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Abstract: A new approach to detect change points based on differential
smoothing and multiple testing is presented for long data sequences mod-
eled as piecewise constant functions plus stationary ergodic Gaussian noise.
As an application of the STEM algorithm for peak detection developed in
Schwartzman et al. [27] and Cheng and Schwartzman [5], the method de-
tects change points as significant local maxima and minima after smooth-
ing and differentiating the observed sequence. The algorithm, combined
with the Benjamini-Hochberg procedure for thresholding p-values, provides
asymptotic strong control of the False Discovery Rate (FDR) and power
consistency, as the length of the sequence and the size of the jumps get
large. Simulations show that FDR levels are maintained in non-asymptotic
conditions and guide the choice of smoothing bandwidth. The methods are
illustrated in magnetometer sensor data and genomic array-CGH data. An
R package named “dSTEM” is available in R Cran.
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1. Introduction

Detecting change points in the mean of an observed signal is a common statis-
tical problem with applications in many research areas such as climatology [26],
oceanography [17], finance [32] and medical imaging [23]. It often appears in the
analysis of time series but it has more recently been found in the analysis of
genomic sequences, see [10, 18, 22, 24, 30, 31] and the references therein. Given
the large amounts of data present in modern applications, it is of interest to
design a change point detection method that can operate over long sequences
where the number and location of change points are unknown, and in such a
way that the overall detection error rate is controlled.

Many different approaches have been proposed to find and estimate change
points, such as kernel-based methods [1], Bayesian methods [3, 10], segmenta-
tion techniques [24, 31, 22], nonparametric tests [19] and L1-penalty methods
[9, 13, 30], including the PELT method [15, 17]. Though there is abundant lit-
erature on change points segmentation and detection, only a few papers address
the FDR issue which treats the detection of change points as multiple hypothe-
sis testing problems. Tibshirani and Wang [30] applied the fused lasso method
to the hot-spot detection problem, and provided empirical evidence for the FDR
control. Efron and Zhang [8] introduced an iterative local FDR based algorithm
to explore copy number changes. Recently, Frick et al. [11] introduced a si-
multaneous multiscale change point estimator (SMUCE) for the change point
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problem in exponential family regression, and proved the control of the proba-
bility of overestimating the true number of change points. Li et al. [20] improved
the SMUCE method and proposed a multiscale segmentation method FDRSeg,
which gives a non-asymptotic upper bound for its FDR in a Gaussian setting
and is robust to the choice of parameter α. However, our proposed new approach
is unique in the following two ways.

First, the noise is assumed to be a stationary Gaussian process, allowing the
error terms to be correlated. This is an important departure from the standard
assumption of white noise in most of the change-point literature. In fact, applied
statisticians desiring to use change-point methods have sometimes abandoned
this option in favor of other techniques simply because the white noise assump-
tion does not hold [14]. This paper shows that change-point methods can be
devised for correlated noise, expanding the domain of their applicability.

Second, we use the theory of Gaussian processes to compute p-values for all
candidate change points, so that significant change points can be selected at a
desired significance level. For concreteness, we adopt the Benjamini-Hochberg
multiple testing procedure (abbreviated as BH procedure through this paper),
enabling control of the false discovery rate (FDR) of detected change points
when the data sequence is long and the number and location of change points
are unknown. To the authors’ knowledge, our work is the first article proposing
a multiple testing method for controlling the FDR of detected change points.
Moreover, the asymptotic properties of FDR and power are provided.

In this paper, we consider a signal-plus-noise model where the true signal is
a piecewise constant function and the change points are defined as the points
of discontinuity. Inspired by the method for detecting peaks in [27] and [5], we
modify the STEM algorithm therein to detect change points. The central idea
is the observation that the true signal has zero derivative everywhere except
at the change points, where the derivative is infinite. Thus, in the presence
of noise and under temporal or spatial sampling, change points can be seen
as positive or negative peaks in the derivative of the smoothed signal. Note
that because of the time sampling, derivatives cannot be observed directly and
can only be estimated. The focus on the derivative of the smoothed signal ef-
fectively transforms the change point detection problem into a peak detection
problem. As in the STEM algorithm, the resulting peak detection problem is
then solved by identifying local maxima and minima of the derivative as can-
didate peaks and applying a multiple testing procedure to the list of candi-
dates.

