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1. Introduction and limit theorems

With regard to the goodness-of-fit tests for stationary ergodic processes, we
propose a Cramér–von Mises type statistic based on discrete time observations
to test a simple hypothesis for a diffusion process and an Anderson–Darling-
type statistic for a nonlinear time series. For that purpose, we provide two limit
theorems, Theorems 1.1 and 1.2 presented in Sections 1.1 and 1.2, which assert
weak convergence of marked empirical processes in L2 space.

Goodness-of-fit tests have been extensively studied in the literature because
they are useful in deciding whether a mathematical model is acceptable to
describe sampled data. We refer to the work of González-Manteiga and Cru-
jeiras [5] for a review on goodness-of-fit tests, in which Section 5 is devoted to
tests when dependent sequences are observed. Among the abundant work treat-
ing goodness-of-fit tests for stochastic process models, we are interested in an
approach based on empirical processes marked by residuals. This approach has
been developed by Koul and Stute [10] and Escanciano [3] among others. The
main objective of this paper is proposing new test procedures that may not be
justified by limit theorems stated in [10] and [3]. Specifically, our limit theorems
do not include Theorem 2.1 of [10] or Theorem 1 of [3], but our results contain
the following merits. The assumptions supposed in either of these theorems do
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not suit the setting of our diffusion process; nevertheless, Theorem 1.1 does ap-
plied. Moreover, although a weak convergence of an Anderson–Darling-type test
statistic cannot be directly derived from the weak convergence in the Skorokhod
space or �∞ space, Theorem 1.2 enables us to consider the Anderson–Darling-
type test statistic. Indeed, the applications described in this paper are novel.

Remark 1.1. Some goodness-of-fit tests for ergodic diffusion processes have been
extensively studied. The first study on this topic is apparently Kutoyants [11]
(Section 5.4). This and subsequent work such as Dachian and Kutoyants [1],
Kleptsyna and Kutoyants [9], Kutoyants [12, 13], Negri and Nishiyama [15]
treat the problem with continuous time observations. However, from the view-
point of applications, discrete time observations need to be considered. Using a
smoothed empirical process, Masuda et al. [14] proposed Kolmogorov–Smirnov-
type goodness-of-fit tests based on discrete time observations. They established
not the weak convergence of Zn(x), which shall be defined in (1.1), but the weak
convergence of its smoothed version. See also Negri and Nishiyama [16] for a
review on goodness-of-fit tests for ergodic diffusion processes.

Remark 1.2. As for goodness-of-fit test for time series models, Koul and Stute
[10] considered not only a simple hypothesis but also one that is a paramet-
ric composite based on the notion of the martingale transformation (Khmal-
adze [8]). Moreover, as for ergodic diffusion process models (continuous time
observations), Kleptsyna and Kutoyants [9] and Kutoyants [12, 13] considered
a parametric composite hypothesis, although marked empirical processes were
not treated. Nevertheless, we only consider a simple hypotheses; composite hy-
potheses are set aside as a possible direction of study in future research.

Next, we describe our limit theorems. Let L2(R, ν) be the set of equivalence
classes of square integrable functions on R with respect to a finite Borel measure
ν on R. The L2(R, ν) space is equipped with an inner product 〈·, ·〉 defined
by 〈f, g〉 =

∫
R
f(x)g(x)ν(dx) for f, g ∈ L2(R, ν) and norm ‖ · ‖ defined by

‖f‖ = 〈f, f〉1/2 for f ∈ L2(R, ν). For any interval A, the function 1A(·) is defined
by 1A(x) = 1 (x ∈ A), 0 (x �∈ A). For every positive integer n, we introduce a
filtered probability space (Ωn,Fn,Fn = {Fn

i }i≥0, P
n). Let {Xn

i }i≥0 be a real-
valued Fn-adapted sequence and {mn

i }i≥1 a real valued Fn-adapted martingale
difference sequence (thus for all i, mn

i is Fn
i -measurable and En[mn

i |Fn
i−1] =

0 almost surely). We study the asymptotic behavior of an empirical process
marked by the martingale difference sequence {mn

i }i≥1

x � Zn(x) =

n∑
i=1

1(−∞,x](X
n
i−1)m

n
i (1.1)

and its weighted process with weight function x �→ w(x)(> 0)

x � Zw
n (x) = w(x)Zn(x) =

n∑
i=1

w(x)1(−∞,x](X
n
i−1)m

n
i .

Their limits are Gaussian processes G and Gw defined by

x � G(x) = B(Ψ(x)),
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and
x � Gw(x) = w(x)B(Ψ(x)),

respectively, where x � B(x) is a standard Brownian motion and Ψ is the limit
(for the exact sense of the limit; see Assumptions 1.1 and 1.2) of

x �
n∑

i=1

1(−∞,x](X
n
i−1)E

n[(mn
i )

2|Fn
i−1].

To explain the problem simply, let us consider the instance when (Xn
i−1)i≥1 =

(Xi−1)i≥1 and (mn
i )i≥1 = (mi/

√
n)i≥1 are independent sequences of indepen-

dent and identically distributed random variables satisfying the following:

• X0 is an absolutely continuous random variable for which the distribution
function is FX ,

• E[m1] = 0, E[(m1)
2] < ∞.

If ∫
R

w(x)2FX(x)ν(dx) < ∞, (1.2)

then the central limit theorem in a separable Hilbert space (see Example 1.8.5
of van der Vaart and Wellner [19]) implies that

x � Zw
n (x) =

1√
n

n∑
i=1

w(x)1(−∞,x](Xi−1)mi

converges weakly to

x � Gw(x) =
√

E[(m1)2]w(x)B(FX(x))

in L2(R, ν) as n → ∞, because

E[‖w1(−∞,·](X0)m1‖2] = E[(m1)
2]

∫
R

w(x)2FX(x)ν(dx) < ∞

and

E
[
〈w1(−∞,·](X0)m1, h〉2

]
= E

[〈√
E[(m1)2]wB(FX), h

〉2]
for any h ∈ L2(R, ν). Here, the weak convergence in L2(R, ν) is defined by

E[f(Zw
n )] → E[f(Gw)]

for any continuous and bounded function f : L2(R, ν) → R. From this weak
convergence and the continuous mapping theorem, we conclude that ‖Zw

n ‖2
converges in distribution to ‖Gw‖2 as n → ∞. Note that when w(x) = 1 (x ∈ R),
(1.2) holds automatically. Hence, our contribution is generalizing the simple
conditions above to more complicated ones that are more useful when conducting
statistical inference for stochastic processes. The limit theorems are presented
in the following two subsections.
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1.1. Weak convergence of Zn

We first provide the limit theorem for Zn. The following assumption is a suffi-
cient condition to show the weak convergence of Zn.

