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1. Introduction

We study a new approach to nonparametric regression. Let m = E(Y |X = ·)
denote the true regression function and we assume that m is twice continu-
ously differentiable with Em′′(X)2 < ∞. Instead of estimating m directly by
a local smoother, we choose a function g in a class of functions G = {g :
g′′ exists and 0 < E g′′(X)2 < ∞}, and estimate a parameter θ0 and a non-
parametric function m0 defined by

θ0 =
Eg′′(X)m′′(X)

Eg′′(X)2
, m0(x) = m(x)− Eg′′(X)m′′(X)

Eg′′(X)2
· g(x). (1.1)

By definition m0 satisfies

E g′′(X)m′′
0(X) = 0 (1.2)

and m is decomposed as

m(x) = θ0g(x) +m0(x). (1.3)

For each given g ∈ G, the decomposition (1.3) is unique under the constraint
(1.2). To see this, suppose that θg(·) + η(·) = 0 and E g′′(X)η′′(X) = 0. Then,
θ2E g′′(X)2 + E η′′(X)2 = 0 so that θ = 0 and η ≡ 0.

The decomposition (1.3) with θ0 and m0 as given in (1.1) has a projection
interpretation. For this, we consider an equivalence relation such that two func-
tions f1 and f2 are equivalent if the difference is a linear function. The space
of the equivalence classes forms a Hilbert space if we endow it with the inner
product

〈f1, f2〉 = Ef ′′
1 (X)f ′′

2 (X).

Let Hg be the space of equivalence classes spanned by g, i.e., Hg = {c · g(·) :
c ∈ R}. Then, we get

Proj(m|Hg) =
Eg′′(X)m′′(X)

Eg′′(X)2
g = θ0 g.

By estimating m through the decomposition (1.3), as described in the next
section, we may afford a substantial room for reducing the bias. In this paper,
we demonstrate the advantage with a local linear smoother, but the main idea
can be extended to other local smoothers, see Remark 1 in Section 2. The
conventional local linear estimator of m with a bandwidth b has the asymptotic
bias b2cKm′′(x)/2 with a constant cK depending on the kernel of the local
linear smoother, while our new approach based on the decomposition (1.3) gives
b2cKm′′

0(x)/2, see Proposition 1. This implies a reduction in the asymptotic
average squared error since

Em′′(X)2 = E(θ0g
′′(X) +m′′

0(X))2

= θ20 E g′′(X)2 + Em′′
0(X)2

> Em′′
0(X)2.

(1.4)
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Our approach is related to the existing literature where two-step procedures
have been proposed that consist of a parametric and a nonparametric fit of
the data. These include [7, 5, 6, 10, 3, 12, 13]. All these papers considered
the approach that finds a pilot estimator of a parametric model assuming that
the chosen parametric model is correct, and then updates the parametric fit
by a nonparametric adjustment. This was done by an additive, multiplicative
or a more general adjustment based on nonparametric fits of the data or of
the residuals from a parametric fit. The success of these two-step procedures
turns out to depend highly on the choice of a pilot parametric model, which
we illustrate in Section 3. Our approach is differentiated from these in that
we do not fit a parametric model in the first step, but estimate θ0 such that
Eg′′(X)(m′′(X) − θ0g

′′(X)) = 0. By doing this we can always reduce the bias
for any choice of g with E g′′(X)2 > 0, as is seen from (1.4).

The estimation of the model (1.3) is also of independent interest as it answers
the question of what happens in the estimation of partially linear models Y =
θ0g(Z)+m0(X)+ε if the two covariates X and Z are identical or if they nearly
coincide. Indeed, we use the profiling technique [11] to estimate (1.3), which is
known as a useful technique of fitting partially linear models. We conjecture that
our findings in this paper can be generalized to more complex semiparametric
models, such as partially linear additive models [14] and partially linear single
index models [2], with common covariates in the parametric and nonparametric
components.

Furthermore, our idea of bias reduction by introducing parametric compo-
nents in nonparametric regression functions may be extended to various struc-
tured nonparametric regression problems, such as in (generalized) additive mod-
els [9, 15], in (generalized) varying coefficient models [1, 8] and in single index
models [4]. In these models one may also specify a parametric part g(θ,X) in a
way that the parameter θ does not enter linearly, or allow for multivariate X or
multi-dimensional θ. In this paper, to avoid technical complication and to make
the presentation transparent, we first focus our discussion on the model where
g(θ,X) is linear in θ ∈ R for univariate X. Then, we discuss some extensions
including nonlinear parametrisation, multivariate X and multi-dimensional θ
later in this paper.

This paper is organized as follows. In the next section we discuss two-step
estimators based on a pilot estimator θ̂ that converges to θ0 and develop asymp-
totic theory for such estimators. We also demonstrate that profiling for θ gives
a consistent pilot estimator θ̂. In Section 3 we present numerical evidences that
support the theory. Section 4 contains extensions of our approach to the cases
mentioned above. Proofs are deferred to the Appendix.

2. Methodology and theory

Our estimation procedure consists of two steps. In the first step, the parameter
θ0 is estimated by an estimator θ̂. A choice of θ̂ will be discussed below. In
the second step, a local smoother is applied to regress Y − θ̂g(X) onto X. The
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result of the second step is our estimator of m0. We take a local linear regression
estimator as the local smoother.

Specifically, let SbU denote the local linear kernel smoother with a baseline
kernel function K and a bandwidth b taking X as the predictor and U as the
response. It can be written as SbU(x) = n−1

∑n
i=1 wb(x,Xi)Ui, where

wb(x, u) =
μ̂2(x; b)− μ̂1(x; b)(u− x)/b

μ̂0(x; b)μ̂2(x; b)− μ̂1(x; b)2
·Kb(u− x),

Kb(v) = K(v/b)/b and μ̂k(x; b) = n−1
∑n

i=1((Xi − x)/b)kK((Xi − x)/b)/b for
integers k ≥ 0. Define

m̃b(x, θ) = Sb(Y − θg(X))(x)

for each θ. We propose
m̂ = θ̂g + m̃b(·, θ̂) (2.1)

as an estimator of m = θ0g +m0.
The difference between our proposal and the existing two-step procedures is in

the first step. For a direct comparison between the two approaches, suppose that
one chooses a parametric model of the form {θg(·) : θ ∈ R}. Then, the existing
two-step procedures estimate θ∗ where θ∗g is the best approximation of the true
regression function m in the usual L2 metric so that θ∗ = Em(X)g(X)/Eg(X)2,
while ours estimates θ0 as defined in (1.1).

We discuss the statistical properties of m̂ at (2.1). Our first result states that
m̂ as an estimator of m = θ0g + m0 behaves like m̃b(·, θ0) as an estimator of
m0 that utilizes the knowledge of θ0 and for this it suffices to have a consistent
estimator θ̂ of θ0:

θ̂ → θ0 in probability. (2.2)

In particular, it is not required that θ̂ approximates θ0 with a certain rate of
convergence. For stating this result we make use of the following assumptions.

(A1) We observe i.i.d. copies (Xi, Yi), i = 1, . . . , n, of (X,Y ), where X is sup-
ported on [aL, aU ] for some −∞ < aL < aU < ∞ and has a continuous
strictly positive density f on [aL, aU ]. For the error variable ε = Y −m(X),
it holds that E(ε|X) = 0 and σ2(·) = Var(ε|X = ·) is continuous on
[aL, aU ].

(A2) The function g and the true regression function m have continuous second-
order derivatives and fulfill 0 < E g′′(X)2 < ∞ and Em′′

0(X)2 < ∞.
(A3) The kernel K is a probability density function with compact support, say

[−1, 1].
(A4) For the bandwidth b it holds that b → 0 and nb → ∞.

