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Abstract: We consider the problem of predicting several response vari-
ables using the same set of explanatory variables. This setting naturally
induces a group structure over the coefficient matrix, in which every ex-
planatory variable corresponds to a set of related coefficients. Most of the
existing methods that utilize this group formation assume that the similar-
ities between related coefficients arise solely through a joint sparsity struc-
ture. In this paper, we propose a procedure for constructing multivariate
regression models, that directly capture and model the within-group simi-
larities, by employing a multivariate linear mixed model formulation, with
a joint estimation of covariance matrices for coefficients and errors via pe-
nalized likelihood. Our approach, which we term MrRCE for Multivariate
random Regression with Covariance Estimation, encourages structured sim-
ilarity in parameters, in which coefficients for the same variable in related
tasks share the same sign and similar magnitude. We illustrate the benefits
of our approach in synthetic and real examples, and show that the proposed
method outperforms natural competitors and alternative estimators under
several model settings.

Keywords and phrases: Covariance selection, EM algorithm, multivari-
ate regression, penalized likelihood, regularization methods, sparse preci-
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1. Introduction

In many cases, a common set of predictor variables is used for predicting different
but related target variables. For example, we may be interested in modeling
and predicting the price of a single product in multiple markets, given a set of
product and market characteristics and historical observations. Or we may be
interested in modeling daily demand for a similar product offered by multiple
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Fig 1. The multivariate regression framework naturally induces a group structure over the
coefficient matrix B, in which every explanatory variable, xi, corresponds to a group of q
coefficients Bi = (βi1, ..., βiq)

T .

companies, given common explanatory variables. We provide real data examples
along both these lines in Section 6.

The general task of modeling multiple responses using a joint set of co-
variates can be expressed using multivariate regression (MR), or multiple re-
sponse regression — a generalization of the classical regression model to re-
gressing q > 1 responses on p predictors. In multivariate regression, one is
presented with n independent observations, {(Xi, Yi)}ni=1, where Xi ∈ R

p and
Yi ∈ R

q contain the predictors and responses for the ith sample, respectively.
Let X = (X1, ..., Xn)

T
= (x1, ...,xp) ∈ R

n×p denote the predictor matrix and

Y = (Y1, ..., Yn)
T

= (y1, ...,yq) ∈ R
n×q denote the response matrix. For sim-

plicity of notation, assume that the columns of X and Y have been centered
so that we need not consider an intercept term. We further assume that the
i.i.d Nq (0,Σ) error terms are collected into an n× q error matrix E, where Σ is
the among-tasks covariance matrix. The multivariate regression model is given
by,

Y = XB + E, (1.1)

where B is a p × q regression coefficient matrix. The random matrices in (1.1)
are assumed to follow a matrix-variate normal distribution [10, 16], with E ∼
MVNn×q (0, In,Σ) and Y ∼ MVNn×q (XB, In,Σ). For reasons that will later
become clear, when considering the noise structure of the MR model, the pre-
cision matrix, Ω = Σ−1, is commonly the preferred object.

Straightforward prediction and estimation with the MR model can become
quite challenging when the number of predictors and responses is large relative
to n, as it requires one to estimate pq parameters. The univariate regression
model (q = 1) has been widely studied, and numerous methods have been
developed for variable selection (support recovery) and coefficients estimation.
A naive approach to the MR problem is to apply one of these methods to each
of the q tasks independently. However, in many cases, the different problems
are related, and this oversimplified approach fails to utilize the full information
contained in the data [3, 32, 41].
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The multivariate regression framework naturally induces a group structure
over the coefficient matrix, B, in which every explanatory variable, xi for i =
1, ..., p, corresponds to a group of q coefficients, Bi = (βi1, ..., βiq) (see Figure 1).
To utilize the relatednesses in coefficients and responses, previous MR methods
focus on jointly learning all tasks, while (i) Accounting for the between tasks
covariance [3, 32, 44, 27, 41]; and (ii) Encouraging similarities in the regres-
sion coefficients for the different tasks [38, 29, 24, 28]. The latter is commonly
achieved by enforcing a group structure over the coefficient matrix, and encour-
aging the sparsity of the entire group.

In many applications, these structured (and unstructured) sparsity assump-
tions are not suitable, for instance, if one expects many covariates of small or
medium effect. Furthermore, these sparse estimators encourage within-group
coefficients to be of a similar absolute magnitude and do not favor same sign co-
efficients. However, in various real-life examples, it is more natural to encourage
coefficients within the same group to also share a sign, in addition to a similar
magnitude. For instance, consider the demand prediction problem mentioned
above, and assume we want to model the daily demand for q = 2 suppliers of
a similar product. We generally expect that the effect of various explanatory
variables would be similar for both models; for example, the effect of a holiday
on demand will be similar for both suppliers. However, it is likely to not be
identical due to differences in suppliers, client population, etc. The exact level
of similarity between effects may not be known in advance.

To address this we propose a general approach for constructing an estima-
tor for multivariate regression by directly modeling and capturing the within-
group similarities, while also accounting for the error covariance structures. Our
method, titled Multivariate random Regression with Covariance Estimation,
MrRCE, involves a multivariate linear random regression model with an under-
lying group structure over the coefficient matrix, designed to encourage related
coefficients to share a common sign and similar magnitude. Specifically, we study
a random variant of (1.1), which is a special case of Multivariate Linear Mixed
Model (mvLMMs). mvLMMs can be viewed as a generalization of MR, allow-
ing both fixed and random effects. Consider the MR problem (1.1), but with
an additional term for the set of random predictors, collected into the matrix
Z = (Z1, ..., Zn)

T
= (z1, ..., zr) ∈ R

n×r. The multivariate mixed model is given
by,

Y = XB + ZΓ + E, (1.2)

E ∼ MVNn×q (0, In,Σ) , Γ ∼ MVNr×q (0, R,G) ,

where B is a p × q fixed effect coefficient matrix and Γ is an r × q random
effect coefficient matrix. Here, R and G are the common covariance matrices of
columns and rows of Γ, respectively.

