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Model selection and model averaging for

analysis of truncated and censored data

with measurement error∗

Li-Pang Chen† and Grace Y. Yi†,‡,§

Abstract: Model selection plays a critical role in statistical inference and
a large literature has been devoted to this topic. Despite extensive research
attention on model selection, research gaps still remain. An important but
relatively unexplored problem concerns truncated and censored data with
measurement error. Although analysis of left-truncated and right-censored
(LTRC) data has received extensive interests in survival analysis, there
has been no research on model selection for LTRC data with measure-
ment error. In this paper, we take up this important problem and develop
inferential procedures to handle model selection for LTRC data with mea-
surement error in covariates. Our development employs the local model
misspecification framework ([6]; [10]) and emphasizes the use of the focus
information criterion (FIC). We develop valid estimators using the model
averaging scheme and establish theoretical results to justify the validity of
our methods. Numerical studies are conducted to assess the performance
of the proposed methods.

Keywords and phrases: Focus information criterion, left-truncation, mea-
surement error, model averaging, model selection, survival analysis.
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1. Introduction

Model selection plays an important role in statistical inference, and various
model selection criteria have been proposed, including the Akaike information
criterion (AIC), Bayesian information criterion (BIC), and cross validation. To
focus on the quantity of interest, [6] proposed the focus information criterion
(FIC) for model selection by selecting the best candidate model using the small-
est mean squared error for the corresponding estimator of the focus parameter
under regression models. Several extensions of the FIC method have been de-
veloped for distinct settings. For example, [5] studied the FIC method for the
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partially linear model. [30] implemented the FIC method to generalized addi-
tive partial linear models. [26] discussed the FIC method based on weighted
composite quantile regression.

Traditional statistical analysis often first builds the model by selecting impor-
tant variables and then, based on the model, carries out statistical inferences.
This procedure, however, as pointed out by [7] and [8], among others, ignores the
uncertainty induced from the variable selection process, thus producing estima-
tors with invalid characterization of the associated variability. To mitigate this
issue, researchers came up with the model averaging strategy based on averaging
a set of candidate models with suitable weights attached and then producing a
compromise estimator of the model parameter accordingly. The specification of
the weights basically hinges on the choice of the model selection criterion, which
induces uncertainty to inferential procedures. Detailed discussions can be found
in [7].

With censored data, variable selection methods were developed for various
settings by many authors including [4], [9], [11], and [16]. While those exten-
sions branch out the scope of the FIC method, they are inadequate in handling
data with concurrent features of truncation, censoring, and measurement error,
which commonly arise from many areas including clinical trials, epidemiological
studies, actuarial science, and so on. Little work has been available to address
those features simultaneously as noted by [27] and [29].

In this paper, we investigate this problem and develop valid inference meth-
ods which simultaneously accommodate measurement error effects and sampling
issues as well as model building for censored survival data. Our model selec-
tion development takes the local model misspecification framework [6, 10] for
which we modify the FIC criterion of [6] and [11] by accommodating the ef-
fects due to the concurrent presence of measurement error, left-truncation and
right-censoring in data. To estimate the focus parameters, we adopt the frequen-
tist model average framework parallel to [10] and [30]. We establish asymptotic
results for the proposed estimators.

The remainder is organized as follows. In Section 2, we introduce the notation
and model setup for LTRC data. In Section 3, we propose a pseudo likelihood
for each candidate model using an adjusted conditional log-likelihood together
with regression calibration. The asymptotic properties of the estimators under
candidate models and the model averaging estimators are presented in Sections 4
and 5. Empirical studies are provided in Section 6. We conclude the article
with discussion in the last section. Technical justifications are outlined in the
appendices.

2. Notation and model

When we are interested in studying the survival process for a population of
individuals having a disease, we may consider a prevalent cohort which consists
of individuals having the disease at enrollment to the study. Suppose the disease
progression involves two chronologically ordered events, called the initiating
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event and the failure event (e.g., [24]). For an individual in the target population,
let u and r denote the calendar times for the initiating event and the failure
event, respectively, where u < r. We define T̃ = r − u as the lifetime since the
initiating event, which is of prime interest. In the process of collecting data, only
those individuals who have experienced the initiating event can be recruited in
the study, i.e., the study subjects can only include those with u < ξ, where
ξ represents the calendar time of the recruitment. In this instance, Ã = ξ − u
represents the truncation time, as shown in Figure 1. Let h(a) be the probability

density function of Ã which is typically unknown, and let H(a) =
∫ a

0
h(u)du

denote the corresponding distribution function.

For an individual with T̃ ≥ Ã, we let (A, T ) denote
(
Ã, T̃

)
to indicate that

such an individual is eligible for the recruitment so that measuring (A, T ) is

possible. If T̃ < Ã, then such an individual is not included in the study to con-
tribute any information. In addition, we define C as the censoring time after the
recruitment. That is, once individuals are enrolled in the study, one may collect
either residual survival time T −A or censoring time C. Let Y = min{T,A+C}
be the observed time and let Δ = I(T ≤ A + C) be the indicator of a failure
event, where I(·) is the indicator function. For an individual in the study, let X
and Z denote the associated covariates of dimension p×1 and q×1, respectively,
and write V = (X�, Z�)�.

Fig 1. Schematic depiction of LTRC data for T̃ ≥ Ã

2.1. Cox model and inference

Suppose that we have a sample of n subjects and for i = 1, · · · , n, {Yi, Ai,Δi, Vi}
has the same distribution as {Y,A,Δ, V }. Let the lowercase letters yi, ai, δi,
and vi = (x�

i , z
�
i )� represent realizations of Yi, Ai,Δi, and Vi = (X�

i , Z�
i )�,
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respectively. Consider the Cox model for survival times T̃ whose hazard function
is modeled as

λ(t|vi) = λ0(t) exp(v
�
i β), (2.1)

where λ0 (·) is an unknown baseline hazard function, and β is the vector of the
parameters that are of interest.

Let Λ0(t) =
∫ t

0
λ0(u)du be the cumulative baseline hazard function. Let

F(t|vi) = exp
{
−Λ0(t)exp

(
v�i β

)}
denote the survivor function of T̃ given the

covariates and let f(t|vi) = − d
dtF(t|vi). By Assumptions (C5) and (C6) in Ap-

pendix A, the likelihood function is given by

L =

n∏
i=1

f(yi|vi)δiF(yi|vi)1−δidH(ai)∫∞
0

F(u|vi)dH(u)
, (2.2)

which can be equivalently re-written as the product of the conditional likelihood

LC =

n∏
i=1

f(yi|vi)δiF(yi|vi)1−δi

F(ai|vi)
(2.3)

and the marginal likelihood

LM =

n∏
i=1

F(ai|vi)dH(ai)∫∞
0

F(u|vi)dH(u)
. (2.4)

Discussion on this formulation can be found in [3] and [24]. In principle, esti-
mation of the model parameters may proceed with maximizing L with respect
to the model parameters.

2.2. Framework with submodels

In specifying the model (2.1) we include all the covariates in the model without
discretion; irrelevant or unimportant covariates may be included in the model.
To feature this, we consider the local model misspecification framework, initiated
by [11]. Let Zi represent the vector of important covariates that are always being
included in the model, and let Xi represent the vector of covariates which may
be subject to exclusion when building a model. Write Xi = (Xi1, . . . , Xip)

� and
Zi = (Zi1, . . . , Ziq)

�. Let β = (β�
x , β�

z )� be a vector with dimension d = p+ q,
where βx is the p-dimensional parameter vector for which we are unsure whether
or not all of its components should be included in the model and βz is the q-
dimensional parameter vector which should be used in the model. Let β0 =(

η�
√
n
, β�

z0

)�
represent the parameter value perturbed around the null model

with the parameter value (0�p , β
�
z0)

�, where η is the p-dimensional parameter,
η√
n
represents the degree of the departure of the corresponding model from the

null model, and 0p is a p-dimensional zero vector.



4058 L.-P. Chen and G. Y. Yi

Let S be the class of all subsets of {1, 2, · · · , p}. For any S ∈ S, let |S| denote
the number of the elements in S. Set S with |S| = 0 to be the empty set; if

|S| = p, then such an S is called the full set. Let βS =
(
β�
x,S, β

�
z,S

)�
denote the

parameter vector for the candidate model S which corresponds to the covariates
indexed by S, with βx,S being an |S| × 1 subvector of βx. Although covariate Zi

is always included in the model, the subscript S in βz,S is used to emphasize that
this is the parameter corresponding to Zi under the candidate model associated
with S.

We now define a projection operator. For any S, let πS be an |S| × p matrix
with element 0 or 1; in each row there is one and only one element which takes
value 1 and in each column there is at most one element taking value 1. More
specifically, if S =

(
j1, j2, · · · , j|S|

)
with 1 � j1 < j2 < · · · < j|S| � p, then

the (k, jk) element of πS takes value 1 for k = 1, · · · , |S|; other elements of

πS take value 0. Let ΠS =

(
πS 0|S|×q

0q×p Iq×q

)
, where 0p×q is the p × q matrix

with entries zero, and Iq×q is the q × q identity matrix. Then applying ΠS to(
X�

i , Z�
i

)�
gives the (|S|+q)×1 vector, ΠS

(
X�

i , Z�
i

)�
, which merely includes

the covariates in the candidate model S.

2.3. Measurement error model

In applications, some covariates are subject to measurement error. Here we
consider the case where Xi is error-contaminated and Zi is precisely measured.
For the case where Zi is subject to measurement error and Xi is precisely
measured, or both Xi and Zi are subject to measurement error, the following
development needs to be modified. If Xi is precisely measured but Zi is error-
prone, then the development here can be readily modified. But when both Xi

and Zi are error-contaminated, the technical details would be more notationally
complex.

Let X∗
i denote the observed or surrogate measurement of Xi. Consistent

with the most work in the literature (e.g., [2, 29]), we consider that the Xi are
continuous and linked with the X∗

i by the additive measurement error model:

X∗
i = Xi + εi, (2.5)

where εi is independent of {Yi, Ai,Δi, Vi}, εi ∼ N(0p,Σε) with covariance matrix
Σε, and 0p represents the p× 1 zero vector. To highlight the key ideas, here we
focus our attention on estimation of parameters associated with the survival
model and assume Σε for the measurement error model (2.5) to be known.

In situations where the parameters for the measurement error model (2.5)
must be estimated, we may utilize the information carried with additional data
sources such as repeated measurements or validation subsamples. For instance,
with the availability of repeated measurements, let X∗

ij denote the jth repeated
observation of Xi with j = 1, · · · , ni, where ni is the number of the replicates

for subject i. Define X̄∗
i = 1

ni

ni∑
j=1

X∗
ij for i = 1, · · · , n. Then Σε can be estimated
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as ([2], p.71)

Σ̂ε =

n∑
i=1

ni∑
j=1

(
X∗

ij − X̄∗
i

) (
X∗

ij − X̄∗
i

)�
n∑

i=1

(ni − 1)
.

When validation data are available, one may adapt the discussion of [28] to
incorporate estimation of the parameters for the measurement error model (2.5)
into inferential procedures.

3. Methodology for the correction of measurement error effects

In this section we discuss estimation procedures which accommodate measure-
ment error effects. We employ the framework considered by [3].

3.1. Correction for conditional log-likelihood function

For any candidate model S, let LC,S denote the derived conditional likelihood
function, which, similar to the expression of LC in (2.3), leads to its logarithm

	C,S =

n∑
i=1

[
δi log λ0(yi) + δi

{
(πSxi)

�βx,S + z�i βz,S

}
−{Λ0(yi)− Λ0(ai)} exp

{
(πSxi)

�βx,S + z�i βz,S

}]
, (3.1)

showing that (πSXi)
�βx,S and exp

{
(πSXi)

�βx,S

}
are the only terms involving

error-prone covariates.
To correct for the measurement error effects, we first manipulate the mea-

surement error model (2.5) as

πSX
∗
i = πSXi + πSεi, (3.2)

where πSεi ∼ N
(
0|S|, πSΣεπ

�
S

)
, yielding the moment generating function

mS(t) = E
{
exp
(
t�πSεi

)}
= exp

(
1
2 t

�πSΣεπ
�
S t
)
, where t is a |S| × 1 vector

of real numbers. Consequently,

E (πSX
∗
i |Xi, Zi) = πSXi (3.3)

and

E

{
exp

(
β�
x,SπSX

∗
i −

β�
x,SπSΣεπ

�
S βx,S

2

)∣∣∣∣∣Xi, Zi

}
= exp

(
β�
x,SπSXi

)
. (3.4)

Define

	∗C,S =
n∑

i=1

[
δi log λ0(yi) + δi

(
(πSx

∗
i )

�
βx,S + z�i βz,S

)
(3.5)
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− {Λ0(yi)− Λ0(ai)} exp
{
(πSx

∗
i )

�
βx,S + z�i βz,S

}
{mS (βx,S)}−1

]
.

Then applying (3.3) and (3.4) to (3.5) yields that

E
(
	∗C,S|Xi, Zi

)
= 	C,S;

this property ensures that working with the function 	∗C,S allows us to recover the
information carried by 	C,S. Such a strategy, called the “corrected” likelihood
method or the insertion correction approach (e.g., [29], Chapter 2), is useful
in yielding an unbiased estimating function, which captalizes on the identities
(3.3) and (3.4) derived from the moment generating function for the error term
in model (2.5).

	∗C,S differs from 	C,S in the availability of measurements for the X∗
i and Xi.

The inclusion of the term {mS (βx,S)}−1
in 	∗C,S adjusts the effects of replacing

Xi in 	C,S with the surrogate version X∗
i . The function 	∗C,S provides the basis for

developing the following estimation procedure for βS. With (β�
x,S, β

�
z,S)

� fixed,
maximizing (3.5) with respect to λ0(yi), we derive the estimated cumulative
baseline function as

Λ̂0,S(t) =

∫ t

0

1
n

n∑
i=1

dNi(u)

{mS (βx,S)}−1
G

(0)
S (u, βx,S, βz,S)

, (3.6)

where

G
(0)
S (u, βx,S, βz,S) =

1

n

n∑
i=1

Yi(u) exp
{
(πSx

∗
i )

�
βx,S + z�i βz,S

}
, (3.7)

Yi(u) = I (Ai � u � Yi), and Ni(u) = I (Yi � u).
The estimator (3.6) is similar to the Breslow estimator (e.g., [15], p.385)

in the formulation but involves additional terms {mS (βx,S)}−1
and Yi(u) to

reflect the adjustments of the effects of measurement error and left-truncation.
Plugging (3.6) into (3.5), we let 	̂∗C,S denote the resulting function which is to
be used for estimation of βS.

3.2. Augmented pseudo-likelihood estimation

The formulation of the marginal likelihood (2.4) for the candidate model S is

LM,S =

n∏
i=1

F(ai|πSxi, zi)dH(ai)∫∞
0

F(α|πSxi, zi)dH(α)
, (3.8)

where F(ai|πSxi, zi) = exp
[
−Λ0(ai) exp

{
(πSxi)

�βx,S + z�i βz,S

}]
. Noting that

the marginal likelihood (3.8) involves the unobserved covariate Xi, we now con-
struct a modified version of (3.8) to address the measurement error effects.
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Let μX and ΣX be the mean vector and covariance matrix of Xi, respectively.
Let X∗

i,S = πSX
∗
i as in (3.3), then model (3.2) gives that

E(πSXi|X∗
i,S = x∗

i,S) = πSμX +
(
ΣX∗

S
− Σε,S

)�
Σ−1

X∗
S
(x∗

i,S − μX∗
S
), (3.9)

where Σε,S = πSΣεπ
�
S , and μX∗

S
and ΣX∗

S
represent the mean and covariance

matrix of X∗
i,S, respectively.

We let x̃i,S denote (3.9) for ease of notation. Using the method of moments,
(3.9) is estimated by

x̂i,S = μ̂X∗
S
+
(
Σ̂X∗

S
− Σε,S

)�
Σ̂−1

X∗
S

(
x∗
i,S − μ̂X∗

S

)
(3.10)

with μ̂X∗
S
= 1

n

n∑
i=1

x∗
i,S and Σ̂X∗

S
= 1

n−1

n∑
i=1

(x∗
i,S − μ̂X∗

S
)(x∗

i,S − μ̂X∗
S
)�. Then re-

placing πSxi with x̂i,S in likelihood function (3.8) gives

L∗
M,S =

n∏
i=1

F(ai|x̂i,S, zi)dH(ai)∫∞
0

F(α|x̂i,S, zi)dH(α)
, (3.11)

where
F(ai|x̂i,S, zi) = exp

{
−Λ0(ai) exp

(
x̂�
i,Sβx,S + z�i βz,S

)}
. (3.12)

To use (3.11) for inference about βS, we first use the nonparametric maximum
likelihood estimator (NPMLE) (e.g., [23]) to estimate the distribution function

H(·) of Ã. Specifically, the NPMLE of H(a) under a candidate model S in (3.11)
is given by

ĤS(a) =

(
n∑

i=1

1

F̂(ai|x̂i,S, zi)

)−1 n∑
i=1

I(ai ≤ a)

F̂(ai|x̂i,S, zi)
, (3.13)

where F̂(ai|x̂i,S, zi) is determined by (3.12) with Λ0(·) and
(
β�
x,S, β

�
z,S

)�
replaced

by Λ̂0,S(·) and β̂CS �
(
β̂�
x,CS, β̂

�
z,CS

)�
, respectively, given by (3.6), and β̂CS =

argmax
βS

	̂∗C,S.