Proposition 1. Assume (A1)–(A4) and that an estimator θ̂ fulfills (2.2). Then,
it holds that

m̂(x)−m(x) = Sbε(x) + Sb(m0(X))(x)−m0(x) + oP (b
2),

uniformly for x ∈ [aL, aU ].
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We note that Sbε + Sb(m0(X)) is the local linear estimator m̃b(·, θ0) of m0

that is based on (Xi, Yi − θ0g(Xi)). The proposition demonstrates that the
asymptotic variance and bias of m̂ as an estimator of m are the same as those
of m̃b(·, θ0) as an estimator of m0. The asymptotic variance equals that of the
direct estimator SbY . However, the asymptotic bias of m̂ is b2β(x)m′′

0(x), in
contrast with b2β(x)m′′(x) of the direct estimator SbY , where β(x) is a function
of μk(x) =

∫ aU

aL
((u − x)/b)kKb(u − x) du. Thus, the average squared bias of m̂

is smaller than that of SbY , see (1.4). To maximize the reduction of the bias,
one may choose g ∈ G that maximizes

θ20Eg
′′(X)2 =

[
E

(
g′′(X)√
Eg′′(X)2

·m′′(X)

)]2

, (2.3)

which is equivalent to choosing g that minimizes

E

(
g′′(X)√
Eg′′(X)2

−m′′(X)

)2

= 1 + Em′′(X)2 − 2E

(
g′′(X)√
Eg′′(X)2

·m′′(X)

)
.

Remark 1. The main idea behind the bias reduction implied by Proposition 1
can be applied to other local smoothers. For example, in the case of the pth or-
der local polynomial smoother with an odd p, we choose a function g such that
0 < E g(p+1)(X)2 < ∞, where η(k) for a function η denotes its kth deriva-
tive. Then, there is a unique decomposition m = θ0g +m0 under the constraint

E g(p+1)(X)m
(p+1)
0 (X) = 0, where θ0 and m0 are redefined in an obvious way.

The estimator m̂ as defined in (2.1), with a consistent estimator θ̂ of θ0 and

m̃b(·, θ̂) now obtained by applying the pth order local polynomial smoother, ad-
mits the uniform expansion in Proposition 1 with a remainder of order oP (b

p+1).
The leading bias of the local polynomial estimator applied directly to Yi equals
bp+1β(x)m(p+1)(x) for some function β, while the estimator based on the de-

composition gives bp+1β(x)m
(p+1)
0 (x). In this case,

Em(p+1)(X)2 − Em
(p+1)
0 (X)2 =

(
E g(p+1)(X)m(p+1)(X)

)2
E g(p+1)(X)2

.

It remains to find a consistent estimator of θ0. Recall that θ0 we need to
estimate is the one that fulfills E g′′(X)m′′(X, θ) = 0, among all θ in the de-
compositions m = θg +m(·, θ), where m(x, θ) = m(x)− θg(x). We achieve this
by using the profiling technique. The profiling technique has been proposed for
the partially linear model Y = θ0g(Z) + m0(X) + ε with Z 	= X. The profile
least squares estimator of θ0 is given by

θ̂h = argmin
θ

n∑
i=1

(Yi − θg(Xi)− m̃h(Xi, θ))
2
, (2.4)

where h is a second bandwidth, which may be chosen to be the same as b in (2.1).

The next proposition demonstrates that θ̂h is a consistent estimator of θ0. We
need the following additional assumption for the statement of this proposition.
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(A5) For the bandwidth h it holds that h → 0 and nh4 → ∞.

Proposition 2. Assume (A1)–(A3) and (A5). Then, θ̂h → θ0 in probability.

Remark 2. The condition nh4 → ∞ in (A5) is needed to take care of the
properties of the local linear estimator at the boundary of the interval [aL, aU ].
We note that, although the local linear smoother Sh affords the same order of
biases O(h2) at the boundary and in the interior, their constant factors are still
different. The condition can be relaxed if we remove boundary regions in the
definitions of Sh and the profile estimator of θ0 and if the pilot model g and the
density f are sufficiently smooth. In such a case the leading stochastic terms of
the magnitude n−1/2h−2 in an expansion of θ̂h − θ0 cancel each other, which
may be deduced from our asymptotic analysis presented in the Appendix.

From our propositions we get the following corollary.

Corollary 1. Assume (A1)–(A5). Then, we have for m̂ = θ̂hg + m̃b(·, θ̂h) that

m̂(x)−m(x) = Sbε(x) + Sb(m0(X))(x)−m0(x) + oP (b
2),

uniformly for x ∈ [aL, aU ].

We have again the interpretation that we already formulated after the state-
ment of Proposition 1. Also by profile estimation we get an estimator of m =
θ0g+m0 that optimally chooses one from a class of local linear estimators. Thus,
profile estimation works quite well also in the degenerate case X = Z of the
partially linear model Y = θ0g(Z) +m0(X) + ε.

The estimator m̂ = θ̂hg + m̃b(·, θ̂h) depends on the bandwidths b and h.
We may take h = b for simplicity and choose a common bandwidth by cross
validation. We employed this strategy in our simulation and found that it worked
quite well, see Section 3. To indicate its dependence on b we write m̂b for m̂ with

h = b. Let m̂
(−i)
b denote the leave-one-out version of m̂b that makes use of only

the observations {(Xi′ , Yi′) : i
′ 	= i}. We choose the bandwidth b by minimizing

a CV criterion. The CV bandwidth b̂ is defined by

b̂ = argmin
b∈Bn

n∑
i=1

(
Yi − m̂

(−i)
b (Xi)

)2

. (2.5)

Our estimator of m is then given by m̂b̂. We will check whether the cross vali-
dation approach works in the next section by simulation.

As discussed before the statement of Proposition 1, we only need a consistent
estimator of θ0. Clearly, there are alternatives to the profiling approach. One
example would be to start with a pilot estimator of m′′ and then plug the
estimator into the definition of θ0 at (1.1).

3. Simulation results

The purpose of this simulation study is to support the asymptotic theory we
demonstrated in Section 2 and to compare our approach with other competitors.
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This was done with the CV bandwidth selectors introduced also in the previous
section. We considered three models that generated (Xi, Yi). The first model
was

Yi = sin(πXi) + ρXi + λ cos(πXi) + εi (3.1)

with Xi being generated from the uniform distribution on [aL, aU ] with aL = 0
and aU = 1, and εi from N(0, σ2) independent of Xi. For noise level we made
two choices, σ = 0.1 and σ = 0.5. We made three choices for λ: λ = 0, 0.5, 1, and
three choices for ρ: ρ = 0, 1, 2. The true regression curves are depicted in the
three panels in the top row of Figure 1. In the case where σ = 0.1, the values
of the noise-to-signal ratio NSR = Var(ε)/Var(m(X)) are 0.106, 0.056, 0.023
for ρ = 0, 1, 2, respectively, when λ = 0; 0.046, 0.100, 0.068, respectively, when
λ = 0.5; 0.017, 0.037, 0.085, respectively, when λ = 1. The values in the case
where σ = 0.5 may be obtained by multiplying these values by 25. In the
first application of our approach to the model (3.1), we took g(x) = sin(πx).
According to (1.1), this choice gives θ0 = 1 and m0(x) = ρx+ λ cos(πx).

We compared our approach with a parametric fit, the direct local linear
fit and the two-step procedure starting with a parametric fit to the model
E(Yi|Xi) = θg(Xi) and then making a nonparametric adjustment. The para-
metric fit we considered in this comparison is m̃pa = θ̃g where θ̃ minimizes∑n

i=1(Yi−θg(Xi))
2. We denote the direct local linear smoother by m̃ll

h̃
= Sh̃(Y ),

where

h̃ = argmin
h∈Hn

n∑
i=1

(
Yi − S(−i)

h (Y )(Xi)
)2

. (3.2)

The two-step procedure with m̃pa as a parametric start is m̃ts
b̃
= θ̃g + m̃b̃(·, θ̃),

where b̃ is chosen by minimizing the CV criterion
∑n

i=1(Yi − m̃
ts(−i)
b (Xi))

2. For
comparison of these estimators, we computed

MISE(m̄) := E

∫ aU

aL

(m̄(x)−m(x))2 dx

for each m̄ of m̂b̂, m̃
ts
b̃
, m̃ll

h̃
and m̃pa. Tables 1 and 2 give the Monte Carlo

approximations of the MISE values. They also contain the Monte Carlo approx-
imations of the values of ISB(m̄) :=

∫ aU

aL
(E m̄(x) − m(x))2 dx and IV(m̄) :=∫ aU

aL
Var(m̄(x)) dx.