In this paper we consider the problem of estimation and prediction under the
multivariate random effect regression model — an mvLMM strictly involving
random effects,

Y = ZΓ + E. (1.3)
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Under this formulation we are interested in estimating the covariance compo-
nents and using the model to predict new observation. This is done by first
predicting the random component Γ using the Empirical-Best Linear Unbi-
ased Predictor, E-BLUP [17, 18]. Our method accounts for correlations between
responses and similarities among coefficients, captured by estimating a joint
equicorrelation covariance matrix for the rows of Γ (see Eq. (2.1) for details).
Hence, the MrRCE method is an example of what one could call structured
similarity learning, in which the different coefficient groups are assumed to be
independent, whereas within-group similarity is encouraged. This covariance
structure for the random coefficient matrix reduces the MR problem of estimat-
ing pq parameters, into the problem of estimating two covariance components —
the coefficients’ common variance, and the intra-group correlation coefficient, or
similarity level. The estimation of the covariance structure is achieved through
a penalized likelihood, adding an L1-penalty over the off-diagonal entries of
Ω = Σ−1.

To summarize, we make the following novel contributions: (i) We propose
MrRCE, a new approach for multivariate regression that utilizes correlations in
coefficients and responses; (ii) We propose an Expectation-Maximization (EM)
[11] based computational algorithm for parameter estimation under MrRCE and
an E-BLUP approach for prediction, and; (iii) We evaluate MrRCE on a variety
of multivariate regression tasks. We make our source code publicly available at
https://github.com/AvivNavon/MrRCE.

The remainder of the paper is structured as follows. In Section 2, we describe
the MrRCE method and corresponding Expectation-Maximization (EM) based
computational algorithm. In Section 3, we cover previous works on multivariate
regression, demonstrating their similarities to the MrRCE model and highlight-
ing aspects unique to MrRCE. In Section 4, we establish a connection between
the proposed method and the multivariate Ridge estimator. Simulation studies
are performed in Section 5 to compare our method with competing estimators,
and Section 6 contains two real data applications of MrRCE.

2. The MrRCE method

Consider the random effect regression model of (1.3), with r = p covariates.
Assume both the error matrix E and the coefficient matrix Γ follow a matrix
variate normal distribution,

E ∼ MVNn×q (0, In,Σ) , Γ ∼ MVNp×q

(
0, Ip, σ

2C
)
. (2.1)

Further assume an equicorrelation structure for the matrix C, controlled by the
unknown intra-group correlation coefficient ρ ∈ [0, 1),

C = Cρ =

⎛
⎜⎜⎜⎜⎝

1 ρ · · · ρ

ρ
. . .

...
...

. . . ρ
ρ · · · ρ 1

⎞
⎟⎟⎟⎟⎠ .

https://github.com/AvivNavon/MrRCE
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The unknown parameter ρ can be thought of as a relative measure of the within-
group similarity [6]. Large values for ρ correspond to high similarity among
coefficients of the same group, leading to a similar magnitude and same sign
coefficients, whereas ρ = 0 corresponds to i.i.d draws for the entries of the
coefficient matrix Γ. We refer to the random variable Γ as unobserved data, and
to (Y,Γ) as the full data. Denote the likelihood function of the full data by L (·),
and the collection of parameters by Θ =

{
Ω, σ2, ρ

}
, we have

L (Y,Γ;Θ) = LY |Γ (Y | Γ;Θ)LΓ (Γ | Θ)

= LY |Γ (Y | Γ;Ω)LΓ

(
Γ | σ2, ρ

)
.

Thus, the negative log-likelihood function of the complete data is given by (up
to a constant)

� (Y,Γ;Θ) = tr

[
1

n
Ω (Y − ZΓ)

T
(Y − ZΓ)

]
− log |Ω|+ tr

[
1

p
ΔΓTΓ

]
− log |Δ| ,

where Δ−1 = σ2C. We construct an estimator of Θ using a penalized negative
normal log-likelihood, adding an L1-penalty over the off-diagonal entries of Ω,

Θ̂ = argmin
Θ

� (Y,Γ;Θ) + λω

∑
j �=j′

|ωjj′ | , (2.2)

where λω > 0 is a regularization parameter.

2.1. The algorithm

We propose an iterative algorithm for solving (2.2), which is a variant of the
Expectation-Maximization (EM) algorithm [11], for penalized likelihood [15].
We note that unlike the standard EM procedure, we minimize the expression
during the M-step, effectively applying an expectation-minimization procedure;
equivalently, one can negate (2.2) to retrieve the standard EM formulation.
Alg. 1 provides a schematic overview of the MrRCE algorithm.

Using eigendecomposition (similar to Zhou and Stephens [48], Furlotte and
Eskin [14]), we write,

C = UDUT and ZZT = LSLT , (2.3)

where S and D := Dρ = diag (d1 (ρ) , ..., dq (ρ)) are diagonal matrices, and U is
independent of ρ. We then multiply (1.3) by the orthogonal matrices U and LT

from the right and left correspondingly, to obtain

Ỹ = Z̃Γ̃ + Ẽ,

where Ỹ = LTY U , Z̃ = LTZ, and
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Γ̃ = ΓU ∼ MVNp×q

(
0, Ip, σ

2UTCU
)
= MVNp×q

(
0, Ip, σ

2Dρ

)
,

Ẽ = LTEU ∼ MVNn×q

(
0, LTL = In, Σ̃ := UTΣU

)
= MVNn×q

(
0, In, Σ̃

)
.

We lose the ·̃ notation and assume (with a slight abuse of notation) that the
original data is of the form,

Y = ZΓ + E, (2.4)

E ∼ MVNn×q

(
0, In,Σ := Ω−1

)
, Γ ∼ MVNp×q

(
0, Ip, σ

2Dρ

)
,

namely

Y ∼ MVNn×q

(
0, S, σ2Dρ

)
+MVNn×q (0, In,Σ) .