Assumption 1.1. (i) As n → ∞,

n∑
i=1

1(−∞,x](X
n
i−1)E

n[(mn
i )

2|Fn
i−1] →p Ψ(x) (∀x ∈ R) (1.3)

holds, where x �→ Ψ(x) is a continuous nondecreasing function on R satisfying
Ψ(x) ↓ 0 as x → −∞ and Ψ(x) ↑ Ψ(∞) < ∞ as x → ∞, and →p denotes
convergence in probability.

(ii) There exists a constant δ > 0 such that

n∑
i=1

En[|mn
i |2+δ|Fn

i−1] →p 0

as n → ∞.
(iii) There exists a measurable function φ on R such that for all n ∈ N there

exist some nonnegative constants cni (i = 1, . . . , n) satisfying

sup
n

(
n∑

i=1

cni

)
< ∞

and En[(mn
i )

2|Fn
i−1] ≤ cni φ(X

n
i−1) almost surely.

(iv) All Xn
i ’s have the same distribution as ζ such that E[φ(ζ)] < ∞.

The following limit theorem asserts the weak convergence of Zn, the proof of
which is presented in Appendix A.

Theorem 1.1. Under Assumption 1.1, Zn converges weakly to G in L2(R, ν)
as n → ∞.

Remark 1.3. An important point of Theorem 1.1 is that we avoid the assump-
tion (B) in Lemma 3.1 of Koul and Stute [10], which places a restriction on
the transition density of a discrete time Markovian process and hence is not
suitable for our diffusion process model considered in Section 2. Although Es-
canciano [3] gave a result for a non-Markovian process, he assumed a condition
on the smoothness (the condition (D) in his Theorem 1) of the model that also
is not suitable for our purpose. However, notice that our result does not cover
theirs because they considered the weak convergence under a uniform metric.

1.2. Weak convergence of Zw
n

We next provide a limit theorem for Zw
n . The following assumption is a sufficient

condition to show the weak convergence of Zw
n . Obviously, if we set w(·) = 1,

then Zw
n becomes Zn. However, Theorem 1.1 has been separately stated, be-

cause (1.4) is stronger than (1.3).
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Assumption 1.2. (i) As n → ∞,

En

[∣∣∣∣∣
n∑

i=1

1(−∞,x](X
n
i−1)E

n[(mn
i )

2|Fn
i−1]−Ψ(x)

∣∣∣∣∣
]
→ 0 (∀x ∈ R) (1.4)

holds, where x �→ Ψ(x) is a continuous nondecreasing function on R satisfying
Ψ(x) ↓ 0 as x → −∞, Ψ(x) ↑ Ψ(∞) < ∞ as x → ∞. Moreover, there exists a
nondecreasing function Φ such that

In(x) ≤ Φ(x) (∀x ∈ R) (1.5)

for all sufficiently large n, where

In(x) =
n∑

i=1

En
[
1(−∞,x](X

n
i−1)(m

n
i )

2
]
.

Furthermore, the following condition holds∫
R

(Ψ(x) + Φ(x))(w(x))2ν(dx) < ∞.

(ii) There exists a constant δ > 0 such that

n∑
i=1

En[1(−∞,x](X
n
i−1)|mn

i |2+δ] → 0 (∀x ∈ R)

as n → ∞, and there exists a function Λ such that

n∑
i=1

En[1(−∞,x](X
n
i−1)|mn

i |2+δ] ≤ Λ(x) (∀x ∈ R) (1.6)

for all sufficiently large n and that∫
R

Λ(x)(w(x))2+δν(dx) < ∞.

The following limit theorem asserts the weak convergence of Zw
n . Its proof is

presented in Appendix B. From a practical viewpoint, the case where w(·) =
(Ψ(·))−1/2 is important because it corresponds to a standardization.

Theorem 1.2. Under Assumption 1.2, Zw
n converges weakly to Gw in L2(R, ν)

as n → ∞.

Remark 1.4. As for (1.4), it follows from a well-known fact on the uniform
integrability that if

n∑
i=1

1(−∞,x](X
n
i−1)E

n[(mn
i )

2|Fn
i−1] → Ψ(x) a.s. (∀x ∈ R),
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then (1.4) is equivalent to the uniform integrability of

n∑
i=1

1(−∞,x](X
n
i−1)E

n[(mn
i )

2|Fn
i−1]

for all x ∈ R, and also equivalent to In(x) → Ψ(x) for all x ∈ R.

Remark 1.5. As for (1.5), if we assume Assumptions 1.1 (iii) and (iv), then

In(x) = En

[
n∑

i=1

1(−∞,x](X
n
i−1)E

n[(mn
i )

2|Fn
i−1]

]

≤ En

[
n∑

i=1

1(−∞,x](X
n
i−1)c

n
i φ(X

n
i−1)

]

= E

[
n∑

i=1

1(−∞,x](ζ)c
n
i φ(ζ)

]

≤
(
sup
n

n∑
i=1

cni

)
E
[
1(−∞,x](ζ)φ(ζ)

]
,

and hence we can take Φ(x) as the right-hand side of the above display (if the
integrability condition holds).

2. Cramér–von Mises type goodness-of-fit test for drift parameters
in diffusion processes

We now consider the goodness-of-fit test procedure for a diffusion process model.
The procedure is justified using Theorem 1.1.

2.1. Problem setting and test procedure

We consider a strictly stationary ergodic stochastic process {Xt}t≥0 which is a
solution to a one-dimensional stochastic differential equation (SDE)

Xt = X0 +

∫ t

0

S(Xs)ds+

∫ t

0

σ(Xs)dWs (t ≥ 0), (2.1)

where the random variable X0 is an almost surely finite initial value, S(·) a mea-
surable function of interest, σ(·) a known positive measurable function, and t �
Wt a standardWiener process defined on a stochastic basis (Ω,F , (Ft)t∈[0,∞), P ).
Let us list the assumptions on S and σ.