From the tables we note that the bias of m̃pa does not change as n or the
noise level σ varies, which is well expected. We also note that the properties of
our proposal m̂b̂ and the direct local linear estimator m̃ll

h̃
do not change as ρ

varies. This stems basically from the property of the weight wb that

n−1
n∑

i=1

wb(x,Xi)Xi = n−1
n∑

i=1

wb(x,Xi)x = x (3.3)

so that Sb(a+bX)(x) = a+bx for any real numbers a and b. Because of (3.3) we
see that, for the direct local linear smoother, m̃ll

h(x)−m(x) = Sh(Y )(x)−m(x)
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Fig 1. True regression curves: top row for the model (3.1), middle row for the model (3.6)
and bottom row for the model (3.7). Solid curves correspond to ρ = 0, dotted to ρ = 1 and
dot-dashed to ρ = 2.

does not involve ρ. As for our estimator m̂b̂ = θ̂g + m̃b(·, θ̂), it holds that

m̂b(x)−m(x) = θ̂bg(x) + Sb(Y − θ̂bg(X))(x)−m(x)

= λ [Sb(cos(πX))(x)− cos(πx)]

+ (1− θ̂b) [Sb(g(X))(x)− g(x)] + Sb(ε)(x),

(3.4)

which does not depend on ρ. Furthermore, the profiling estimator θ̂b is also
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Table 1

For the model (3.1) with g(x) = sin(πx). Mean integrated squared errors (MISE), integrated
squared biases (ISB) and integrated variance (IV), multiplied by 103, of the four methods:
our proposal (m̂b̂), two-step estimator (m̃ts

b̃
), local linear estimator (m̃ll

h̃
) and parametric

method (m̃pa), for the error level σ = 0.1.

λ = 0 λ = 0.5 λ = 1

n m̂b̂ m̃ts
b̃

m̃ll
h̃

m̃pa m̂b̂ m̃ts
b̃

m̃ll
h̃

m̃pa m̂b̂ m̃ts
b̃

m̃ll
h̃

m̃pa

ρ = 0 100 MISE 0.35 0.32 0.91 0.09 0.71 0.70 0.94 126 0.86 0.87 1.00 502

ISB 0.00 0.00 0.17 0.00 0.13 0.11 0.19 125 0.16 0.15 0.21 500

IV 0.35 0.32 0.74 0.08 0.58 0.58 0.75 0.69 0.70 0.72 0.79 2.50

400 MISE 0.10 0.09 0.26 0.02 0.21 0.21 0.27 125 0.25 0.25 0.28 501

ISB 0.00 0.00 0.04 0.00 0.03 0.03 0.04 125 0.04 0.04 0.05 500

IV 0.10 0.09 0.22 0.02 0.18 0.18 0.22 0.22 0.21 0.21 0.23 0.76

ρ = 1 100 MISE 0.35 6.29 0.91 126 0.71 1.21 0.94 53.3 0.86 0.93 1.00 231

ISB 0.00 3.36 0.17 126 0.13 0.43 0.19 53.0 0.16 0.21 0.21 230

IV 0.35 2.92 0.74 0.48 0.58 0.78 0.75 0.27 0.70 0.72 0.79 1.28

400 MISE 0.10 5.26 0.26 126 0.21 0.29 0.27 53.1 0.25 0.27 0.28 230

ISB 0.00 2.88 0.04 126 0.03 0.10 0.04 53.0 0.04 0.06 0.05 230

IV 0.10 2.38 0.22 0.15 0.18 0.19 0.22 0.07 0.21 0.21 0.23 0.33

ρ = 2 100 MISE 0.35 15.8 0.91 505 0.71 2.33 0.94 233 0.86 1.20 1.00 213

ISB 0.00 7.32 0.17 503 0.13 1.27 0.19 233 0.16 0.42 0.21 212

IV 0.35 8.49 0.74 1.66 0.58 1.06 0.75 0.64 0.70 0.78 0.79 0.84

400 MISE 0.10 9.98 0.26 504 0.21 0.53 0.27 233 0.25 0.35 0.29 212

ISB 0.00 4.82 0.04 503 0.03 0.30 0.04 233 0.04 0.13 0.05 212

IV 0.10 5.16 0.22 0.58 0.18 0.23 0.22 0.22 0.21 0.22 0.23 0.21

invariant to the change of ρ since Yi−θg(Xi)−m̃b(Xi, θ) for all θ and 1 ≤ i ≤ n
do not involve ρ, see (2.4). Similarly, the CV criteria at (3.2) and (2.5) do not
depend on ρ. This explains why m̂b̂ and m̃ll

h̃
do not change as ρ varies. This is

not the case with m̃ts
b̃
, however, since m̃pa depends on ρ, so does m̃ts

b̃
that has

m̃pa as a parametric start.
Our theory in Section 2 tells that there is a relatively larger reduction in the

bias of our proposal in comparison with that of the direct local linear estimator
if [

E (g′′(X)m′′(X))√
E (g′′(X)2)

√
E (m′′(X)2)

]2

=
1

1 + λ2

is larger, see (2.3). This is evident in the numerical results. The ISB values of m̂b̂
in the tables are less than those of m̃ll

h̃
for the three values of λ and the relative

difference is the largest when λ = 0 and decreases as λ increases. We also find
that m̂b̂ has smaller variance as well. The smaller variance achieved by our

proposal is due to the reduced bias and the CV bandwidth choice b̂ that trades
off the bias and the variance. Theoretically, with a fixed bandwidth applied to
both methods, the variance of our proposal is asymptotically the same as that
of the direct local linear estimator while the bias of the first is smaller than that
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Table 2

For the model (3.1) with g(x) = sin(πx). Mean integrated squared errors (MISE), integrated
squared biases (ISB) and integrated variance (IV), multiplied by 103, of the four methods:
our proposal (m̂b̂), two-step estimator (m̃ts

b̃
), local linear estimator (m̃ll

h̃
) and parametric

method (m̃pa), for the error level σ = 0.5.

λ = 0 λ = 0.5 λ = 1

n m̂b̂ m̃ts
b̃

m̃ll
h̃

m̃pa m̂b̂ m̃ts
b̃

m̃ll
h̃

m̃pa m̂b̂ m̃ts
b̃

m̃ll
h̃

m̃pa

ρ = 0 100 MISE 8.73 7.92 15.2 2.13 9.78 9.48 15.5 128 12.4 14.0 16.1 505

ISB 0.04 0.06 2.27 0.02 0.74 0.74 2.54 125 1.87 1.79 2.74 500

IV 8.69 7.86 12.9 2.11 9.04 8.74 13.0 2.68 10.5 12.2 13.4 4.46

400 MISE 2.55 2.30 4.24 0.53 3.49 3.38 4.38 126 4.14 4.11 4.58 501

ISB 0.01 0.01 0.44 0.00 0.39 0.38 0.51 125 0.54 0.51 0.54 500

IV 2.54 2.29 3.80 0.53 3.10 3.00 3.87 0.79 3.60 3.60 4.04 1.41

ρ = 1 100 MISE 8.73 20.4 15.2 128 9.77 20.1 15.5 55.4 12.4 17.3 16.1 233

ISB 0.04 8.35 2.27 126 0.74 8.35 2.54 53.1 1.87 4.86 2.74 230

IV 8.69 12.0 12.9 2.53 9.03 11.8 13.0 2.29 10.5 12.4 13.4 3.26

400 MISE 2.55 14.1 4.24 126 3.49 9.30 4.38 53.7 4.14 4.79 4.58 231

ISB 0.01 8.61 0.44 126 0.39 4.01 0.51 53.1 0.54 1.03 0.54 230

IV 2.54 5.46 3.80 0.59 3.10 5.29 3.87 0.58 3.60 3.76 4.04 0.91

ρ = 2 100 MISE 8.73 47.6 15.2 507 9.78 49.3 15.5 235 12.4 37.8 16.1 215

ISB 0.04 25.2 2.27 503 0.74 28.9 2.54 232 1.87 17.1 2.74 212

IV 8.69 22.4 12.9 3.73 9.04 20.4 13.0 2.68 10.5 20.7 13.4 2.84

400 MISE 2.55 38.8 4.24 504 3.49 26.2 4.38 233 4.14 7.57 4.58 213

ISB 0.01 24.1 0.44 503 0.39 14.1 0.51 233 0.54 2.82 0.54 212

IV 2.54 14.7 3.80 0.95 3.10 12.1 3.87 0.65 3.60 4.75 4.04 0.71

of the latter. The smaller bias then gives our proposal some room for sacrificing
bias to reduce variance by increasing bandwidth in trading off the bias and the
variance. Thus, the CV criteria tend to choose b̂ > h̃, which results in the smaller
variance as well as the smaller bias. This is well demonstrated in Figure 2 for
the case where λ = 0, ρ = 2 and σ = 0.1, which depicts the distributions of
the CV bandwidth choices b̂ (left) for our proposal, b̃ for the two-step estimator
(middle) and h̃ for the direct local linear estimator (right). Recall that the CV

bandwidth selectors b̂ and h̃ do not depend on ρ as we discussed above.