Next, we describe an EM-based algorithm for solving (2.2) under the assump-
tions (2.4).

E-step Denote Θt−1 the estimator for Θ at iteration t − 1. At step t, we
wish to evaluate the conditional expectation of the negative log-likelihood,
E
[
� (Y,Γ;Θ)

∣∣Y,Θt−1

]
. Equivalently, we simplify the last expression and eval-

uate the following,

Q1
t =E

[
(Y − ZΓ)

T
(Y − ZΓ) | Y,Θt−1

]
, (2.5)

Q2
t =E

[
ΓTΓ | Y,Θt−1

]
. (2.6)

We let ⊗ denote the Kronecker product and vec (·) the vectorization operator.1

For a matrix A ∈ R
k×p, we let AΓ := G =

(
g1 · · · gq

)
, with gj the jth

column of G. The joint distribution of g = vec (G) and y = vec (Y ) is given by

(
g
y

)
∼ N

(
0,

[
Δ−1 ⊗AAT Δ−1 ⊗AZT

Δ−1 ⊗ ZAT Σ⊗ In +Δ−1 ⊗ ZZT

]
:=

[
Σ11 Σ12

Σ21 Σ22

])
,

hence, the conditional distribution of g | y is given by

g | y ∼ N
(
Σ12Σ

−1
22 y,Σ11 − Σ12Σ

−1
22 Σ21

)
. (2.7)

In order to evaluate (2.5) and (2.6), we calculate the following terms
E [Γ | Y,Θt−1] and E

[
ΓTATAΓ | Y,Θt−1

]
, for A = Ip, Z. The former is the

E-BLUP [17, 18] (see Prediction below), whereas the latter can be easily ob-
tained from (2.7) since

E
[
GTG | Y,Θt−1

]
i,j

= E
[
gT
i gj | y,Θt−1

]
.

1Let vec (·) denote the concatenation of a k × l-dimensional matrix’s columns into a kl-
dimensional vector.
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M-step The minimization of the objective over Θ can be split into two disjoint
minimization problems:

argmin
Ω�0

tr

[
1

n
ΩQ1

t

]
− log |Ω|+ λω

∑
j �=j′

|ωjj′ | , (2.8)

arg min
σ>0,ρ∈[0,1)

tr

[
1

p
ΔQ2

t

]
− log |Δ| . (2.9)

The first minimization problem is exactly the L1-penalized precision matrix es-
timation problem considered by Yuan and Lin [46], dÁspremont, Banerjee and
El Ghaoui [9], Friedman, Hastie and Tibshirani [13], Rothman, Levina and Zhu
[32], Hsieh et al. [21], among others. We solve (2.8) by applying the graphical
lasso algorithm of Friedman, Hastie and Tibshirani [13]. The second minimiza-
tion problem, (2.9), can be easily solved in closed-form by utilizing the diagonal
form of Δ.

Prediction Given Θ̂, our estimate for Θ, we apply the model for prediction
by computing the E-BLUP [17, 18] for γ = vec (Γ). Denote, Z̃ = Iq ⊗ Z, L =

σ̂2D̂ρ ⊗ Ip and R = Ω̂−1 ⊗ In, the E-BLUP γ̂ for γ, is given by,

γ̂ =
(
Z̃TR−1Z̃ + L−1

)
−1Z̃TR−1y.

Alternatively, as proved by Henderson et al. [19], γ̂ = LT Z̃TΨ−1y where, Ψ =
Z̃LZ̃T + R. In order to predict Γ, we simply compute Γ̂ = unvec (γ̂), where
unvec (·) represents the reversal of the vec (·) operation.

Starting Value and Stopping Criteria We initialize Ω0 = Iq, Δ
−1 = Iq,

and consider two alternatives for the MrRCE algorithm’s stopping criterion.

1. Set a tolerance value, τ > 0, and let �pen,t denote the penalized negative
log-likelihood at iteration t. Iterate until the relative change in the log-

likelihood value,
∣∣∣ �pen,t−1−�pen,t

�pen,t−1

∣∣∣, is smaller than τ .

2. Set a tolerance value, τ > 0. Iterate until the sum of absolute changes in
the values of Θ in two successive iterations is smaller than the tolerance
value.

Convergence The MrRCE algorithm is a variant of the EM algorithm for pe-
nalized likelihood, hence each step ensures a decrease in the objective [15]. Thus,
the sequence {�pen,t}t converges to some value �∗pen, provided that the penalized
negative log-likelihood is bounded below. We further discuss the convergence of
the MrRCE algorithm in Appendix B.

3. Related work

In this section, we review previous works on multivariate regression. Here we
focus on the frequentist approach, and refer the readers to Deshpande, Rockova
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Algorithm 1 (MrRCE): EM-based optimization procedure (see text for de-
tails)
Require: Regularization parameter λω > 0.
1: Initialize: set t = 0 and Ωt = Δ−1

t = Iq .
2: repeat

t ← t+ 1

E-step: calculate Q1
t = E

[
(Y − ZΓ)T (Y − ZΓ) | Y,Θt−1

]
and Q2

t = E
[
ΓTΓ | Y,Θt−1

]
M-step: solve Ωt = argminΩ�0 tr

[
1
n
ΩQ1

t

]
− log |Ω|+ λω

∑
j �=j′

∣∣ωjj′
∣∣

and (σt, ρt) = argminσ>0,ρ∈[0,1) tr
[
1
p
ΔQ2

t

]
− log |Δ|

3: until stopping criterion is reached.
4: predict Γ: compute the E-BLUP for Γ, Γ̂ = unvec (E [γ | y,Θt]).

5: return
(
Γ̂,Θt

)

and George [12] and references therein, for a comprehensive review of Bayesian
methods for estimation and prediction with the MR model.