(A1) There exists a constant C > 0 such that

|S(x)− S(y)| ≤ C|x− y|, |σ(x)− σ(y)| ≤ C|x− y| (∀x, y ∈ R).

(A2) The process (Xt)t∈[0,∞) is a solution to the SDE (2.1) for (S, σ) and
it is stationary and ergodic with absolutely continuous invariant law μS,σ (that
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is, t−1
∫ t

0
g(Xs)ds →p

∫
R
g(x)μS,σ(dx) as t → ∞ for every μS,σ-integrable func-

tion g). We also assume that∫
R

|x|3μS,σ(dx) < ∞.

Remark 2.1. Assumption (A1) implies that there exists a constant C ′ > 0 such
that |S(x)| ≤ C ′(1 + |x|) and |σ(x)| ≤ C ′(1 + |x|).

In our problem, from the continuous stochastic process (2.1), {Xtni
}ni=1 is

observed at discrete time points 0 = tn0 < tn1 < · · · < tnn satisfying

tnn → ∞, nΔ2
n → 0 (2.2)

as n → ∞, where

Δn = max
1≤i≤n

|tni − tni−1|.

Remark 2.2. We propose an asymptotically distribution free test based on the
sampling scheme (2.2), namely, high frequency data. We note there is a huge
literature on discrete time approximations of statistical estimators for diffusion
processes; see, for example, the Introduction of Gobet et al. [4] for a review
including not only high frequency but also low frequency data. In the context
of our goodness-of-fit test, however, it seems difficult to obtain asymptotically
distribution free results based on low frequency data. Our result for this problem
is related to prior work [14] in which some Kolmogorov–Smirnov-type tests based
on smoothing were considered. The ideal assertion for the Kolmogorov–Smirnov
type tests is still an open problem because it needs a weak convergence theorem
in �∞(R).

Under the setting stated above, the problem is to conduct a goodness-of-fit
test of (2.1), that is, we wish to test the null hypothesis H0 : S = S0 versus
H1 : S �= S0 for a given S0. Let us introduce the test statistic

Dn =

∫
R

|Un(x;S0)|2
ΨS0,σ(∞)

ΨS0,σ(dx)

ΨS0,σ(∞)
, (2.3)

where

x � Un(x;S) =

n∑
i=1

1(−∞,x](Xtni−1
)
Xtni

−Xtni−1
− S(Xtni−1

)(tni − tni−1)√
tnn

,

and

ΨS,σ(x) =

∫ x

−∞
σ(z)2μS,σ(dz) (x ∈ R).

In the next subsection, we show that the asymptotic null distribution of Dn is∫ 1

0

|B(u)|2du. (2.4)
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2.2. Justification of proposed procedure

We justify our test procedure; denoting

mn
i =

σ(Xtni−1
)(Wtni

−Wtni−1
)

√
tnn

(i = 1, . . . , n), (2.5)

m̃n
i =

Xtni
−Xtni−1

− S(Xtni−1
)(tni − tni−1)√

tnn
(i = 1, . . . , n),

we suppose H0 is true. Then, as argued in the proof of Proposition 2.1, the
sequence {m̃n

i }ni=1 is close to {mn
i }ni=1, which is a martingale difference sequence

with respect to the filtration {Fi−1}∞i=1, and hence Theorem 1.1 yields the weak
convergence in L2(R,ΨS0,σ) of

x �
n∑

i=1

1(−∞,x](Xtni−1
)mn

i ,

which we denote for simplicity by M b
n(x).

Proposition 2.1. Let ν be any finite Borel measure on R. Assume (A1) and
(A2). Then, x � Un(x;S) converges weakly in L2(R, ν) to x � B ◦ΨS,σ(x) as
n → ∞ with (2.2), where B(·) is a standard Brownian motion and

ΨS,σ(x) =

∫ x

−∞
σ(z)2μS,σ(dz) (x ∈ R).

Proof. Define

x � Ma
n(x) =

1√
tnn

n∑
i=1

1(−∞,x](Xtni−1
)

∫ tni

tni−1

σ(Xs)dWs,

and

x � M b
n(x) =

n∑
i=1

1(−∞,x](Xtni−1
)mn

i ,

where {mn
i }ni=1 is defined in (2.5).

Straightforwardly from (2.2), |Un(·;S) − Ma
n(·)| converges in probability to

zero under the uniform metric, and therefore under the L2(R, ν)-metric.

We next show that Ma
n(·)−M b

n(·) converges weakly in L2(R, ν) to zero (the
degenerate random field) and that M b

n(·) converges to B ◦ ΨS,σ(·); the asser-
tion of the lemma then follows from Slutsky’s lemma. To show these two weak
convergence claims, we apply Theorem 1.1 for

x �
n∑

i=1

ξni (x)
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with

ξni (x) =
1√
tnn

1(−∞,x](Xtni−1
)

∫ tni

tni−1

(σ(Xs)− σ(Xtni−1
))dWs (i = 1, . . . , n) (2.6)

and
ξni (x) = 1(−∞,x](Xtni−1

)mn
i , (i = 1, . . . , n) (2.7)

respectively. In Assumption 1.1, Condition (i) for (2.6) in which the limit is zero
is clear, whereas that for (2.7) is proved using Lemma 2.1 (iii). Condition (ii)
is indeed satisfied. Conditions (iii) and (iv) are immediate from stationarity (as
for (2.6); we use also the latter inequality of Lemma 2.1 (i)). This completes the
proof.

The random variable of the limit satisfies∫
R

|B(ΨS,σ(x))|2
ΨS,σ(∞)

ΨS,σ(dx)

ΨS,σ(∞)
=d

∫ 1

0

|B(u)|2du,

where the notation =d means the distributions are the same. Hence, applying
the continuous mapping theorem, we obtain the following corollary.

Corollary 2.1. Suppose that (A1) and (A2) are satisfied for a given, specific
S0 and σ. If H0 is true, then Dn converges in distribution to (2.4) as n → ∞
with (2.2).