Our proposal exhibits the best performance in all cases except the case
(λ, ρ) = (0, 0) where the parametric method is the best as expected. For the
three cases of ρ = 0 (λ = 0, 0.5 and 1), our proposal and the two-step procedure
show comparable performance. The success of m̃ts

b̃
when ρ = 0 is mainly due

to the fact that g(X) is orthogonal to m0(X) in the space of square-integrable
random variables, i.e., E(g(X)m0(X)) = ρ/π = 0. In this case, the estimation of
θ0 and m0 in m = θ0g+m0 may be done by marginal regression. The marginal
regression for θ0 is simply the parametric fit that minimizes

∑n
i=1(Yi−θg(Xi))

2

with respect to θ. Thus, in this case the minimizer θ̃, which is the parametric
start of the two-step estimator m̃ts

b̃
, approximates well the true θ0 = 1 at the
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Fig 2. The distributions of the CV bandwidth selectors for n = 400 in the case where λ =
0, ρ = 2 and σ = 0.1 in the model (3.1). From left to right, b̂ for our proposal m̂b̂, b̃ for the

two-step procedure m̃ts
b̃

and h̃ for the direct local linear estimator m̃ll
h̃
.

parametric rate. However, the two-step estimator m̃ts
b̃

with the CV choice b̃ de-

teriorates very fast as ρ departs from ρ = 0. The performance of m̃ts
b̃

is even

worse than the direct local linear m̃ll
h̃
when ρ > 0. This is in contrast with our

proposal m̂b̂ whose performance does not change as ρ varies. Another point to
note is that the ‘cosine similarity’ between g and m0 in the L2 space, which is
given by

E (g(X)m0(X))√
Eg(X)2 · Em0(X)2

=
ρ√

π2(ρ2/6 + λ2/4− 2ρλ/π2)
,

does not change as ρ increases on (0,∞) when λ = 0. Nevertheless, the per-
formance of m̃ts

b̃
gets quite worse as ρ > 0 increases. In fact, the L2 distance

between the parametric model and the true function m is given by

min
θ

∫ 1

0

(m(x)− θg(x))
2
dx =

(
1

3
− 2

π2

)
ρ2 − 4

π2
ρλ+

1

2
λ2, (3.5)

so that the L2 distance increases when ρ increases from 0, in case λ = 0. This
suggests that the performance of m̃ts

b̃
depends on the departure of g from m,

not only in terms of the cosine similarity but also in terms of the L2 distance.
In practice, one may plot the data, choose a good parametric model and then
use the fitted model to improve the parametric estimator by nonparametric
estimation at the second stage. In doing so, it may be helpful to include more
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Table 3

For the model (3.1) with g(x) = x2. Mean integrated squared errors (MISE), integrated
squared biases (ISB) and integrated variance (IV), multiplied by 103, of the four methods:
our proposal (m̂b̂), two-step estimator (m̃ts

b̃
), local linear estimator (m̃ll

h̃
) and parametric

method (m̃pa), for the error level σ = 0.1.

λ = 0 λ = 0.5 λ = 1

n m̂b̂ m̃ts
b̃

m̃ll
h̃

m̃pa m̂b̂ m̃ts
b̃

m̃ll
h̃

m̃pa m̂b̂ m̃ts
b̃

m̃ll
h̃

m̃pa

ρ = 0 100 MISE 0.63 1.01 0.91 320 0.76 1.08 0.94 587 0.89 1.08 1.00 1004

ISB 0.10 0.27 0.17 316 0.13 0.33 0.19 583 0.16 0.32 0.21 999

IV 0.53 0.74 0.74 3.80 0.63 0.75 0.75 4.26 0.73 0.76 0.79 4.80

400 MISE 0.20 0.29 0.26 317 0.23 0.29 0.27 584 0.26 0.30 0.28 1001

ISB 0.03 0.07 0.04 316 0.04 0.08 0.04 583 0.05 0.08 0.05 1000

IV 0.17 0.22 0.22 0.84 0.19 0.21 0.22 0.98 0.21 0.22 0.23 1.16

ρ = 1 100 MISE 0.63 1.10 0.91 504 0.76 1.14 0.94 821 0.89 1.16 1.00 1290

ISB 0.10 0.32 0.17 498 0.13 0.38 0.19 815 0.16 0.38 0.21 1283

IV 0.53 0.78 0.74 5.92 0.63 0.76 0.75 6.48 0.73 0.78 0.79 7.12

400 MISE 0.20 0.31 0.26 499 0.23 0.32 0.27 817 0.26 0.32 0.28 1284

ISB 0.03 0.08 0.04 498 0.04 0.10 0.04 815 0.05 0.10 0.05 1282

IV 0.17 0.23 0.22 1.30 0.19 0.22 0.22 1.48 0.21 0.22 0.23 1.69

ρ = 2 100 MISE 0.63 1.18 0.91 729 0.76 1.20 0.94 1098 0.89 1.24 1.00 1616

ISB 0.10 0.36 0.17 720 0.13 0.40 0.19 1088 0.16 0.43 0.21 1606

IV 0.53 0.82 0.74 8.52 0.63 0.79 0.75 9.18 0.73 0.81 0.79 9.92

400 MISE 0.20 0.33 0.26 722 0.23 0.34 0.27 1091 0.26 0.34 0.29 1609

ISB 0.03 0.09 0.04 720 0.04 0.11 0.04 1088 0.05 0.11 0.05 1606

IV 0.17 0.24 0.22 1.87 0.19 0.23 0.22 2.08 0.21 0.23 0.23 2.32

parameters in candidate parametric models. The flexible parametric modeling
may be also beneficial to our approach. We give a short discussion on this
extension at the end of Section 4.

In the second application to the model (3.1) we considered g(x) = x2. This
was to see how our approach works when one picks out a parametric model that
is not a part of the underlying regression function. We note that the quadratic
function is absent in the true regression functionm(x) = sin(πx)+ρx+λ cos(πx).
With this choice, θ0 = −π. Tables 3 and 4 summarize the results of the second
application. They show that our approach exhibits the best performance in all
cases. As in the first application, our proposal m̂b̂ and the direct local linear
estimator m̃ll

h̃
are invariant to the change of ρ. The results also confirms our

theory that m̂b̂ gets better and the gap in the performance between m̂b̂ and m̃ll
h̃

gets larger as

[
E (g′′(X)m′′(X))√

E (g′′(X)2)
√
E (m′′(X)2)

]2

=
8

π2(1 + λ2)

increases, i.e., as λ decreases. As for the two-step estimator m̃ts
b̃

with m̃pa as
a parametric start, its performance does not change much as ρ or λ varies,
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Table 4

For the model (3.1) with g(x) = x2. Mean integrated squared errors (MISE), integrated
squared biases (ISB) and integrated variance (IV), multiplied by 103, of the four methods:
our proposal (m̂b̂), two-step estimator (m̃ts

b̃
), local linear estimator (m̃ll

h̃
) and parametric

method (m̃pa), for the error level σ = 0.5.