Reducing the number of parameters. In the MR literature, many ap-
proaches seek to reduce the number of parameters to be estimated through a
penalized (or constrained) least squares framework. Bunea, She and Wegkamp
[5] generalized the classical Reduced-Rank Regression (RRR) [1, 22, 40] to high
dimensional settings, estimating a low-rank coefficient matrix by penalizing the
rank of B. Yuan et al. [47] proposed a method called Factor Estimation and Se-
lection (FES), in which an L1-penalty is applied to the singular values of B. FES
induces sparsity in the singular values of B, conducting dimension reduction and
coefficients estimation simultaneously. One major drawback of dimension reduc-
tion techniques, is that the interpretation of the model is often limited in terms
of the original data, since the set of predictors is reduced to a few important
principal factors.

Utilizing the group structure. As stated above, the MR framework induces
a group structure over the coefficient matrix. While many approaches make no
assumption over the group structure, others utilize it for learning structured
sparsity. In the multi-task learning literature, the L1/L2-penalty, also known as
the group lasso penalty [45], has been applied with the rows of B as groups. The
L1/L2-penalty can be viewed as an intermediate between the L1-penalty used
in lasso regression [37] and the L2-penalty used in ridge regression [20], aimed
at utilizing the relatedness among tasks for identifying the joint support, i.e.,
the set of predictors with non-zero coefficients across all q responses [29]. Chen
and Huang [7] utilized the group lasso penalty to achieve sparse reduced-rank
regression (SRRR) with variable selction. Peng et al. [31] proposed a mixed
constraint function, by applying both the lasso and the group lasso penalties
to the elements and rows of B, respectively. This approach produces element-
wise as well as row-wise sparsity in the coefficient matrix. Turlach, Venables
and Wright [38] studied a different constraint function, placing an L∞-penalty
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over the rows of B. As noted by the authors, this method is only suitable for
variable selection and not for estimation. Extensions of mixed norm penalties
to overlapping groups have been proposed in order to handle more general and
complex group structures (see, e.g., Kim and Xing [24], Li, Nan and Zhu [28]).
These methods produce highly interpretable models, however, they are limited
to the case Ω ∝ In, and do not account for correlated errors. Rothman, Levina
and Zhu [32], Chen and Huang [8], Wilms and Croux [41] have recently shown
that accounting for this additional information in MR problems can be beneficial
for both coefficients estimation and prediction.

Accounting for the between-tasks covariance. In multivariate normal
theory, the entries of Ω that equal zero correspond to pairs of variables that
are conditionally independent, given all of the other variables in the data. The
problem of sparse precision matrix estimation has drawn considerable recent at-
tention, and several methods have been proposed for both support recovery and
parameter estimation. Perhaps the most widely used approach is the graphical
lasso [13], in which simultaneous sparsity structure identification and covariance
estimation are achieved by minimizing the L1-regularized negative log-likelihood
function of Ω [46, 9, 33]. Recently, sparse precision matrix estimation has also
been considered in regression frameworks, in which the main goal for this explicit
estimation is to improve prediction [42, 32].

Rothman, Levina and Zhu [32] proposed Multivariate Regression with Co-
variance Estimation (MRCE), a method for sparse multivariate regression that
directly accounts for correlated errors. MRCE minimizes the negative log-likeli-
hood function with an L1-penalty for both B and Ω,

argmin
B,Ω

− log |Ω|+ tr

[
1

n
Ω (Y −XB)

T
(Y −XB)

]
+ λ1 ‖B‖1 + λ2

∑
j �=j′

|ωjj′ | ,

(3.1)
where tr (·) denotes the trace, λ1 and λ2 are the regularization parameters and
ωjj′ is the (j, j

′) element of Ω. Lee and Liu [27] extended the approach of Roth-
man, Levina and Zhu [32] to allow for weighted L1-penalties over the elements of
B and Ω. Yin and Li [44] considered a similar objective to the one in (3.1), and
proposed an algorithm for the sparse estimation of the coefficient and inverse co-
variance matrices. However, unlike Rothman, Levina and Zhu [32], their method
aimed at improving the estimation of Ω, rather than B. Our work further lever-
ages correlations between the different problems to improve the accuracy of the
estimators and predictions, by not only accounting for the correlation between
the error terms but the similarities between the coefficients as well.

Utilizing the group structure and correlated errors. While MRCE ac-
counts for correlated responses through the precision matrix Ω, it does not
learn structured sparsity in B, essentially selecting relevant covariates for each
response separately. In a recent work, Wilms and Croux [41] proposed an algo-
rithm for the multivariate group lasso with covariance estimation, replacing the
lasso penalty in (3.1) with an L1/L2-penalty over a pre-specified group structure.
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Chen and Huang [8] developed a method within the reduced-rank regression
framework that simultaneously performs variable selection and sparse precision
matrix estimation. These methods for learning group sparsity assume that the
sparsity structure is known a-priori. Instead, Sohn and Kim [35] proposed an
approach for group sparse multivariate regression that can jointly learn both
the response structure and regression coefficients with structured sparsity. Sim-
ilarly, in this work, we propose a method that accounts for the error covariance
structure and the group structure among covariates. However, unlike previous
approaches, our formulation does not produce group sparsity, but instead, it
encourages related coefficients to share a sign and similar magnitude.

Multivariate Linear Mixed Models (mvLMMs). mvLMMs [18] are MR
models that relate a joint set of covariates to multiple correlated responses.
mvLMMs are applied in many real-life problems and frequently used in genetics
due to their ability to account for relatedness among observations (see, e.g.,
Kruuk [26], Kang et al. [23], Korte et al. [25], Vattikuti, Guo and Chow [39]).

4. Connection to ridge regression

We present a connection between the MrRCE method and the Ridge Regression
(RR) estimator [20]. More specifically, we explore a special case in which the
BLUP for Γ derived by the MrRCE algorithm is equivalent to the multivariate
RR estimator [4].