We close this subsection with a remark on the consistency of the test. Let us
write H1 as ∫

R

∣∣∣∣∫ x

−∞
{S0(z)− S(z)}μS,σ(dz)

∣∣∣∣2 ΨS0,σ(dx) > 0. (2.8)

Hereafter, (2.8) is assumed to be true. Observe that

ΨS0,σ(∞)D1/2
n

=

(∫
R

|Un(x;S0)|2ΨS0,σ(dx)

)1/2

≥
√

tnn

(∫
R

|Hn(x)|2 ΨS0,σ(dx)

)1/2

−
(∫

R

|Un(x;S)|2ΨS0,σ(dx)

)1/2

,

where

Hn(·) =
1

tnn

n∑
i=1

1(−∞,·](Xtni−1
){S0(Xtni−1

)− S(Xtni−1
)}|tni − tni−1|.

Applying Proposition 2.1 and the continuous mapping theorem, the second term
of the right-hand side is OP (1). To prove that the probability that the first term
is bounded by M tends to zero as n → ∞ for any M > 0, we first note that

Hn(x) →p

∫ x

−∞
{S0(z)− S(z)}μS,σ(dz)
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for all x ∈ R; this follows from Lemma 2.1 (iii) presented in the next subsection.
Showing that this convergence holds uniformly in x is straightforward. Hence∫

R

|Hn(x)|2 ΨS0,σ(dx) →p

∫
R

∣∣∣∣∫ x

−∞
{S0(z)− S(z)}μS,σ(dz)

∣∣∣∣2 ΨS0,σ(dx) > 0.

Therefore, P (Dn > M) = P (ΨS0,σ(∞)D1/2
n > ΨS0,σ(∞)M1/2) → 1 holds for

any constant M > 0.

2.3. A technical lemma

We next prove a lemma that we have already used.

Lemma 2.1. Let X be a solution of the SDE (2.1) with (S, σ) satisfying (A1).
Let p be a positive integer, and assume supt∈[0,∞) E|Xt|p < ∞.

(i) There exists a constant Cp,S,σ > 0 depending only on p, (S, σ) such that
if |ti − ti−1| ≤ 1 then

E

[
sup

s∈[tni−1,t
n
i ]

|Xs −Xtni−1
|p
∣∣∣∣∣Ftni−1

]
≤ Cp,S,σ|tni − tni−1|p/2(1 + |Xtni−1

|)p,

E

[
sup

s∈[tni−1,t
n
i ]

|Xs|p
∣∣∣∣∣Ftni−1

]
≤ Cp,S,σ(1 + |Xtni−1

|)p.

(ii) Given p Lipschitz continuous functions g = (g1, ..., gp), there exists a
constant Cp,g,S,σ > 0 depending also on (S, σ) such that if |tni − tni−1| ≤ 1 then

E

⎡⎣ sup
s∈[tni−1,t

n
i ]

∣∣∣∣∣∣
p∏

j=1

gj(Xs)−
p∏

j=1

gj(Xtni−1
)

∣∣∣∣∣∣ |Ftni−1

⎤⎦
≤ Cp,g,S,σ|tni − tni−1|1/2(1 + |Xtni−1

|)p.

(iii) Assume that X is ergodic with absolutely continuous invariant distribu-
tion μ. Given x ∈ R and p− 1 Lipschitz continuous functions g = (g1, ..., gp−1)

such that
∏p−1

j=1 gj is μ-integrable, then with Δn → 0 it holds that

1

tnn

n∑
i=1

1(−∞,x](Xtni−1
)

p−1∏
j=1

gj(Xtni−1
)|tni − tni−1| →p

∫ x

−∞

p−1∏
j=1

gj(z)μ(dz).

(This assertion is true also for p = 1 if we read
∏1−1

j=1 gj ≡ 1.)

Proof. The assertion (i) is well-known; see, for example, Kessler [7]. The as-
sertion (ii) can be proven using (i). This leaves the assertion (iii). Writing

g(z) =
∏p−1

j=1 gj(z), we may assume that all gj ’s are nonnegative without loss of
generality. (For the general case, notice that g is represented as a sum of terms
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of the form a
∏p−1

j=1 g̃j where g̃j = gj ∨ 0 or (−gj)∨ 0 and a = 1 or −1.) For any
ε > 0, choose two Lipschitz continuous functions l, u such that l ≤ 1(−∞,x] ≤ u
and that

∫
R
|u(z)− l(z)|g(z)μ(dz) < ε. Then it holds that

1

tnn

n∑
i=1

1(−∞,x](Xtni−1
)g(Xtni−1

)|tni − tni−1|

≤ 1

tnn

n∑
i=1

u(Xtni−1
)g(Xtni−1

)|tni − tni−1|

=
1

tnn

∫ tnn

0

u(Xs)g(Xs)ds+OP (Δ
1/2
n )

→p

∫
R

u(z)g(z)μ(dz)

≤
∫ x

−∞
g(z)μ(dz) + ε.

By the same argument, replacing u by l, we finally get∣∣∣∣∣ 1tnn
n∑

i=1

1(−∞,x](Xtni−1
)g(Xtni−1

)|tni − tni−1| −
∫ x

−∞
g(z)μ(dz)

∣∣∣∣∣ ≤ ε+ oP (1).

Because the choice of ε is arbitrary, we have proven the assertion of (iii). This
completes the proof.

3. Anderson–Darling-type goodness-of-fit test for nonlinear time
series

In this section, we consider the goodness-of-fit test procedure for a nonlinear
time series model. The procedure is justified using Theorem 1.2.

3.1. Problem setting and test procedure

We consider a strictly stationary ergodic stochastic process {Xi}∞i=−∞ given by

Xi = S(Xi−1) + σ(Xi−1)εi (i ∈ Z), (3.1)

where S(·) is a measurable function, σ(·) is a known measurable function sat-
isfying infx∈R σ(x) > 0, and {εi}∞i=−∞ is an unobserved sequence of absolutely
continuous random variables satisfying

P (εi ≤ 0|Fi−1) = 1/2 a.s.,

where {Fi}i∈Z is the filtration defined by Fi = σ(Xj : j ≤ i) for all i ∈ Z. In
this section, no moment condition on εi (i ∈ Z) is assumed.

