FDX control.

4.3. Weighted Guo-Romano procedures

We apply here the strategy of Section 3.4 for the c.d.f. sets {FAM
i , 1 ≤ i ≤ m}

and {FGM
i , 1 ≤ i ≤ m}. According to (26), let us define

F̃AM
j (t) = 1−

⎛
⎝ j∏

j′=1

(
(1−

(w(j′)

w̄
t
)
∧ 1

)⎞⎠
1/j

;
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F̃GM
j (t) = 1−

⎛
⎝ j∏

j′=1

(1− t)w(j′)/w̄

⎞
⎠

1/j

= 1− (1− t)wj/w̄,

for 1 ≤ j ≤ m, t ∈ [0, 1]. This gives rise to the transformation function families

ξwGR-AM

� (t) = P
(
Bin

[
m(�), F̃AM

m(�)(t)
]
≥ �α��+ 1

)
, 1 ≤ � ≤ m, t ∈ [0, 1];

ξwGR-GM

� (t) = P
(
Bin

[
m(�), F̃GM

m(�)(t)
]
≥ �α��+ 1

)
, 1 ≤ � ≤ m, t ∈ [0, 1].

Critical values τwGR-AM and τwGR-GM are obtained via (10) from families ξwGR-AM

and ξwGR-GM, respectively. This yields two new FDX controlling step-down pro-
cedures that are denoted by [wGR-AM] and [wGR-GM], respectively. Note that,
similar to arithmetic weighting for the [LR] procedure, geometric weighting leads
to a simple transformation of the original [GR] critical values, given by

τwGR-GM

� = 1− (1− τGR

� )
w̄/wm(�) . (33)

Thus, this particular procedure combines simplicity with a close relationship
to the original Guo-Romano procedure. By contrast, as for the heterogeneous
version, the weighted Poisson-binomial procedures require the evaluation of the
Poisson-binomial distribution function which may be computationally demand-
ing for large m. The weighted Guo-Romano procedures, on the other hand,
while possibly sacrificing some power, only require evaluation of the standard
binomial distribution.

4.4. Analysis of RNA-Seq data

We revisit an analysis of the RNA-Seq data set ‘airway’ using results from
the independent hypothesis weighting (IHW) approach (for details, see Igna-
tiadis et al., 2016 and the vignette accompanying its software implementation).
Loosely speaking, this method aims to increase power by assigning a weight
wi to each hypothesis and subsequently applying e.g., the Bonferroni or the
Benjamini-Hochberg procedure [BH] to the weighted p-values while aiming for
control of FWER or FDR.

In what follows, we present some results for weighted FDX control, using
the procedures introduced in Sections 4.2 and 4.3. For this data set we have
m = 64102 and the weights w1, . . . , wm are taken from the output of the ihw
function from the bioconductor package ‘IHW’. For the sake of illustration we
assume the p-values to be independent. A large portion (about 45%) of these
weights are 0, Figure 1 presents a histogram of the (strictly) positive weights.

Table 1 shows that controlling the mean (i.e. FDR) or the median of the FDP
leads to a similar number of rejections.

For both error rates, incorporating weights leads to similar gains in power. For
weighted FDX control, the more conservative weighted Guo-Romano procedures
exhibit only a slight loss of power with respect to the weighted Poisson-binomial
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Fig 1. Histogram of positive weights generated by the ihw function for the airway data.

approaches. The difference between arithmetic and geometric weighting is neg-
ligible for this data.

Figure 2 indicates that for the FDX controlling procedures, the mapping of
the confidence level to the number of rejections is quite flat. This means that
statements about the FDP can be made with high confidence without losing too
much power. For instance, requiring that FDP ≤ 10% with confidence at least
95% still allows for 4145 and 4771 rejections using the [GR] and [wGR-GM]
procedures, respectively.

Table 1

Number of rejections for the airway data. The FDR procedures control FDR at level 10%,
the FDX procedures control P (FDP > 10%) ≤ 0.5.

[BH] [wBH] [GR] [wPB-AM] [wPB-GM] [wGR-AM] [wGR-GM]
Rejections 4099 4896 4243 4868 4865 4853 4852

5. Application to discrete tests

5.1. Discrete FDX procedures

Discrete FDX procedures can be defined in a straightforward way by directly us-
ing the distribution functions F1, . . . , Fm of the discretely distributed p-values.
The prototypical example we have in mind are multiple conditional tests like
Fisher’s exact test. In this case, discreteness and heterogeneity arise from con-
ditioning on the observed table margins. We denote the resulting heterogeneous
procedures from section 3 by [DLR] (for [HLR]), [DPB] (for [HPB]) and [DGR]
(for [HGR]).
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Fig 2. Number of rejections (y-axis) for the airway data when using the [GR] and [wGR-GM]
procedure. Both procedures control the tail probabilities (on the x-axis) for the FDP exceeding
10%. The horizontal lines represent the rejections of the BH and weighted BH procedures at
FDR-level 10%.