Consider the model,

y = Z̃γ + ε,

ε ∼ N (0,Σ0 ⊗ In := Σ) , γ ∼ N (0,Λ0 ⊗ Ip := Λ) .

The joint distribution of (y,γ) is given by(
γ
y

)
∼ N

(
0,

[
Λ ΛZ̃T

Z̃Λ Z̃ΛZ̃T +Σ

])
,

and the BLUP for the random coefficient vector is the expectation of γ condi-
tional on y,

γ̂BLUP = E [γ | y]

= ΛZ̃T
(
Z̃ΛZ̃T +Σ

)−1

y.

The RR estimator can be extended to the multivariate case as in Brown and
Zidek [4]:

γ̂RR =
(
Z̃T Z̃ +K

)−1

Z̃Ty,

where K � 0 is the pq × pq ridge matrix. We apply the generalized Sherman-
Morrison-Woodbury [34, 43] formula to the inverse of Z̃T Z̃ +K, to obtain

γ̂RR = K−1Z̃T

[
I −

(
I + Z̃K−1Z̃T

)−1

Z̃K−1Z̃T

]
y. (4.1)
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Eq. (4.1) can be simplified as follow,

γ̂RR = K−1Z̃T
[
Z̃K−1Z̃T + I

]−1

y.

Thus, under the i.i.d error model, i.e., Σ0 = σ2
ε Iq, setting K = (Σ0 ⊗ Ip) Λ

−1

yields,

γ̂RR = σ−2
ε ΛZ̃T

[
σ−2
ε Z̃ΛZ̃T + I

]−1

y

= ΛZ̃T
[
Z̃ΛZ̃T +Σ

]−1

y

= γ̂BLUP.

This is a well known connection between the RR estimator and BLUP which
proves the following result:

Proposition 1. Assuming Σ̂0 ∝ I, the prediction for Γ obtained by the MrRCE
algorithm is equivalent to the multivariate RR estimator with Ridge matrix K =(
Σ̂0 ⊗ Ip

)
Λ̂−1.

To better understand this result, consider the case Σ0 = σ2
ε Iq and Λ0 =

σ2
γC, where C = Cρ is an equicorrelation matrix with parameter ρ. Let K =

(Σ0 ⊗ Ip) Λ
−1 = ηC−1 ⊗ Ip where η = (σε/σγ)

2
. It is easy to verify that C−1 is

itself an equicorrelation matrix, C−1 = aIq + bJq, where,

a =
1

1− ρ
, b =

−ρ

1− ρ

[
1

1 + (q − 1) ρ

]
.

For simplicity, we only examine the penalty structure for q = 2, p = 1. Denote
the coefficients vector by γ = (γ11, γ12)

T
. The ridge penalty is given by,

η
[
γTC−1γ

]
= η

[
(a+ b) ‖γ‖22 + 2bγ11 · γ12

]
(4.2)

= η
1

1− ρ2
‖γ‖22 + 2ηb (γ11 · γ12) .

Note that (4.2) can be reduced to the univariate ridge penalty by setting ρ = 0,
i.e., by considering i.i.d coefficients. For ρ > 0, the second term in (4.2) kicks-in.
We note that b < 0 for ρ ∈ (0, 1), meaning that the second penalty term in (4.2)
is negative, for same sign coefficients. This simple example illustrates that the
MrRCE method favors equal sign coefficients, within groups.

5. Simulation study

In this section, we compare the performance of the MrRCE method to other
multivariate regression estimators, over several settings of simulated data sets.
We show that the MrRCE method significantly outperforms all competitors, in
terms of Model Error, for the vast majority of simulated settings.



3832 A. Navon and S. Rosset

5.1. Estimators

We construct estimators using natural competitors of the MrRCE method, and
report the results for the following methods:

1. Ordinary Least Squares (OLS): Perform q separate LS regressions.
2. Group Lasso: Place an L1/L2-penalty over the rows of the coefficient ma-

trix, with 3-fold cross-validation (CV) for the selection the tuning param-
eter.

3. Ridge Regression: The tuning parameter is selected via leave-one-out cross-
validation (LOO-CV) and is shared across all task.

4. MRCE : The tuning parameters are selected using 5-fold CV.
5. MrRCE : The L1-regularization parameter (for the graphical lasso algo-

rithm) is selected via 3-fold CV.

5.2. Models

For each settings and every replication, we generate an n × p predictor matrix

Z with rows drawn independently from Np (0,ΣZ), where (ΣZ)ij = ρ
|i−j|
Z and

ρZ = .7 (similar to Yuan et al. [47], Peng et al. [31], Rothman, Levina and
Zhu [32]). Following Rothman, Levina and Zhu [32], the coefficient matrix Γ
is generated as the element-wise product of three matrices: First, we sample
a p × q matrix W ∼ MVNp×q

(
0, Ip, σ

2Cρ

)
, with Cρ = I + ρ (J − I), where

J is a matrix of ones and I is the identity matrix, both of dimensions q × q.
The values of ρ range from 0 to 0.8, where ρ = 0 corresponds to i.i.d samples,
γij ∼ N

(
0, σ2

)
. Next, we set

Γ = W �K �Q,

where � denotes the element-wise product. The entries of the p × q matrix K
are drawn independently from Ber (1− s), and the elements in each row of the
matrix Q are all equal zero or one, according to p independent Bernoulli draws
with success probability 1−sg. Hence, setting s, sg > 0 will induce element-wise
and group sparsity in Γ. Additional experiments using different distribution for
W are presented in Appendix A. The rows of the error matrix E are drawn
independently from Nq (0,Σ). We consider several structures for the error co-
variance matrix, specified in the form of the transformed error covariance matrix,
Σ̃ := UTΣU , where U is the orthogonal matrix obtained via eigendecomposition
over the matrix Cρ (see Eq. (2.3)):

1. Independent Errors. The errors are drawn i.i.d form Nq (0, Iq).

2. Autoregressive Error Covariance — AR (1). We let Σ̃ij = ρ
|i−j|
E . The

transformed error covariance matrix is dense, whereas the precision matrix
Ω̃ is a sparse, banded matrix.