Then replacing H(a) in (3.11) with ĤS(a) gives L̂∗
M,S, and letting 	̂∗M,S =

log L̂∗
M,S gives

	̂∗M,S =

n∑
i=1

log
{
dĤS(ai)

}
−

n∑
i=1

Λ̂0,S(ai) exp
(
x̂�
i,Sβx,S + z�i βz,S

)
(3.14)

−
n∑

i=1

log

[∫ ∞

0

exp
{
−Λ̂0,S(α) exp

(
x̂�
i,Sβx,S + z�i βz,S

)}
dĤS(α)

]
.

Consequently, the model parameter βS for the candidate model S can be esti-
mated by

β̂S �
(
β̂�
x,S, β̂

�
z,S

)�
= argmax

βS

(	̂∗C,S + 	̂∗M,S). (3.15)
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When |S| = p, i.e., all the variables {Xi, Zi} are included in the model, we have
that πS = Ip×p and hence πSX

∗
i = X∗

i , leading to the terms for the full model
for which the subscript S is removed from the notation. For instance, specifying
S as the full model, we let Λ̂0(·) and 	̂∗M represent (3.6) and (3.14), respectively,

and we write 	̂∗C as (3.5) with Λ0(·) replaced by Λ̂0(·).
Consequently, the estimator of β based on the full dataset is

β̂full �
(
β̂�
x,full, β̂

�
z,full

)�
= argmax

β

(
	̂∗C + 	̂∗M

)
. (3.16)

4. Asymptotic results under different settings

This section presents asymptotic results for different estimators derived from
different models or formed for different parameters. In the first subsection, the
parameter form is given, and we describe asymptotic results by considering dif-
ferent candidate models. In contrast, in the second subsection, we focus on a
given candidate model and discuss asymptotic results for estimators of differ-
ently formed focus parameters. This section provides the basis for the develop-
ment in Section 5 with the effects of concurrent features of measurement error,
left-truncation, and right-censoring taken into account.

4.1. Asymptotic results concerning candidate models

Given a candidate model S, we define

	∗P,S =

n∑
i=1

[
δi

{
(πSx

∗
i )

�
βx,S + z�i βz,S

}
+

1

2
δi log {mS(βx,S)} (4.1)

−δi log

⎧⎨⎩
n∑

j=1

exp
(
(πSx

∗
i )

�
βx,S + z�i βz,S

)
I(aj ≤ yi ≤ yj)

⎫⎬⎭
]
,

which has the same maximum likelihood estimator as obtained from (3.5); the
relevant detail can be found in [3] and [24]. Let 	∗P denote (4.1) with S being
the full model.

Let UP,S(βx,S, βz,S) =
∂�∗P,S

∂βS
, UM,S(βx,S, βz,S) =

∂�̂∗M,S

∂βS
, UP(βx, βz) =

∂�∗P
∂β and

UM(βx, βz) =
∂�̂∗M
∂β , where 	∗P,S and 	∗P are determined by (4.1) with S being a

submodel and the full model, respectively, and 	̂∗M,S and 	̂∗M are given by (3.14)
with S specified as a submodel and the full model, respectively. The following
lemmas present the relationship between the candidate model S and the full
model, which are useful for deriving asymptotic results of (3.15). The proofs of
Lemmas 4.1 and 4.2 are given in Appendices B.1 and B.2, respectively.

Lemma 4.1. For any candidate model S, let ΣX∗
S
be the covariance matrix of

X∗
S and let ΣX∗ be the covariance matrix of X∗. Then

π�
S Σ−1

X∗
S
πS = Σ−1

X∗ .
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Lemma 4.2. Under regularity conditions in Appendix A, the following results
hold for any candidate model S:

(a) UP,S

(
0|S|, βz0

)
= ΠSUP (0p, βz0);

(b) UM,S

(
0|S|, βz0

)
= ΠSUM (0p, βz0).

With the candidate model S, let WS denote a random vector having the

normal distribution N

(
A−1

S ΠSA
(

η
0q

)
, A−1

S BSA−1
S

)
, where A, AS and BS

are defined in Appendix B.3.1.

Theorem 4.1. Assume regularity conditions in Appendix A and the candidate
model S. As n → ∞, we have that

(a)
√
n

(
β̂x,S

β̂z,S − βz0

)
d−→ WS;

(b)
√
n
{
Λ̂0,S (t)− Λ0 (t)

}
d−→ V(t)−

(
Fx,S(t)
Fz(t)

)�
WS+Fx(t)

�η, where V(t)
is the Gaussian process with mean zero, Fx,S(t), Fx(t) and Fz(t) are given
in Appendix B.3.2, and η is the parameter defined in Section 2.2.

4.2. Asymptotic results for estimators of focused parameters

Rather than examining the model parameters individually, in applications we
are often interested in their combined forms or functions of those parameters.
To facilitate such settings, we let μ = μ (βx, βz,Λ0(·)) be a scalar function of

parameter β =
(
β�
x , β�

z

)�
and function Λ0 (t). The new parameter μ plays the

role of using a simple scalar measure to express certain combined information
of the original multi-dimensional parameters; it is called the focus parameter
[6, 7, 11]. The choice of the function μ(·) is often driven by the nature of in-
dividual problems (to be discussed in Section 5.1). In contrast to the notation

β0 = ( η�
√
n
, β�

z0) defined in Section 2.2, we let μtrue = μ
(

η√
n
, βz0,Λ0(·)

)
denote

the corresponding value of the focus parameter μ. By the invariance property

of the maximum likelihood estimator, μ̂S = μ
(
β̂x,S, β̂z,S, Λ̂0(·)

)
can be taken

as the estimated focus parameter corresponding to the candidate model S. We
comment that although the density function h(·) of the truncation time is un-
known, we do not include it when defining the focus parameter.

When S is the full model, we let B denote BS. For A defined in Section 4.1
and B, we express them as block matrices according to the dimension of the

covariates Xi and Zi: A =

(
Axx Axz

Azx Azz

)
and B =

(
Bxx Bxz

Bzx Bzz

)
. Let A−1 =(

Axx Axz

Azx Azz

)
denote the inverse matrix of A. We now present the asymptotic

properties for the estimators of the focus parameters whose proof is placed in
Appendix B.4.
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Theorem 4.2. Assume that the conditions in Theorem 4.1 hold and consider
the candidate model S. Suppose that the focus parameter μ = μ (βx, βz,Λ0(t)) is
a continuously differentiable function of parameter β and the cumulative baseline
hazard function at a given time point t. Then as n → ∞,

√
n (μ̂S − μtrue)

d−→ ∂μ

∂Λ0
V(t) +

(
∂μ

∂βz
+

∂μ

∂Λ0
Fz(t)

)�
A−1

zz Jz

+(ω + κ)
�
{
η − (Axx)1/2HS(A

xx)−1/2U
}
,

where V(t) is the zero mean Gaussian process defined in Theorem 4.1, HS =

(Axx)−1/2π�
S

{
πS(A

xx)−1π�
S

}−1
πS(A

xx)−1/2, κ = ∂μ
∂Λ0

Fx(t)−A�
zxA

−1
zz

∂μ
∂Λ0

Fz(t),

ω = ∂μ
∂βx

− A�
zxA

−1
zz

∂μ
∂βz

, U = η +W, W = AxxJx − AxxAxzA
−1
zz Jz, and Jz and

Jx are random variables having the distributions N (0q, Bzz) and N (0p, Bxx),
respectively.

A useful special case is that the focus parameter μ = μ (βx, βz) is the function
of parameter β alone. Then Theorem 4.2 says that as n → ∞,

√
n (μ̂S − μtrue)

d−→
(

∂μ

∂βz

)�
A−1

zz Jz + ω�
{
η − (Axx)1/2HS(A

xx)−1/2U
}
.

(4.2)
We comment that Theorem 4.2 differs from the results established by [9] and

[11] who considered censored data with the FIC. Their model setup and the
features of data are different from what we discuss here which involves left-
truncation and measurement error.

5. Focus parameter and model averaging

We examine the focus parameter under several useful settings and discuss the se-
lection criterion accordingly. Furthermore, we establish large sample properties
of model averaging estimators.

5.1. Useful settings and focus information criterion

In this subsection, we illustrate the choice of the focus parameters using ex-
amples which are pertinent to the hazard ratio and the survivor function. Fur-
thermore, we employ the focus information criterion (FIC) (e.g., [6]) to conduct
model selection. The key idea is to select the best candidate model using the
smallest estimated mean squared errors (MSE) derived for estimators of the
focus parameter under all candidate models.

Setting 1: The hazard ratio.
Under the Cox model (2.1), the hazard ratio for V = v0 relative to V = v0 +1d
is

μ � λ (t|v0 + 1d)

λ (t|v0)
= exp

(
1�d β

)
, (5.1)
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where 1d is the d× 1 unit vector, and v0 is a value of V . In this case, the focus
parameter is taken as the hazard ratio μ which is a function of β.

Theorem 4.1 shows that W has a normal distribution N (0, σxx) with σxx

being the asymptotic covariance matrix of β̂x,full that is given in (B.6) in Ap-
pendix B.3. Therefore, for any candidate model S, by (4.2), the expectation of
μ̂S − μtrue and the variance of μ̂S are, respectively, given by

E (μ̂S − μtrue) = ω�
{
Ip×p − (Axx)1/2HS(A

xx)−1/2
}
η

and

var (μ̂S) =

(
∂μ

∂βz

)�
A−1

zz BzzA
−1
zz

(
∂μ

∂βz

)
+ω�(Axx)1/2HS(A

xx)−1/2σxx(A
xx)−1/2HS(A

xx)1/2ω,

and thus, the MSE of μ̂S is derived as

E
{
(μ̂S − μtrue)

2
}

=

(
∂μ

∂βz

)�
A−1

zz BzzA
−1
zz

(
∂μ

∂βz

)
(5.2)

+ω�
{
(Ip×p − ΦS) ηη

� (Ip×p − ΦS)
�
+ΦSσxxΦ

�
S

}
ω,

where ΦS = (Axx)1/2HS(A
xx)−1/2.

The first term of (5.2) does not depend on the candidate model S, so to make
the comparison among different candidate models be focused, we drop this term
and simply let the second term of (5.2) reflect the MSE of μ̂S:

ω�
{
(Ip×p − ΦS) ηη

� (Ip×p − ΦS)
�
+ΦSσxxΦ

�
S

}
ω. (5.3)

To use (5.3), ηη� needs to be estimated. By Theorem 4.1 (a),
√
nβ̂x,full =

η̂ ∼ N(η, σxx), thus E
(
nβ̂x,fullβ̂

�
x,full

)
= σxx + ηη�, so that nβ̂x,fullβ̂

�
x,full − σ̂xx

is an asymptotically unbiased estimator of ηη�. Thus, (5.3) is estimated by

M̂SES = ω̂�
1

{(
Ip×p − Φ̂S

)(
nβ̂x,fullβ̂

�
x,full − σ̂xx

)(
Ip×p − Φ̂S

)�
+Φ̂Sσ̂xxΦ̂

�
S

}
ω̂1, (5.4)

where Φ̂S = Â
−1/2
xx ĤSÂ

1/2
xx , ω̂1 = ∂μ(β̂S)

∂βx
− Â�

zxÂ
−1
zz

∂μ(β̂S)
∂βz

, and σ̂xx is the esti-

mated asymptotic covariance matrix of β̂x,full.

Setting 2: Linear combinations of covariate effects.
In contrast to the hazard ratio, we may be interested in a linear combina-
tion of covariate effects (e.g., [21, 22, 30]). Then the focus parameter is set as
μ = c�x βx + c�z βz, where cx and cz denote p-dimensional and q-dimensional
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vectors of the coefficients, respectively. Similar to the derivations for Setting 1,

M̂SES in (5.4) can be used to select the best candidate model, where ω̂1 is taken

as cx − Â−1
zx Âzzcz.

Setting 3: The cumulative baseline hazard function.
In some applications, as discussed by [11], the cumulative baseline hazard func-
tion Λ0 (·) is of prime interest, and in this case the focus parameter μ is set as
Λ0(t0) for some time point, say t0.

Applying Theorem 4.2 with ω = 0 and κ = Fx (t0) − A�
zxA

−1
zz Fz(t0), we can

work out the MSE of μ̂S for the candidate model S. Similar to (5.4), with the
candidate model S, MSE is estimated as

M̂SES = κ̂�
2

{(
Ip×p − Φ̂S

)(
nβ̂x,fullβ̂

�
x,full − σ̂xx

)(
Ip×p − Φ̂S

)�
+Φ̂Sσ̂xxΦ̂

�
S

}
κ̂2, (5.5)

where Φ̂S and σ̂xx are the same as described in Setting 1, κ̂2 =
∂μ(Λ̂0,S(t0))

∂Λ0
F̂x(t0)−

Â�
zxÂ

−1
zz

∂μ(Λ̂0,S(t0))
∂Λ0

F̂z(t0), and the terms free of the candidate model S are omit-
ted.

Setting 4: The survivor function.
In applications, we are often interested in the survivor function

F (t|v) = exp
{
−Λ0 (t) exp

(
v�β

)}
at certain time point, say t0. In this situation, we take the focus parameter to
be

μ � μ (β,Λ0(t0)) = exp
{
−Λ0 (t0) exp

(
v�0 β

)}
for some given covariate value v0.

Again, by Theorem 4.2 with the similar discussion in Setting 1, the MSE of
μ̂S is given by

E
{
(μ̂S − μtrue)

2
}

=

(
∂μ

∂βz
+

∂μ

∂Λ0
Fz(t0)

)�
A−1

zz BzzA
−1
zz

(
∂μ

∂βz
+

∂μ

∂Λ0
Fz(t0)

)
+(ω + κ)

�
{
(Ip×p − ΦS) ηη

� (Ip×p − ΦS)
�

+ΦSσxxΦ
�
S

}
(ω + κ) .

Similar to the discussion for (5.4), we drop those quantities which are unrelated
to S and replace ηη� by its asymptotically unbiased estimator, and then we
obtain the estimate of MSE for the candidate model S:

M̂SES = (ω̂3 + κ̂3)
�
{(

Ip×p − Φ̂S

)(
nβ̂x,fullβ̂

�
x,full − σ̂xx

)(
Ip×p − Φ̂S

)�
+Φ̂Sσ̂xxΦ̂

�
S

}
(ω̂3 + κ̂3) , (5.6)
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where ω̂3 =
∂μ(β̂S ,Λ̂0,S(t0))

∂βx
− Â�

zxÂ
−1
zz

∂μ(β̂S ,Λ̂0,S(t0))
∂βz

, κ̂3 =
∂μ(β̂S ,Λ̂0,S(t0))

∂Λ0
F̂x(t0)−

Â�
zxÂ

−1
zz

∂μ(β̂S ,Λ̂0,S(t0))
∂Λ0

F̂z(t0), and Φ̂S and σ̂xx are described in Setting 1.

These settings cover the scenarios we usually encounter in survival analysis.
With the focus parameter specified differently, the FIC can yield different final

models, which are carried out based on the smallest M̂SES for all the candidate
models S.

5.2. Frequentist model averaging

As discussed by [8], conducting parameter estimation using a specifically selected
model is not ideal since the associated uncertainty is ignored. To alleviate this
issue, we employ the frequentist model averaging (FMA) method to construct an
estimator of μ. The idea is to use the estimators derived from different candidate
models to work out a suitable linear combination of them, given by

μ̂ave =
∑
S∈S

w(S|η̂)μ̂S,

where μ̂S represents the estimator of μ obtained from a method described in
Section 4.2 under the candidate model S, η̂ =

√
nβ̂x,full with β̂x,full described in

(3.16), and w(S|η̂) is a nonnegative weight pertinent to the candidate model S
which is data-driven and constrained by

∑
S∈S

w(S|η̂) = 1 ([7], p.195). Conven-

tional weights w(S|η̂) can be constructed using the AIC, BIC, or FIC; details
can be found in [10].

Theorem 5.1. Assume that the conditions in Theorem 4.2 hold. Then as n →
∞,

√
n (μ̂ave − μtrue)

d−→ ∂μ

∂Λ0
V(t) +

{
∂μ

∂βz
+

∂μ

∂Λ0
Fz(t)

}�
A−1

zz Jz

+(ω + κ)
�
{
U −

∑
S∈S

w(S|U)(Axx)1/2HS(A
xx)−1/2U

}
,

where w(S|U) represents the weight to which w(S|η̂) converges in distribution.

We comment that the technical details in this theorem differ from the work
concerning model averaging with FIC (e.g., [22, 30]) due to the differences in the
model setup and the natural of data. However, the derivations of those results
basically align with the development of [6] and [10], though different conditions
may be required to reflect the involvement of different processes. Our devel-
opment here typically hinges on four processes related to survival, censoring,
truncation, and measurement error. Untangling the relationship among those
processes requires care when deriving the results in Theorem 5.1.
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6. Numerical studies

In this section, we first conduct simulation studies to assess the performance
of the proposed estimators, and then implement the methods to analyze a real
dataset.