The “differential Smoothing and TEsting of Maxima/Minima” (dSTEM) al-
gorithm for change point detection introduced in the present work is illustrated
by a toy example in Figure 1 and consists of the following steps:

1. Differential kernel smoothing : to transform change points to local maxima
or minima, and to increase the SNR. The principle of this step is illustrated
in Figure 2.

2. Candidate peaks: find local maxima and minima of the differentiated
smoothed process.
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3. P-values: computed at each local maximum and minimum under the the
null hypothesis of no signal in a local neighborhood.

4. Multiple testing : apply a multiple testing procedure to the set of local
maxima and minima; declare as detected change points those local maxima
and minima whose p-values are significant.

Fig 1. Following the notation in §2.1 and Example 3.1, the left panel is the observed signal-
plus-noise model y(t) containing ten true change points with varying ai and noise z(t) given
by (3.5) with σ = 1 and ν = 2. The right panel illustrates the dSTEM algorithm. The blue
curve is y′γ(t), obtained with a Gaussian smoothing kernel with standard deviation γ = 6.
Local maxima (green solid dots) and local minima (red solid dots) are declared as significant
(marked with solid triangles) at FDR level α = 0.1 if their heights are beyond the dotted line
thresholds. The cyan and pink bars indicate the location tolerance intervals (vi − b, vi + b)
with b = 5 for increasing and decreasing change points respectively. At this tolerance, there
are nine true discoveries and one false discovery.

The proposed dSTEM algorithm above differs from the algorithms in [27]
and [5] in that peaks are sought in the derivative of the smoothed signal rather
than the smoothed signal itself, and that both positive and negative peaks are
considered. In addition, an important consideration for the proper definition
of error in change point detection is that, as opposed to the peak detection
problems considered in [27] and [5] where signal peaks had compact support,
a true single change point over a continuous domain at t = v has Lebesgue
measure zero. Thus in the presence of noise, it can hardly be detected exactly
at t = v. Therefore we introduce a location tolerance b that defines the precision
within which a change point should be detected. Specifically, given b, a detected
change point is regarded as a true discovery if it falls in the interval (v − b, v +
b). Conversely, if a significant change point is found more than a distance b
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Fig 2. Following the notation in §2.1 and §2.2, the left panel is the change point indicator
function hj(t) with vj = 101, that is, there exists only one change point at the location
t = vj = 101. The middle panel is the differential Gaussian kernel w′

γ(s) on [−4γ, 4γ] with
γ = 8. The right panel is h′

j,γ(t), which is the differential kernel smoothing (under Gaussian

kernel) of hj(t) obtained by convolution, as shown in (2.7). By such transformation, the
change point becomes a local maxima of a smooth function with compact support.

from any true change point, it is considered a false discovery. The quantity
b is not used in the dSTEM algorithm itself but is needed for proper error
definition.

Technically, the main contributions of our results include the following: (1) we
use the novel idea of employing kernel smoothing and differentiation to trans-
form change points into peaks; (2) we combine local maxima and local mini-
mum together as candidate peaks to compute p-values and perform the multi-
ple hypothesis testing, improving the peak detection techniques in our previous
work [5]; (3) we introduce the concept of location tolerance parameter for new
definitions of FDR and power, which are more applicable in general models
compared to those in [5]; (4) by extending the techniques of the proofs in [27]
and [5], we show that the dSTEM algorithm exhibits asymptotic FDR control
and power consistency as the length of the sequence and the size of the jumps
at the change points increase.