3. Fractional Gaussian Noise (FGN). The transformed error covariance ma-
trix is given by,

Σ̃i,j = .5
[
(|i− j|+ 1) 2H − 2 |i− j|2H + (|i− j| − 1) 2H

]
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Fig 2. Estimated similarity level. The estimated similarity level for ρ = 0.4 (red horizontal
dashed line) by simulation settings.

with H = .95. Both the transformed error covariance matrix Σ̃ and its
inverse have a dense structure.

4. Equicorrelation Covariance Structure. We let Σ̃ij = ρE for j 	= i, and

Σ̃ij = 1 for j = i. Both the transformed error covariance matrix and its
inverse have a dense structure.

5.3. Performance measure

For a given realization of the coefficient matrix and method m, and for each

replication r, let γ
(r)
j denote the true coefficient vector and γ̂

(r)
j (m) denote

the estimated coefficient vector, both for the jth response. The mean-squared
estimation error is given by

ME(r)
m

(
γ
(r)
j , γ̂

(r)
j (m)

)
=

∫ [(
γ
(r)
j − γ̂

(r)
j (m)

)T

z

]2
p (z) dz

=
(
γ
(r)
j − γ̂

(r)
j (m)

)T

ΣZ

(
γ
(r)
j − γ̂

(r)
j (m)

)
,

where p (z) and ΣZ are the density function and covariance matrix of z, re-
spectively. We evaluate the performance using the model error (ME), follow-
ing Breiman and Friedman [3], Yuan et al. [47], Rothman, Levina and Zhu
[32],

ME(r)
m

(
Γ(r), Γ̂(r) (m)

)
= tr

[(
Γ(r) − Γ̂(r) (m)

)T

ΣZ

(
Γ(r) − Γ̂(r) (m)

)]
.

The ME over all N replications is averaged to obtain our performance mea-
sure,

MEm =
1

N

N∑
r=1

ME(r)
m .
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Fig 3. Independent Errors. Average model error (ME) versus the correlation parameter ρ,
based on N = 200 replications with n = 50, p = 20, q = 5 and sparsity levels s = 0.2, sg = 0.

5.4. Results

We simulate N = 200 replications with n = 50, p = 20 and q = 5, for each
setting. Additional experiments using larger values for n and p are presented in
Appendix A. The correlation parameter ρ ranges from 0 to 0.8, with 0.2 steps.
Significance tests were performed using paired t-test. We report the estimates
for ρ = 0.4 under the different error covariance structures in Figure 2.

Independent Errors. We first consider an identity error covariance struc-
ture, Σ̃ = Iq, and set the sparsity and group sparsity levels at s = 0.2, sg = 0.
Hence, for small values of ρ we do not expect any advantage for our method over
the competitors. The average ME is displayed in Figure 3. Indeed, for ρ = 0, .2,
our method achieves no significant improvement over Group Lasso. For ρ > .2,
the MrRCE method achieves significant improvement over all competitors (all
p-values < 1e− 2).

Autoregressive (AR). Let Σ̃ij = ρ
|i−j|
E , with ρE = 0.75. We use two set-

tings for the sparsity levels, s = sg = 0 — dense AR, and s = sg = 0.1 —
sparse AR. Although the transformed precision matrix is a sparse, banded ma-
trix, the assumptions of MrRCE only partially hold, as we induce sparsity in
Γ as well. The results are displayed in Figure 4. For both settings, the MrRCE
method achieves the best ME performance, with a significant improvement over
competing methods (all p-values < 1e− 3).

Fractional Gaussian Noise. This covariance structure for the error terms
was also considered by Rothman, Levina and Zhu [32]. We construct a dense
coefficient matrix, by setting s = sg = 0. The results are presented in Figure 5,
showing that our proposed method provides a considerable improvement over
competitors (all p-values < 1e−19). The margin by which MrRCE outperforms
the other methods increases with ρ.



Capturing between-tasks covariance and similarities 3835

Fig 4. Autoregressive. Average model error (ME) versus the correlation parameter ρ, based
on N = 200 replications with n = 50, p = 20, q = 5. Top: sparse AR (s = sg = 0.1); Bottom:
dense AR (s = sg = 0).

Equicorrelation. Finally, we let Σ̃ij = ρE = 0.9 for i 	= j, and set s =
sg = 0.1. The results are displayed in Figure 6. The MRCE method exploits the
correlated errors, achieving better performance than the Group Lasso, Ridge and
OLS methods, and is second only to MrRCE, which significantly outperforms
all competitor methods for all values of ρ (all p-values < 1e− 8).

6. Applications

We consider two publicly available real-life datasets:

1. NYC Taxi Rides.2 The data consists of the daily number of New-York
City (NYC) taxi rides, ranging from January 2016 to December 2017.

2. Avocado Prices.3 The data was provided by the Hass Avocado Board
website and represents weekly retail scan data for national retail volume
(units) and price.

We measure and report the performance of the following methods:

1. Ordinary Least Squares.
2. Group Lasso. Apply 3-fold CV for the selection of the tuning parameter.

2The data is available at
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.

3The data is available at https://www.kaggle.com/neuromusic/avocado-prices.

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.kaggle.com/neuromusic/avocado-prices
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Fig 5. Fractional Gaussian Noise. Average model error (ME) versus the correlation parameter
ρ, based on N = 200 replications with n = 50, p = 20, q = 5 and sparsity levels s = sg = 0.

3. Separate Lasso. Perform q separate lasso regression models with 3-fold CV
for selecting the tuning parameters.

4. Ridge Regression. Perform q separate ridge regression models, with shared
regularization parameter, selected via LOO-CV (e.g. same ridge penalty
for all pq parameters).