6.1. Simulation studies

For each setting, we run 500 simulations, where the sample size n = 100, 200 or
400. For the covariates, we generate X from N (06,ΣX) and Z from N (02,ΣZ)
independently, where

ΣX =

⎛⎜⎜⎜⎝
1 0.2 · · · 0.2
0.2 1 · · · 0.2
...

...
. . .

...
0.2 0.2 · · · 1

⎞⎟⎟⎟⎠
6×6

and ΣZ =

(
1 0.1
0.1 1

)
.

The goal here is to select the important variables in X and always retain
the covariate Z in the models. The survival time is generated using model (2.1)
where the baseline hazard function is set as λ0 (t) = 2t or log t. Specifically, the
failure times are determined by

T̃ =
√

− exp (X�βx0 + Z�βz0) log (1− U) if λ0(t) = 2t,

or

T̃
(
log T̃ − 1

)
exp
(
X�βx0 + Z�βz0

)
+ log (1− U) = 0 if λ0(t) = log t,

where U is simulated from the uniform distribution U(0, 1), and the parameter

β0 =
(
β�
x0, β

�
z0

)�
is set as βx0 = η√

n
and βz0 = (0.6, 0.6)

�
. We consider three

cases with

(1) η = (0, 0, 0, 0, 0, 0)
�
, (2) η = (1, 1, 1, 0, 0, 0)

�
, and (3) η = (1, 1, 1, 1, 1, 1)

�
.

Case (1) gives a null model, Case (2) indicates that some covariates are not
included in the true model, and Case (3) says that the full model contains all
the covariates.

Let the truncation time Ã be generated from the exponential distribution
with mean 10. The observed data (A, T, V ) are then obtained from (Ã, T̃ , V )

using the condition T̃ ≥ Ã. Independently repeat this data simulation step n
times to generate a sample of size n. The censoring variable C is generated
from the uniform distribution U(0, c) where c is a constant that is chosen to
yield about 50% censored data. Consequently, Y and Δ are determined by Y =
min {T,A+ C} and Δ = I (T ≤ A+ C).
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Consistent with Section 2.2, X is the error-prone covariates and X∗ is the
observed variable which is generated from

X∗ = X + ε, (6.1)

where ε is independently generated from N (06,Σε), and Σε is a diagonal matrix
whose diagonal elements are all specified as 0.1 or 0.5.

For the focus parameter, we consider three forms, given by (a) μ10 (β) =
exp
(
1�6 β

)
, (b) μ20 (Λ0) = Λ0(1), and (c) μ30 (β,Λ0) = exp

{
−Λ0(1) exp

(
1�6 β

)}
,

respectively. We are interested in selecting variables for different focus param-
eters using the proposed FIC method. As comparisons, we also apply AIC or
BIC to select variables.

First, we examine the selection results of candidate models. Among the 500
simulations, let p(True) denote the proportion of selecting the true model, let
p(S) be the proportion of selecting additional variables, and let p(FN) represent
the proportion of false exclusion of variables. We report the results for the case of
n = 400 and λ0(t) = 2t in Table 1. For the sake of space constraints, we omit the
results for other settings which show patterns similar to those of Table 1. Under
the null model η = (0, · · · , 0)�, AIC tends to select more irrelevant variables,
and BIC and FIC are more frequently select the true model. On the contrary,
for the full model η = (1, · · · , 1)�, the best selected candidate models by BIC
are smaller than the true model, while the best candidate models determined by
AIC and FIC are relatively close to the true model. Regarding the true model
with η = (1, 1, 1, 0, 0, 0)�, the proposed FIC method has larger proportions to
determine the true model than AIC and BIC which are more frequently select
either larger or smaller models. Moreover, we observe that without suitably
adjusting the effects of measurement error, the naive method constantly fails
to select the true model, regardless of the selection criteria and the form of
the focus parameters. In summary, the proposed error-correction FIC method
performs well in model selection.

After determining the best candidate model based a selection criterion, we
then use the plug-in method to obtain estimates of the focus parameters. Let
μ̂j denote the resultant estimate of a focus parameter for simulation j, where
j = 1, · · · , 500. We compute the square root of the mean squared error (RMSE)

as

√
500−1

500∑
j=1

(μ̂j − μ0)
2
. In contrast, we also report the results obtained from

the naive method which implements (3.1) and (3.8) with Xi replaced by X∗
i .

The results for λ0(t) = 2t and λ0(t) = log t are summarized in Tables 2–4 and
Tables 5–7, respectively. Furthermore, model averaging estimators with weights
defined in [7] are also investigated, and the results are displayed under the
headings sAIC, sBIC, and sFIC in Tables 2–7.

As expected, the RMSEs for the proposed estimators are smaller than those
for the naive estimators regardless of the selection criteria; and the differences
become more noticeable as measurement error is more substantial. This demon-
strates the necessity of addressing measurement error effects in inferential pro-
cedures. Interestingly, for both the naive approach and the proposed method,
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using FIC tends to result in smaller RMSEs than using AIC or BIC under our
simulation settings. While there is no rigorous theory to show this is always
the case, such a phenomenon was also being observed by other authors such
as [21], [22], [30], and [31]. Furthermore, the model averaging estimators, sAIC,
sBIC and sFIC, are comparable to their counterparts, AIC, BIC and FIC, re-
spectively, and sFIC outperforms both sAIC and sBIC under the settings we
consider.

6.2. Analysis of Worcester Heart Attack study data

In this section, we apply the proposed methods to analyze the data arising from
the Worcester Heart Attack Study (WHAS500). Data were collected over thir-
teen 1-year periods beginning in 1975 and extending in 2001 on all patients
with acute myocardial infarction (MI) admitted to hospitals in Worcester, Mas-
sachusetts Standard Metropolitan Statistical Area. Three types of time were
recorded for the study subjects: the date of the hospital admission, the date of
the hospital discharge, and the time of the last follow-up (which is either the
death or censoring time). We are interested in studying survival times of pa-
tients who were discharged alive from the hospital. Hence, a selection criterion
was imposed that only those subjects who were discharged alive were eligible
to be included in the analysis; individuals were not enrolled in the analysis if
they died before discharging from the hospital, hence left-truncation occurs.
Consistent with [12], we define the survival time as the time length between the
hospital admission and the last follow-up, and a truncation time as the time
length between the hospital admission and the hospital discharge. With such a
criterion, a sample of size 461 was available, and the censoring rate was 61.8%.

The following covariates are included in our analysis: initial heart rate (X1),
initial systolic blood pressure (X2), initial diastolic blood pressure (X3), body
mass index (X4), age (Z1), and gender (Z2). Let β = (βx1 , βx2 , βx3 , βx4 , βz1 , βz2)

�

denote the vector of the parameters for model (2.1). Covariates X1, X2, X3 and
X4 are error-prone due to the reasons including inaccurate measurement devices
and/or procedures, the biological variability, and temporal variations. Similar
to the settings in Section 6.1, we discuss three focus parameters: the hazard
ratio (μ1), the cumulative baseline hazard function (μ2) at time t0, Λ0(t0), and
the survivor function (μ3) at time t0, F(t0|v), with covariates taken as empirical
means of variables, where for illustration, we take t0 as the 50% percentiles of
the observed survival times Yi (e.g., [25]), bearing in mind that other values
of interest can also be specified as t0. Our goal is to select important variables
from X1 to X4 for different focus parameters, with Z1 and Z2 always retained.

We first present the estimators of β under the full model using both the
proposed approach discussed in Sections 3.1 and 3.2, and the naive approach
which ignores measurement error by directly implementing (3.1) or (3.8) with
Xi replaced by X∗

i . Since this dataset contains no additional information, such
as repeated measurements or validation data, to characterize the degree of mea-
surement error, we conduct sensitivity analyses by examining settings with the
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parameters for the measurement error model specified as different values. Let
ΣX and ΣX∗ denote covariance matrices of X and X∗, respectively, and let σXij ,
σX∗ij , and σεij denote the (i, j) entry of ΣX , ΣX∗ , and Σε, respectively. Mea-
surement error model (2.5) gives ΣX∗ = ΣX +Σε, suggesting that σXij is smaller
than σX∗ij for all i and j. Using the reliability ratio Rij ≡ σXij

σX∗ij
, or equivalently,

σεij = (R−1
ij − 1)σXij , we specify different values of σεij by varying Rij and/or

σXij . For ease of exposition, we take Rij as a constant, say R, for all i and j and
consider that σXij is given. For example, we take σXij as σXij = cσ̂X∗ij where
σ̂X∗ij is the (i, j) entry of the empirical estimate of ΣX∗ and c is a positive
constant. For illustrations, we take c = 0.9, bearing in mind that other values
in the interval (0, 1) can be typically set for c as well. Here we specify R in the
interval [0.5, 0.9], and the estimation results are shown in Figure 2. We see that

as the degree of measurement error changes, the patterns of β̂xj (j = 1, 2, 3, 4)

are fluctuated while β̂z1 and β̂z2 are fairly stable.
To examine the proposed estimators more closely, we report the results for

R = 0.85, 0.75 and 0.65 in Table 8 which includes the estimates, the standard
errors (SE) and the p-values for the proposed and the naive methods under
the full model. As expected, SEs of the naive estimator are generally smaller
than those of the proposed estimator. Both the naive and the proposed meth-
ods suggest all the covariates are significant, regardless of measurement error
degrees.

Next, we report the variable selection results based on AIC, BIC, and FIC
for the three focus parameters discussed in Section 6.1 and present the best
five candidate models in Table 9. Here we use a label, such as “134” to rep-
resent that the variables X1, X3, and X4 are selected for the model. The best
model selected by AIC contains more variables than those by BIC. It is inter-
esting to see that the selection results by the naive approach and the proposed
approach are similar. The FIC approach results in relatively more parsimo-
nious models, regardless of using the proposed method or the naive method.
In Table 10 we summarize the results for the estimates of the focus parame-
ters based on the best models and derived from the model averaging estima-
tors.

7. Discussion

Left-truncated and right-censored data arise commonly from studies of sur-
vival information. Analysis of such survival data is further complicated by the
presence of error-prone covariates and unimportant covariates. In this paper,
we develop estimation methods using the FIC criterion to handle such data.
We implement the model averaging technique to derive estimators of the fo-
cus parameters and establish asymptotic results of the proposed estimators.
Numerical studies confirm the satisfactory performance of our proposed meth-
ods.

The development here focuses on the case with continuous covariates sub-
ject to measurement error. In applications with discrete covariates subject to
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mismeasurement, the present development may be modified by following the
discussion of [29] and [32]. When error-prone data include both discrete and
continuous variables (e.g., [29], p.71), we may employ a procedure along the
lines of [28] to address the mismeasurement effects. This topic warrants care-
ful research. Further, the discussion here considers settings with covariates di-
vided as Xi and Zi, where Xi is error-prone and includes unimportant pre-
dictors, and Zi is precisely measured and contains important predictors. Sep-
arating error-prone and error-free covariates offers us convenience in modeling
the measurement error process, and it allows us to conduct inference by induc-
ing minimal model assumptions with Zi left unattended to. Such a strategy
has been widely adopted in the literature of measurement error problems (e.g.,
[2, 29]).

While we focus on the classical measurement error model in this paper, it is
possible to modify the proposed methods to accommodate other measurement
error models (e.g., [29], Section 2.6). Strategies outlined in Section 2.5 of [29]
may be employed to account for measurement error effects.

The development here assumes Σε to be known. Such an assumption is typ-
ically feasible for two circumstances: (1) prior studies provide the information
on the covariate mismeasurement and offer an estimate of Σε, and (2) in con-
ducting sensitivity analyses, different values of Σε are specified to understand
how mismeasurement effects may affect inference results about the parameters
associated with the survival model. Although taking Σε to be given gives us con-
venience in implementing the developed methods, it is recognized, as pointed
out by a referee, that we ignore the uncertainty induced from the discrepancy
between any specified or estimated value of Σε and its true value. When Σε is
estimated from an additional data source as outlined in Section 2.3, the induced
variability for the estimation procedure should be taken into account. While
the ideas considered by [18], [19] and [29] can be adapted for this purpose, it is
interesting to carry out careful explorations to work out the technical details.
Further, in the lack of additional data for characterizing Σε, [1] proposed a new
method to estimate the variance of classical additive error of a normal distri-
bution for settings with a univariate covariate subject to measurement error. It
may be useful to generalize the setting of [1] to accommodating multiple covari-
ates which are error-prone, and then modify the development here accordingly.
Computational intensity may be an issue as the dimension of error-contaminated
covariates becomes large.

As described in Section 5.1, our development is carried out for the focus
parameters which mainly pertain to the covariate effects β or the cumulative
baseline hazard function Λ0(·). Other types of focus parameters, such as per-
centiles (e.g., median), the probability of dying in an interval, and the expected
lifetime beyond a given time point, can be of interest as well. In this instance, it
is generally needed to establish the process convergence (rather than at a single
time point) for the estimator of the cumulative baseline hazard function Λ0(t),
in combination with that of the estimator of β. The discussion of [14] can be
adapted in conjunction with the development here to address the effects due to
left-truncation and measurement error.
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Table 1

Simulation results: the selection of best candidate model for the focus parameters with
n = 400 and λ0(t) = 2t.

η σε Proposed Naive
p(True) p(S) p(FN) p(True) p(S) p(FN)

(1) 0.1 μ1 AIC 0.832 0.168 0.000 0.118 0.882 0.000
BIC 0.886 0.114 0.000 0.172 0.828 0.000
FIC 0.904 0.096 0.000 0.226 0.774 0.000

μ2 AIC 0.792 0.208 0.000 0.162 0.838 0.000
BIC 0.812 0.188 0.000 0.212 0.788 0.000
FIC 0.914 0.086 0.000 0.306 0.694 0.000

μ3 AIC 0.780 0.220 0.000 0.118 0.882 0.000
BIC 0.838 0.162 0.000 0.172 0.828 0.000
FIC 0.928 0.072 0.000 0.332 0.668 0.000

0.5 μ1 AIC 0.794 0.206 0.000 0.108 0.892 0.000
BIC 0.868 0.132 0.000 0.136 0.864 0.000
FIC 0.901 0.099 0.000 0.205 0.765 0.000

μ2 AIC 0.770 0.230 0.000 0.150 0.850 0.000
BIC 0.805 0.195 0.000 0.170 0.830 0.000
FIC 0.908 0.092 0.000 0.298 0.602 0.000

μ3 AIC 0.757 0.243 0.000 0.107 0.893 0.000
BIC 0.827 0.173 0.000 0.155 0.845 0.000
FIC 0.919 0.081 0.000 0.253 0.747 0.000

(2) 0.1 μ1 AIC 0.662 0.236 0.102 0.196 0.562 0.242
BIC 0.784 0.052 0.264 0.148 0.274 0.578
FIC 0.912 0.048 0.040 0.433 0.359 0.208

μ2 AIC 0.690 0.244 0.066 0.176 0.498 0.326
BIC 0.749 0.050 0.201 0.180 0.326 0.494
FIC 0.918 0.078 0.004 0.364 0.524 0.112

μ3 AIC 0.659 0.200 0.141 0.143 0.511 0.346
BIC 0.693 0.041 0.266 0.163 0.327 0.510
FIC 0.934 0.064 0.002 0.368 0.566 0.066

0.5 μ1 AIC 0.542 0.332 0.126 0.132 0.644 0.224
BIC 0.700 0.056 0.244 0.140 0.254 0.606
FIC 0.892 0.076 0.032 0.389 0.428 0.274

μ2 AIC 0.656 0.322 0.022 0.170 0.338 0.492
BIC 0.722 0.008 0.270 0.174 0.338 0.488
FIC 0.902 0.090 0.008 0.360 0.426 0.214

μ3 AIC 0.645 0.343 0.012 0.137 0.596 0.267
BIC 0.678 0.022 0.300 0.150 0.312 0.538
FIC 0.924 0.050 0.026 0.345 0.564 0.091

(3) 0.1 μ1 AIC 0.886 0.000 0.114 0.366 0.000 0.634
BIC 0.810 0.000 0.190 0.245 0.000 0.755
FIC 0.935 0.000 0.065 0.387 0.000 0.613

μ2 AIC 0.874 0.000 0.153 0.345 0.000 0.655
BIC 0.765 0.000 0.235 0.313 0.000 0.687
FIC 0.952 0.000 0.048 0.365 0.000 0.635

μ3 AIC 0.889 0.000 0.111 0.322 0.000 0.678
BIC 0.734 0.000 0.266 0.295 0.000 0.705
FIC 0.930 0.000 0.070 0.373 0.000 0.627

0.5 μ1 AIC 0.863 0.000 0.137 0.329 0.000 0.671
BIC 0.789 0.000 0.211 0.223 0.000 0.777
FIC 0.911 0.000 0.089 0.369 0.000 0.651

μ2 AIC 0.866 0.000 0.134 0.320 0.000 0.680
BIC 0.747 0.000 0.253 0.297 0.000 0.703
FIC 0.941 0.000 0.059 0.347 0.000 0.653

μ3 AIC 0.873 0.000 0.127 0.309 0.000 0.691
BIC 0.722 0.000 0.278 0.280 0.000 0.720
FIC 0.918 0.000 0.082 0.354 0.000 0.646

μ1 is the hazards ratio; μ2 is the cumulative baseline hazard at time t = 1; μ3 is the survivor
function at time t = 1.
p(True) is the proportion of selecting the true model; p(S) is the proportion of selecting
additional variables; p(FN) is the proportion of false exclusion of variables.
Naive: The naive method is the approach of implementing (3.1) and (3.8) with the difference
in X∗ and X ignored.
Proposed: The proposed method is described in Section 3.
(1): η = (0, 0, 0, 0, 0, 0)�; (2): η = (1, 1, 1, 0, 0, 0)�; (3): η = (1, 1, 1, 1, 1, 1)�.
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Table 2

Simulation results: RMSE of the estimators for the focus parameters with n = 100 and
λ0(t) = 2t.