5.2. Simulation study

We now investigate the power of the [DLR], [DPB] and [DGR] procedures in a
simulation study similar to those described in Gilbert (2005), Heller and Gur
(2011) and Döhler et al. (2018). We focus on comparing the performance of the
new discrete procedures to their continuous counterparts. Since the analysis with
[DPB] is computationally demanding, we are also interested in investigating the
performance of the slightly more conservative, but numerically more efficient
[DGR] procedure. Finally, as above, we also include [BH] (Benjamini-Hochberg
procedure) as a benchmark.

5.2.1. Simulated scenarios

We simulate a two-sample problem in which a vector of m independent binary
responses (“adverse events”) is observed for each subject in two groups, where
each group consists of N = 25 subjects. Then, the goal is to simultaneously test
the m null hypotheses H0i : “p1i = p2i”, i = 1, . . . ,m, where p1i and p2i are the
success probabilities for the ith binary response in group 1 and 2, respectively.
Before we describe the simulation framework in more detail, we explain how
this set-up leads to discrete and heterogeneous p-value distributions. Suppose
we have simulated two vectors of dimension m where each component represents
a count in {0, . . . , 25}. This data can be represented by m contingency tables.
Now each hypothesis is tested using Fisher’s exact test (two-sided) for each
contingency table, which is performed by conditioning on the (simulated) pair
of marginal counts. Thus, we can determine for every contingency table i the
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discrete distribution function Fi of the p-values for Fisher’s exact test under
the null hypothesis. For differing (simulated) contingency tables, these induced
distributions will generally be heterogeneous and our inference is conditionally
on the marginal counts.

We take m = 800, 2000 where m = m1 + m2 + m3 and data are gener-
ated so that the response is Bernoulli(0.01) at m1 positions for both groups,
Bernoulli(0.10) at m2 positions for both groups and Bernoulli(0.10) at m3

positions for group 1 and Bernoulli(q) at m3 positions for group 2 where
q = 0.15, 0.25, 0.4 represents weak, moderate and strong effects, respectively.
The null hypothesis is true for the m1 and m2 positions while the alternative
hypothesis is true for the m3 positions. We also take different configurations for
the proportion of false null hypotheses, m3 is set to be 10%, 30% and 80% of the
value of m, which represents small, intermediate and large proportion of effects,
respectively (the proportion of true nulls π0 is 0.9, 0.7, 0.2, respectively). Then,
m1 is set to be 20%, 50% and 80% of the number of true nulls (that is, m−m3)
and m2 is taken accordingly as m−m1 −m3.

For each of the 54 possible parameter configurations specified by m,m3,m1

and q, 10000 Monte Carlo trials are performed, that is, 10000 data sets are
generated and for each data set, an unadjusted two-sided p-value from Fisher’s
exact test is computed for each of the m positions, and the multiple testing
procedures mentioned above are applied at level α = 0.05 and ζ = 0.5. The
power of each procedure was estimated as the fraction of the m3 false null
hypotheses that were rejected, averaged over these 10000 simulations (TDP, true
discovery proportion). Note that while our procedures are designed to control
the FDP conditionally on the marginal counts, our power results are presented in
an unconditional way for the sake of simplicity. For random number generation
the R-function rbinom was used. The two-sided p-values from Fisher’s exact
test were computed using the R-function fisher.test.

5.2.2. Results

Table 3 in Appendix B shows that the (average) power of the compared pro-
cedures depends primarily on the strength of the signal q3 ∈ {0.15, 0.25, 0.4}.
More specifically, Figure 3 contains some typical plots of the simulation results.

• For q3 = 0.15, the power of [BH], [LR] and [GR] is practically zero, whereas
the discrete procedures are able to reject at least a few hypotheses, see
panel (a) of Figure 3.

• For q3 = 0.25, the power of [BH] and [LR] stays close to zero, [GR] per-
forms slighty better and the discrete variants perform best as illustrated
in panel (b) of Figure 3.