5. Separate Ridge Regression. Perform q separate ridge regression models
with LOO-CV for selecting the tuning parameters.

6. MRCE. Apply 5-fold CV for selecting the regularization parameters.
7. MrRCE. Apply 3-fold CV for selecting the graphical lasso regularization

parameter.

NYC Taxi Rides. We consider the problem of forecasting the performance of
q = 2 taxi vendors in NYC, using historical records of the daily number of rides,
spanning from January 2016 to December 2017 (n = 730). This multivariate
time-series data is generated according to human activities and actions, and
as such can be expected to be strongly affected by multiple seasonalities and
holidays effects. For a regular period P , we utilize the Fourier series to model
the periodic effects [2, 36], by constructing 2 ·NP features of the form

ZP (t) =

{
cos

(
2πnt

P

)
, sin

(
2πnt

P

)}
n=1,...,NP

.

We account for the weekly and yearly seasonalities and introduce the corre-
sponding P -cyclic covariates. For a holiday H, which occurs at times T (H), we
use a simple indicator predictors of the form

ZH (t) = 1{t∈T (H)}.

Lastly, we incorporate covariates for the modeling of a piecewise linear trend.
These transformations shift the multivariate time-series problem into a feature
space with p = 68, where the linear assumption is appropriate. We denote the
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Fig 6. Equicorrelation. Average model error (ME) versus the correlation parameter ρ, based
on N = 200 replications with n = 50, p = 20, q = 5 and sparsity levels s = sg = 0.1.

transformed observations by,

{Z (t) , Y (t)}t=1,...,T ,

where Z (t) ∈ R
p contains measurements of the covariates, Y (t) ∈ R

q contains
the q responses, and Yj (t) ∈ [0, 1] represents the scaled response of the jth task
at time t, obtained by dividing the original observation by the maximal response
value for that given task.

We evaluate the forecast performance of the different methods using cross-
validation like approach, in which we produce K forecasts at multiple cutoff
points along the history [36]. For cutoff k = 0, ...,K−1, we use the first ntrain,k =
365 + k · 14 days for training, and the next ntest = 14 observations as the test
set. The performance of method m over the kth “fold” is measured according
to the Mean Squared Error (MSE),

MSEm
k =

1

ntest
· 1
q

∑
t∈Tk

q∑
j=1

(yj,t − ŷj,t (m))
2
,

where Tk are the time indices for the kth test set, and ŷj,t (m) is the forecast for
the jth task at time t, produced using method m. Using the above procedure,
we obtain K = 26 realizations of the MSE, {MSEm

k }K−1
k=0 , for each method m.

The mean and standard deviation of the MSE for each of the methods are
reported in Table 1. The MrRCE method attains the best forecast performance,
with lowest mean MSE and smallest standard deviation, followed by the Ridge
and Separate-Ridge methods. A paired t-test confirms that the improvement in
accuracy achieved by our method is significant (all p-values < 0.05). We also
note that the estimated similarity level for this data is ρ̂ = 0.992.

Avocado Prices. We consider the weekly average avocado prices for q = 5
regions in the US, spanning from January 2015 to April 2018 (n = 169). We use
national volume metrics and one hot encoding for years (p = 12) to predict the
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Table 1

Real-life applications: Average (±STD) of the MSE, estimated over K = 26 cutoffs for the
NYC Taxi Rides dataset and k = 10 folds for the Avocado Prices dataset.

NYC Taxi Rides Avocado Prices
OLS 2.00e-2±1.40e-2 73.1e-2±41.3e-2
Sep. Ridge 4.59e-3±5.34e-3 71.0e-2±38.7e-2
Sep. Lasso 5.75e-3±7.12e-3 72.0e-2±36.0e-2
Ridge 4.59e-3±5.34e-3 1.5e-2±39.8e-2
Group Lasso 5.68e-3±7.72e-3 66.7e-2±29.9e-2
MRCE 4.61e-3±5.12e-3 63.4e-2±29.0e-2
MrRCE (ours) 3.85e-3±4.57e-3 53.9e-2±22.6e-2

average avocado prices for each region. The performance is measured according
to the MSE, with 10-fold CV. The mean and standard deviation of the MSE,
calculated over all folds, are reported in Table 1. Our proposed method attains
the best prediction performance, with lowest mean MSE and smallest standard
deviation. A paired t-test confirms that the improvement in accuracy is signifi-
cant (all p-values < 0.05). We also report the estimated similarity level for this
data, at ρ̂ = 0.689.

7. Summary and discussion

We have presented the MrRCE method to produce an estimator of the covari-
ance components and a predictor of the multivariate regression coefficient ma-
trix. Our approach exploits similarities among random coefficients and accounts
for correlated errors. We have proposed an efficient EM-based algorithm for
computing MrRCE. Using simulated and real data, we have illustrated that the
proposed method can outperform the commonly used methods for multivariate
regression, in settings were errors or coefficients are related.

In our presentation, we limited the correlation matrix between coefficients
for the same variable across tasks to be an equicorrelation matrix, while the
correlation between coefficients for the same task is zero. We view these as
natural assumptions in the spirit of other grouped modeling methods like Mul-
tivariate Group Lasso [30]. However, other, less restrictive assumptions can also
be integrated into our framework and estimation approach, and require only
minor changes in the M-step of our algorithm. For example, in some cases, it
may be reasonable to assume that the q tasks are divided into two groups
with an equal correlation between coefficients within-group, and a different
(or zero) correlation between groups. Detailed examination of the potential
effect of adding parameters to the model in such a manner is left for future
research.

In some applications, it may be appropriate to also include fixed effects in
the spirit of Eq. (1.2). The fixed effects may not be shared across the differ-
ent tasks, or be subject to the regularization that the random effects view of-
fers. This can also be naturally accommodated within our approach and algo-
rithm.
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Appendix A: Additional experiments

We further evaluate MrRCE on the synthetic data of Section 5. First, we com-
pare MrRCE to the competing methods while varying the sample size n, and
the dimension of predictors p. Next, we evaluate the estimation performance of
MrRCE and provide the estimates for ρ and σ. Finally, we evaluate MrRCE
on a model setting in which the distributional assumption of MrRCE for Γ is
violated.