Method σε η AIC BIC FIC sAIC sBIC sFIC
Proposed 0.1 μ1 (1) 0.358 0.266 0.264 0.357 0.262 0.261

(2) 0.379 0.285 0.274 0.374 0.281 0.270
(3) 0.385 0.297 0.286 0.379 0.293 0.282

μ2 (1) 0.287 0.267 0.268 0.280 0.263 0.262
(2) 0.296 0.285 0.272 0.292 0.283 0.273
(3) 0.312 0.294 0.284 0.304 0.292 0.286

μ3 (1) 0.156 0.145 0.148 0.152 0.144 0.141
(2) 0.184 0.159 0.152 0.183 0.155 0.153
(3) 0.212 0.182 0.160 0.210 0.180 0.164

0.5 μ1 (1) 0.370 0.283 0.282 0.367 0.282 0.279
(2) 0.388 0.296 0.286 0.382 0.292 0.284
(3) 0.391 0.327 0.297 0.387 0.316 0.293

μ2 (1) 0.304 0.297 0.290 0.297 0.295 0.288
(2) 0.336 0.322 0.307 0.331 0.320 0.296
(3) 0.349 0.326 0.314 0.346 0.324 0.312

μ3 (1) 0.252 0.234 0.232 0.247 0.050 0.045
(2) 0.266 0.247 0.239 0.263 0.243 0.232
(3) 0.287 0.253 0.246 0.282 0.250 0.241

Naive 0.1 μ1 (1) 0.953 0.927 0.924 0.951 0.925 0.919
(2) 0.960 0.943 0.930 0.958 0.938 0.927
(3) 0.989 0.956 0.943 0.983 0.950 0.939

μ2 (1) 0.946 0.933 0.932 0.943 0.930 0.924
(2) 0.953 0.943 0.939 0.950 0.937 0.934
(3) 0.975 0.958 0.945 0.971 0.956 0.949

μ3 (1) 0.973 0.948 0.946 0.871 0.947 0.944
(2) 0.986 0.962 0.955 0.981 0.956 0.953
(3) 0.994 0.976 0.965 0.986 0.970 0.967

0.5 μ1 (1) 0.972 0.958 0.957 0.964 0.951 0.948
(2) 0.997 0.977 0.968 0.992 0.971 0.962
(3) 1.019 0.994 0.975 1.016 0.987 0.970

μ2 (1) 0.950 0.946 0.941 0.947 0.942 0.937
(2) 0.987 0.966 0.953 0.981 0.962 0.952
(3) 1.011 0.984 0.969 1.003 0.983 0.961

μ3 (1) 0.976 0.967 0.964 0.974 0.965 0.960
(2) 0.998 0.981 0.978 0.996 0.977 0.974
(3) 1.025 1.006 0.981 1.015 0.996 0.983

μ1 is the hazards ratio; μ2 is the cumulative baseline hazard at time t = 1; μ3 is the survivor
function at time t = 1.
Naive: The naive method is the approach of implementing (3.1) and (3.8) with the difference
in X∗ and X ignored.
Proposed: The proposed method is described in Section 3.
(1): η = (0, 0, 0, 0, 0, 0)�; (2): η = (1, 1, 1, 0, 0, 0)�; (3): η = (1, 1, 1, 1, 1, 1)�.
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Table 3

Simulation results: RMSE of the estimators for the focus parameters with n = 200 and
λ0(t) = 2t.

Method σε η AIC BIC FIC sAIC sBIC sFIC
Proposed 0.1 μ1 (1) 0.338 0.247 0.245 0.335 0.244 0.241

(2) 0.356 0.264 0.249 0.353 0.262 0.243
(3) 0.379 0.286 0.263 0.374 0.282 0.260

μ2 (1) 0.210 0.204 0.202 0.208 0.202 0.198
(2) 0.226 0.210 0.207 0.222 0.208 0.204
(3) 0.239 0.224 0.211 0.235 0.223 0.209

μ3 (1) 0.142 0.138 0.136 0.140 0.135 0.132
(2) 0.177 0.147 0.142 0.174 0.144 0.143
(3) 0.195 0.156 0.149 0.192 0.155 0.147

0.5 μ1 (1) 0.357 0.268 0.267 0.356 0.263 0.260
(2) 0.362 0.279 0.271 0.357 0.276 0.273
(3) 0.385 0.293 0.276 0.380 0.292 0.278

μ2 (1) 0.234 0.224 0.221 0.230 0.223 0.220
(2) 0.244 0.231 0.226 0.243 0.229 0.227
(3) 0.251 0.244 0.231 0.248 0.240 0.227

μ3 (1) 0.228 0.218 0.217 0.226 0.215 0.213
(2) 0.247 0.230 0.226 0.245 0.227 0.224
(3) 0.253 0.242 0.231 0.250 0.239 0.228

Naive 0.1 μ1 (1) 0.936 0.915 0.913 0.930 0.913 0.912
(2) 0.944 0.927 0.922 0.938 0.924 0.923
(3) 0.993 0.943 0.929 0.990 0.941 0.924

μ2 (1) 0.932 0.926 0.923 0.932 0.924 0.921
(2) 0.944 0.935 0.928 0.942 0.929 0.924
(3) 0.968 0.947 0.937 0.964 0.942 0.938

μ3 (1) 0.966 0.936 0.927 0.963 0.933 0.930
(2) 0.975 0.945 0.930 0.972 0.942 0.933
(3) 0.987 0.961 0.943 0.985 0.955 0.938

0.5 μ1 (1) 0.951 0.929 0.927 0.947 0.923 0.920
(2) 0.964 0.938 0.930 0.962 0.936 0.932
(3) 1.015 0.971 0.942 1.010 0.968 0.941

μ2 (1) 0.943 0.937 0.935 0.939 0.934 0.931
(2) 0.978 0.956 0.944 0.974 0.951 0.946
(3) 0.995 0.975 0.958 0.993 0.971 0.952

μ3 (1) 0.971 0.952 0.950 0.969 0.950 0.947
(2) 0.994 0.968 0.959 0.992 0.962 0.953
(3) 1.012 0.984 0.967 1.009 0.979 0.964

μ1 is the hazards ratio; μ2 is the cumulative baseline hazard at time t = 1; μ3 is the survivor
function at time t = 1.
Naive: The naive method is the approach of implementing (3.1) and (3.8) with the difference
in X∗ and X ignored.
Proposed: The proposed method is described in Section 3.
(1): η = (0, 0, 0, 0, 0, 0)�; (2): η = (1, 1, 1, 0, 0, 0)�; (3): η = (1, 1, 1, 1, 1, 1)�.
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Table 4

Simulation results: RMSE of the estimators for the focus parameters with n = 400 and
λ0(t) = 2t.

Method σε η AIC BIC FIC sAIC sBIC sFIC
Proposed 0.1 μ1 (1) 0.324 0.224 0.222 0.320 0.223 0.221

(2) 0.335 0.251 0.239 0.331 0.248 0.236
(3) 0.346 0.289 0.250 0.343 0.285 0.246

μ2 (1) 0.175 0.171 0.168 0.172 0.163 0.160
(2) 0.180 0.178 0.171 0.175 0.168 0.164
(3) 0.202 0.198 0.193 0.197 0.190 0.188

μ3 (1) 0.136 0.130 0.129 0.134 0.128 0.127
(2) 0.151 0.145 0.133 0.150 0.141 0.134
(3) 0.162 0.149 0.137 0.160 0.148 0.138

0.5 μ1 (1) 0.337 0.245 0.243 0.335 0.243 0.241
(2) 0.346 0.257 0.249 0.343 0.255 0.246
(3) 0.355 0.278 0.256 0.353 0.275 0.254

μ2 (1) 0.184 0.176 0.171 0.182 0.172 0.173
(2) 0.195 0.188 0.179 0.193 0.186 0.176
(3) 0.217 0.197 0.183 0.211 0.192 0.180

μ3 (1) 0.145 0.137 0.139 0.144 0.133 0.130
(2) 0.160 0.155 0.146 0.157 0.152 0.141
(3) 0.178 0.169 0.152 0.176 0.168 0.148

Naive 0.1 μ1 (1) 0.902 0.892 0.886 0.899 0.890 0.884
(2) 0.913 0.905 0.894 0.907 0.901 0.896
(3) 0.925 0.914 0.909 0.920 0.911 0.903

μ2 (1) 0.894 0.863 0.864 0.890 0.862 0.860
(2) 0.905 0.879 0.871 0.902 0.876 0.868
(3) 0.923 0.895 0.879 0.920 0.891 0.876

μ3 (1) 0.898 0.876 0.878 0.896 0.875 0.873
(2) 0.912 0.898 0.882 0.909 0.895 0.879
(3) 0.927 0.915 0.890 0.923 0.913 0.892

0.5 μ1 (1) 0.925 0.916 0.914 0.920 0.912 0.910
(2) 0.934 0.927 0.918 0.929 0.922 0.916
(3) 0.948 0.936 0.922 0.945 0.933 0.923

μ2 (1) 0.916 0.875 0.873 0.912 0.873 0.870
(2) 0.924 0.898 0.879 0.920 0.896 0.876
(3) 0.937 0.923 0.895 0.934 0.921 0.896

μ3 (1) 0.920 0.884 0.882 0.916 0.882 0.880
(2) 0.936 0.915 0.894 0.933 0.912 0.896
(3) 0.949 0.927 0.905 0.946 0.953 0.902

μ1 is the hazards ratio; μ2 is the cumulative baseline hazard at time t = 1; μ3 is the survivor
function at time t = 1.
Naive: The naive method is the approach of implementing (3.1) and (3.8) with the difference
in X∗ and X ignored.
Proposed: The proposed method is described in Section 3.
(1): η = (0, 0, 0, 0, 0, 0)�; (2): η = (1, 1, 1, 0, 0, 0)�; (3): η = (1, 1, 1, 1, 1, 1)�.
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Table 5

Simulation results: RMSE of the estimators for the focus parameters with n = 100 and
λ0(t) = log t.

Method σε η AIC BIC FIC sAIC sBIC sFIC
Proposed 0.1 μ1 (1) 0.391 0.283 0.284 0.388 0.280 0.278

(2) 0.397 0.295 0.288 0.393 0.291 0.284
(3) 0.414 0.308 0.294 0.409 0.306 0.296

μ2 (1) 0.166 0.140 0.141 0.162 0.138 0.136
(2) 0.185 0.179 0.171 0.182 0.176 0.169
(3) 0.203 0.198 0.183 0.200 0.195 0.181

μ3 (1) 0.146 0.140 0.142 0.144 0.139 0.138
(2) 0.165 0.158 0.144 0.162 0.154 0.142
(3) 0.173 0.164 0.155 0.171 0.161 0.151

0.5 μ1 (1) 0.411 0.322 0.324 0.408 0320 0.318
(2) 0.437 0.339 0.328 0.423 0.331 0.329
(3) 0.448 0.350 0.336 0.440 0.347 0.333

μ2 (1) 0.175 0.156 0.154 0.171 0.152 0.150
(2) 0.194 0.186 0.178 0.190 0.188 0.179
(3) 0.221 0.214 0.196 0.217 0.210 0.194

μ3 (1) 0.167 0.158 0.157 0.165 0.155 0.154
(2) 0.174 0.168 0.161 0.170 0.166 0.159
(3) 0.182 0.173 0.169 0.178 0.170 0.167

Naive 0.1 μ1 (1) 0.934 0.916 0.915 0.931 0.914 0.911
(2) 0.946 0.925 0.919 0.944 0.923 0.917
(3) 0.957 0.948 0.928 0.953 0.947 0.926

μ2 (1) 0.912 0.895 0.896 0.908 0.896 0.894
(2) 0.930 0.916 0.899 0.927 0.910 0.895
(3) 0.957 0.939 0.925 0.956 0.935 0.921

μ3 (1) 0.933 0.917 0.915 0.930 0.914 0.914
(2) 0.948 0.926 0.922 0.947 0.924 0.920
(3) 0.955 0.934 0.928 0.952 0.933 0.926

0.5 μ1 (1) 0.950 0.934 0.935 0.948 0.933 0.932
(2) 0.963 0.942 0.938 0.960 0.939 0.936
(3) 0.978 0.966 0.951 0.975 0.964 0.949

μ2 (1) 0.933 0.918 0.916 0.930 0.916 0.917
(2) 0.945 0.924 0.920 0.944 0.922 0.919
(3) 0.966 0.942 0.934 0.963 0.940 0.932

μ3 (1) 0.946 0.925 0.924 0.944 0.924 0.923
(2) 0.957 0.938 0.931 0.955 0.936 0.929
(3) 0.967 0.945 0.934 0.965 0.943 0.935

μ1 is the hazards ratio; μ2 is the cumulative baseline hazard at time t = 1; μ3 is the survivor
function at time t = 1.
Naive: The naive method is the approach of implementing (3.1) and (3.8) with the difference
in X∗ and X ignored.
Proposed: The proposed method is described in Section 3.
(1): η = (0, 0, 0, 0, 0, 0)�; (2): η = (1, 1, 1, 0, 0, 0)�; (3): η = (1, 1, 1, 1, 1, 1)�.
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Table 6

Simulation results: RMSE of the estimators for the focus parameters with n = 200 and
λ0(t) = log t.

Method σε η AIC BIC FIC sAIC sBIC sFIC
Proposed 0.1 μ1 (1) 0.375 0.264 0.260 0.367 0.258 0.256

(2) 0.379 0.278 0.266 0.370 0.274 0.268
(3) 0.383 0.286 0.270 0.379 0.279 0.271

μ2 (1) 0.154 0.133 0.132 0.150 0.131 0.129
(2) 0.179 0.172 0.163 0.175 0.170 0.164
(3) 0.195 0.183 0.171 0.188 0.179 0.173

μ3 (1) 0.137 0.130 0.131 0.134 0.129 0.128
(2) 0.150 0.145 0.138 0.146 0.142 0.139
(3) 0.162 0.153 0.145 0.159 0.150 0.142

0.5 μ1 (1) 0.384 0.277 0.276 0.380 0.273 0.272
(2) 0.391 0.285 0.279 0.383 0.280 0.281
(3) 0.398 0.297 0.286 0.395 0.293 0.284

μ2 (1) 0.164 0.146 0.145 0.160 0.143 0.141
(2) 0.185 0.178 0.169 0.181 0.175 0.166
(3) 0.203 0.192 0.178 0.196 0.188 0.177

μ3 (1) 0.155 0.143 0.141 0.154 0.141 0.140
(2) 0.167 0.158 0.149 0.166 0.156 0.147
(3) 0.178 0.166 0.157 0.177 0.163 0.155

Naive 0.1 μ1 (1) 0.916 0.897 0.895 0.914 0.894 0.891
(2) 0.924 0.905 0.903 0.919 0.899 0.896
(3) 0.933 0.920 0.911 0.930 0.917 0.907

μ2 (1) 0.894 0.879 0.876 0.889 0.876 0.874
(2) 0.915 0.893 0.882 0.910 0.890 0.885
(3) 0.933 0.917 0.895 0.928 0.910 0.891

μ3 (1) 0.912 0.896 0.895 0.910 0.895 0.893
(2) 0.926 0.913 0.907 0.922 0.911 0.909
(3) 0.934 0.922 0.915 0.929 0.920 0.910

0.5 μ1 (1) 0.947 0.925 0.926 0.944 0.923 0.921
(2) 0.956 0.933 0.929 0.951 0.930 0.930
(3) 0.962 0.941 0.934 0.959 0.938 0.935

μ2 (1) 0.926 0.897 0.896 0.923 0.895 0.893
(2) 0.937 0.918 0.907 0.933 0.914 0.901
(3) 0.949 0.926 0.914 0.945 0.922 0.910

μ3 (1) 0.928 0.917 0.915 0.926 0.915 0.914
(2) 0.936 0.924 0.919 0.934 0.920 0.917
(3) 0.947 0.933 0.926 0.945 0.931 0.928

μ1 is the hazards ratio; μ2 is the cumulative baseline hazard at time t = 1; μ3 is the survivor
function at time t = 1.
Naive: The naive method is the approach of implementing (3.1) and (3.8) with the difference
in X∗ and X ignored.
Proposed: The proposed method is described in Section 3.
(1): η = (0, 0, 0, 0, 0, 0)�; (2): η = (1, 1, 1, 0, 0, 0)�; (3): η = (1, 1, 1, 1, 1, 1)�.
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Table 7

Simulation results: RMSE of the estimators for the focus parameters with n = 400 and
λ0(t) = log t.