• For q3 = 0.4, the power of [LR] stays close to zero, while [BH] now rejects
a significant amount of hypotheses. The [DPB] and [DGR] procedures
perform best. If there is a large amount of alternatives, [GR] performs
better than [DLR] (see panel (c) of Figure 3). In the other cases, [GR] is
outperformed by [DLR] (see panel (d) of Figure 3).
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Fig 3. Boxplots of the simulated true discovery proportions (TDP) for the [LR] and [GR]
procedures, their discrete modifications and the [BH] procedure for m = 800. Panel (a)–(c)
show results for m3 = 80, m1 = 144 with q3 = 0.15, 0.25, 0.4, panel (d) shows results for
m3 = 640, m1 = 80 and q = 0.4.

• There is no relevant difference in power between the procedures [DPB]
and [DGR].

In addition, Table 4 reports the median FDP of all the procedures. They
are all smaller than the nominal level α = 5%, which is in accordance with the
theoretical findings. Actually, all procedures are far from exhausting the nominal
level. This is due to the strong discreteness induced by the present simulation
setting, which makes the testing problem especially difficult. Still, the numerical
results of this section show that, by taking into account discreteness, significant
improvements are possible while controlling the FDX error rate.

5.3. Analysis of pharmacovigilance data

We revisit the analysis of pharmacovigilance data from Heller and Gur (2011)
presented in Döhler et al. (2018). This data set is obtained from a database
for reporting, investigating and monitoring adverse drug reactions due to the
Medicines and Healthcare products Regulatory Agency in the United Kingdom.
It contains the number of reported cases of amnesia as well as the total number
of adverse events reported for each of the m = 2446 drugs in the database. For
a more detailed description of the data which is contained in the R-packages
Heller et al. (2012) and Durand and Junge (2019) we refer to Heller and Gur
(2011). Heller and Gur (2011) and Döhler et al. (2018) investigate the association
between reports of amnesia and suspected drugs by performing for each drug
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Fig 4. Critical values and sorted p-values (represented by black crosses) for median FDX
control using the [LR], [DLR], [GR] and [DGR] procedures for the pharmacovigilance data.

a Fisher’s exact test (one-sided) for testing association between the drug and
amnesia while adjusting for multiplicity by using several (discrete) FDR con-
trolling procedures. Applying the Benjamini-Hochberg procedure to this data
set yields 24 candidate drugs which could be associated with amnesia. Using
the discrete FDR controlling procedures from Döhler et al. (2018) yields 27
candidate drugs.

In what follows, we investigate the performance of the [LR], [DLR], [GR],
[DPB] and [DGR] procedures for analyzing this data set. First, we compare
these procedures when the goal is control of the FDP median instead of FDR
at the 5% level, i.e., we require P(FDP > 5%) ≤ 0.5. Figure 4 illustrates
the data and the critical constants of the involved FDX controlling proce-
dures.

The benefit of taking discreteness into account is evident: the discrete critical
values are considerably (by a factor of 2.5 ∼ 4) larger than their respective
classical counterparts which leads to more powerful procedures, see also Table 2.

Table 2

Number of rejections for the pharmacovigilance data.

Procedure controls [LR] [DLR] [GR] [DPB] [DGR]
P(FDP > 5%) ≤ 0.5 23 27 24 29 29
P(FDP > 5%) ≤ 0.05 16 21 16 24 24

Note that the critical values of [DPB] are not displayed in Figure 4 since they
are visually indistinguishable from the [DGR] critical values. Figure 5 shows
that this is in fact true for all indices, thus [DGR] is not only an efficient, but
also quite accurate approximation of the [DPB] values, at least for the discrete
distribution involved in this example.
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Fig 5. Boxplot for the ratio of the [DPB] to the [DGR] critical values.

We also compare the performance of the above procedures over the full
range of possible values for ζ. Figure 6 depicts the number of rejections when
controlling P(FDP > 5%) ≤ ζ for ζ ∈ (0, 1). As expected from Proposi-
tions 3.1, 3.2 and 3.3, the discrete variants reject more hypotheses than their
classical counterparts for all values of ζ. For central values of ζ, the gain is about
three to four additionally rejected hypotheses, which corresponds roughly to the
gain from using the discrete version of [BH] instead of [BH] (see Table 1 in Döhler
et al. (2018)). Figure 6 also shows that for more extreme values of ζ the gain
may be more pronounced, e.g., when P(FDP > 5%) ≤ 0.05 is to be guaranteed,
the [GR] procedure rejects 16 hypotheses, whereas the [DGR] procedure rejects
24 hypotheses (see the second row of Table 2).