We introduce the following assumption on S(·) and σ(·).
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(B) The process {Xi}∞i=−∞ is stationary and ergodic with absolutely contin-
uous invariant law μS,σ, where ergodicity is in the sense of almost sure conver-
gence, that is,

1

n

n∑
i=1

g(Xi) →
∫
R

g(x)μS,σ(dx) a.s.

for every μS,σ-integrable function g(·). Moreover, the distribution function ΨS,σ

of μS,σ satisfies ∫
R

μS,σ(dx)√
ΨS,σ(x)

< ∞.

In our problem, a time series {Xi}ni=0 is observed from the stochastic pro-
cess (3.1).

Under the setting above, the problem is to conduct a goodness-of-fit test
of (3.1), that is, we wish to test the null hypothesis H0 : S = S0 versus H1 :
S �= S0 for a given S0. Let us define the test statistic

Tn =

∫
R

1

nΨS0,σ(x)

(
n∑

i=1

sign(Xi − S0(Xi−1))1(−∞,x](Xi−1)

)2

μS0,σ(dx),

(3.2)
where sign(·) = −1(−∞,0)(·) + 1(0,∞)(·). As is shown in the next subsection, the
asymptotic null distribution of Tn is∫ 1

0

|B(u)|2
u

du. (3.3)

Remark 3.1. Our statistic contains sign(·) along the lines of Erlenmaier [2] and
Section 7.3 of Nishiyama [17]. Of course, if the corresponding required condition
on {εi}∞i=1 is satisfied, other functions mentioned by Koul and Stute [10], can be
used. Some examples are f(·) = ·, f(·) = 1(0,∞)(·)− (1−α), and other bounded
functions. Note that Nishiyama [18] considered another statistic similar to that
used by Masuda et al. [14]. A merit of f(·) = sign(·) is its robustness against
outliers.

Remark 3.2. Our procedure can be regarded as an Anderson–Darling-type statis-
tic in the sense that

E

[∫ 1

0

|B(u)|2
u

du

]
= 1.

3.2. Justification of proposed procedure

We justify our test procedure using Theorem 1.2. Let

x � ξni (x) =
1√

ΨS0,σ(x)
1(−∞,x](Xi−1)m

n
i (i = 1, . . . , n),

where

mn
i =

sign(Xi − S0(Xi−1))√
n

(i = 1, . . . , n).
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Suppose that H0 is true. Then {mn
i }ni=1 is a martingale difference sequence with

respect to {Fi}ni=0 for which

(mn
i )

2 =
1

n
a.s. (i = 1, . . . , n)

holds. We use Theorem 1.2 with w = (ΨS0,σ)
−1/2. From stationarity and ergod-

icity, Assumption 1.2 can be checked. Indeed, we find

En

[
1

n

n∑
i=1

1(−∞,x](X
n
i−1)

]
= E

[
1

n

n∑
i=1

1(−∞,x](ζ)

]
= ΨS0,σ(x)

holds; here, ζ is a random variable following μS0,σ. Hence, if (B) is satisfied,
we are then able to check Assumption 1.2 by setting Ψ = Φ = Λ = ΨS0,σ and
δ = 1. We thus have

n∑
i=1

ξni ⇒ B ◦ΨS0,σ√
ΨS0,σ

in L2(R, ν)

as n → ∞ for any finite Borel measure ν. Therefore, the continuous mapping
theorem and∫

R

|B(ΨS0,σ(x))|2
ΨS0,σ(x)

μS0,σ(dx) =

∫
R

|B(ΨS0,σ(x))|2
ΨS0,σ(x)

μS0,σ(dx)

ΨS0,σ(∞)
=d

∫ 1

0

|B(u)|2
u

du

yield the following assertion.

Proposition 3.1. Suppose that (B) is satisfied for a given, specific S0 and σ.
If H0 is true, then Tn defined in (3.2) converges in distribution to (3.3) as
n → ∞.

Remark 3.3. In this paper, we do not demonstrate the weak convergence of

x �
n∑

i=1

1√
Ψ̂n(x)

1(−∞,x](Xi−1)m
n
i

in L2(R, ν) for which

Ψ̂n(x) =
1

n

n∑
i=1

1(−∞,x](X
n
i−1).

Finally, we briefly discuss the consistency of the test. To privide a clear suffi-
cient condition, we consider the case that {εi}i∈Z is a sequence of independent
and identically distributed random variables. Let Fε be the distribution fuction
of ε1. Note that Fε(0) = 1/2 is assumed. Then, for all i it holds that

P (S(Xi−1)− S0(Xi−1) + σ(Xi−1)εi ≤ 0|Fi−1)
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= P

(
εi ≤

S0(Xi−1)− S(Xi−1)

σ(Xi−1)
|Fi−1

)
= Fε

(
S0(Xi−1)− S(Xi−1)

σ(Xi−1)

)
a.s.

Define a measurable function δ by

δ(x) =
1

2
− Fε

(
S0(x)− S(x)

σ(x)

)
(x ∈ R).

Note that δ = 0 if H0 : S = S0 is true. Let us write H1 as∫
R

∣∣∣∣∫ x

−∞
δ(z)μS,σ(dz)

∣∣∣∣2 μS0,σ(dx) > 0,

and assume it to be true thereafter. From ΨS0,σ(x) ≤ ΨS0,σ(∞) = 1, it follows
that

T 1/2
n ≥

⎧⎨⎩
∫
R

1

n

(
n∑

i=1

sign(Xi − S0(Xi−1))1(−∞,x](Xi−1)

)2

μS0,σ(dx)

⎫⎬⎭
1/2

.

Here, the right-hand side is bounded below by

√
n×

⎧⎨⎩4

∫
R

(
1

n

n∑
i=1

1(−∞,x](Xi−1)δ(Xi−1)

)2

μS0,σ(dx)

⎫⎬⎭
1/2

−

⎧⎨⎩
∫
R

(
n∑

i=1

1(−∞,x](Xi−1)m̌
n
i

)2

μS0,σ(dx)

⎫⎬⎭
1/2

,

where

m̌n
i =

1√
n
(sign(Xi − S0(Xi−1))− 2δ(Xi−1)) (i = 1, . . . , n).