Method σε η AIC BIC FIC sAIC sBIC sFIC
Proposed 0.1 μ1 (1) 0.347 0.233 0.220 0.299 0.220 0.211

(2) 0.353 0.242 0.236 0.352 0.252 0.246
(3) 0.360 0.255 0.243 0.372 0.259 0.236

μ2 (1) 0.142 0.126 0.125 0.138 0.123 0.120
(2) 0.173 0.167 0.155 0.169 0.163 0.158
(3) 0.187 0.177 0.163 0.182 0.173 0.168

μ3 (1) 0.124 0.120 0.118 0.121 0.119 0.117
(2) 0.126 0.123 0.120 0.124 0.122 0.119
(3) 0.129 0.125 0.122 0.128 0.125 0.123

0.5 μ1 (1) 0.355 0.253 0.250 0.306 0.245 0.240
(2) 0.369 0.278 0.257 0.366 0.275 0.254
(3) 0.370 0.282 0.261 0.367 0.279 0.258

μ2 (1) 0.148 0.133 0.131 0.145 0.129 0.127
(2) 0.179 0.172 0.160 0.176 0.169 0.162
(3) 0.193 0.184 0.175 0.188 0.181 0.170

μ3 (1) 0.135 0.129 0.123 0.133 0.126 0.122
(2) 0.138 0.133 0.126 0.135 0.130 0.124
(3) 0.146 0.137 0.128 0.143 0.135 0.127

Naive 0.1 μ1 (1) 0.908 0.889 0.877 0.903 0.887 0.872
(2) 0.913 0.895 0.882 0.909 0.889 0.875
(3) 0.922 0.904 0.896 0.917 0.890 0.883

μ2 (1) 0.883 0.875 0.869 0.877 0.860 0.858
(2) 0.890 0.879 0.874 0.883 0.869 0.863
(3) 0.897 0.886 0.879 0.893 0.878 0.871

μ3 (1) 0.894 0.882 0.875 0.887 0.876 0.860
(2) 0.909 0.894 0.883 0.894 0.887 0.878
(3) 0.916 0.899 0.890 0.905 0.893 0.888

0.5 μ1 (1) 0.935 0.901 0.897 0.924 0.896 0.893
(2) 0.944 0.912 0.903 0.931 0.905 0.897
(3) 0.952 0.934 0.921 0.945 0.922 0.914

μ2 (1) 0.902 0.883 0.883 0.895 0.874 0.871
(2) 0.916 0.892 0.887 0.911 0.884 0.881
(3) 0.929 0.916 0.895 0.923 0.910 0.892

μ3 (1) 0.913 0.892 0.889 0.908 0.883 0.883
(2) 0.925 0.913 0.899 0.917 0.897 0.893
(3) 0.933 0.919 0.906 0.920 0.910 0.903

μ1 is the hazards ratio; μ2 is the cumulative baseline hazard at time t = 1; μ3 is the survivor
function at time t = 1.
Naive: The naive method is the approach of implementing (3.1) and (3.8) with the difference
in X∗ and X ignored.
Proposed: The proposed method is described in Section 3.
(1): η = (0, 0, 0, 0, 0, 0)�; (2): η = (1, 1, 1, 0, 0, 0)�; (3): η = (1, 1, 1, 1, 1, 1)�.
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Table 8. Sensitivity analyses for Worcester Heart Attack Study data: estimation results of full models

Method Variable Estimate SE p-value
Proposed (R = 0.65) Initial Heart Rate (X1) 0.970 0.356 0.006

Initial Systolic Blood Pressure (X2) 0.472 0.158 0.003
Initial Diastolic Blood Pressure (X3) -0.953 0.189 4.599e-07

Body Mass Index (X4) -1.510 0.238 2.231e-10
Age (Z1) 0.074 0.023 0.001

Gender (Z2) -0.549 0.182 0.002
Proposed (R = 0.75) Initial Heart Rate (X1) 0.986 0.317 1.811e-02

Initial Systolic Blood Pressure (X2) 0.287 0.115 1.221e-02
Initial Diastolic Blood Pressure (X3) -0.855 0.164 1.893e-07

Body Mass Index (X4) -1.745 0.223 6.548e-15
Age (Z1) 0.055 0.018 5.265e-11

Gender (Z2) -0.394 0.155 1.157e-12
Proposed (R = 0.85) Initial Heart Rate (X1) 0.994 0.234 2.167e-05

Initial Systolic Blood Pressure (X2) 0.396 0.079 5.247e-07
Initial Diastolic Blood Pressure (X3) -0.889 0.113 1.196e-21

Body Mass Index (X4) -1.762 0.100 0.000
Age (Z1) 0.054 0.015 2.920e-24

Gender (Z2) -0.361 0.139 7.892e-20
Naive Initial Heart Rate (X1) 0.894 0.110 4.391e-16

Initial Systolic Blood Pressure (X2) 0.326 0.047 4.029e-12
Initial Diastolic Blood Pressure (X3) -0.834 0.109 1.988e-14

Body Mass Index (X4) -1.694 0.010 0.000
Age (Z1) 0.054 0.007 1.217e-14

Gender (Z2) -0.379 0.116 0.001
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Table 9. Sensitivity analyses for Worcester Heart Attack Study data: variable selection results

Method AIC BIC FIC – μ1 FIC – μ2 FIC – μ3

Variables Values Variables Values Variables Values Variables Values Variables Values
Proposed 1234 -7541.776 234 -7527.376 4 0.593 12 0.596 24 0.589
(R = 0.65) 234 -7539.776 123 -7526.938 14 0.726 13 0.617 23 0.633

123 -7537.720 23 -7526.647 134 0.857 123 0.684 123 0.674
134 -7537.151 1234 -7525.399 13 0.868 234 0.718 134 0.705
124 -7536.616 134 -7524.780 34 0.889 124 0.739 234 0.723

Proposed 1234 -7541.495 234 -7527.767 4 0.679 12 0.625 24 0.611
(R = 0.75) 234 -7539.439 123 -7527.348 14 0.782 13 0.705 23 0.689

123 -7538.764 23 -7527.039 3 0.977 123 0.740 13 0.722
134 -7537.026 1234 -7526.363 23 1.059 124 0.756 134 0.736
124 -7536.670 134 -7524.961 13 1.076 234 0.780 123 0.755

Proposed 1234 -7542.056 234 -7528.134 4 0.640 12 0.655 24 0.630
(R = 0.85) 234 -7539.454 123 -7527.860 14 0.787 13 0.713 23 0.716

123 -7537.720 23 -7527.053 134 0.819 124 0.792 13 0.754
134 -7537.191 1234 -7525.522 13 0.941 123 0.859 123 0.820
124 -7536.401 134 -7525.320 23 1.003 234 0.876 134 0.844

Naive 134 -7755.097 134 -7762.497 24 0.709 234 2.601 2 1.228
123 -7755.013 13 -7764.221 1234 1.304 23 2.632 24 1.840
13 -7755.954 14 -7766.855 123 1.330 24 2.650 1 2.004

1234 -7756.657 123 -7767.413 234 1.332 123 2.885 1234 2.175
14 -7758.589 1 -7768.988 23 1.342 124 3.067 4 3.042
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Table 10

Sensitivity analyses for Worcester Heart Attack Study data: estimates of the focus
parameters

μ Method AIC sAIC BIC sBIC FIC sFIC
μ1 Proposed (R = 0.65) 0.224 0.236 0.085 0.106 0.137 0.155

Proposed (R = 0.75) 0.208 0.227 0.077 0.107 0.126 0.147
Proposed (R = 0.85) 0.189 0.206 0.071 0.113 0.124 0.141

Naive 0.141 0.169 0.141 0.158 0.184 0.193
μ2 Proposed (R = 0.65) 0.377 0.388 0.356 0.380 0.288 0.290

Proposed (R = 0.75) 0.367 0.386 0.344 0.377 0.272 0.275
Proposed (R = 0.85) 0.366 0.385 0.343 0.374 0.264 0.268

Naive 0.348 0.356 0.348 0.352 0.257 0.262
μ3 Proposed (R = 0.65) 0.718 0.722 0.699 0.710 0.680 0.681

Proposed (R = 0.75) 0.714 0.721 0.665 0.676 0.649 0.653
Proposed (R = 0.85) 0.689 0.696 0.665 0.687 0.637 0.644

Naive 0.603 0.612 0.603 0.608 0.461 0.507

Fig 2. Sensitivity analyses of the estimates obtained for WHAS500 data.
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Appendix A: Regularity conditions

(C1) Θ is a compact set, and the parameter value β0 is an interior point of Θ.
(C2)

∫ τ

0
λ0(t)dt < ∞, where τ is the time that the study ends.

(C3) The {Ni(t), Yi(t), Zi, X
∗
i } are independent and identically distributed for

i = 1, · · · , n.
(C4) The covariates Z and X∗ are bounded with probability one. That is, there

exist finite numbers ax, bx, az, and bz with ax < bx and az < bz such that
ax < X∗ < bx and az < Z < bz with probability one.

(C5) Conditional on V ,
(
T̃ , C, V

)
are independent of Ã.

(C6) Censoring times are noninformative. That is, the failure time and the
censoring time are independent, given the covariates.

(C7) The matrix A � E
[
− 1

n
∂
∂β

{
UP (0p, βz0) + UM (0p, βz0)

}]
is assumed to be

invertible and positive definite.

Condition (C1) is used to derive the maximizer from the target function.
Condition (C4) is commonly assumed in the literature (e.g., [3, 14, 25]). Other
conditions are standard in survival analysis which allow us to derive the asymp-
totic properties of the estimators.

Appendix B: Proofs for the results in Sections 4 and 5

B.1. Proof of Lemma 4.1

For any given candidate model S, we have that

ΣX∗
S

= E
{(

X∗
S − μX∗

S

) (
X∗

S − μX∗
S

)�}
= E

{
(πSX

∗ − πSμX∗) (πSX
∗ − πSμX∗)

�
}

= πSE
{
(X∗ − μX∗) (X∗ − μX∗)

�
}
π�

S

= πSΣX∗π�
S ,

which yields that I|S|×|S| = ΣX∗
S
· Σ−1

X∗
S
= πSΣX∗π�

S · Σ−1
X∗

S
, provided Σ−1

X∗
S
exists.

Multiplying πS on both sides gives

πSΣX∗π�
S · Σ−1

X∗
S
πS = πS

or πS

(
ΣX∗π�

S · Σ−1
X∗

S
πS − I|S|×|S|

)
= 0, which implies that

ΣX∗π�
S · Σ−1

X∗
S
πS = I|S|×|S|,

or equivalently,
π�

S · Σ−1
X∗

S
πS = Σ−1

X∗ ,

and this proof is completed.
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B.2. Proof of Lemma 4.2

Proof of (a):
First, for any candidate model S, we denote

G
(1)
S (u, βx,S, βz,S)

=
1

n

n∑
i=1

ΠS

(
x∗
i

zi

)
Yi(u) exp

{(
(πSx

∗
i )

�
, z�i

)(
βx,S

βz,S

)}
. (B.1)

Let G(0) (u, βx, βz) denote (3.7) when S is the full model, and let

G(1) (u, βx, βz) =

(
G

(1)
x (u, βx, βz)

G
(1)
z (u, βx, βz)

)
, (B.2)

where(
G

(1)
x (u, βx, βz)

G
(1)
z (u, βx, βz)

)
� 1

n

n∑
i=1

(
x∗
i

zi

)
Yi(u) exp

{(
x∗
i
�, z�i

)(
βx

βz

)}
,

and

G(2) (u, βx, βz) =
1

n

n∑
i=1

(
x∗
i

zi

)⊗2

Yi(u) exp

{(
x∗
i
�, z�i

)(
βx

βz

)}
, (B.3)

where a⊗2 = aa� for any vector a.
Then setting (βx, βz) =

(
0|S|, βz

)
gives

G
(1)
S

(
u, 0|S|, βz

)
=

1

n

n∑
i=1

ΠS

(
x∗
i

zi

)
Yi(u) exp

{(
(πSx

∗
i )

�
, z�i

)(
0|S|
βz

)}

=
1

n
ΠS

n∑
i=1

(
x∗
i

zi

)
Yi(u) exp

{(
x∗
i
�, z�i

)(
0p
βz

)}
= ΠSG

(1) (u, 0p, βz) .

Similarly, from (3.7), one has

G
(0)
S

(
u, 0|S|, βz

)
=

1

n

n∑
i=1

Yi(u) exp
{
(πSx

∗
i )

�
0|S| + z�i βz

}
=

1

n

n∑
i=1

Yi(u) exp
(
z�i βz

)
=

1

n

n∑
i=1

Yi(u) exp
(
x∗
i
�0p + z�i βz

)
= G(0) (u, 0p, βz) .
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Therefore, for any βz and j = 0, 1, we have

G
(j)
S

(
u, 0|S|, βz

)
= Π⊗j

S G(j) (u, 0p, βz) , (B.4)

where A⊗0 = Ip×p and A⊗1 = A for any matrix A.
Consequently, direct calculations show that

UP,S (βx,S, βz,S) =
∂

∂βS

	∗P,S (βS)

=

n∑
i=1

∫ τ

0

{
ΠS

(
x∗
i

zi

)
+

(
πSΣεπ

�
S βx,S

0q

)

−G
(1)
S (u, βx,S, βz,S)

G
(0)
S (u, βx,S, βz,S)

}
dNi (u) ,

and

UP (βx, βz) =
∂

∂β
	∗P (β) (B.5)

=

n∑
i=1

∫ τ

0

{(
x∗
i

zi

)
+

(
Σεβx

0q

)
− G(1) (u, βx, βz)

G(0) (u, βx, βz)

}
dNi (u) .

Thus, plugging in
(
β�
x , β�

z

)�
=
(
0�p , β

�
z0

)�
and

(
β�
x,S, β

�
z,S

)�
=
(
0�|S|, β

�
z0

)�
to

UP,S (βx,S, βz,S) and UP (βx, βz), respectively, gives

UP,S

(
0|S|, βz0

)
= ΠSUP (0p, βz0) .

Proof of (b):
Let x̂i denote (3.10) when S is the full model. We first show the relationship
between x̂i,S defined by (3.10) and x̂i. Applying x∗

i,S = πSx
∗
i to (3.10), we have

x̂i,S = πSμ̂X∗ +
(
I|S|×|S| − πSΣεπ

�
S Σ̂−1

X∗
S

) (
x∗
i,S − μ̂X∗

S

)
= πSμ̂X∗ +

(
I|S|×|S| − πSΣεπ

�
S Σ̂−1

X∗
S

)
πS (x

∗
i − μ̂X∗)

= πSμ̂X∗ +
(
πS − πSΣεπ

�
S Σ̂−1

X∗
S
πS

)
(x∗

i − μ̂X∗)

= πS

{
μ̂X∗ +

(
Ip×p − Σεπ

�
S Σ̂−1

X∗
S
πS

)
(x∗

i − μ̂X∗)
}

= πS

{
μ̂X∗ +

(
Ip×p − ΣεΣ̂

−1
X∗

)
(x∗

i − μ̂X∗)
}

= πS

{
μ̂X∗ +

(
Σ̂X∗ − Σε

)�
Σ̂−1

X∗ (x∗
i − μ̂X∗)

}
= πSx̂i,

where the second identity is due to μ̂X∗
S
= πSμ̂X∗ , and the third last step is due

to Lemma 4.1.
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To prove UM,S

(
0|S|, βz0

)
=ΠSUM(0p, βz0), we first examine the partial deriva-

tive of 	̂∗M,S. Note that we can express 	̂∗M,S = 	̂∗M1,S − 	̂∗M2,S, where

	̂∗M1,S =

n∑
i=1

[
log
{
dĤS(ai)

}
− Λ̂0,S(ai) exp

(
x̂�
i,Sβx,S + z�i βz,S

)]
,

and

	̂∗M2,S =

n∑
i=1

log

∫ τ

0

exp
{
−Λ̂0,S(u) exp

(
x̂�
i,Sβx,S + z�i βz,S

)}
dĤS(u).