Simulations for varying levels of smoothing bandwidth γ, smoothing degree
of noise ν and jump size a are used to study the behavior of the algorithm
under non-asymptotic conditions. The simulation results help guide the choice
of smoothing bandwidth γ with respect to ν and the desired location tolerance.
In general, power increases with bandwidth to a limit dictated by the distance
between the change points, so admitting a higher tolerance generally allows a
higher bandwidth and higher power.

The methods are illustrated in a genomic sequence of array-CGH data in a
breast-cancer tissue sample [21, 12]. The goal of the analysis is to find genomic
segments with copy-number alterations. These are found by detecting change
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points in the copy number genomic sequence. Another application is magne-
tometer sensor readings, aiming at finding the start and end points of hand
gesture motion, which is the critical step and foundation of establishing a secret
key based on hand gestures.

2. The multiple testing scheme

2.1. The model

We consider a continuous time model, although the algorithm is designed for
data discretely sampled in time. Consider the signal-plus-noise model

y(t) = μ(t) + z(t), t ∈ R, (2.1)

where the signal μ(t) is a piecewise constant function of the form

μ(t) =

∞∑
j=0

ajhj(t), aj ∈ R \ {0},

with hj(t) = 1(t ≥ vj) for vj ∈ R. We are interested in finding the change
points vj . For the asymptotic analysis, we assume

a = inf
j
|aj | > 0 and d = inf

j
|vj − vj−1| > 0, (2.2)

so that the change points do not become arbitrarily small in size nor arbitrarily
close to each other.

Let wγ(t) = w(t/γ)/γ, where γ > 0 is the bandwidth parameter and w(t) ≥ 0
is a unimodal symmetric kernel with compact connected support [−c, c] and
unit action. Convolving the process (2.1) with the kernel wγ(t) results in the
smoothed random process

yγ(t) = wγ(t) ∗ y(t) =
∫
R

wγ(t− s)y(s) ds = μγ(t) + zγ(t), (2.3)

where the smoothed signal and smoothed noise are defined respectively as

μγ(t) = wγ(t) ∗ μ(t) =
∞∑
j=0

ajhj,γ(t) and zγ(t) = wγ(t) ∗ z(t), (2.4)

and where the smoothed change point takes the form

hj,γ(t) = wγ(t) ∗ hj(t). (2.5)

The smoothed noise zγ(t) defined by (2.4) is assumed to be a zero-mean four-
times differentiable stationary ergodic Gaussian process.



Multiple testing of local extrema for detection of change points 3711

2.2. Change point detection as peak detection of the derivative

Consider now the derivative of the smoothed observed process (2.3)

y′γ(t) = w′
γ(t) ∗ y(t) =

∫
RN

w′
γ(t− s)y(s) ds = μ′

γ(t) + z′γ(t), (2.6)

where the derivatives of the smoothed signal and smoothed noise are respectively

μ′
γ(t) = w′

γ(t) ∗ μ(t) =
∞∑
j=0

ajh
′
j,γ(t) and z′γ(t) = w′

γ(t) ∗ z(t).

A key observation from (2.5) is that

h′
j,γ(t) =

∫
R

w′
γ(t− s)hj(s) ds =

∫
R

w′
γ(s)hj(t− s) ds

=

∫
R

w′
γ(s)1(t− s ≥ vj) ds =

∫ t−vj

−∞
w′

γ(s) ds = wγ(t− vj),

(2.7)

as illustrated in Figure 2. Thus (2.6) represents a signal-plus-noise model where
the smoothed signal

μ′
γ(t) =

∞∑
j=0

ajh
′
j,γ(t) =

∞∑
j=0

ajwγ(t− vj) (2.8)

is a sequence of unimodal peaks with the same shape as that of wγ and located
at locations vj . The problem of finding change points in yγ(t) is thus reduced
to finding (positive or negative) peaks in y′γ(t).