The first term tends to positive infinity in probability because∫
R

(
1

n

n∑
i=1

1(−∞,x](Xi−1)δ(Xi−1)

)2

μS0,σ(dx)

→p

∫
R

∣∣∣∣∫ x

−∞
δ(z)μS,σ(dz)

∣∣∣∣2 μS0,σ(dx) > 0

which follows from ergodicity, whereas the second term is OP (1) which is a
consequence of Theorem 1.2 because {m̌n

i }
∞
i=1 is a martingale difference sequence

with respect to the filtration {Fi}∞i=0. Therefore, P (Tn > M) = P (T 1/2
n >

M1/2) → 1 holds for any constant M > 0.
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Appendix A: Proof of Theorem 1.1

By Prohorov’s tightness criterion for Hilbert space valued random sequences
(see, e.g., Theorem 1.8.4 by van der Vaart and Wellner [19]), it suffices to show
the following two lemmas.

Lemma A.1. Under Assumptions 1.1 (i) and (ii), 〈Zn, h〉 converges in distri-
bution to 〈G, h〉 for any h ∈ L2(R, ν) as n → ∞.

Lemma A.2. Under Assumptions 1.1 (iii) and (iv), it holds that

lim
J→∞

lim sup
n→∞

En

⎡⎣ ∞∑
j=J

〈Zn, ej〉2
⎤⎦ = 0.

A.1. Proof of Lemma A.1

Because

〈Zw
n , h〉 =

∫
R

n∑
i=1

1(−∞,x](X
n
i−1)m

n
i h(x)ν(dx)

=

n∑
i=1

(∫
R

1(−∞,x](X
n
i−1)h(x)ν(dx)

)
mn

i ,

we apply the martingale central limit theorem (Hall and Heyde [6], Corollary 3.1)
for the martingale difference sequence{(∫

R

1(−∞,x](X
n
i−1)h(x)ν(dx)

)
mn

i

}n

i=1

.

It is straightforward to prove that Assumption 1.1 (i) leads to

sup
x∈R

|Rn(x)| →p 0,

where

Rn(x) =

n∑
i=1

1(−∞,x](X
n
i−1)E

n[|mn
i |2|Fn

i−1]−Ψ(x). (A.1)

Hence

n∑
i=1

(∫
R

1(−∞,x](X
n
i−1)h(x)ν(dx)

)2

En[|mn
i |2|Fn

i−1]

=

n∑
i=1

∫
R

∫
R

1(−∞,x∧y](X
n
i−1)h(x)h(y)ν(dx)ν(dy)E

n[|mn
i |2|Fn

i−1]

=

∫
R

∫
R

Ψ(x ∧ y)h(x)h(y)ν(dx)ν(dy)
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+

∫
R

∫
R

Rn(x ∧ y)h(x)h(y)ν(dx)ν(dy)

→p

∫
R

∫
R

Ψ(x ∧ y)h(x)h(y)ν(dx)ν(dy).

Moreover, we have

E[〈G, h〉2] =
∫
R

∫
R

Ψ(x ∧ y)h(x)h(y)ν(dx)ν(dy).

What remains to be shown is the Lyapunov-type condition,

n∑
i=1

En

[∣∣∣∣∫
R

1(−∞,x](X
n
i−1)h(x)ν(dx)

∣∣∣∣2+δ

|mn
i |2+δ|Fn

i−1

]
→p 0. (A.2)

From∣∣∣∣∫
R

1(−∞,x](X
n
i−1)h(x)ν(dx)

∣∣∣∣2+δ

≤
(∫

R

1(−∞,x](X
n
i−1)ν(dx)

) 2+δ
2

‖h‖2+δ

≤ (ν(R))
2+δ
2 ‖h‖2+δ,

the left-hand side of (A.2) is bounded above by

(ν(R))
2+δ
2 ‖h‖2+δ

n∑
i=1

En
[
|mn

i |2+δ|Fn
i−1

]
,

which converges in probability to 0 by Assumption 1.1 (ii).
This completes the proof.

A.2. Proof of Lemma A.2

For simplicity, let us denote

ξni (x) = 1(−∞,x](X
n
i−1)m

n
i (x ∈ R).

It follows from Assumptions 1.1 (iii) and (iv) that

En[〈ξni , ej〉2|Fn
i−1] = 〈1(−∞,·](X

n
i−1), ej〉2En[|mn

i |2|Fn
i−1]

≤ 〈1(−∞,·](X
n
i−1), ej〉2cni φ(Xn

i−1)

= cni

〈
1(−∞,·](X

n
i−1)
√
φ(Xn

i−1), ej

〉2
,

which yields

n∑
i=1

En
[
〈ξni , ej〉2

]
≤

n∑
i=1

cni E
[
〈ξ̃, ej〉2

]
≤ E

[
〈η, ej〉2

]
,
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where x � ξ̃(x) is a L2(R, ν)-valued random variable which follows the same
distribution as 1(−∞,x](ζ)

√
φ(ζ), and

η =

(
sup
n

n∑
i=1

cni

)1/2

ξ̃.

Hence,

En

⎡⎣ ∞∑
j=J

〈
n∑

i=1

ξni , ej

〉2
⎤⎦ =

∞∑
j=J

En

⎡⎣〈 n∑
i=1

ξni , ej

〉2
⎤⎦

=

∞∑
j=J

n∑
i=1

En
[
〈ξni , ej〉

2
]

≤
∞∑
j=J

E
[
〈η, ej〉2

]

= E

⎡⎣ ∞∑
j=J

〈η, ej〉2
⎤⎦ .

Because E[‖η‖2] < ∞, the dominated convergence theorem yields

lim
J→∞

E

⎡⎣ ∞∑
j=J

〈η, ej〉2
⎤⎦ = E

⎡⎣ lim
J→∞

∞∑
j=J

〈η, ej〉2
⎤⎦ = 0.

This completes the proof.

Appendix B: Proof of Theorem 1.2

Applying Prohorov’s criterion, it suffices to show the following two lemmas.

Lemma B.1. Under Assumption 1.2, 〈Zw
n , h〉 converges in distribution to

〈Gw, h〉 for any h ∈ L2(R, ν) as n → ∞.

Lemma B.2. Under Assumption 1.2 (i), it holds that

lim
J→∞

lim sup
n→∞

En

⎡⎣ ∞∑
j=J

〈Zw
n , ej〉2

⎤⎦ = 0.