λ = 0 λ = 0.5 λ = 1

n m̂b̂ m̃ts
b̃

m̃ll
h̃

m̃pa m̂b̂ m̃ts
b̃

m̃ll
h̃

m̃pa m̂b̂ m̃ts
b̃

m̃ll
h̃

m̃pa

ρ = 0 100 MISE 8.98 16.6 15.2 322 9.86 17.9 15.5 589 12.3 24.3 16.1 1006

ISB 0.21 3.45 2.27 316 0.83 4.78 2.54 583 2.02 8.35 2.74 1000

IV 8.77 13.1 12.9 5.80 9.03 13.3 13.0 6.27 10.3 16.0 13.4 6.81

400 MISE 2.83 4.64 4.24 318 3.64 4.96 4.38 585 4.35 5.24 4.58 1001

ISB 0.12 0.74 0.44 316 0.43 1.07 0.51 583 0.61 1.20 0.54 999

IV 2.71 3.90 3.80 1.35 3.21 3.89 3.87 1.52 3.74 4.04 4.04 1.71

ρ = 1 100 MISE 8.98 17.3 15.2 506 9.86 18.2 15.5 824 12.3 21.2 16.1 1292

ISB 0.21 3.43 2.27 498 0.83 4.85 2.54 815 2.02 6.92 2.74 1283

IV 8.77 13.9 12.9 7.98 9.03 13.4 13.0 8.54 10.3 14.3 13.4 9.19

400 MISE 2.83 4.93 4.24 500 3.64 5.08 4.38 817 4.35 5.41 4.58 1285

ISB 0.12 0.80 0.44 498 0.43 1.05 0.51 815 0.61 1.26 0.54 1283

IV 2.71 4.13 3.80 1.81 3.21 4.03 3.87 2.01 3.74 4.15 4.04 2.24

ρ = 2 100 MISE 8.98 17.8 15.2 731 9.86 18.8 15.5 1100 12.3 20.7 16.1 1618

ISB 0.21 3.57 2.27 720 0.83 4.91 2.54 1089 2.02 6.45 2.74 1606

IV 8.77 14.2 12.9 10.6 9.03 13.9 13.0 11.3 10.3 14.3 13.4 12.1

400 MISE 2.83 5.10 4.24 723 3.64 5.26 4.38 1091 4.35 5.52 4.58 1609

ISB 0.12 0.86 0.44 720 0.43 1.07 0.51 1088 0.61 1.31 0.54 1606

IV 2.71 4.24 3.80 2.38 3.21 4.19 3.87 2.61 3.74 4.21 4.04 2.87

contrary to the first application. We see that, although m̃ts
b̃
starts from m̃pa and

the latter gives the worst performance in all cases, m̃ts
b̃

makes drastic recover
at the second stage. Its performance gets slightly worse as ρ increases, which
may be explained by the distance of the chosen parametric model from m,

minθ
∫ 1

0
(m(x)− θg(x))

2
dx. Comparing the columns for m̂b̂ and m̃ts

b̃
in Tables 1

and 2, with the corresponding ones in Tables 3 and 4, respectively, we find that
m̂b̂ is much less affected by the choice of g.

Now, we present the simulation results for the other two models. The second
model we considered was

Yi = sin(πXi) + ρX2
i + λ cos(πXi) + εi, (3.6)

where the distributions of Xi and εi are the same as for the first model. The
true regression curves are depicted in the three panels in the middle row of
Figure 1. In the case where σ = 0.1, the values of the noise-to-signal ratio
NSR = Var(ε)/Var(m(X)) are 0.106, 0.073, 0.028 for ρ = 0, 1, 2, respectively,
when λ = 0; 0.046, 0.166, 0.127, respectively, when λ = 0.5; 0.017, 0.043, 0.208,
respectively, when λ = 1. For this model, we exercised g(x) = sin(πx) as in the
first application to the first model (3.1). The last model was

Yi = ρ sin(πXi) +X2
i + λ cos(πXi) + εi, (3.7)
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where we tried g(x) = x2. The true regression curves are depicted in the three
panels in the bottom row of Figure 1. In the case where σ = 0.1, the val-
ues of NSR are 0.113, 0.073, 0.027 for ρ = 0, 1, 2, respectively, when λ = 0;
0.889, 0.166, 0.034, respectively, when λ = 0.5; 0.054, 0.043, 0.021, respectively,
when λ = 1.

The simulation results with the two models at (3.6) and (3.7) are contained in
Tables 5–8. In both models, the parametric model θg(·) with the corresponding
choice of g is correct when ρ = λ = 0. Thus, m̃pa performs the best when
ρ = λ = 0 in both models. The lessons from Tables 5 and 6 for the second
model (3.6) are much the same as those from the first application to the first
model (3.1), except slight changes in the performances of m̂b̂ and m̃ll

h̃
as ρ varies

due to the fact that they are no more invariant to the change of ρ. In particular,
our proposal and the two-step procedure show comparable performance when
ρ = 0. Regarding these results, we note that, as in the first application to the
model (3.1), g is perpendicular to m0 when ρ = 0 regardless of the values of
λ so that m̃ts

b̃
works well in this case. As for the last model (3.7), the results

contained in Tables 7 and 8 give similar lessons for m̂b̂ and m̃ll
h̃
as the results for

the second model (3.6). The two-step estimator m̃ts
b̃
works still well when ρ = 0

although the corresponding g and m0 are not perpendicular. Also, it does not
deteriorate much as ρ increases, contrary to the case of the second model (3.6)
and the first application to the first model (3.1).

To summarise, our approach outperforms the direct local linear estimator in
all scenarios. Its performance is less affected by the choice of a parametric model
than the two-step procedure m̃ts

b̃
that starts from fitting the chosen parametric

model. For the two-step estimator a parametric start needs to be chosen very
carefully. It works very well if a parametric model is well chosen, such as g(x) =
sin(πx) in the models (3.1) and (3.6) with ρ = 0, but largely fails if the choice
is inadequate, such as g(x) = sin(πx) in the models (3.1) and (3.6) with ρ > 0.

4. Extensions

In this section we will discuss three extensions of our approach. First, we consider
the case of a nonlinear parametric component g(θ, ·) for θ in a subset Θ of R.
We define θ0 as the minimizer of

S(θ) = E[(m′′(X)− g′′(θ,X))2], (4.1)

where g′′ denotes the second derivative with respect to the second argument.
We decompose the function m as

m(x) = g(θ0, x) +m0(x).

As in Section 2, suppose that there exists a consistent estimator θ̂ of θ0. Again,
below we will discuss an estimator θ̂ based on profiling. We now regress Yi −
g(θ̂, Xi) onto Xi by local linear smoothing. Define

m̂ = g(θ̂, ·) + m̃b(·, θ̂) (4.2)
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Table 5

For the model (3.6) with g(x) = sin(πx). Mean integrated squared errors (MISE), integrated
squared biases (ISB) and integrated variance (IV), multiplied by 103, of the four methods:
our proposal (m̂b̂), two-step estimator (m̃ts

b̃
), local linear estimator (m̃ll

h̃
) and parametric

method (m̃pa), for the error level σ = 0.1.