For simplicity, the theoretical results below assume that the compact sup-
ports Sj,γ of the smoothed peak shape h′

j,γ(t) = wγ(t − vj) do not overlap. In
practice, we have found in simulations that our method still works well when
the smoothed supports Sj,γ have certain small overlaps. However, when the
overlaps are too large, they will affect the detection results. This is explored via
simulations in Section 4.

2.3. The dSTEM algorithm for change point detection

Suppose we observe y(t) with JL jumps defined by (2.1) in the line of length L
centered at the origin, denoted by U(L) = (−L/2, L/2). The following dSTEM
(differential Smoothing and TEsting of Maxima/Minima) is a modified version
of the STEM algorithm of [27] and [5] for detecting change points.

Algorithm 2.1 (dSTEM algorithm for change point detection).

1. Differential kernel smoothing: Obtain the process (2.6) by convolution of
y(t) with the kernel derivative w′

γ(t).
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2. Candidate peaks: Find the set of local maxima and minima of y′γ(t) in

U(L), denoted by T̃γ = T̃+
γ ∪ T̃−

γ , where

T̃+
γ =

{
t ∈ U(L) : y′′γ (t) = 0, y′′′γ (t) < 0

}
,

T̃−
γ =

{
t ∈ U(L) : y′′γ (t) = 0, y′′′γ (t) > 0

}
.

3. P-values: For each t ∈ T̃+
γ , compute the p-value pγ(t) for testing the (con-

ditional) hypotheses

H0(t) : {μ′(s) = 0 for all s ∈ (t− b, t+ b)} vs.

HA(t) : {μ(s+) > μ(s−) for some s ∈ (t− b, t+ b)},

where μ(s+) = limx→s+ μ(x) and μ(s−) = limx→s− μ(x) are the right
limit and left limit of μ at s respectively; and for each t ∈ T̃−

γ , compute
the p-value pγ(t) for testing the (conditional) hypotheses

H0(t) : {μ′(s) = 0 for all s ∈ (t− b, t+ b)} vs.

HA(t) : {μ(s+) < μ(s−) for some s ∈ (t− b, t+ b)},

where b > 0 is an appropriate location tolerance.
4. Multiple testing: Let m̃γ = #{t ∈ T̃γ} be the number of tested hypotheses.

Apply a multiple testing procedure on the set of m̃γ p-values {pγ(t), t ∈
T̃γ}, and declare significant all local extrema whose p-values are smaller
than the significance threshold.

2.4. P-values

Given the observed heights y′γ(t) at the local maxima or minima t ∈ T̃γ =

T̃+
γ ∪ T̃−

γ , p-values in step (3) of Algorithm 2.1 are computed as

pγ(t) =

{
Fγ(y

′
γ(t)), t ∈ T̃+

γ ,

Fγ(−y′γ(t)), t ∈ T̃−
γ ,

(2.9)

where Fγ(u) denotes the right tail probability of z′γ(t) at the local maximum

t ∈ T̃+
γ , evaluated under the null model μ′(s) = 0, ∀s ∈ (t− b, t+ b), that is,

Fγ(u) = P
(
z′γ(t) > u

∣∣ t is a local maximum of z′γ(t)
)
. (2.10)

The second line in (2.9) is obtained by noting that, by (2.10),

P
(
z′γ(t) < u

∣∣ t is a local minimum of z′γ(t)
)

= P
(
−z′γ(t) > −u

∣∣ t is a local maximum of −z′γ(t)
)
= Fγ(−u),

since −z′γ(t) and z′γ(t) have the same distribution.
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The distribution (2.10) has a closed-form expression, which can be obtained
as in [27, 4, 6] or [7]. More specifically, the distribution (2.10) is given by