Let Ξ =

(
πSΣεπ

�
S 0|S|×q

0q×|S| 0q×q

)
and βS =

(
βx,S

βz,S

)
. Then direct calculations

give us

UM1,S (βx,S, βz,S)

=
∂

∂βS

	̂∗M1,S (βS)

=
∂

∂βS

(
n∑

i=1

[
log
{
dĤS(ai)

}
− Λ̂0,S(ai) exp

(
x̂�
i,Sβx,S + z�i βz,S

)])

= −
n∑

i=1

∂

∂βS

{
Λ̂0,S(ai) exp

(
x̂�
i,Sβx,S + z�i βz,S

)}

= −
n∑

i=1

∂

∂βS

⎧⎪⎪⎨⎪⎪⎩
∫ ai

0

1
n

n∑
j=1

dNj(u)

{mS (βx,S)}−1
G

(0)
S (u, βx,S, βz,S)

exp
(
x̂�
i,Sβx,S + z�i βz,S

)⎫⎪⎪⎬⎪⎪⎭
= −

n∑
i=1

[∫ ai

0

{− 1
n

n∑
j=1

dNj (u) {mS (βx,S)}−1
G

(1)
S (u, βx,S, βz,S)[

{mS (βx,S)}−1
G

(0)
S (u, βx,S, βz,S)

]2

+

1
n

n∑
j=1

dNj (u) ΞβS {mS (βx,S)}−1
G

(0)
S (u, βx,S, βz,S)[

{mS (βx,S)}−1
G

(0)
S (u, βx,S, βz,S)

]2
}

× exp
(
x̂�
i,Sβx,S + z�i βz,S

)
+ Λ̂0,S (ai)ΠS

(
x̂i

zi

)
exp
{
x̂�
i,Sβx,S + z�i βz,S

}]
,

where the fourth equality is due to the estimator (3.6), the last equality is due
to that

∂m−1
S (βx,S)

∂βS

=
∂

∂βS

exp

(
−1

2
β�
x,SπSΣεπ

�
S βx,S

)
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=
∂

∂βS

exp

(
−1

2
β�

S ΞβS

)
= −ΞβSm

−1
S (βx,S) ,

and mS (βx,S) is defined by exp
(
1
2β

�
x,SπSΣεπ

�
S βx,S

)
in Section 3.1.

Then plugging in βx,S = 0|S| and βz,S = βz0 to UM1,S (βx,S, βz,S) gives

UM1,S

(
0|S|, βz0

)
= −

n∑
i=1

[∫ ai

0

1
n

n∑
j=1

dNj (u)ΠSG
(1) (u, 0p, βz0){

G(0) (u, 0p, βz0)
}2 exp

{
z�i βz0

}
+Λ̂0 (ai)ΠS

(
x̂i

zi

)
exp
{
z�i βz0

}]
= ΠSUM1 (u, 0p, βz0) ,

where the last step is due to (B.4) and that mS(0|S|) = 1.

Similarly, we examine UM2,S (βx,S, βz,S) =
∂
∂β 	̂

∗
M2,S and plug in βx,S = 0|S| and

βz,S = βz0 to UM2,S and apply Lemma 4.1, yielding

UM2,S

(
0|S|, βz0

)
=

1∫ τ

0
exp
{
−Λ̂0 (u) exp

(
z�i βz0

)}
dĤS(u)

×
∫ τ

0

exp
{
−Λ̂0 (u) exp

(
z�i βz0

)}{
ΠS

(
∂

∂β
Λ̂0 (u)

)
exp
(
z�i βz0

)
+ Λ̂0 (u)ΠS

(
x̂i

zi

)
exp
(
z�i βz0

)}
dĤS(u)

= ΠS

∂

∂β
log

∫ τ

0

exp
{
−Λ̂0 (u) exp

(
x̂�
i βx + z�i βz

)}
dĤS(u)

∣∣∣∣
βx=0p,βz=βz0

= ΠSUM2 (u, 0p, βz0) .

Thus, we complete the proof.

B.3. Proof of Theorem 4.1

B.3.1. Proof of (a)

To show it, we first prove the asymptotic result for the full model, and then
apply it to the candidate model S to yield the desired result.

Step 1: Show that as n → ∞,

√
n

(
β̂x,full

β̂z,full − βz0

)
d−→ N

((
η
0

)
,A−1BA−1

)
. (B.6)
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The proof consists of the following two steps.

Step 1.1:

Let UP(βx, βz) =
∂�∗P
∂β , UM(βx, βz) =

∂�̂∗M
∂β and U(βx, βz) = UP(βx, βz) +

UM(βx, βz), where β =
(
β�
x , β�

z

)�
, and 	∗P and 	̂∗M are given by (4.1) and (3.14)

with S taken as the full model, respectively. By the fact that 	̂∗M and 	∗P, de-
fined in Sections 3.2 and 4.1, respectively, are twice continuously differentiable
in the parameters and the covariates as well as Conditions (C1) and (C4), we
conclude that UP(βx, βz) and UM(βx, βz) and their derivative are continuous

and bounded. Applying the Taylor series expansion of U
(
β̂x,full, β̂z,full

)
and

U
(

η√
n
, βz0

)
around

(
β�
x , β�

z

)�
=
(
0�p , β

�
z0

)�
, respectively, gives

0 = U
(
β̂x,full, β̂z,full

)
= U (0p, βz0) +

∂U (0p, βz0)

∂β�

(
β̂x,full − 0p
β̂z,full − βz0

)
+ op

(
1√
n

)
(B.7)

and

U

(
η√
n
, βz0

)
= U (0p, βz0) +

∂U (0p, βz0)

∂β�

( η√
n

0q

)
+ op

(
1√
n

)
. (B.8)

Combining (B.7) and (B.8) gives

0 = U

(
η√
n
, βz0

)
+

∂U (0p, βz0)

∂β�

(
β̂x,full

β̂z,full − βz0

)
− ∂U (0p, βz0)

∂β�

( η√
n

0q

)
+op

(
1√
n

)
, (B.9)

and re-scaling (B.9) yields

√
n

(
β̂x,full

β̂z,full − βz0

)
=

{
−1

n

∂U (0p, βz0)

∂β�

}−1
1√
n
U

(
η√
n
, βz0

)
+

(
η
0q

)
+ op (1) . (B.10)

Let

ζ̂∗i (βx, βz) =

∫ τ

0

exp
{
−Λ̂0 (u) exp

(
x̂�
i βx + z�i βz

)}
dĤ (u) . (B.11)

Since μ̂X∗ = μX + op(1) and Σ̂X∗ = ΣX∗ + op(1) by the Law of Large Num-

bers, we obtain that X̂i = X̃i + op(1) by the continuous mapping theorem,
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where

X̃i = E (Xi|X∗
i )

= μX + (ΣX∗ − Σε)
�
Σ−1

X∗ (X∗
i − μX∗) .

Since the indicator functions {I(A≤ t≤Y ) : t ∈ [0, τ ]} and {I(Y ≤ t) : t ∈ [0, τ ]}
are Glivanko-Cantelli classes ([20], Example 2.4.2), by Uniformly Strong Law of
Large Numbers, we have that as n → ∞,

G(k)(u, βx, βz)
a.s.−→ G(k)(u, βx, βz)

uniformly at u, where

G(k)(u, βx, βz) = E

{(
X∗

Z

)⊗k

exp(X∗�βx + Z�βz)I(A ≤ u ≤ Y )

}
(B.12)

for k = 0, 1, 2. By the similar proof in [3], we have that as n → ∞,

sup
β∈Θ, t∈[0,τ ]

|Λ̂0(t)− Λ∗
0(t)|

a.s.−→ 0, (B.13)

where

Λ∗
0(t) =

∫ t

0

dP (Δ = 1, Y ≤ u)

{m (βx0)}−1 G(0)(u, βx0, βz0)
(B.14)

and m(·) is given by mS(·) with S specified as the full model.
In addition, by the similar derivations of Lemma 4.2 of [23], we have that as

n → ∞,
Ĥ(u)

a.s.−→ H(u) (B.15)

uniformly, where Ĥ(·) is determined by (3.13) with S set as the full model.
Applying the continuous mapping theorem and combining (B.13) and (B.15)
yield that as n → ∞,

ζ̂∗i (βx, βz)
a.s.−→ ζ∗i (βx, βz) ,

where

ζ∗i (βx, βz) =

∫ τ

0

exp
{
−Λ∗

0 (u) exp
(
x̃�
i βx + z�i βz

)}
dH (u) . (B.16)

Noting that by (B.5) and UM =
∂�̂∗M
∂β together with (3.14) with S specified as

the full model, we obtain that

−1

n

∂U (0p, βz0)

∂β

=
−1

n

(
∂UP (0p, βz0)

∂β
+

∂UM (0p, βz0)

∂β

)
=

−1

n

∂

∂β

n∑
i=1

∫ τ

0

{(
x∗
i

zi

)
+

(
Σε0p
0q

)
− G(1) (u, 0p, βz0)

G(0) (u, 0p, βz0)

}
dNi (u)
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+
1

n

∂

∂β

n∑
i=1

∂

∂β

{
Λ̂0(ai) exp

(
x̂�
i 0p + z�i βz0

)}
(B.17a)

+
1

n

∂

∂β

n∑
i=1

∂
∂β

[∫ τ

0
exp
{
−Λ̂0(u) exp

(
x̂�
i 0p + z�i βz0

)}
dĤ(u)

]
∫ τ

0
exp
{
−Λ̂0(u) exp

(
x̂�
i 0p + z�i βz0

)}
dĤ(u)

. (B.17b)

Then exchanging the order of differentiation and summation and plugging (B.11)
to (B.17b) with (βx, βz) evaluated at (0p, βz0), yields

−1

n

∂U (0p, βz0)

∂β

=
1

n

n∑
i=1

∫ τ

0

[{
G(2)(u, 0p, βz0)

G(0)(u, 0p, βz0)
−
(
G(1)(u, 0p, βz0)

G(0)(u, 0p, βz0)

)⊗2
}

−
(

Σε 0p×q

0q×p 0q×q

)]
dNi(u)

+
1

n

n∑
i=1

∂2

∂β∂β�

{
Λ̂0(ai) exp

(
x̂�
i 0p + z�i βz0

)}

+
1

n

n∑
i=1

⎧⎨⎩ 1

ζ̂∗i

∂2ζ̂∗i
∂β∂β� − 1

(ζ̂∗i )
2

(
∂ζ̂∗i
∂β

)⊗2
⎫⎬⎭ ,

where G(k+1)(u, βx, βz) =
∂
∂βG

(k)(u, βx, βz) for k = 0, 1, and ζ̂∗i = ζ̂∗i (0p, βz0).
We conclude that by the Law of Large Numbers, as n → ∞,

−1

n

∂U (0p, βz0)

∂β

p−→ A, (B.18)

where

A =

∫ τ

0

[{
G(2)(u, 0p, βz0)

G(0)(u, 0p, βz0)
−
(
G(1)(u, 0p, βz0)

G(0)(u, 0p, βz0)

)⊗2
}

−
(

Σε 0p×q

0q×p 0q×q

)]
dE {Ni(u)}

+E

{
∂2

∂β∂β�Λ∗
0(A) exp

(
X̃�0p + Z�βz0

)
+(ζ∗)−2

(
ζ∗

∂(ζ∗)2

∂2β
−
(
∂ζ∗

∂β

)⊗2
)}

with G(k) (·) is given by (B.12) for k = 0, 1, 2, and

ζ∗ =

∫ τ

0

exp
{
−Λ∗

0 (u) exp
(
x̃�0p + z�βz0

)}
dH (u) .
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Step 1.2:

Since U
(

η√
n
, βz0

)
contains the sample size n, it cannot be directly expressed

as a sum of i.i.d. random functions. We now want to re-express it in order to

derive a sum of i.i.d. random functions. Since exp
(
x∗� η√

n

)
= x∗�η√

n
+ Op (1),

then by (B.2) and the form of G(0) (u, βx, βz) given in Lemma 4.2,

G(j)

(
u,

η√
n
, βz

)
=

1√
n
G̃(j) (u, η, βz) +Op (1) for j = 0, 1, (B.19)

where

G̃(j) (u, η, βz) =
1

n

n∑
i=1

(
x∗
i

zi

)⊗j

Yi(u) exp
(
z�i βz

)
x∗
i
� (B.20)

which is a sum of i.i.d. random variables for j = 0, 1.

Combining (B.19) and U
(

η√
n
, βz0

)
gives

1√
n
U

(
η√
n
, βz0

)
=

1√
n
Ũ (η, βz0) + op(1), (B.21)

where

Ũ (η, βz0) = ŨP (η, βz0) + ŨM (η, βz0) , (B.22)

ŨP (η, βz0) =

n∑
i=1

∫ τ

0

{(
x∗
i

zi

)
+

(
Σεη
0q

)
− G̃(1) (u, η, βz)

G̃(0) (u, η, βz)

}
dNi (u)

and

ŨM (η, βz0)

= −
n∑

i=1

∂

∂β

⎧⎪⎪⎨⎪⎪⎩
∫ ai

0

1
n

n∑
j=1

dNj(u)

(η�Σεη)−1G̃(0) (u, η, βz0)
exp
(
z�i βz

)
x̂�
i η

⎫⎪⎪⎬⎪⎪⎭
−

n∑
i=1

∂

∂β
log

∫ τ

0

exp
{
−Λ̂0(u) exp

(
z�i βz0

)
x̂�
i η
}
dĤ(u). (B.23)

(B.21) suggests that to study the asymptotic behavior of 1√
n
U
(

η√
n
, βz0

)
, it suf-

fices to study 1√
n
Ũ (η, βz0) by expressing it as a sum of i.i.d. random functions.

To this end, by (B.22), we separately examine ŨP (η, βz0) and ŨM (η, βz0). First,
using the arguments similar to the derivations in Theorem 2 of [3], we derive

1√
n
ŨP (η, βz0) =

1√
n

n∑
i=1

Ψ1i + op(1), (B.24)
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where

Ψ1i =

∫ τ

0

{(
x∗
i

zi

)
− G̃(1)(u, η, βz0)

G̃(0)(u, η, βz0)
+

(
Σεη
0q

)}
dNi(u)

−
∫ τ

0

exp
(
z�i βz

)
x∗
i
�ηI(Ai ≤ u ≤ Yi)

G̃(0)(u, η, βz0)

{(
x∗
i

zi

)

−G̃(1)(u, η, βz0)

G̃(0)(u, η, βz0)

}
dE {Ni(u)} (B.25)

with

G̃(j)(u, η, βz0) = E

{(
X∗

Z

)⊗j

Y (u) exp
(
Z�βz

)
X∗�η

}
for j = 0, 1.

Next, we examine ŨM (η, βz0). Let

ζ (x̃, z) =

∫ τ

0

exp
{
−Λ∗

0(u) exp(z
�βz0)x̃

�η
}
dH(u), (B.26)

X̃ = μX + (ΣX∗ − Σε)
�
Σ−1

X∗ (X∗ − μX∗) ,

and

ζ̂ (x̂, z) =

∫ τ

0

exp
{
−Λ̂0(u) exp(z

�βz0)x̂
�η
}
dĤ(u). (B.27)

To derive a sum of i.i.d. random functions and study the asymptotic behavior
of ŨM (η, βz0), we further define

Ũ∗
M (η, βz0) = −

n∑
i=1

∂

∂β
Λ∗
0(ai) exp

(
z�i βz0

)
x̃�
i η

−
n∑

i=1

1

ζ (x̃i, zi)

∂ζ (x̃i, zi)

∂β
. (B.28)

Then by (B.23) and (B.28), the difference between ŨM and Ũ∗
M can be written

as

1√
n

{
ŨM − Ũ∗

M

}
= Ũ1 + Ũ2, (B.29)

where

Ũ1 = − 1√
n

n∑
i=1

∂

∂β

{
Λ̂0(ai)− Λ∗

0(ai)
}
exp
(
z�i βz0

)
x̃�
i η
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and

Ũ2 = − 1√
n

n∑
i=1

{
1

ζ̂ (x̂i, zi)

∂ζ̂ (x̂i, zi)

∂β
− 1

ζ (x̃i, zi)

∂ζ (x̃i, zi)

∂β

}
. (B.30)

To study the asymptotic behaviour of (B.29), we examine Ũ1 and Ũ2 indi-

vidually. First, let N (t) = P (Δi = 1, Yi ≤ t) and dN̄(t) = 1
n

n∑
i=1

dNi(t). Then

by (3.6) with S being the full model and (B.14),

Ũ1 = − 1√
n

n∑
i=1

∂

∂β

{
Λ̂0(ai)− Λ∗

0(ai)
}
exp
(
z�i βz0

)
x̃�
i η

= − 1√
n

n∑
i=1

∫ τ

0

[
∂

∂β

{
dN̄(u)

G̃(0)(u, η, βz0)
− dN (u)

G̃(0)(u, η, βz0)

}

×
(
η�Σεη

)
exp
(
z�i βz0

)
x̃�
i ηI(u ≤ ai ≤ τ)

]

= − 1√
n

n∑
i=1

∫ τ

0

[
∂

∂β

{
dN̄(u)− dN (u)

G̃(0)(u, η, βz0)

+
dN (u)G̃(0)(u, η, βz0)− dN̄(u)G̃(0)(u, η, βz0)

G̃(0)(u, η, βz0)G̃(0)(u, η, βz0)

}(
η�Σεη

)
× exp

(
z�i βz0

)
x̃�
i ηI(u ≤ ai ≤ τ)

]
. (B.31)

Since 1
n

n∑
i=1

exp
(
z�i βz0

)
x̃�
i ηI(u ≤ ai ≤ τ) is an average of i.i.d. random

variables due to Conditions (C3), (C4) and (C5). Then by the Law of Large
Numbers, we have that as n → ∞,

1

n

n∑
i=1

exp
(
z�i βz0

)
x̃�
i ηI(u ≤ ai ≤ τ)

p−→ E
{
exp
(
Z�βz0

)
X̃�ηI(u ≤ A ≤ τ)

}
=

∫ ∞

−∞

∫ τ

0

exp
(
z�βz0

)
x̃�ηI(u ≤ a ≤ τ)dQ(a, v̂),

i.e.,

1

n

n∑
i=1

exp
(
z�i βz0

)
x̃�
i ηI(u ≤ ai ≤ τ)

=

∫ ∞

−∞

∫ τ

0

exp
(
z�βz0

)
x̃�ηI(u ≤ a ≤ τ)dQ(a, v̂) +Op

(
1√
n

)
(B.32)
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(e.g., [13], p.61), where Q(a, v̂) is the joint density function of (A, V̂ ) with V̂ =(
X̃, Z

)
.