λ = 0 λ = 0.5 λ = 1

n m̂b̂ m̃ts
b̃

m̃ll
h̃

m̃pa m̂b̂ m̃ts
b̃

m̃ll
h̃

m̃pa m̂b̂ m̃ts
b̃

m̃ll
h̃

m̃pa

ρ = 0 100 MISE 0.35 0.32 0.91 0.09 0.71 0.70 0.94 126 0.86 0.87 1.00 503

ISB 0.00 0.00 0.17 0.00 0.13 0.11 0.19 125 0.16 0.15 0.21 500

IV 0.35 0.32 0.74 0.08 0.58 0.58 0.75 0.69 0.70 0.72 0.79 2.50

400 MISE 0.10 0.09 0.26 0.02 0.21 0.21 0.27 125 0.25 0.25 0.29 501

ISB 0.00 0.00 0.04 0.00 0.03 0.03 0.04 125 0.04 0.04 0.05 500

IV 0.10 0.09 0.22 0.02 0.18 0.18 0.22 0.22 0.21 0.21 0.23 0.76

ρ = 1 100 MISE 0.37 6.40 0.86 124 0.71 1.18 0.89 51.0 0.88 0.94 0.96 229

ISB 0.01 3.42 0.15 123 0.12 0.40 0.16 50.7 0.15 0.21 0.19 228

IV 0.36 2.98 0.71 0.47 0.59 0.78 0.73 0.26 0.72 0.73 0.76 1.26

400 MISE 0.12 4.40 0.24 123 0.21 0.29 0.25 50.8 0.25 0.27 0.27 228

ISB 0.01 2.31 0.04 123 0.03 0.09 0.04 50.7 0.04 0.06 0.05 228

IV 0.11 2.09 0.20 0.15 0.18 0.19 0.21 0.06 0.21 0.21 0.22 0.33

ρ = 2 100 MISE 0.44 13.9 0.78 495 0.72 2.15 0.85 224 0.88 1.19 0.91 204

ISB 0.04 6.42 0.13 493 0.13 1.22 0.16 223 0.16 0.40 0.18 203

IV 0.40 7.47 0.65 1.62 0.59 0.93 0.68 0.59 0.72 0.78 0.73 0.79

400 MISE 0.16 6.14 0.22 494 0.22 0.49 0.24 223 0.25 0.35 0.26 203

ISB 0.02 2.80 0.03 493 0.03 0.26 0.04 223 0.04 0.13 0.05 203

IV 0.14 3.34 0.19 0.57 0.18 0.23 0.20 0.20 0.21 0.22 0.21 0.19

as an estimator of m = g(θ0, ·) +m0, where

m̃b(x, θ) = Sb(Y − g(θ,X))(x)

for each θ with the smoothing operator SbU as defined in Section 2.
For the discussion of the statistical properties of m̂ at (4.2) we need the

following additional assumptions.

(A6) The function S(θ) defined at (4.1) has a unique global minimizer θ0.
(A7) The parameter space Θ is a finite interval in R. The function m and

the functions g(θ, ·) for θ ∈ Θ are twice continuously differentiable. The
functions g′(θ, x) and g′′(θ, x) are continuous functions of (θ, x) for (θ, x) ∈
Θ× [aL, aU ].

The following proposition demonstrates that the conclusion of Proposition 1
remains to hold for this more general setting.

Proposition 3. Assume (A1), (A3)–(A4), (A6), (A7) and that an estimator

θ̂ fulfills (2.2). Then, it holds that

m̂(x)−m(x) = Sbε(x) + Sb(m0(X))(x)−m0(x) + oP (b
2),

uniformly for x ∈ [aL, aU ].
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Table 6

For the model (3.6) with g(x) = sin(πx). Mean integrated squared errors (MISE), integrated
squared biases (ISB) and integrated variance (IV), multiplied by 103, of the four methods:
our proposal (m̂b̂), two-step estimator (m̃ts

b̃
), local linear estimator (m̃ll

h̃
) and parametric

method (m̃pa), for the error level σ = 0.5.

λ = 0 λ = 0.5 λ = 1

n m̂b̂ m̃ts
b̃

m̃ll
h̃

m̃pa m̂b̂ m̃ts
b̃

m̃ll
h̃

m̃pa m̂b̂ m̃ts
b̃

m̃ll
h̃

m̃pa

ρ = 0 100 MISE 8.73 7.92 15.2 2.13 9.78 9.48 15.5 128 12.4 14.0 16.1 504

ISB 0.04 0.06 2.27 0.02 0.74 0.74 2.54 125 1.87 1.79 2.75 500

IV 8.69 7.86 12.9 2.11 9.04 8.74 13.0 2.68 10.5 12.2 13.3 4.46

400 MISE 2.55 2.30 4.24 0.53 3.49 3.38 4.38 126 4.14 4.11 4.94 501

ISB 0.01 0.01 0.44 0.00 0.39 0.38 0.51 125 0.54 0.51 1.01 500

IV 2.54 2.29 3.80 0.53 3.10 3.00 3.87 0.79 3.60 3.60 3.93 1.41

ρ = 1 100 MISE 8.70 19.9 13.3 126 9.75 19.5 13.7 53.0 12.3 16.8 15.6 231

ISB 0.04 8.17 2.02 123 0.75 7.56 2.27 50.7 1.91 4.65 2.68 228

IV 8.66 11.7 11.3 2.52 9.00 11.9 11.4 2.28 10.4 12.1 12.9 3.25

400 MISE 2.55 13.7 4.06 124 3.50 9.29 4.20 51.3 4.16 4.89 4.47 229

ISB 0.01 8.43 0.40 123 0.39 4.01 0.46 50.7 0.56 1.07 0.56 228

IV 2.54 5.33 3.66 0.59 3.11 5.28 3.73 0.57 3.60 3.82 3.91 0.91

ρ = 2 100 MISE 8.79 46.7 12.2 497 9.74 48.6 12.7 226 12.3 36.6 14.4 206

ISB 0.07 24.5 2.00 493 0.75 28.4 2.42 223 1.90 16.8 2.78 203

IV 8.72 22.2 10.2 3.69 8.99 20.2 10.3 2.64 10.4 19.8 11.6 2.80

400 MISE 2.58 37.9 3.65 494 3.53 24.2 3.94 224 4.18 7.51 4.35 204

ISB 0.04 23.4 0.38 493 0.42 13.0 0.46 223 0.58 2.78 0.55 203

IV 2.54 14.5 3.27 0.93 3.11 11.2 3.48 0.64 3.60 4.73 3.80 0.70

We now discuss the estimation of θ0. Define the profiling estimator θ̂h by

θ̂h = argmin
θ∈Θ

n∑
i=1

(Yi − g(θ,Xi)− m̃h(Xi, θ))
2
. (4.3)

The following proposition shows that also in this more general setting θ0 can be
consistently estimated by profiling.

Proposition 4. Assume (A1), (A3), (A5)–(A7). Then, for the estimator θ̂h
defined at (4.3) it holds that θ̂h → θ0 in probability.

Our result can be also extended to the case of multivariate covariates Xi.
For simplicity, assume that we use a product kernel Kb(· − x) for smoothing
around a point x ≡ (x1, . . . , xd)

� ∈ R
d of the covariate domain such that

Kb(u− x) =
∏d

j=1 K
u
bj
(uj − xj) for some univariate kernel function Ku, where

b = (b1, . . . , bd)
� is a bandwidth vector. For an estimator θ̂ that converges

in probability to a limit θ0 one can prove, under appropriate conditions, an
expansion similar to the one stated in Proposition 1 for the one-dimensional
case: m̂(x) −m(x) = Sbε(x) + Sb(m − θ0g)(X)(x) − (m− θ0g)(x) + oP (b

2
max),

where bmax = max1≤j≤d bj . Define μ0(x) =
∫
Kb(u− x) du ∈ R. Also, define a
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Table 7

For the model (3.7) with g(x) = x2. Mean integrated squared errors (MISE), integrated
squared biases (ISB) and integrated variance (IV), multiplied by 103, of the four methods:
our proposal (m̂b̂), two-step estimator (m̃ts

b̃
), local linear estimator (m̃ll

h̃
) and parametric

method (m̃pa), for the error level σ = 0.1.