Fγ(u) = 1− Φ

(
u

√
λ6,γ

Δ

)
+

√
2πλ2

4,γ

λ6,γσ′
γ
2φ

(
u

σ′
γ

)
Φ

(
u

√
λ2
4,γ

Δσ′
γ
2

)
, (2.11)

where σ′
γ
2
= Var(z′γ(t)), λ4,γ = Var(z′′γ (t)), λ6,γ = Var(z′′′γ (t)), Δ = σ′

γ
2
λ6,γ −

λ2
4,γ , and φ(x), Φ(x) are the standard normal density and cumulative distri-

bution function, respectively. The quantities σ′
γ
2
, λ4,γ and λ6,γ depend on the

kernel wγ(t) and the autocorrelation function of the original noise process z(t).
Explicit expressions may be obtained, for instance, for the Gaussian autocorre-
lation model in Example 3.1 below, which we use later in the simulations.

2.5. Error definitions

Assuming the model of §2.1, define the signal region S
b
1 = ∪JL

j=1(vj − b, vj + b)

and null region S
b
0 = U(L) \ Sb1. For u > 0, let T̃γ(u) = T̃+

γ (u) ∪ T̃−
γ (u), where

T̃+
γ (u) =

{
t ∈ U(L) : y′γ(t) > u, y′′γ (t) = 0, y′′′γ (t) < 0

}
,

T̃−
γ (u) =

{
t ∈ U(L) : y′γ(t) < −u, y′′γ (t) = 0, y′′′γ (t) > 0

}
,

indicating that T̃+
γ (u) and T̃−

γ (u) are respectively the set of local maxima of
y′γ(t) above u and the set of local minima of y′γ(t) below −u. The number of
totally and falsely detected change points at threshold u are defined respectively
as

Rγ(u) = #{t ∈ T̃+
γ (u)}+#{t ∈ T̃−

γ (u)},
Vγ(u; b) = #{t ∈ T̃+

γ (u) ∩ S
b
0}+#{t ∈ T̃−

γ (u) ∩ S
b
0}.

(2.12)

Both are defined as zero if T̃γ(u) is empty. The FDR at threshold u is defined
as the expected proportion of falsely detected jumps

FDRγ(u; b) = E

{
Vγ(u; b)

Rγ(u) ∨ 1

}
. (2.13)

Note that when γ and u are fixed, Vγ(u; b) and hence FDRγ(u; b) are decreasing
in b.

Following the notation in [5], define the smoothed signal region S1,γ to be
the support of μ′

γ(t) and smoothed null region S0,γ = U(L) \ S1,γ . We call the
difference between the expanded signal support due to smoothing and the true
signal support the transition region Tγ = S1,γ \ Sb1 = S

b
0 \ S0,γ .

2.6. Power

Denote by I+ and I− the collections of indices j corresponding to increasing and
decreasing change points vj , respectively. We define the power of Algorithm 2.1
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as the expected fraction of true discovered change points

Powerγ(u; b) =
1

JL

JL∑
j=1

Powerj,γ(u; b)

= E

[
1

JL

( ∑
j∈I+

1
(
T̃+
γ (u) ∩ (vj − b, vj + b) 	= ∅

)

+
∑
j∈I−

1
(
T̃−
γ (u) ∩ (vj − b, vj + b) 	= ∅

))]
,

(2.14)

where Powerj,γ(u; b) is the probability of detecting jump vj within a distance b,

Powerj,γ(u; b) =

⎧⎨
⎩

P
(
T̃+
γ (u) ∩ (vj − b, vj + b) 	= ∅

)
, if j ∈ I+,

P
(
T̃−
γ (u) ∩ (vj − b, vj + b) 	= ∅

)
, if j ∈ I−.

(2.15)

The indicator function in (2.14) ensures that only one significant local extremum
is counted within a distance b of a change point, so power is not inflated. Note
that when γ and u are fixed, Powerγ(u; b) and Powerj,γ(u; b) are increasing in b.