Then plugging (B.32) into (B.31) gives

Ũ1 = −
√
n

∫ ∞

−∞

∫ τ

0

∂

∂β

{
dN̄(u)− dN (u)

G̃(0)(u, η, βz0)

+
dN (u)G̃(0)(u, η, βz0)− dN̄(u)G̃(0)(u, η, βz0)

G̃(0)(u, η, βz0)G̃(0)(u, η, βz0)

}(
η�Σεη

)
× exp

(
z�βz0

)
x̃�ηI(u ≤ a ≤ τ)dQ(a, v̂) + op(1), (B.33)

where the order term is determined by
√
n× op(1)×Op

(
1√
n

)
= op(1).

Furthermore, noting that by the Uniformly Strong Law of Large Numbers,

dN̄(t)
a.s.−→ dN (t)

and
G̃(0)(u, η, βz0)

a.s.−→ G̃(0)(u, η, βz0)

uniformly as n → ∞. That is,

dN̄(t) = dN (t) + op(1) (B.34)

and
G̃(0)(u, η, βz0) = G̃(0)(u, η, βz0) + op(1). (B.35)

Then we obtain that

Ũ1 = −
√
n

∫ ∞

−∞

∫ τ

0

∂

∂β

{
dN̄(u)− dN (u)

G̃(0)(u, η, βz0)

+
dN (u)G̃(0)(u, η, βz0)− dN̄(u)G̃(0)(u, η, βz0)

G̃(0)(u, η, βz0)G̃(0)(u, η, βz0)

}(
η�Σεη

)
× exp

(
z�βz0

)
x̃�ηI(u ≤ a ≤ τ)dQ(a, v̂) + op(1)

= −
√
n

∫ ∞

−∞

∫ τ

0

∂

∂β

[
dN̄(u)− dN (u)

G̃(0)(u, η, βz0)

+
dN (u){

G̃(0)(u, η, βz0)
}2

{
G̃(0)(u, η, βz0)− G̃(0)(u, η, βz0)

}]

×
(
η�Σεη

)
exp
(
z�βz0

)
x̃�ηI(u ≤ a ≤ τ)dQ(a, v̂) + op(1),

where we apply (B.34) and (B.35) to the numerator and denominator of the
second term, respectively. Then by definition of dN̄(t) and (B.20), we obtain
that

Ũ1 = −
√
n

∫ ∞

−∞

∫ τ

0

∂

∂β

⎡⎢⎣ dN̄(u)

G̃(0)(u, η, βz0)
− dN (u)G̃(0)(u, η, βz0){

G̃(0)(u, η, βz0)
}2

⎤⎥⎦(η�Σεη
)
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× exp
(
z�βz0

)
x̃�ηI(u ≤ a ≤ τ)dQ(a, v̂) + op(1)

= − 1√
n

n∑
i=1

∂

∂β

[∫ ∞

−∞

∫ τ

0

{
dNi(u)

G̃(0)(u, η, βz0)

−
dN (u) exp

(
z�i βz0

)
x∗
i
�ηI(ai ≤ u ≤ yi){

G̃(0)(u, η, βz0)
}2

}(
η�Σεη

)

× exp
(
z�βz0

)
x̃�ηI(u ≤ a ≤ τ)

]
dQ(a, v̂) + op(1). (B.36)

We next examine Ũ2. To do so, we first derive the asymptotic result of√
n
{
ζ̂ (x̂, z)− ζ (x̃, z)

}
. Since X̂i = X̃i + op(1) due to μ̂X∗ = μX + op(1),

Σ̂X∗ = ΣX∗ + op(1) and the continuous mapping theorem, then

−Λ̂0(u) exp(z
�βz0)x̂

�η + Λ∗
0(u) exp(z

�βz0)x̃
�η

= −
{
Λ̂0(u)− Λ∗

0(u)
}
exp
(
z�βz0

)
x̃�η + op(1)

=
−1

n

n∑
i=1

∫ τ

0

{
dNi(u)

G̃(0)(u, η, βz0)
−

dN (u) exp
(
z�i βz0

)
x∗
i
�ηI(ai ≤ u ≤ yi){

G̃(0)(u, η, βz0)
}2

}

×
(
η�Σεη

)
exp
(
z�βz0

)
x̃�η + op(1), (B.37)

where the last equality is due to the expression of Λ̂0(u)− Λ∗
0(u) in (B.31).

Applying the Taylor series expansion to exp
{
−Λ̂0(u) exp

(
z�βz0

)
x̃�η

}
with

respect to Λ0(·) yields

exp
{
−Λ̂0(u) exp

(
z�βz0

)
x̃�η

}
− exp

{
−Λ∗

0(u) exp
(
z�βz0

)
x̃�η

}
= − exp

{
−Λ∗

0(u) exp
(
z�βz0

)
x̃�η

}{
Λ̂0(u)− Λ∗

0(u)
}
exp
(
z�βz0

)
x̃�η

+ op

(
1√
n

)
= exp

{
−Λ∗

0(u) exp
(
z�βz0

)
x̃�η

}
× 1

n

n∑
i=1

∫ τ

0

[⎧⎪⎨⎪⎩ dNi(u)

G̃(0)(u, η, βz0)
−

dN (u) exp
(
z�i βz0

)
x∗
i
�ηI(ai ≤ u ≤ yi){

G̃(0)(u, η, βz0)
}2

⎫⎪⎬⎪⎭
×
(
η�Σεη

)
exp
(
z�βz0

)
x̃�η

]
+ op

(
1√
n

)

= S(u, η, βz0|x̃, z)×
1

n

n∑
i=1

∫ τ

0

[{
dNi(u)

G̃(0)(u, η, βz0)
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−
dN (u) exp

(
z�i βz0

)
x∗
i
�ηI(ai ≤ u ≤ yi){

G̃(0)(u, η, βz0)
}2

}(
η�Σεη

)
exp
(
z�βz0

)
x̃�η

]

+ op

(
1√
n

)
, (B.38)

where the second equality is due to (B.37), and

S(u, η, βz0|x̃, z) = exp
{
−Λ∗

0(u) exp
(
z�βz0

)
x̃�η

}
.

Finally, using (B.26) and (B.27) in combination with (B.15) and (B.38), we
obtain that

√
n
{
ζ̂(x̂, z)− ζ(x̃, z)

}
=

1√
n

n∑
i=1

ψi(η, βz0|x̃, z) + op (1) , (B.39)

where

ψi(η, βz0|x̃, z) =

∫ τ

0

∫ τ

0

[
h(ξ)S(ξ, η, βz0|x̃, z)

{
dNi(u)

G̃(0)(u, η, βz0)

−
dN (u) exp

(
z�i βz0

)
x∗
i
�ηI(ai ≤ u ≤ yi){

G̃(0)(u, η, βz0)
}2

}

×
(
η�Σεη

)
exp
(
z�βz0

)
x̃�η

]
dξ.

Then by (B.30) and similar to the derivations of (B.33), we obtain that

Ũ2 =
−1√
n

n∑
j=1

{
1

ζ̂(x̂j , zj)

∂ζ̂(x̂j , zj)

∂β
− 1

ζ(x̃j , zj)

∂ζ(x̃j , zj)

∂β

}

= −
√
n× 1

n

n∑
j=1

{
1

ζ̂(x̂j , zj)

∂ζ̂(x̂j , zj)

∂β
− 1

ζ(x̃j , zj)

∂ζ(x̃j , zj)

∂β

}

= −
√
n

∫ ∞

−∞

∫ τ

0

{
1

ζ̂(x̂, z)

∂ζ̂(x̂, z)

∂β
− 1

ζ(x̃, z)

∂ζ(x̃, z)

∂β

}
dQ(a, v̂)

+op(1). (B.40)

To sort out a sum of i.i.d. random functions from (B.40), we add and subtract

the term 1
ζ(x̃,z)

∂ζ̂(x̂,z)
∂β and then regroup the differences, yielding

Ũ2 = −
√
n

∫ ∞

−∞

∫ τ

0

{
1

ζ̂(x̂, z)

∂ζ̂(x̂, z)

∂β
− 1

ζ(x̃, z)

∂ζ̂(x̂, z)

∂β
+

1

ζ(x̃, z)

∂ζ̂(x̂, z)

∂β

− 1

ζ(x̃, z)

∂ζ(x̃, z)

∂β

}
dQ(a, v̂) + op(1)
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= −
√
n

∫ ∞

−∞

∫ τ

0

[
1

ζ(x̃, z)

{
∂ζ̂(x̂, z)

∂β
− ∂ζ(x̃, z)

∂β

}

−∂ζ(x̃, z)

∂β

{
ζ̂(x̂, z)− ζ(x̃, z)

ζ2(x̃, z)

}]
dQ(a, v̂) + op(1)

= − 1√
n

n∑
i=1

[∫ ∞

−∞

∫ τ

0

{
1

ζ(x̃, z)

∂

∂β
ψi(η, βz0|x̃, z)

−∂ζ(x̃, z)

∂β

1

ζ2(x̃, z)
ψi(η, βz0|x̃, z)

}]
dQ(a, v̂) + op(1), (B.41)

where the second equality is due to ζ̂ (x̂, z) = ζ (x̃, z) + op(1), and the last step
is due to (B.39).

Combining (B.29), (B.36) and (B.41) gives

1√
n
ŨM (η, βz0) =

1√
n

n∑
i=1

Ψ2i + op(1), (B.42)

where

Ψ2i = −
[∫ ∞

−∞

∫ τ

0

∂

∂β

{
dNi(u)

G̃(0)(u, η, βz0)

−
dN (u) exp

(
z�i βz

)
x∗
i
�ηI(ai ≤ u ≤ yi){

G̃(0)(u, η, βz0)
}2

}
(η�Σεη)

× exp
(
z�βz

)
x̃�ηI(u ≤ a ≤ τ)

]
dQ(a, v̂)

−
[∫ ∞

−∞

∫ τ

0

{
1

ζ (x̃, z)

∂

∂β
ψi(η, βz0|x̃, z)

−∂ζ (x̃, z)

∂β

1

ζ2 (x̃, z)
ψi(η, βz0|x̃, z)

}
dQ(a, v̂)

]

− ∂

∂β
Λ∗
0(ai) exp

(
z�i βz

)
x̃�
i η − 1

ζ (x̃i, zi)

∂

∂β
ζ (x̃i, zi) . (B.43)

Therefore, using (B.21), (B.22), (B.24) and (B.42) and applying the Central
Limit Theorem, we obtain that as n → ∞,

1√
n
U

(
η√
n
, βz0

)
d−→ N (0,B) , (B.44)

where B = E(Ψ⊗2
i ) with Ψi = Ψ1i +Ψ2i, and Ψ1i and Ψ2i are given by (B.25)

and (B.43), respectively.
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Finally, applying Slutsky’s theorem in combination with (B.10), (B.18) and
(B.44), we obtain (B.6) as n → ∞.

Step 2: Show the result of Theorem 4.1 (a).

We first re-scale (B.8), which gives

1√
n
U (0p, βz0) =

1√
n
U

(
η√
n
, βz0

)
− 1

n

∂U (0p, βz0)

∂β�

(
η
0q

)
+ op (1) . (B.45)

Combining (B.18), (B.44) and (B.45) and applying Slutsky’s theorem, we obtain
that as n → ∞,

1√
n
U (0p, βz0)

d−→ N

(
A
(

η
0q

)
,B
)
. (B.46)

Now we consider any candidate model S. Applying the Taylor series expan-

sion to US

(
β̂x,S, β̂z,S

)
around

(
0|S|, βz0

)
gives

0 = US

(
β̂x,S, β̂z,S

)
= US

(
0|S|, βz0

)
+
∂US

(
0|S|, βz0

)
∂β�

S

(
β̂x,S

β̂z,S − βz0

)
+op

(
1√
n

)
,

yielding that

√
n

(
β̂x,S

β̂z,S − βz0

)
= −

(
1

n

∂US

(
0|S|, βz0

)
∂β�

S

)−1
1√
n
US

(
0|S|, βz0

)
+ op (1)

= −
(
1

n

∂US

(
0|S|, βz0

)
∂β�

S

)−1
1√
n
ΠSU

(
0|S|, βz0

)
+ op (1)

d−→ A−1
S ΠSN

(
A
(

η
0q

)
,B
)

as n → ∞,

where the second identity is from Lemma 4.2 and the third step is due to (B.46).
Thus,

√
n

(
β̂x,S

β̂z,S − βz0

)
d−→ N

(
A−1

S ΠSA
(

η
0q

)
,A−1

S BSA−1
S

)
as n → ∞,

where BS = ΠSBΠ�
S .

B.3.2. Proof of (b)

The proof consists of the following three steps.
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Step 1:

For a given candidate model S, by (3.6), we have

√
n
{
Λ̂0,S(t)− Λ0(t)

}

=
√
n

⎧⎪⎪⎨⎪⎪⎩
∫ t

0

1
n

n∑
i=1

dNi(u){
mS(β̂x,S)

}−1

G
(0)
S

(
u, β̂x,S, β̂z,S

) − Λ0(t)

⎫⎪⎪⎬⎪⎪⎭
= A+B,

where

A =
√
n

⎧⎪⎪⎨⎪⎪⎩
∫ t

0

1
n

n∑
i=1

dNi(u){
mS(β̂x,S)

}−1

G
(0)
S

(
u, β̂x,S, β̂z,S

)

−
∫ t

0

1
n

n∑
i=1

dNi(u){
m( η√

n
)
}−1

G(0)
(
u, η√

n
, βz0

)
⎫⎪⎪⎬⎪⎪⎭ (B.47)

and

B =
√
n

⎧⎪⎪⎨⎪⎪⎩
∫ t

0

1
n

n∑
i=1

dNi(u){
m( η√

n
)
}−1

G(0)
(
u, η√

n
, βz0

) − Λ0(t)

⎫⎪⎪⎬⎪⎪⎭ .

Step 2:

We first examine A. Applying the Taylor series expansion to
mS(β̂x,S)

G
(0)
S (u,β̂x,S ,β̂z,S)

and
m( η√

n
)

G(0)
(
u, η√

n
,βz0

) , respectively, around (0, βz0), we have

mS(β̂x,S)

G
(0)
S

(
u, β̂x,S, β̂z,S

) =
1

G
(0)
S

(
u, 0|S|, βz0

) −
⎡⎢⎣ 1{

G
(0)
S

(
u, 0|S|, βz0

)}2

×
(

G
(1)
x,S

(
u, 0|S|, βz0

)
G

(1)
z,S

(
u, 0|S|, βz0

) )�(
β̂x,S

β̂z,S − βz0

)⎤⎦
+op

(
1√
n

)
(B.48)
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and

m( η√
n
)

G(0)
(
u, η√

n
, βz0

) =
1

G(0) (u, 0p, βz0)
− G

(1)
x (u, 0p, βz0){

G(0) (u, 0p, βz0)
}2 η√

n

+op

(
1√
n

)
, (B.49)

where

G
(1)
x,S(u, βx,S, βz,S) =

∂

∂βx,S
G

(0)
S (u, βx,S, βz,S)

and

G
(1)
z,S(u, βx,S, βz,S) =

∂

∂βz,S
G

(0)
S (u, βx,S, βz,S).

Since (B.4) with j = 0 gives G
(0)
S

(
u, 0|S|, βz0

)
= G(0) (u, 0p, βz0), so we com-

bine (B.48) and (B.49) and obtain that

mS(β̂x,S)

G
(0)
S

(
u, β̂x,S, β̂z,S

) −
m( η√

n
)

G(0)
(
u, η√

n
, βz0

)
=

−1{
G

(0)
S

(
u, 0|S|, βz0

)}2

(
G

(1)
x,S

(
u, 0|S|, βz0

)
G

(1)
z,S

(
u, 0|S|, βz0

) )�(
β̂x,S

β̂z,S − βz0

)

+
G

(1)
x (u, 0p, βz0){

G(0) (u, 0p, βz0)
}2 η√

n
+ op

(
1√
n

)
.

Hence, applying (B.47) gives that

A = −
∫ t

0

1
n

n∑
i=1

dNi(u){
G

(0)
S

(
u, 0|S|, βz0

)}2

(
G

(1)
x,S

(
u, 0|S|, βz0

)
G

(1)
z,S

(
u, 0|S|, βz0

) )�
√
n

(
β̂x,S

β̂z,S − βz0

)

+

∫ t

0

1
n

n∑
i=1

dNi(u)G
(1)
x (u, 0p, βz0){

G(0) (u, 0p, βz0)
}2 η + op(1). (B.50)

Now we examine the terms in (B.50) separately. Since {Yi(t) : t ∈ [0, τ ]} and
{Ni(t) : t ∈ [0, τ ]} are Glivenko-Cantelli class ([20], Theorems 2.4.1 and 2.7.5),
then we have as that n → ∞,

1

n

n∑
i=1

dNi(t)
a.s.−→ E {dNi(t)} ,

and
G

(k)
S

(
t, 0|S|, βz0

) a.s.−→ G(k)
S

(
t, 0|S|, βz0

)
for k = 0, 1
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uniformly at t, where G
(0)
S (·) and G

(1)
S (·) are given by (3.7) and (B.1), respec-

tively, and

G(k)
S (u, βx,S, βz,S) = E

{(
πSX

∗

Z

)⊗k

exp((πSX
∗)�βx,S+Z�βx,S)I(A≤u≤Y )

}
.