λ = 0 λ = 0.5 λ = 1

n m̂b̂ m̃ts
b̃

m̃ll
h̃

m̃pa m̂b̂ m̃ts
b̃

m̃ll
h̃

m̃pa m̂b̂ m̃ts
b̃

m̃ll
h̃

m̃pa

ρ = 0 100 MISE 0.35 0.29 0.63 0.07 0.72 0.70 0.72 75.0 0.86 0.86 0.87 300

ISB 0.00 0.00 0.07 0.00 0.13 0.09 0.12 75.0 0.16 0.12 0.15 300

IV 0.35 0.29 0.56 0.07 0.59 0.61 0.60 0.12 0.70 0.74 0.72 0.25

400 MISE 0.10 0.09 0.18 0.02 0.21 0.21 0.22 75.0 0.25 0.26 0.25 300

ISB 0.00 0.00 0.02 0.00 0.03 0.03 0.03 74.9 0.04 0.04 0.04 300

IV 0.10 0.09 0.16 0.02 0.18 0.18 0.18 0.04 0.21 0.22 0.21 0.09

ρ = 1 100 MISE 0.63 1.01 0.86 320 0.76 1.09 0.89 587 0.89 1.08 0.95 1004

ISB 0.10 0.27 0.15 316 0.13 0.33 0.16 583 0.16 0.32 0.19 999

IV 0.53 0.74 0.71 3.80 0.63 0.75 0.73 4.26 0.73 0.76 0.76 4.80

400 MISE 0.20 0.29 0.24 317 0.23 0.29 0.25 584 0.26 0.30 0.27 1001

ISB 0.03 0.07 0.04 316 0.04 0.08 0.04 583 0.05 0.08 0.05 1000

IV 0.17 0.22 0.20 0.84 0.19 0.21 0.21 0.98 0.21 0.22 0.22 1.16

ρ = 2 100 MISE 0.79 1.32 1.08 1280 0.85 1.34 1.10 1740 0.93 1.36 1.13 2349

ISB 0.13 0.47 0.26 1265 0.16 0.50 0.27 1724 0.17 0.51 0.30 2332

IV 0.66 0.85 0.82 14.9 0.69 0.84 0.83 15.7 0.76 0.85 0.83 16.7

400 MISE 0.24 0.36 0.31 1268 0.25 0.37 0.31 1278 0.27 0.38 0.32 2336

ISB 0.04 0.10 0.06 1265 0.04 0.11 0.06 1724 0.05 0.13 0.06 2332

IV 0.20 0.26 0.25 3.28 0.21 0.26 0.25 3.55 0.22 0.25 0.26 3.85

d-vector function μ1 and a d× d matrix function μ2 by

μ1(x) =

∫ (
u− x

b

)
Kb(u− x) du,

μ2(x) =

∫ (
u− x

b

) (
u− x

b

)�
Kb(u− x) du,

where u/b = (u1/b1, . . . , ud/bd)
�. Write B = diag(bj). Then, the asymptotic

bias of m̂(x) is equal to

1

2

[
μ0(x)− μ1(x)

�μ2(x)
−1μ1(x)

]−1 ·
∫ (

u− x

b

)�
B ·D2(m− θ0g)(x)

·B
(
u− x

b

)
·
[
1− μ1(x)

�μ2(x)
−1

(
u− x

b

)]
·Kb(u− x) du

where D2f for a multivariate function f denotes the Hessian matrix consisting
of the second-order partial derivatives of f . If one uses a symmetric kernel Ku,
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Table 8

For the model (3.7) with g(x) = x2. Mean integrated squared errors (MISE), integrated
squared biases (ISB) and integrated variance (IV), multiplied by 103, of the four methods:
our proposal (m̂b̂), two-step estimator (m̃ts

b̃
), local linear estimator (m̃ll

h̃
) and parametric

method (m̃pa), for the error level σ = 0.5.

λ = 0 λ = 0.5 λ = 1

n m̂b̂ m̃ts
b̃

m̃ll
h̃

m̃pa m̂b̂ m̃ts
b̃

m̃ll
h̃

m̃pa m̂b̂ m̃ts
b̃

m̃ll
h̃

m̃pa

ρ = 0 100 MISE 8.83 7.19 9.88 1.86 9.78 8.88 10.6 76.8 12.4 12.0 12.6 302

ISB 0.04 0.04 0.70 0.01 0.76 0.75 1.32 74.9 1.25 1.43 2.31 300

IV 8.79 7.15 9.18 1.85 9.02 8.13 9.30 1.91 10.4 10.6 10.3 2.04

400 MISE 2.59 2.13 3.26 0.53 3.52 3.29 3.58 75.5 4.17 4.09 4.00 300

ISB 0.01 0.01 0.32 0.00 0.39 0.30 0.47 74.9 0.54 0.41 0.60 299

IV 2.58 2.12 2.94 0.53 3.13 2.98 3.11 0.57 3.63 3.68 3.40 0.65

ρ = 1 100 MISE 8.98 16.6 13.3 322 9.86 17.9 13.7 589 12.3 24.3 15.6 1006

ISB 0.21 3.45 2.02 316 0.83 4.78 2.27 583 2.02 8.35 2.67 999

IV 8.77 13.1 11.3 5.80 9.03 13.1 11.4 6.27 10.3 16.0 12.9 6.81

400 MISE 2.83 4.64 4.06 317 3.64 4.96 4.20 585 4.35 5.24 4.47 1001

ISB 0.12 0.74 0.40 316 0.43 1.07 0.46 583 0.61 1.20 0.56 999

IV 2.71 3.90 3.66 1.35 3.21 3.89 3.73 1.52 3.74 4.04 3.91 1.72

ρ = 2 100 MISE 10.4 19.5 17.1 1282 10.4 19.5 17.1 1742 12.9 20.1 17.4 2351

ISB 0.66 4.54 2.54 1265 1.27 4.89 2.76 1724 2.19 5.51 3.04 2332

IV 9.76 15.0 14.6 17.1 9.14 14.6 14.3 18.0 10.7 14.6 14.4 18.9

400 MISE 3.54 5.48 4.88 1269 3.98 5.57 4.97 1728 4.53 5.71 5.03 2337

ISB 0.38 0.99 0.57 1265 0.53 1.13 0.59 1724 0.64 1.25 0.62 2332

IV 3.16 4.49 4.31 3.80 3.45 4.44 4.38 4.09 3.89 4.46 4.41 4.42

then for an interior point x the asymptotic bias is simplified to

(1/2)κ2

d∑
j=1

b2j
[
∂2m(x)/∂x2

j − θ0∂
2g(x)/∂x2

j

]
,

where κ2 =
∫
v2Ku(v) dv. In this case, neglecting boundary regions, the ex-

pected squared bias is given by

κ2
2

4
E

⎡
⎢⎣

⎛
⎝ d∑

j=1

b2j
(
mjj(X)− θ0gjj(X)

)⎞⎠
2
⎤
⎥⎦ ,

where mjj(x) = ∂2m(x)/∂x2
j and gjj(x) = ∂2g(x)/∂x2

j . The expected squared
bias is minimized for the choice

θ0 =

∑d
j=1 b

2
jE[mjj(X)gjj(X)]∑d

j=1 b
2
jE[gjj(X)2]

.

We conjecture that the minimizing value θ0 is again consistently picked out
by the corresponding profiling estimator. We see that in the multivariate case
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the minimizing θ0 depends on the ratios (b2/b1, . . . , bd/b1). Only in the one-
dimensional case the dependence on the bandwidth disappears.

We finish this section by mentioning shortly another extension of the method
in Section 2 to the case of choosing a multi-dimensional parametric model, say
θ�g(·) for θ ∈ R

d with g = (g1, . . . , gd)
�. In the latter case, assume that

E[g′′(X)g′′(X)�] is invertible and E
(
g′′j (X)2

)
< ∞ for 1 ≤ j ≤ d. Define

θ0 =
(
E[g′′(X)g′′(X)�]

)−1
E[g′′(X)m′′(X)] ∈ R

d,

where g′′(x) = (g′′1 (x), . . . , g
′′
d (x))

�. Then, one can easily verify that Proposi-
tion 1 with m0 = m− θ�

0 g remains to hold for this extension.

Appendix

A.1. Proof of Proposition 1

From the standard kernel smoothing theory, the condition (A1) gives that, if a
function η is twice continuously differentiable on [aL, aU ], then

Sbη(X)(x)− η(x) =
1

2
· μ̂2(x; b)

2 − μ̂1(x; b)μ̂3(x; b)

μ̂0(x; b)μ̂2(x; b)− μ̂1(x; b)2
· b2 · η′′(x) + oP (b

2), (A.1)

uniformly for x ∈ [aL, aU ]. We also note that there exists an absolute constant
0 < C < ∞ such that

sup
x∈[aL,aU ]

∣∣∣∣ μ̂2(x; b)
2 − μ̂1(x; b)μ̂3(x; b)

μ̂0(x; b)μ̂2(x; b)− μ̂1(x; b)2

∣∣∣∣ ≤ C (A.2)

with probability tending to one. For (A.2) what we need is that the support of
the baseline kernel K contains a nontrivial interval in both of the half intervals
[−1, 0] and [0, 1], which is ensured by the condition (A3). Note that m̃b(·, θ) =
Sbε+ Sb(m0(X))− (θ − θ0)Sb(g(X)). Thus,

m̂(x)−m(x)

= θ̂g(x) + m̃b(x, θ̂)−m(x)

= Sbε(x) + [Sb(m0(X))(x)−m0(x)]− (θ̂ − θ0) [Sb(g(X))(x)− g(x)]

= Sbε(x) + [Sb(m0(X))−m0] (x) + oP (b
2)

uniformly for x ∈ [aL, aU ]. Here, we used (A.1) and (A.2).