In proving these lemmas, let n be sufficiently large such that (1.5) and (1.6)
hold.
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B.1. Proof of Lemma B.1

Because

〈Zw
n , h〉 =

∫
R

n∑
i=1

w(x)1(−∞,x](X
n
i−1)m

n
i h(x)ν(dx)

=

n∑
i=1

(∫
R

w(x)1(−∞,x](X
n
i−1)h(x)ν(dx)

)
mn

i ,

we apply the martingale central limit theorem for the martingale difference
sequence {(∫

R

w(x)1(−∞,x](X
n
i−1)h(x)ν(dx)

)
mn

i

}n

i=1

.

First we show that

n∑
i=1

(∫
R

w(x)1(−∞,x](X
n
i−1)h(x)ν(dx)

)2

En[(mn
i )

2|Fn
i−1] (B.1)

converges in first mean to

E[〈Gw, h〉2] =
∫
R

∫
R

Ψ(x ∧ y)w(x)w(y)h(x)h(y)ν(dx)ν(dy).

Note that (B.1) equals

n∑
i=1

(∫
R

∫
R

w(x)w(y)1(−∞,x∧y](X
n
i−1)h(x)h(y)ν(dx)ν(dy)

)
En[(mn

i )
2|Fn

i−1]

=

∫
R

∫
R

n∑
i=1

1(−∞,x∧y](X
n
i−1)E

n[(mn
i )

2|Fn
i−1]w(x)w(y)h(x)h(y)ν(dx)ν(dy).

We use the dominated convergence theorem to see∫
R

∫
R

En [|Rn(x ∧ y)|]w(x)w(y)|h(x)h(y)|ν(dx)ν(dy) → 0, (B.2)

where Rn(·) is defined in (A.1), because

En

[∣∣∣∣∫
R

∫
R

Rn(x ∧ y)w(x)w(y)h(x)h(y)ν(dx)ν(dy)

∣∣∣∣]
≤

∫
R

∫
R

En [|Rn(x ∧ y)|]w(x)w(y)|h(x)h(y)|ν(dx)ν(dy). (B.3)

From (1.4), for all x and y, we have

En [|Rn(x ∧ y)|]w(x)w(y)|h(x)h(y)| → 0.
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Moreover, for all x and y, we have

En [|Rn(x ∧ y)|]w(x)w(y)|h(x)h(y)|
≤ (In(x ∧ y) + Ψ(x ∧ y))w(x)w(y)|h(x)h(y)|
≤ (Ψ(x ∧ y) + Φ(x ∧ y))w(x)w(y)|h(x)h(y)|
≤

(√
Ψ(x)Ψ(y) +

√
Φ(x)Φ(y)

)
w(x)w(y)|h(x)h(y)|

=
√

Ψ(x)Ψ(y)w(x)w(y)|h(x)h(y)|+
√

Φ(x)Φ(y)w(x)w(y)|h(x)h(y)|,

where we have used

En[|Rn(x ∧ y)|] ≤ En

[
n∑

i=1

1(−∞,x∧y](X
n
i−1)E

n[(mn
i )

2|Fn
i−1]

]
+Ψ(x ∧ y)

= In(x ∧ y) + Ψ(x ∧ y)

and Ψ(x ∧ y) ≤
√
Ψ(x)Ψ(y) and Φ(x ∧ y) ≤

√
Φ(x)Φ(y) which follow from the

monotonicity of Ψ and Φ. Furthermore, the Cauchy–Schwarz inequality yields∫
R

∫
R

√
Ψ(x)Ψ(y)w(x)w(y)|h(x)h(y)|ν(dx)ν(dy)

≤
(∫

R

∫
R

Ψ(x)Ψ(y)(w(x))2(w(y))2ν(dx)ν(dy)

)1/2

(∫
R

∫
R

|h(x)h(y)|2ν(dx)ν(dy)
)1/2

=

{∫
R

Ψ(x)(w(x))2ν(dx)

}
‖h‖2 < ∞

and ∫
R

∫
R

√
Φ(x)Φ(y)w(x)w(y)|h(x)h(y)|ν(dx)ν(dy)

≤
{∫

R

Φ(x)(w(x))2ν(dx)

}
‖h‖2 < ∞.

Therefore, the dominated convergence theorem implies (B.2).
Next, we show the Lyapunov-type condition; specifically, the nonnegative

valued random variable

n∑
i=1

En

[∣∣∣∣∫
R

w(x)1(−∞,x](X
n
i−1)h(x)ν(dx)

∣∣∣∣2+δ

|mn
i |2+δ|Fn

i−1

]

converges in probability to 0. Because the Cauchy–Schwarz inequality yields∣∣∣∣∫
R

w(x)1(−∞,x](X
n
i−1)h(x)ν(dx)

∣∣∣∣2+δ
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≤
(∫

R

(w(x))21(−∞,x](X
n
i−1)ν(dx)

) 2+δ
2

‖h‖2+δ,

it suffices to show the convergence of

n∑
i=1

En

[(∫
R

(w(x))21(−∞,x](X
n
i−1)ν(dx)

) 2+δ
2

|mn
i |2+δ

]

to 0. Moreover, this equation can be evaluated by

En

[
n∑

i=1

(∫
R

(w(x))21(−∞,x](X
n
i−1)ν(dx)

) 2+δ
2

|mn
i |2+δ

]

≤ (ν(R))
δ
2En

[
n∑

i=1

∫
R

1(−∞,x](X
n
i−1)(w(x))

2+δν(dx)|mn
i |2+δ

]

= (ν(R))
δ
2

∫
R

n∑
i=1

En
[
1(−∞,x](X

n
i−1)|mn

i |2+δ
]
(w(x))2+δν(dx).

Applying the dominated convergence theorem, the right-hand side converges to
0. Indeed, as for the integrand, the convergence

n∑
i=1

En
[
1(−∞,x](X

n
i−1)|mn

i |2+δ
]
(w(x))2+δ → 0

holds for all x, and

n∑
i=1

En
[
1(−∞,x](X

n
i−1)|mn

i |2+δ
]
(w(x))2+δ ≤ Λ(x)(w(x))2+δ,

the right-hand side of which is ν-integrable.
This completes the proof.

B.2. Proof of Lemma B.2

In this subsection, for simplicity, let us denote

ξni (x) = w(x)1(−∞,x](X
n
i−1)m

n
i (x ∈ R).