3. Asymptotic FDR control and power consistency

Suppose the BH procedure is applied in step 4 of Algorithm 2.1 as follows. For
a fixed α ∈ (0, 1), let k be the largest index for which the ith smallest p-value
is less than iα/m̃γ . Then the null hypothesis H0(t) at t ∈ T̃γ is rejected if

pγ(t) <
kα

m̃γ
⇐⇒

⎧⎨
⎩
y′γ(t) > ũBH = F−1

γ

(
kα
m̃γ

)
if t ∈ T̃+

γ ,

y′γ(t) < −ũBH = −F−1
γ

(
kα
m̃γ

)
if t ∈ T̃−

γ ,
(3.1)

where kα/m̃γ is defined as 1 if m̃γ = 0. Since ũBH is random, we define FDR in
such BH procedure as

FDRBH,γ(b) = E

{
Vγ(ũBH; b)

Rγ(ũBH) ∨ 1

}
,

where Rγ(·) and Vγ(·; b) are defined in (2.12) and the expectation is taken over
all possible realizations of the random threshold ũBH. We will make use of the
following conditions:

(C1) The assumptions of §2.1 hold.
(C2) L → ∞ and a = infj |aj | → ∞, such that (logL)/a2 → 0, JL/L =

A1 +O(a−2 + L−1/2) with A1 > 0.

In condition (C2), we assume that the length of the search space L increases.
In order for the detection procedure to have good power while the error is
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controlled, the signal strength a should also increase. This assumption is not re-
strictive since (logL)/a2 → 0 implies the search space may grow exponentially
faster than the signal strength. These conditions are realistic in applications.
In data with repeated observations and sample size n, the signal-to-noise ratio
(SNR), equivalent to our signal strength a here, is proportional to

√
n, which

is large when the sample size is large in the classical asymptotic sense. Since L
can be treated as the dimensionality of the problem, adopting the traditional
notation p = L, the condition (logL)/a2 → 0 becomes (log p)/n → 0, which is
similar to the condition required for consistent model selection in high dimen-
sional regression with p covariates.

Let E[m̃0,γ(U(1))] and E[m̃0,γ(U(1), u)] be the expected number of local
maxima and local maxima above level u of z′γ(t) on the unit interval U(1) =
(−1/2, 1/2), respectively. In particular, applying the Kac-Rice formula, we have
the following explicit result [27],

E[m̃0,γ(U(1))] =
1

2π

√
λ6,γ

λ4,γ
. (3.2)

Note that, by symmetry, the expected number of local minina below level u of
z′γ(t) on the unit interval U(1) is given by E[m̃0,γ(U(1),−u)].

Theorem 3.1. Let conditions (C1) and (C2) hold.
(i) Suppose Algorithm 2.1 is applied with a fixed threshold u > 0. Then

FDRγ(u; b) ≤
2E[m̃0,γ(U(1), u)](1− 2cγA1)

2E[m̃0,γ(U(1), u)](1− 2cγA1) +A1
+O(a−2 + L−1/2).

(ii) Suppose Algorithm 2.1 is applied with the random threshold ũBH (3.1).
Then

FDRBH,γ(b) ≤ α
2E[m̃0,γ(U(1))](1− 2cγA1)

2E[m̃0,γ(U(1))](1− 2cγA1) +A1
+O(a−1 + L−1/4).

Proof. Since wγ(t) has compact support [−cγ, cγ], by (2.7), the support S1,γ of
μ′
γ(t) in (2.8) is composed of the support segments [vj−cγ, vj+cγ] of h′

j,γ(t). By

condition (C2), |S1,γ |/L = 2cγA1 + O(a−2 + L−1/2), which implies |S0,γ |/L =
1− 2cγA1 +O(a−2 + L−1/2).