6. Discussion

In this paper, we presented new procedures controlling the FDX while incorpo-
rating the (heterogeneous) family of null distribution {Fi, 1 ≤ i ≤ m}. Markedly,
it put forward that the geometric averaging of the Fi’s is a suitable operation
for FDX control. This is new to our knowledge, as all previous works are mostly
based on arithmetic averaging of the Fi’s (or variation thereof). Maybe more im-
portantly, our approach led to a substantial power improvement in two common
situations, under continuity of the test statistics via weighting schemes, and
for discrete test statistics when performing multiple individual Fisher’s exact
tests.

This work opens several directions of research. First, the proofs of all our FDX
bounds rely on using a kind of independence between the p-values (see (Indep0)
and (Indep)). While this assumption is classical, it is desirable to remove this
condition in order to obtain more realistic models. This generalization seems
however challenging, as FDX control under dependence is already delicate to
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Fig 6. Number of rejections (y-axis) for the pharmacovigilance data when using the [LR],
[DLR], [GR] and [DGR] procedures. All procedures control the tail probabilities at level ζ (on
the x-axis) for the FDP exceeding 5%. The horizontal lines represent the rejections of the BH
and discrete BH procedures at FDR-level 5%.

study in the homogeneous case, see Delattre and Roquain (2015). A second
interesting avenue is to derive theoretical bounds for the true discovery pro-
portion (TDP) of our procedure. In particular, a relevant concern is to assess
whether our way of accounting for heterogeneity (via arithmetic or geomet-
ric averaging of the Fi’s) is optimal in some sense. Lastly, our work paves the
way to control other simultaneous inference criteria based on an event prob-
ability, e.g., to establish post hoc bounds in the discrete heterogeneous case,
see Genovese and Wasserman (2006); Goeman and Solari (2011); Blanchard
et al. (2020). While challenging, this is a very exciting direction for future re-
search.

Finally, we mention that the FDX procedures described in Sections 4 and 5
have been implemented in the R package FDX, see Junge and Döhler (2020).

Appendix A: Materials for the proofs

A.1. Proving the main tool

The proof is based on the following result, which is a reformulation of Theo-
rem 5.2 in Roquain (2011) in our context.

Theorem A.1 (Roquain, 2011). In the setting defined in Section 2.1, consider
any step-down procedure R with critical values τ�, 1 ≤ � ≤ m. Then for all
P ∈ P, we have
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FDX(R,P ) ≤
m∑
�=1

1{|H0(P )| ≤ m(�)}

×PX∼P

⎛
⎝ ∑

i∈H0(P )

1{pi(X) ≤ τ�} ≥ �α��+ 1, �̃(P ) = �

⎞
⎠ , (34)

where �̃(P ) = min
{
� ∈ {1, . . . ,m} : �−

∑
i∈H1(P ) 1{pi(X) ≤ τ�} ≥ �α��+ 1

}
(with �̃(P ) = m+ 1 if the set is empty).

Let us show that Theorem A.1 implies (17) under (Indep0). Under (Indep0),

�̃(P ) is independent of the random variable family⎧⎨
⎩

∑
i∈H0(P )

1{pi(X) ≤ τ�}, 1 ≤ � ≤ m

⎫⎬
⎭ .

Hence, (34) provides that FDX(R,P ) is smaller or equal to

m∑
�=1

1{|H0(P )| ≤ m(�)} PX∼P

⎛
⎝ ∑

i∈H0(P )

1{pi(X) ≤ τ�} ≥ �α��+ 1

⎞
⎠

×PX∼P

(
�̃(P ) = �

)
≤ B(τ, α),

which gives (17).
Finally, for completeness, let us now prove Theorem A.1. Let R� = {i ∈

{1, . . . ,m} : pi(X) ≤ τ�} for all �. First, we have for any � ∈ {1, . . . ,m} such
that |R�| = �:

{FDP(R�, P ) > α} = {|H0(P ) ∩R�| > α�} = {|H0(P ) ∩R�| ≥ �α��+ 1}
= {�− |H1(P ) ∩R�| ≥ �α��+ 1} ⊂ {� ≥ �̃(P )},

by using the definition of �̃(P ). Assuming now |R�′ | ≥ �′ for all �′ ≤ �, we obtain

{FDP(R�, P ) > α} ⊂ {� ≥ �̃(P ), |R�̃(P )| ≥ �̃(P )}

⊂ {|H0(P ) ∩R�̃(P )| ≥ �α�̃(P )�+ 1},

where the last step uses the definition of �̃(P ). Moreover, if �̃(P ) ≥ 2, by

minimality of �̃(P ), we have (�̃(P ) − 1) −
∑

i∈H1(P ) 1{pi(X) ≤ τ�̃(P )−1} <

�α(�̃(P )− 1)�+ 1. Hence, we obtain the following upper-bound for |H0(P )|:

|H0(P )| = m−|H1(P )| ≤ m−|H1(P )∩R�̃(P )−1| ≤ m− �̃(P )+�α(�̃(P )−1)�+1.