A.1. Varying the number of samples

We first examine the effect of increasing the number of training samples com-
pared to n = 50 as in the main text. We generate the data according to the dense
AR setting. Table 2 shows the result of varying the sample size from n = 100
to n = 200. Our method significantly outperforms all competitors for all sample
sizes.

Table 2

Varying sample size: Average model error (±STD) over 200 repetitions.

Sample Size 100 150 200
ρ 0 .4 .8 0 .4 .8 0 .4 .8
OLS 1.25±.3 1.27±.3 1.29±.3 .76±.2 .77±.2 .77±.2 .55±.1 .55±.1 .57±.1
Ridge 1.18±.3 1.21±.3 1.25±.3 .74±.2 .75±.2 .74±.2 .54±.1 .54±.1 .56±.1
Group Lasso 1.21±.3 1.24±.3 1.26±.3 .75±.2 .76±.2 .75±.2 .55±.1 .55±.1 .56±.1
MRCE 1.18±.3 1.22±.3 1.25±.3 .75±.2 .76±.2 .75±.2 .56±.1 .56±.1 .58±.1
MrRCE (ours) 1.12±.3 1.13±.2 1.02±.2 .74±.2 .74±.2 .69±.1 .54±.1 .54±.1 .53±.1

A.2. Varying the number of predictors

Next, we examine the effect of increasing the number of predictors from p = 20
as in the main text to p = 50. We set the number of observations to n = 50 and
generate the data according to the dense AR setting. The results are presented
in Table 3. We omit the results for OLS for p = n = 50 as it performs poorly. In
addition, we omit the MRCE method since it was computationally intractable
for these settings.

Table 3

Varying predictor dimension: Average model error (±STD) over 200 repetitions.

Predictor dim. 30 40 50
ρ 0 .4 .8 0 .4 .8 0 .4 .8

OLS 7.8±2.4 7.8±2.3 8.1±2.6 23.3±11.1 22.4±9.7 23.3±10.2 – – –
Ridge 6.0±1.3 6.0±1.3 6.2±1.7 11.6±2.8 11.3±2.8 11.4±3.7 21.1±5.8 21.3±6.0 20.8±6.0
Group Lasso 6.5±1.4 6.3±1.3 6.3±1.8 12.8±2.8 12.3±3.1 12.1±3.8 23.2±4.8 23.8±6.4 24.6±7.5

MrRCE (ours) 5.2±1.0 4.7±.8 3.7±.7 9.9±2.0 9.2±2.0 7.6±1.7 19.1±3.2 19.3±4.5 16.5±4.7
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A.3. Estimating ρ and σ

We now present the estimates for the covariance components ρ and σ. We use
the dense AR setting with n = 100, p = 20 and q = 5. Recall that we evaluate
each experimental setting using 200 random replications. We set the variance
component to σ2 = 1 for all experiments, and vary the intra-group correlation
coefficient ρ = 0, .2, .4, .6, .8. Figure 7 shows a boxplot of the estimates for both
parameters against the value of ρ.

Fig 7. Estimating the covariance components: (a) Estimates for ρ; (b) Estimates for σ. True
parameter values are marked in red.

A.4. Violating the distributional assumption

The MrRCE method assumes Γ follows a specific matrix-variate normal distri-
bution, and in Section 5 we generate realization of Γ from that distribution. Here
we evaluate MrRCE in setting in which γi,j ∼ Unif(−1, 1), where Γ = (γi,j)i,j .
We measure the performance under three setting for the error covariance ma-
trix, as described in Section 5: (i) Fractional Gaussian Noise — FGN; (ii) AR
dense; and (iii) Equicorrelation — Equi. We use n = 50, p = 20 and q = 5.
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Table 4

Uniform distribution for Γ: Average model error (±STD) over 200 repetitions.

FGN AR dense Equi
OLS 3.46±1.30 3.30±1.35 3.58±1.21
Ridge 2.92±0.85 2.77±0.81 2.96±0.82
Group Lasso 2.91±0.78 2.59±0.78 2.89±0.71
MRCE 2.83±0.98 2.51±0.97 3.11±0.94
MrRCE (ours) 1.80±0.46 1.52±0.44 2.14±0.44

Appendix B: Convergence of the MrRCE algorithm

The MrRCE algorithm is a variant of the EM-algorithm for penalized likeli-
hood [15]. Here we discuss the convergence of the EM sequence. We let S denote
the parameter space and �pen denote the penalized negative log-likelihood for
the full data,

�pen = � (Y,Γ;Θ) + λω

∑
j �=j′

|ωjj′ |.

The EM sequence {�pen(Θt)}t := {�pen,t}t is monotonic non-increasing [15] and
thus converge to some �∗pen provided that �pen is bounded bellow on SΘ0 := {Θ |
�pen(Θ) ≤ �pen(Θ0)} for finite start value �pen(Θ0).

Recall that �pen − λω

∑
j �=j′ |ωjj′ | can be decomposed into two terms of the

form

f(B) = tr[BATA]− log |B|,

where B is a positive semi-definite matrix. We wish to show that f is bounded
from below under mild assumptions: First, note that the trace term is non-
negative since

tr[BATA] = tr[(AC)TAC]

where C = B1/2. Second, recall that B = M−1 is the precision matrix for the
covariance matrix Σ or σ2D. Let the eigenvalues of the covariance matrix be
λ1 ≥ . . . ≥ λq. We have that

− log |B| =
∑
i

log(λi) ≥ q log(λq).

Thus, assuming λq is bounded away from zero, we have that f is bounded from
below. Concretely, for σ2D the assumption implies there exists some δ > 0 such
that ρ ≤ 1− δ and σ2 ≥ δ.
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