Therefore, by the continuous mapping theorem, as n → ∞,

∫ t

0

1
n

n∑
i=1

dNi(u){
G

(0)
S

(
u, 0|S|, βz0

)}2

(
G

(1)
x,S

(
u, 0|S|, βz0

)
G

(1)
z,S

(
u, 0|S|, βz0

) )�
a.s.−→
(

Fx,S(t)
Fz(t)

)�
(B.51)

uniformly at t, where

Fx,S(t) =

∫ t

0

E{dNi(u)}G(1)
x,S

(
u, 0|S|, βz0

){
G(0)

S

(
u, 0|S|, βz0

)}2

and

Fz(t) =

∫ t

0

E{dNi(u)}G(1)
z

(
u, 0|S|, βz0

){
G(0)

(
u, 0|S|, βz0

)}2 .

Regarding the term
√
n

(
β̂x,S

β̂z,S − βz0

)
in (B.50), we apply Theorem 4.1 (a)

and let WS be a random vector whose distribution is the same as the limiting

distribution of
√
n

(
β̂x,S

β̂z,S − βz0

)
, i.e.,

√
n

(
β̂x,S

β̂z,S − βz0

)
d−→ WS as n → ∞. (B.52)

Then applying Slutsky’s theorem to (B.50) in combination with (B.51) and
(B.52), we have that as n → ∞,

A
d−→ −

(
Fx,S(t)
Fz(t)

)�
WS + Fx(t)

�η. (B.53)

Step 3:

Finally, we examine the asymptotic behavior of B. Noting that exp
(

η�Σεη
n

)
=

η�Σεη
n + O(1) and 1

n = o
(

1√
n

)
, by the arguments similar to Appendix A.4 of

[17], we have

B =
√
n

∫ t

0

⎧⎪⎪⎨⎪⎪⎩
m( η√

n
) 1n

n∑
i=1

dNi(u)

G(0)
(
u, η√

n
, βz0

) − dΛ0(u)

⎫⎪⎪⎬⎪⎪⎭
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=
√
n

∫ t

0

⎧⎪⎪⎨⎪⎪⎩
η�Σεη√

n
1
n

n∑
i=1

dNi(u)

1√
n
G̃(0) (u, η, βz0)

− dΛ0(u)

⎫⎪⎪⎬⎪⎪⎭+ op(1)

=
√
n

∫ t

0

⎧⎪⎪⎨⎪⎪⎩
η�Σεη

1
n

n∑
i=1

dNi(u)

G̃(0) (u, η, βz0)
− dΛ0(u)

⎫⎪⎪⎬⎪⎪⎭+ op(1)

=
1√
n

∫ t

0

⎧⎪⎪⎨⎪⎪⎩
n∑

i=1

η�ΣεηdNi(u)−
n∑

i=1

Yi(u) exp
(
z�i βz0

)
(x∗

i
�η)dΛ0(t)

G̃(0) (u, η, βz0)

⎫⎪⎪⎬⎪⎪⎭
+op(1)

=
1√
n

∫ t

0

⎡⎢⎢⎣
n∑

i=1

{
η�ΣεηdNi(u)− Yi(u) exp

(
z�i βz0

)
(x∗

i
�η)dΛ0(u)

}
G̃(0) (u, η, βz0)

⎤⎥⎥⎦
+op(1)

=
1√
n

n∑
i=1

∫ t

0

{
η�ΣεηdNi(u)− Yi(u) exp

(
z�i βz0

)
(x∗

i
�η)dΛ0(u)

G̃(0) (u, η, βz0)

}
+op(1)

� 1√
n

n∑
i=1

Φi(t) + op(1),

where the second equality is due to (B.19) and m( η√
n
) = η�Σεη√

n
+ O(1), the

fourth equality is due to (B.20), and the fifth equality is due to (B.35).

By (B.34) and (B.35), E

(
1
n

n∑
i=1

Φi(t)

)
= 0. Then by Condition (C3), the

Φi(t) are i.i.d. with mean zero, and hence, by the Central Limit Theorem, we
conclude that

B
d−→ V(t) as n → ∞, (B.54)

where V(t) is the Gaussian process with mean zero and covariance function
E {Φi(t)Φi(s)}.

Finally, combining (B.53) and (B.54) gives that as n → ∞,

√
n
(
Λ̂0,S(t)− Λ0(t)

)
d−→ V(t)−

(
Fx,S(t)
Fz(t)

)�
WS + Fx(t)

�η,

which completes the proof.
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B.4. Proof of Theorem 4.2

For ease of exposition, we simply write
∂μ(0|S|,βz0)

∂βx,S
and

∂μ(0|S|,βz0)
∂βz,S

as ∂μ
∂βx,S

and
∂μ

∂βz,S
, respectively.

The proof consists of the following two steps.

Step 1:

Let

(
Jx
Jz

)
be a random vector whose distribution is N (0d,B), where Jx

is a p × 1 random vector and Jz is a q × 1 random vector. Define

(
Jx,S
Jz

)
=

ΠS

(
Jx
Jz

)
. Then

(
Jx,S
Jz

)
is a random vector whose distribution is N (0,BS).

Let

WS =

(
CS

DS

)
= A−1

S

{
ΠSA

(
η
0

)
+

(
Jx,S
Jz

)}
(B.55)

be a random vector whose distribution is the asymptotic distribution of

√
n

(
β̂x,S

β̂z,S − βz0

)
,

where CS and DS, respectively, have the distribution identical to the asymptotic
distributions of

√
nβ̂x,S and

√
n(β̂z,S − βz0).

Furthermore, we express A as

A =

(
Axx Axz

Azx Azz

)
by making the block matrices Axx, Axz, Azx and Azz be of dimensions p×p, p×q,
q×p and q× q, respectively. Similarly, the inverse matrix of A, AS and A−1

S are

expressed as A−1 =

(
Axx Axz

Azx Azz

)
,

(
AxxS AxzS

AzxS AzzS

)
and

(
AxxS AxzS

AzxS AzzS

)
,

respectively.
Consequently, by (B.55), we write

CS = (AxxSπSAxx +AxzSAzx) η +AxxSJx,S +AxzSJz (B.56)

and
DS = (AzxSπSAxx +AzzSAzx) η +AzxSπSJx +AzzSJz.

To continue the proof, we need the following lemma.

Lemma B.1. Under regularity conditions in Appendix A, we have

AS = ΠSAΠ�
S ,

where A and AS are the asymptotic covariances matrices in Theorem 4.1.
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By Lemma B.1, we have

AxxS =
(
AxxS −AxzSA

−1
zzSAzxS

)−1

=
(
πSAxxπ

�
S − πSAxzA

−1
zz Azxπ

�
S

)−1

=
{
πS

(
Axx −AxzA

−1
zz Azx

)
π�

S

}−1

=
{
πS(A

xx)−1π�
S

}−1
(B.57)

and

AxzS = −AxxSAxzSA
−1
zzS

= −AxxSAxzSA
−1
zzS. (B.58)

Then combining (B.56), (B.57), and (B.58) gives

CS =
(
AxxSπSAxx −AxxSAxzSA

−1
zzSAzx

)
η +AxxSJx,S −AxxSAxzSA

−1
zzSJz

= AxxSπS

(
Axx −AxzA

−1
zzSAzx

)
η +AxxSJx,S −AxxSAxzSA

−1
zzSJz

= AxxSπS(A
xx)−1η +AxxSπSJx −AxxSπSAxzA

−1
zz Jz

= AxxSπS(A
xx)−1

(
η +AxxJx −AxxAxzA

−1
zz Jz

)
� AxxSπS(A

xx)−1 (η +W) , (B.59)

where the third equality is due to Jx,S =πSJx andAxx =
(
Axx −AxzA

−1
zz Azx

)−1
,

W = AxxJx −AxxAxzA
−1
zz Jz, (B.60)

and (Axx)−1 stands for the inverse of matrix Axx.
Similarly,

AzzS =
{
Azz −Azxπ

�
S

(
πSAxxπ

�
S

)−1
πSAxz

}−1

=
(
Azz −AzxA

−1
xxAxz

)−1

= Azz, (B.61)

and

AzxS = −AzzSAzxSA
−1
xxS

= −AzzAzxπ
�
S A−1

xxS. (B.62)

Thus, using (B.61) and (B.62), and direct calculations give

DS = A−1
zz Azx

{
Ip×p − π�

S AxxSπS (A
xx)

−1
}
η +A−1

zz Jz

−A−1
zz Azxπ

�
S

(
πSAxxπ

�
S

)−1
πSJx +A−1

zz Azxπ
�
S (AxxS)

−1
πSAxzA

−1
zz Jz

= A−1
zz Azx

[
Ip×p − (Axx)1/2(Axx)−1/2π�

S

{
πS(A

xx)−1π�
S

}−1
πS
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×(Axx)−1/2(Axx)−1/2
]
η +A−1

zz Jz

−A−1
zz Azxπ

�
S

{
πS(A

xx)−1π�
S

}−1
πS

(
Jx −AxzA

−1
zz Jz

)
= A−1

zz Azx

[
Ip×p − (Axx)1/2(Axx)−1/2π�

S

{
πS(A

xx)−1π�
S

}−1
πS

×(Axx)−1/2(Axx)−1/2
]
η +A−1

zz Jz −
[
A−1

zz Azx(A
xx)1/2(Axx)−1/2π�

S

×
{
πS(A

xx)−1π�
S

}−1
πS(A

xx)−1/2(Axx)−1/2
{
AxxJx −AxxAxzA

−1
zz Jz

} ]
� A−1

zz Azx

{
Ip×p − (Axx)1/2HS(A

xx)−1/2
}
η

+A−1
zz Jz −A−1

zz Azx(A
xx)1/2HS(A

xx)−1/2W , (B.63)

where the second equality is due to (B.57), and

HS = (Axx)−1/2π�
S

{
πS(A

xx)−1π�
S

}−1
πS(A

xx)−1/2.

Step 2:
By the Taylor series expansion, we have

μ̂S − μtrue =

(
∂μ

∂βx,S

)�
β̂x,S +

(
∂μ

∂βz,S

)� (
β̂z,S − βz0

)
(B.64)

+
∂μ

∂Λ0

(
Λ̂0,S − Λ0

)
−
(

∂μ

∂βx

)�
η√
n
+ op

(
1√
n

)
.

Multiplying
√
n on both sides and plugging in the results of Theorem 4.1 to

(B.64) with Slutsky’s theorem give that as n → ∞,

√
n (μ̂S − μtrue)

d−→ ∂μ

∂Λ0
V(t) +

{
∂μ

∂βx,S
− ∂μ

∂Λ0
Fx,S(t)

}�
CS (B.65)

+

{
∂μ

∂βz
− ∂μ

∂Λ0
Fz(t)

}�
DS −

{
∂μ

∂βx
+

∂μ

∂Λ0
Fx(t)

}�
η.

Then plugging in expressions (B.59) and (B.63) to (B.65) and applying Slutsky’s
theorem with Fx,S(t) = πSFx(t),

∂μ
∂βx,S

= πS
∂μ
∂βx

, and ∂μ
∂βz,S

= ∂μ
∂βz

yield that as
n → ∞,

√
n (μ̂S − μtrue)

d−→ ∂μ

∂Λ0
V(t) +

{
∂μ

∂βx,S
− ∂μ

∂Λ0
Fx,S(t)

}�
CS +

{
∂μ

∂βz
− ∂μ

∂Λ0
Fz(t)

}�
DS

−
{

∂μ

∂βx
+

∂μ

∂Λ0
Fx(t)

}�
η

=
∂μ

∂Λ0
V(t) +

{
∂μ

∂βx
− ∂μ

∂Λ0
Fx(t)

}� {
(Axx)1/2HS(A

xx)−1/2
}
(η +W)
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+

{
∂μ

∂βz
− ∂μ

∂Λ0
Fz(t)

}�
A−1

zz Azx

{
Ip×p − (Axx)1/2HS(A

xx)−1/2
}
η

+

{
∂μ

∂βz
− ∂μ

∂Λ0
Fz(t)

}�
A−1

zz Jz

−
{

∂μ

∂βz
− ∂μ

∂Λ0
Fz(t)

}�
A−1

zz Azx(A
xx)1/2HS(A

xx)−1/2W

−
{

∂μ

∂βx
+

∂μ

∂Λ0
Fx(t)

}�
η, (B.66)

Finally, combining common terms together, we can derive that as n → ∞,

√
n (μ̂S − μtrue)

d−→ ∂μ

∂Λ0
V(t) +

{
∂μ

∂βz
− ∂μ

∂Λ0
Fz(t)

}�
A−1

zz Jz

+(ω + κ)
�
{
η − (Axx)1/2HS(A

xx)−1/2U
}
,

where ω = ∂μ
∂βx

− A�
zxA

−1
zz

∂μ
∂βz

and κ = ∂μ
∂Λ0

Fx(t) − A�
zxA

−1
zz

∂μ
∂Λ0

Fz(t), which
completes the proof.

B.5. Proof of Theorem 5.1

Recall that μ̂ave =
∑
S∈S

w(S|η̂)μ̂S with weights w(S|η̂) satisfying conditions in

Section 5.2. Since η̂ =
√
nβ̂x,full, then by (B.6) with Slutsky’s theorem, we have

that as n → ∞,

η̂ =
√
nβ̂x,full

= (Ip×p, 0q×q)
√
n

(
β̂x,full

β̂z,full − βz0

)
d−→ (Ip×p, 0q×q)

{(
η
0q

)
+A−1

(
Jx
Jz

)}
= η +W
= U . (B.67)

Therefore, let w(S|U) denote the weight to which w(S|η̂) converges.
Then by the continuous mapping theorem and the result of Theorem 4.2 and

(B.67), we have that as n → ∞,

√
n (μ̂ave − μtrue) =

∑
S∈S

w(S|η̂)
{√

n (μ̂S − μtrue)
}

d−→
∑
S∈S

w(S|U)
[
∂μ

∂Λ0
V(t) +

{
∂μ

∂βz
+

∂μ

∂Λ0
Fz(t)

}�
A−1

zz Jz
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+ (ω + κ)
�
{
U − (Axx)1/2HS(A

xx)−1/2U
}]

=
∂μ

∂Λ0
V(t) +

{
∂μ

∂βz
+

∂μ

∂Λ0
Fz(t)

}�
A−1

zz Jz

+(ω + κ)
�
{
U −

∑
S∈S

w(S|U)(Axx)1/2HS(A
xx)−1/2U

}
.

Therefore, the proof of Theorem 5.1 is completed.

B.6. Proof of W ∼ N(0, σxx)

By an argument similar to (B.58), we have Axz = −AxxAxzA
−1
zz , or equivalently,

(Axx)−1Axz = −AxzA
−1
zz .

We re-write (B.60) as

W = AxxJx −AxxAxzA
−1
zz Jz

= Axx
(
Jx −AxzA

−1
zz Jz

)
= Axx

{
Jx + (Axx)−1AxzJz

}
. (B.68)

Write B as the block matrix

(
Bxx Bxz

Bzx Bzz

)
where Bxx, Bxz, Bzx and Bzz

of dimensions p × p, p × q, q × p and q × q, respectively. Noting that A−1 is
a symmetric matrix, then (Axx)� = Axx, (Axz)� = Azx, (Azx)� = Axz and
(Azz)� = Azz. From (B.68), the variance of W can be expressed as

var (W)

= Axxvar
{
Jx + (Axx)−1AxzJz

}
Axx

= Axxvar (Jx)A
xx +Axx(Axx)−1Axzvar (Jz)A

zx(Axx)−1Axx

+Axxcov
{
Jx, (A

xx)−1AxzJz
}
Axx +Axxcov

{
(Axx)−1AxzJz, Jx

}
Axx

= AxxBxxA
xx +AxzBzzA

zx

+AxxBxzA
zx(Axx)−1Axx +Axx(Axx)−1AxzBzxA

xx

= AxxBxxA
xx +AxzBzzA

zx +AxzBzxA
xx +AxxBxzA

zx.

On the other hand, directly calculations give

A−1BA−1 =

(
Axx Axz

Azx Azz

)(
Bxx Bxz

Bzx Bzz

)(
Axx Axz

Azx Azz

)
=

(
AxxBxx +AxzBzx AxxBxz +AxzBzz

Azx Azz

)(
Axx Axz

Azx Azz

)
leading to the upper left block matrix σxx = AxxBxxA

xx + AxzBzxA
xx +

AxxBxzA
zx +AxzBzzA

zx, which is var (W); the proof is then completed.
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