Since the above bound is also true when �̃(P ) = 1, it holds for any possible

value of �̃(P ) ≤ m. Since � = �̂ in (9) satisfies both |R�| = � and |R�′ | ≥ �′ for
all �′ ≤ �, combining the above displays gives (34).
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A.2. Proof of Proposition 2.1

First, we have with P -probability 1, for all i ∈ {1, . . . ,m}, pi ∈ A, both un-
der (Cont) or (Discrete). Hence, by (10), we have {� ∈ {1, . . . ,m} : ξ�(pσ(�)) ≤
ζ} = {� ∈ {1, . . . ,m} : pσ(�) ≤ τ�}. By (9), this gives

�̂ = max{� ∈ {0, . . . ,m} : ∀�′ ≤ �, p′�′ ≤ ζ},

where we have denoted p′� = ξ�(pσ(�)) for all �. Now note that

{σ(1), . . . , σ(�̂)} = {i ∈ {1, . . . ,m} : σ−1(i) ∈ {1, . . . , �̂}}
= {i ∈ {1, . . . ,m} : ∀� ∈ {1, . . . , σ−1(i)}, p′� ≤ ζ}
= {i ∈ {1, . . . ,m} : max

�∈{1,...,σ−1(i)}
{p′�} ≤ ζ},

hence it is sufficient to prove that p̃i = max�∈{1,...,σ−1(i)}{p′�} for any i ∈
{1, . . . ,m}. For this, let us fix i ∈ {1, . . . ,m} and write {� ∈ {1, . . . ,m} : pσ(�) ≤
pi} = {� ∈ {1, . . . ,m} : � ≤ σ−1(i)}∪A, for A = {� ∈ {1, . . . ,m} : pσ(�) ≤ pi, � >
σ−1(i)}. This is possible because, by definition, � ≤ σ−1(i) implies pσ(�) ≤ pi.
Next, for any � ∈ A, we have both pσ(�) ≤ pi and pσ(�) ≥ pi, which entails
pσ(�) = pi and thus ξ�(pσ(�)) = ξ�(pi). Since σ−1(i) ≤ � and by the nonincreas-
ing property of � �→ ξ�(pi), we have ξ�(pi) ≤ ξσ−1(i)(pi) = ξσ−1(i)(pσ(σ−1(i))).
This gives p′� ≤ p′σ−1(i) for all � ∈ A. Therefore,

max
1≤�≤m
pσ(�)≤pi

{p′�} = max
1≤�≤m
�≤σ−1(i)

{p′�} ∨max
�∈A

{p′�} = max
1≤�≤m
�≤σ−1(i)

{p′�},

which leads to the result.

A.3. Auxiliary lemmas

Lemma A.1. With the notation in (26) the quantity

P
(
Bin

[
m− �+ i, F̃m−�+i(t)

]
≥ i

)
, (35)

which is equal to P
(
Bin

[
m− �+ i, 1− F̃m−�+i(t)

]
≤ m− �

)
, is non-increas-

ing both in i ∈ {1, . . . , �α��+ 1} and � ∈ {1, . . . ,m}.
Proof. First note that

1− F̃j(t) =

⎛
⎝ j∏

j′=1

(1− F(j′)(t))

⎞
⎠

1/j

in non-decreasing in j (because the geometric average of larger numbers is
larger). The quantity (35) is thus non-increasing with respect to i, so that the
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only thing to check is that this quantity is non-increasing with respect to �.

For this, it is sufficient to prove that Bin
[
j + 1, F̃j+1(t)

]
is stochastically larger

than Bin
[
j, F̃j(t)

]
for any j ∈ {1, . . . ,m − 1} (which is not obvious because

F̃j(t) ≥ F̃j+1(t)). Let n1 = j, p1 = F̃j(t), n2 = 1, p2 = F(j+1)(t), n = j + 1 and

p = F̃j+1(t). We easily check that n = n1 + n2 and by (26),

(1− p)n =

j+1∏
j′=1

(1− F(j′)(t))

=

j∏
j′=1

(1− F(j′)(t))× (1− F(j+1)(t)) = (1− p1)
n1(1− p2)

n2 .