Notice that, on the null region S0,γ , the expected number of local extrema,
including both local maxima and minima, equals 2|S0,γ |E[m̃0,γ(U(1))]. On the
other hand, following the proof of Theorem 3 in [5], the expected number of
local extrema on the signal region S1,γ is asymptotically equivalent to JL. This
is because, for each j ∈ I+ and b > 0, as a → ∞, asymptotically, there is no
local maximum of y′γ(t) in (vj − cγ, vj − b) ∪ (vj + b, vj + cγ), and there is only
one local maximum of y′γ(t) in (vj − b, vj + b). The reasoning for the case of
minima is similar.

The result then follows from the same arguments for proving Theorem 3 in [5]
with N = 1, A2,γ = 2cγA1, zγ(t) replaced by z′γ(t) and E[m̃0,γ(U(1))] replaced
by 2E[m̃0,γ(U(1))].



3716 D. Cheng et al.

Lemma 3.2. Let conditions (C1) and (C2) hold. As |aj | → ∞, the power for
peak j and fixed u (2.15) can be approximated by

Powerj,γ(u; b) = Φ

(
|aj |wγ(0)− u

σ′
γ

)
(1 +O(|aj |−2)). (3.3)

Proof. By (2.7), h′
j,γ(vj) = wγ(0) is the maximum of h′

j,γ(t) over t ∈ R. The
result then follows from Lemma 4 in [5] with zγ(t) replaced by z′γ(t).

By similar arguments in [5] (see equation (20) therein), one can show that the
random threshold ũBH converges asymptotically to the deterministic threshold

u∗
BH = F−1

γ

(
αA1

A1 + 2E[m̃0,γ(U(1))](1− 2cγA1)(1− α)

)
, (3.4)

where E[m̃0,γ(U(1))] is given by (3.2). Since ũBH is random, similarly to the
definition of FDRBH,γ(b), we define power in the BH procedure as

PowerBH,γ(b) = E

[
1

JL

( ∑
j∈I+

1
(
T̃+
γ (ũBH) ∩ (vj − b, vj + b) 	= ∅

)

+
∑
j∈I−

1
(
T̃−
γ (ũBH) ∩ (vj − b, vj + b) 	= ∅

))]
.

Theorem 3.3. Let conditions (C1) and (C2) hold.
(i) Suppose Algorithm 2.1 is applied with a fixed threshold u > 0. Then

Powerγ(u; b) = 1−O(a−2).

(ii) Suppose Algorithm 2.1 is applied with the random threshold ũBH (3.1).
Then

PowerBH,γ(b) = 1−O(a−2 + L−1/2).

Proof. The desired results follow from similar arguments for showing Theorem 5
in [5].

Example 3.1 (Gaussian autocorrelation model). Let the noise z(t) in (2.1) be
constructed as

z(t) = σ

∫
R

1

ν
φ

(
t− s

ν

)
dB(s), σ, ν > 0, (3.5)

where φ is the standard Gaussian density, dB(s) is Gaussian white noise and
ν > 0 (z(t) is regarded by convention as Gaussian white noise when ν = 0).
Convolving with a Gaussian kernel wγ(t) = (1/γ)φ(t/γ) with γ > 0 as in (2.4)
produces a zero-mean infinitely differentiable stationary ergodic Gaussian field
zγ(t) such that

z′γ(t) = w′
γ(t) ∗ z(t) = σ

∫
R

−(t− s)

ξ3
φ

(
t− s

ξ

)
dB(s), ξ =

√
γ2 + ν2,
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with σ′ 2
γ = σ2/(4

√
πξ3), λ4,γ = 3σ2/(8

√
πξ5) and λ6,γ = 15σ2/(16

√
πξ7). We

have

SNRj,γ =
ajwγ(0)

σ′
γ

=

√
2|aj |

σπ1/4

[
(γ2 + ν2)3/4

γ

]
. (3.6)

As a function of γ, the SNR has a local minimum at γ∗ =
√
2ν and is strictly

increasing for large γ. In particular, when ν = 0, it is strictly increasing in γ.
Thus we generally expect the detection power to increase with γ for γ >

√
2ν.