It holds that

En

⎡⎣ ∞∑
j=J

〈
n∑

i=1

ξni , ej

〉2
⎤⎦

= En

⎡⎣∥∥∥∥∥
n∑

i=1

ξni

∥∥∥∥∥
2

−
J∑

j=1

〈
n∑

i=1

ξni , ej

〉2
⎤⎦
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= En

⎡⎣∥∥∥∥∥
n∑

i=1

ξni

∥∥∥∥∥
2
⎤⎦−

J∑
j=1

En

⎡⎣〈 n∑
i=1

ξni , ej

〉2
⎤⎦ . (B.4)

Because

En[〈ξni , ξnj 〉] = En[En[〈ξni , ξnj 〉|Fn
j−1]] = 0

for i < j, the first term in the right-hand side of (B.4) becomes

En

⎡⎣∥∥∥∥∥
n∑

i=1

ξni

∥∥∥∥∥
2
⎤⎦ = En

[
n∑

i=1

‖ξni ‖
2

]
+ 2

n−1∑
i=1

n∑
j=i+1

En
[
〈ξni , ξnj 〉

]
= En

[
n∑

i=1

‖ξni ‖
2

]
.

Applying the dominated convergence theorem, we have

lim
n→∞

En

[
n∑

i=1

‖ξni ‖
2

]

= lim
n→∞

∫
R

n∑
i=1

En[1(−∞,x](X
n
i−1)|mn

i |2](w(x))2ν(dx)

= lim
n→∞

∫
R

In(x)(w(x))
2ν(dx)

=

∫
R

Ψ(x)(w(x))2ν(dx)

=

∫
R

E
[
(B(Ψ(x)))2

]
(w(x))2ν(dx)

= E[‖wB ◦Ψ‖2],

where wB ◦ Ψ means w(·)B(Ψ(·)). That is because for all x ∈ R, we have
In(x)(w(x))

2 → Ψ(x)(w(x))2 and In(x)(w(x))
2 ≤ Φ(x)(w(x))2, the right-hand

side of which is ν-integrable.
For the second term on the right-hand side of (B.4), because {〈ξni , ej〉}ni=1 is

a martingale difference sequence, we have

En

⎡⎣〈 n∑
i=1

ξni , ej

〉2
⎤⎦

= En

⎡⎣( n∑
i=1

〈ξni , ej〉
)2
⎤⎦

=
n∑

i=1

En
[
〈ξni , ej〉

2
]
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=

n∑
i=1

En

[∫
R

∫
R

w(x)w(y)1(−∞,x∧y](X
n
i−1)ej(x)ej(y)ν(dx)ν(dy)(m

n
i )

2

]
=

∫
R

∫
R

In(x ∧ y)w(x)w(y)ej(x)ej(y)ν(dx)ν(dy).

Hence

J∑
j=1

En

⎡⎣〈 n∑
i=1

ξni , ej

〉2
⎤⎦

=

∫
R

∫
R

⎛⎝In(x ∧ y)w(x)w(y)

J∑
j=1

ej(x)ej(y)

⎞⎠ ν(dx)ν(dy).

The dominated convergence theorem yields

lim
n→∞

∫
R

∫
R

⎛⎝In(x ∧ y)w(x)w(y)

J∑
j=1

ej(x)ej(y)

⎞⎠ ν(dx)ν(dy)

=

∫
R

∫
R

lim
n→∞

⎛⎝In(x ∧ y)w(x)w(y)

J∑
j=1

ej(x)ej(y)

⎞⎠ ν(dx)ν(dy). (B.5)

That is because, as for the integrand, we have∣∣∣∣∣∣In(x ∧ y)w(x)w(y)

J∑
j=1

ej(x)ej(y)

∣∣∣∣∣∣
≤ Φ(x ∧ y)w(x)w(y)

J∑
j=1

|ej(x)ej(y)|

≤
√

Φ(x)Φ(y)w(x)w(y)
J∑

j=1

|ej(x)ej(y)|

for all x and y, and∫
R

∫
R

√
Φ(x)Φ(y)w(x)w(y)

J∑
j=1

|ej(x)ej(y)|ν(dx)ν(dy)

=
J∑

j=1

∫
R

∫
R

√
Φ(x)Φ(y)w(x)w(y)|ej(x)ej(y)|ν(dx)ν(dy)

≤
J∑

j=1

(∫
R

∫
R

|ej(x)ej(y)|2ν(dx)ν(dy)
)1/2

(∫
R

∫
R

Φ(x)Φ(y)(w(x))2(w(y))2ν(dx)ν(dy)

)1/2
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= J

∫
R

Φ(x)(w(x))2ν(dx) < ∞.

Moreover, (B.5) equals∫
R

∫
R

Ψ(x ∧ y)w(x)w(y)

J∑
j=1

ej(x)ej(y)ν(dx)ν(dy)

=

J∑
j=1

∫
R

∫
R

(Ψ(x) ∧Ψ(y))w(x)w(y)ej(x)ej(y)ν(dx)ν(dy).

In addition,

J∑
j=1

E
[
〈wB ◦Ψ, ej〉2

]

=

J∑
j=1

E

[(∫
R

B(Ψ(x))w(x)ej(x)ν(dx)

)2
]

=

J∑
j=1

∫
R

∫
R

E[B(Ψ(x))B(Ψ(y))]w(x)w(y)ej(x)ej(y)ν(dx)ν(dy)

=

J∑
j=1

∫
R

∫
R

(Ψ(x) ∧Ψ(y))w(x)w(y)ej(x)ej(y)ν(dx)ν(dy).

From what have been already proven,

lim
J→∞

lim sup
n→∞

En

⎡⎣ ∞∑
j=J

〈
n∑

i=1

ξni , ej

〉2
⎤⎦

equals

E
[
‖wB ◦Ψ‖2

]
− lim

J→∞
E

⎡⎣ J∑
j=1

〈wB ◦Ψ, ej〉2
⎤⎦ . (B.6)

Finally, applying the dominated convergence theorem, we have (B.6) equals

E
[
‖wB ◦Ψ‖2

]
− E

⎡⎣ ∞∑
j=1

〈wB ◦Ψ, ej〉2
⎤⎦ = 0.

This completes the proof.
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