Applying Example 1.A.25 in Shaked, M. and Shanthikumar, J.G. (2007) (m = 2
with the notation therein), we obtain that the sum of a Bin [n1, p1] variable
and a Bin [n2, p2] variable (with independence) is stochastically smaller than a
Bin [n, p] variable. In particular, a Bin [n1, p1] variable is stochastically smaller
than a Bin [n, p] variable. This gives the result.

Lemma A.2. For any x, x′ ∈ R
m, we have

sup
1≤k≤m

|x(k) − x′
(k)| ≤ sup

1≤i≤m
|xi − x′

i|, (36)

where x(1) ≥ · · · ≥ x(m) and x′
(1) ≥ · · · ≥ x′

(m).

Proof. Let σ (resp. σ′) be a permutation of {1, . . . ,m} ordering x (resp. x′),
that is, such that x(k) = xσ(k) (resp. x′

(k) = x′
σ′(k)) for all k ∈ {1, . . . ,m}. Let

k ∈ {1, . . . ,m} and prove |xσ(k) − x′
σ′(k)| ≤ sup1≤i≤m |xi − x′

i|. Let us assume

without loss of generality that xσ(k) ≥ x′
σ′(k). On the one hand, if σ′(k) ∈

{σ(1), . . . , σ(k)}, then xσ(k) − x′
σ′(k) ≤ xσ′(k) − x′

σ′(k) ≤ sup1≤i≤m |xi − x′
i|. On

the other hand, if σ′(k) /∈ {σ(1), . . . , σ(k)}, then σ′(k) ∈ {σ(k + 1), . . . , σ(m)}
and σ′(k + 1), . . . , σ′(m) cannot all fall into {σ(k + 1), . . . , σ(m)}. This shows
that there exists a j0 > k with σ′(j0) ∈ {σ(1), . . . , σ(k)}. Hence, xσ(k)−x′

σ′(k) ≤
xσ′(j0)−x′

σ′(k) ≤ xσ′(j0)−x′
σ′(j0)

(because k ≤ j0 entails x′
σ′(k) ≥ x′

σ′(j0)
), which

can be further upper-bounded by sup1≤i≤m |xi − x′
i|.

Appendix B: Additional numerical details
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Table 3

Average power (i.e. average of true discovery proportion) of median FDP controlling
procedures (ζ = 0.5) for α = 5% and N = 25.

m m3 m1 q3 [BH] [LR] [DLR] [GR] [DPB] [DGR]
800 80 144 0.15 0.0000 0.0001 0.0025 0.0002 0.0025 0.0025

144 0.25 0.0004 0.0031 0.0430 0.0077 0.0430 0.0430
144 0.40 0.0803 0.0853 0.3328 0.1195 0.4412 0.4406
360 0.15 0.0000 0.0001 0.0025 0.0002 0.0043 0.0043
360 0.25 0.0004 0.0031 0.0430 0.0077 0.0444 0.0444
360 0.40 0.0803 0.0853 0.3766 0.1195 0.4512 0.4511
576 0.15 0.0000 0.0001 0.0071 0.0002 0.0076 0.0076
576 0.25 0.0004 0.0031 0.0528 0.0077 0.0770 0.0770
576 0.40 0.0803 0.0853 0.4474 0.1195 0.5141 0.5128

240 112 0.15 0.0000 0.0000 0.0025 0.0002 0.0025 0.0025
112 0.25 0.0005 0.0031 0.0289 0.0076 0.0422 0.0422
112 0.40 0.2148 0.1226 0.4250 0.1984 0.5153 0.5139
280 0.15 0.0000 0.0000 0.0025 0.0002 0.0025 0.0025
280 0.25 0.0005 0.0031 0.0336 0.0076 0.0429 0.0429
280 0.40 0.2147 0.1226 0.4413 0.1983 0.5728 0.5716
448 0.15 0.0000 0.0000 0.0025 0.0002 0.0037 0.0037
448 0.25 0.0005 0.0031 0.0389 0.0076 0.0430 0.0430
448 0.40 0.2145 0.1226 0.4609 0.1983 0.5921 0.5917

640 32 0.15 0.0000 0.0000 0.0018 0.0002 0.0025 0.0025
32 0.25 0.0010 0.0031 0.0203 0.0075 0.0212 0.0212
32 0.40 0.4243 0.3009 0.4908 0.5379 0.6730 0.6724
80 0.15 0.0000 0.0000 0.0020 0.0002 0.0025 0.0025
80 0.25 0.0010 0.0031 0.0203 0.0075 0.0212 0.0212
80 0.40 0.4242 0.3008 0.4974 0.5374 0.6746 0.6743
128 0.15 0.0000 0.0000 0.0021 0.0002 0.0025 0.0025
128 0.25 0.0010 0.0031 0.0203 0.0075 0.0212 0.0212
128 0.40 0.4240 0.3008 0.5048 0.5369 0.6753 0.6750