A.2. Proof of Proposition 2

From the definition of θ̂h in Section 2 and writing simply Shη for Sh(η(X)), we
get

θ̂h = argmin
θ

n∑
i=1

[
εi − Shε(Xi)− (Shm0 −m0)(Xi) + (θ − θ0)(Shg − g)(Xi)

]2
.
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Thus, it holds that

θ̂h − θ0 =

[
n−1

n∑
i=1

(Shg − g)2(Xi)

]−1

·
[
n−1

n∑
i=1

(
Shε(Xi)− εi

)
· (Shg − g)(Xi)

+ n−1
n∑

i=1

(Shm0 −m0)(Xi) · (Shg − g)(Xi)

]
.

(A.3)

We now argue that with μ2 =
∫
u2K(u) du

T1 := n−1
n∑

i=1

(Shg − g)2(Xi)−
1

4
h4 μ2

2 E g′′(X)2 = oP (h
4),

T2 := n−1
n∑

i=1

(Shm0 −m0)(Xi) · (Shg − g)(Xi) = oP (h
4),

T3 := n−1
n∑

i=1

(
Shε(Xi)− εi

)
· (Shg − g)(Xi) = OP (h

2/
√
n).

(A.4)

From (A.3) and (A.4) we get θ̂h − θ0 = OP (n
−1/2h−2) + oP (1). The statement

of the proposition now follows because of (A5).
It remains to prove (A.4). Put μj(x; b) = f(x)

∫ aU

aL
((u− x)/b)jKb(u− x) du.

For j ≥ 0, we get μ̂j(x; b) = μj(x; b) + oP (1) uniformly for x ∈ [aL, aU ]. Let

c(x;h) =
μ2(x; b)

2 − μ1(x; b)μ3(x; b)

μ0(x; b)μ2(x; b)− μ1(x; b)2
.

Note that c(x;h) = μ2 for all x ∈ [aL + h, aU − h]. This and a version of (A.1)
for (Shg − g)(x) give

T1 =
1

4
h4 n−1

n∑
i=1

c(Xi;h)
2g′′(Xi)

2 − 1

4
h4 μ2

2 E g′′(X)2 + oP (h
4)

=
1

4
h4

∫
IB

(
c(x;h)2 − μ2

2

)
g′′(x)2f(x) dx+ oP (h

4)

= oP (h
4),

where IB = [aL, aU ]\ [aL+h, aU −h]. Similarly, for the second assertion it holds
that

T2 =
1

4
h4 n−1

n∑
i=1

c(Xi;h)
2m′′

0(Xi)g
′′(Xi) + oP (h

4)

=
1

4
h4 μ2

2 Em′′
0(X)g′′(X) + oP (h

4)

= oP (h
4),
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where the last equality follows from the definition of m0 at (1.1). For the last
assertion at (A.4), let

Dh(x) = (Shg − g)(x), Jh(x) = n−1
n∑

i=1

wh(Xi, x)Dh(Xi).

Then, T3 = n−1
∑n

i=1 (Jh(Xi)−Dh(Xi)) εi. From the versions of (A.1) and
(A.2) for the bandwidth h, we have supx∈[aL,aU ] |Dh(x)| = OP (h

2). Also, simi-
larly as in (A.2) there exists an absolute constant 0 < C ′ < ∞ such that

n−1
n∑

i=1

|wh(Xi, x)| ≤ C ′ n−1
n∑

i=1

Kh(x−Xi),

so that supx∈[aL,aU ] |Jh(x)| = OP (h
2). Thus,

sup
x∈[aL,aU ]

|Jh(x)−Dh(x)| = OP (h
2). (A.5)

At this point we remark that the difference |Jh(x)−Dh(x)| is of smaller order
than OP (h

2) uniformly in [aL + 2h, aU − 2h] under additional smoothness as-
sumptions on g and f . The continuity of σ2(·) in the assumption (A1) and the
result (A.5) give

Var(T3|X1, . . . , Xn) = n−2
n∑

i=1

(Jh(Xi)−Dh(Xi))
2
σ2(Xi) = OP (n

−1h4).

This completes the proof of the proposition.

A.3. Proof of Proposition 3

By proceeding as in the proof of Proposition 1 it only remains to show that

Sbg(θ̂, X)(x)− Sbg(θ0, X)(x)− g(θ̂, x) + g(θ0, x) = oP (b
2),

uniformly for x ∈ [aL, aU ]. For a proof of this claim note that

Sbg(θ̂, X)(x)− Sbg(θ0, X)(x)− g(θ̂, x) + g(θ0, x)

=
1

n

n∑
i=1

wb(x,Xi)

[
(g′(θ̂, x)− g′(θ0, x))(Xi − x)

+
1

2

(
g′′(θ̂, X̃i)− g′′(θ0, X̃i)

)
(Xi − x)2

]

=
1

n

n∑
i=1

wb(x,Xi)

[
1

2

(
g′′(θ̂, X̃i)− g′′(θ0, X̃i)

)
(Xi − x)2

]

= max
v∈[aL,aU ]

|g′′(θ̂, v)− g′′(θ0, v)| ·O(b2)

= oP (b
2)

with X̃i such that |X̃i − x| ≤ b.
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A.4. Proof of Proposition 4

Define

Sn(θ) =
4

n

n∑
i=1

(Yi − g(θ,Xi)− m̃h(Xi, θ))
2 − 4

n

n∑
i=1

(εi − Shε(Xi))
2.

We will show that
Sn(θ) = h4S(θ) + oP (h

4), (A.6)

uniformly over θ ∈ Θ. This implies the statement of the proposition because
θ̂h minimizes Sn(θ), θ0 minimizes S(θ), and S(θ) is a continuous function on Θ
with a unique minimum.

For the proof of (A.6) note first that

Sn(θ) =
4

n

n∑
i=1

(
εi − Shε(Xi)−

(
g(θ,Xi)− g(θ0, Xi)

)

+ Sh

(
g(θ,X)− g(θ0, X)

)
(Xi) +m0(Xi)− Shm0(X)(Xi)

)2

− 4

n

n∑
i=1

(εi − Shε(Xi))
2.

We now argue that

4

n

n∑
i=1

(
εi − Shε(Xi)

)(
−

(
g(θ,Xi)− g(θ0, Xi)

)

+ Sh

(
g(θ,X)− g(θ0, X)

)
(Xi) +m0(Xi)− Shm0(X)(Xi)

)
= OP (h

2/
√
n) = oP (h

4).

This can be shown by an extension of the arguments used in the treatment of
T4 in the proof of Proposition 2. Here, one has to make use of the smoothness
properties of g(θ, x) as a function of (θ, x). Using this bound we get that

Sn(θ) =
4

n

n∑
i=1

(
−

(
g(θ,Xi)− g(θ0, Xi)

)
+ Sh

(
g(θ,X)− g(θ0, X)

)
(Xi)

+m0(Xi)− Shm0(X)(Xi)

)2

+ oP (h
4).

The claim now follows from the application of (A.1) with η = m0, b = h, (A.3)
and

Shg(θ,X)(x)− g(θ, x)

=
1

2
· μ̂2(x;h)

2 − μ̂1(x;h)μ̂3(x;h)

μ̂0(x;h)μ̂2(x;h)− μ̂1(x;h)2
· h2 · g′′(θ, x) + oP (h

2),
(A.7)
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uniformly for x ∈ [aL, aU ] and θ ∈ Θ. The expansion (A.7) follows similarly
as (A.1). In particular, one makes use of the assumption that g′′(θ, x) is a
continuous function of (θ, x) for (θ, x) ∈ Θ× [aL, aU ], see the assumption (A7),
for seeing that (A.7) holds uniformly over θ ∈ Θ and x ∈ [aL, aU ].
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