2000 200 360 0.15 0.0000 0.0000 0.0007 0.0000 0.0022 0.0022
360 0.25 0.0001 0.0024 0.0198 0.0029 0.0222 0.0222
360 0.40 0.0730 0.0560 0.3331 0.0792 0.4315 0.4311
900 0.15 0.0000 0.0000 0.0022 0.0000 0.0024 0.0024
900 0.25 0.0001 0.0024 0.0210 0.0029 0.0373 0.0373
900 0.40 0.0730 0.0560 0.3380 0.0792 0.4515 0.4515
1440 0.15 0.0000 0.0000 0.0024 0.0000 0.0024 0.0024
1440 0.25 0.0001 0.0024 0.0378 0.0029 0.0428 0.0428
1440 0.40 0.0729 0.0560 0.4320 0.0792 0.5173 0.5144

600 280 0.15 0.0000 0.0000 0.0007 0.0000 0.0007 0.0007
280 0.25 0.0001 0.0024 0.0197 0.0029 0.0205 0.0205
280 0.40 0.2058 0.1137 0.4093 0.1960 0.5194 0.5176
700 0.15 0.0000 0.0000 0.0007 0.0000 0.0020 0.0020
700 0.25 0.0001 0.0024 0.0200 0.0029 0.0205 0.0205
700 0.40 0.2058 0.1137 0.4374 0.1960 0.5678 0.5657
1120 0.15 0.0000 0.0000 0.0014 0.0000 0.0024 0.0024
1120 0.25 0.0001 0.0024 0.0201 0.0029 0.0206 0.0206
1120 0.40 0.2057 0.1137 0.4545 0.1959 0.5908 0.5906

1600 80 0.15 0.0000 0.0000 0.0007 0.0000 0.0007 0.0007
80 0.25 0.0003 0.0024 0.0090 0.0029 0.0172 0.0172
80 0.40 0.4223 0.2949 0.4823 0.5288 0.6665 0.6658
200 0.15 0.0000 0.0000 0.0007 0.0000 0.0007 0.0007
200 0.25 0.0003 0.0024 0.0090 0.0029 0.0184 0.0184
200 0.40 0.4222 0.2949 0.4866 0.5286 0.6689 0.6683
320 0.15 0.0000 0.0000 0.0007 0.0000 0.0007 0.0007
320 0.25 0.0003 0.0024 0.0090 0.0029 0.0194 0.0194
320 0.40 0.4220 0.2948 0.4935 0.5283 0.6724 0.6715
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Table 4

Estimated median FDP values for α = 5% and N = 25.

m m3 m1 q3 [BH] [LR] [DLR] [GR] [DPB] [DGR]
800 80 144 0,15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

144 0.25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
144 0.40 0.0000 0.0000 0.0000 0.0000 0.0014 0.0014
360 0.15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
360 0.25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
360 0.40 0.0000 0.0000 0.0000 0.0000 0.0014 0.0014
576 0.15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
576 0.25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
576 0.40 0.0000 0.0000 0.0000 0.0000 0.0014 0.0014

240 112 0.15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
112 0.25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
112 0.40 0.0000 0.0000 0.0018 0.0000 0.0036 0.0036
280 0.15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
280 0.25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
280 0.40 0.0000 0.0000 0.0000 0.0000 0.0036 0.0036
448 0.15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
448 0.25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
448 0.40 0.0000 0.0000 0.0000 0.0000 0.0018 0.0018

640 32 0.15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
32 0.25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
32 0.40 0.0000 0.0000 0.0062 0.0062 0.0125 0.0125
80 0.15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
80 0.25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
80 0.40 0.0000 0.0000 0.0000 0.0000 0.0062 0.0062
128 0.15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
128 0.25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
128 0.40 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2000 200 360 0.15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
360 0.25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
360 0.40 0.0000 0.0000 0.0000 0.0000 0.0011 0.0011
900 0.15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
900 0.25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
900 0.40 0.0000 0.0000 0.0000 0.0000 0.0006 0.0006
1440 0.15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1440 0.25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1440 0.40 0.0000 0.0000 0.0000 0.0000 0.0011 0.0011

600 280 0.15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
280 0.25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
280 0.40 0.0000 0.0000 0.0014 0.0000 0.0043 0.0043
700 0.15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
700 0.25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
700 0.40 0.0000 0.0000 0.0007 0.0000 0.0029 0.0029
1120 0.15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1120 0.25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1120 0.40 0.0000 0.0000 0.0007 0.0000 0.0021 0.0021

1600 80 0.15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
80 0.25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
80 0.40 0.0000 0.0000 0.0050 0.0050 0.0150 0.0150
200 0.15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
200 0.25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
200 0.40 0.0000 0.0000 0.0025 0.0025 0.0100 0.0100
320 0.15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
320 0.25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
320 0.40 0.0000 0.0000 0.0000 0.0000 0.0025 0.0025
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Durand, G., Junge, F., Döhler, S., and Roquain, E. (2019). DiscreteFDR: An
R package for controlling the false discovery rate for discrete test statistics.
arXiv e-prints, arXiv:1904.02054. MR4122305

Genovese, C. and Wasserman, L. (2004). A stochastic process approach to false
discovery control. Ann. Statist., 32(3):1035–1061. MR2065197

Genovese, C. R., Roeder, K., and Wasserman, L. (2006). False discovery control
with p-value weighting. Biometrika, 93(3):509–524. MR2261439

Genovese, C. R. and Wasserman, L. (2006). Exceedance control of the false dis-
covery proportion. J. Amer. Statist. Assoc., 101(476):1408–1417. MR2279468

Gilbert, P. (2005). A modified false discovery rate multiple-comparisons pro-
cedure for discrete data, applied to human immunodeficiency virus genetics.
Journal of the Royal Statistical Society. Series C, 54(1):143–158. MR2134603

Goeman, J. J. and Solari, A. (2011). Multiple testing for exploratory research.
Statist. Sci., 26(4):584–597. MR2951390

Guo, W., He, L., and Sarkar, S. K. (2014). Further results on controlling the
false discovery proportion. Ann. Statist., 42(3):1070–1101. MR3210996

Guo, W. and Romano, J. (2007). A generalized Sidak-Holm procedure and con-
trol of generalized error rates under independence. Stat. Appl. Genet. Mol.
Biol., 6:Art. 3, 35 pp. (electronic). MR2306938

Habiger, J. D. (2015). Multiple test functions and adjusted p-values for test
statistics with discrete distributions. J. Statist. Plann. Inference, 167:1–13.
MR3383232

Heller, R. and Gur, H. (2011). False discovery rate controlling procedures for
discrete tests. ArXiv e-prints.

Heller, R., Gur, H., and Yaacoby, S. (2012). discreteMTP: Multiple testing pro-
cedures for discrete test statistics. R package version 0.1-2.

Hemerik, J., Solari, A., and Goeman, J. J. (2019). Permutation-based simul-
taneous confidence bounds for the false discovery proportion. Biometrika,
106(3):635–649. MR3992394

Heyse, J. F. (2011). A false discovery rate procedure for categorical data. In
Recent Advances in biostatistics: False Discovery Rates, Survival Analysis,
and Related Topics, pages 43–58.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scand.
J. Statist., 6(2):65–70. MR0538597

Hu, J. X., Zhao, H., and Zhou, H. H. (2010). False discovery rate control with
groups. J. Amer. Statist. Assoc., 105(491):1215–1227. MR2752616

Ignatiadis, N., Klaus, B., Zaugg, J., and Huber, W. (2016). Data-driven hy-
pothesis weighting increases detection power in genome-scale multiple testing.
Nature Methods, 13:577–580.

https://www.ams.org/mathscinet-getitem?mr=2373771
https://www.ams.org/mathscinet-getitem?mr=4010982
https://arxiv.org/abs/arXiv:1904.02054
https://www.ams.org/mathscinet-getitem?mr=4122305
https://www.ams.org/mathscinet-getitem?mr=2065197
https://www.ams.org/mathscinet-getitem?mr=2261439
https://www.ams.org/mathscinet-getitem?mr=2279468
https://www.ams.org/mathscinet-getitem?mr=2134603
https://www.ams.org/mathscinet-getitem?mr=2951390
https://www.ams.org/mathscinet-getitem?mr=3210996
https://www.ams.org/mathscinet-getitem?mr=2306938
https://www.ams.org/mathscinet-getitem?mr=3383232
https://www.ams.org/mathscinet-getitem?mr=3992394
https://www.ams.org/mathscinet-getitem?mr=0538597
https://www.ams.org/mathscinet-getitem?mr=2752616
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