This will be confirmed in the simulations below. Note that for ν > 0, the SNR is
unbounded as γ → 0, however in practice γ cannot be too small: if the support
of wγ becomes smaller than the sampling interval, then the derivative μ′

γ cannot
be estimated.

4. Simulation studies

4.1. Performance of the dSTEM algorithm

Simulations were used to evaluate the performance and limitations of the dSTEM
algorithm for signals μ(t) = a�t/d�, where t = 1, . . . , L, L = 12000, and sig-
nal strength a ∈ {1, 1.5, 2}. Under this setting, the true change points are
vj = jd for j = 1, . . . , L/d − 1, and the distance between neighboring change
points is d = 100. The noise is generated as the Gaussian process constructed
in (3.5) with σ = 1 and varying ν. Notice that the random error is white noise
when ν = 0, and is autocorelated when ν > 0. The smoothing kernels are
wγ(t) = (1/γ)φ(t/γ)1(t ∈ [−4γ, 4γ]) for varying γ. The BH procedure was ap-
plied at FDR level α = 0.1 and the tolerance b = 5. Results were averaged over
1,000 replications to simulate the expectations.

The results of FDR and power are shown in Figure 3. We see that for fixed
γ and ν, as the strength of the signal a increases, FDR will decrease while the
power will increase; moreover, FDR is eventually controlled below the nom-
inal level and the power tends to 1, which is consistent with Theorems 3.1
and 3.3. For each fixed a, the power is seen to first decrease quickly and then in-
crease again as γ increases. This phenomenon coincides with the behavior of the
SNR (3.6) derived in Example 3.1, predicting the power to decrease for γ ≤

√
2ν

and increase for γ >
√
2ν. Meanwhile, if a is moderate or large, the FDR is seen

to first increase and then decrease as γ increases, with the maximum of FDR
still controlled below the nominal level.

In the simulations in Figure 3 above, the distance of neighboring change
points d = 100 is large enough so that the kernel smoothing effectively affects
only one change point at a time. However, if d is small, then the kernel smooth-
ing with large γ may produce interference between neighboring change points,
causing the power decrease. To illustrate this, we take the case where the signal
strength is a = 1.5 and perform simulations for FDR and power with d = 40, 30
and 20. As shown in Figure 4, too large a γ makes FDR increase and power de-
crease, due to the overlap between the kernel smoothing at neighboring change



3718 D. Cheng et al.

Fig 3. The FDR (top) and power (bottom) vs. different combinations of the smoothness
parameter ν (ranging from 0 to 2), the signal strength a (taking values 1, 1.5 and 2) and the
bandwidth γ (ranging from 0.2 to 15). Here, the significance level α = 0.1, tolerance b = 5
and d = 100.

points. This phenomenon becomes more evident when d is small (d = 20). The-
oretically, the neighboring interference would happen when d is less than the
support of the smoothing kernel, which is about 8γ in our Gaussian case here.
In particular, we see that the turning point of the power, attaining almost its
maximum, appears at around γ = 8 for cases d = 40 and d = 30, while at
around γ = 5 for the case d = 20. This suggests that γ = d/4 is a good choice
of bandwidth when d is not large.

4.2. Choice of the bandwidth γ

Figure 3 shows that the bandwidth γ will greatly affect the performance of
dSTEM. We see that larger γ tends to attain a smaller FDR and larger power.
However, as shown in Figure 4, if γ is too large, it will produce interference
between neighboring change points and contamination error, thereby decreasing
the power. Thus, the choice of γ is critical for the performance of dSTEM.

The optimal bandwidth γ is the value that maximizes the power while con-
trolling the FDR under the significance level. It is difficult to obtain the optimal
γ theoretically. However, in our model, the signal is a piecewise constant func-
tion, and it is possible to obtain the optimal γ in practice by making more
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Fig 4. The FDR (top) and power (bottom) vs. different combinations of the smoothness
parameter ν (ranging from 0 to 2), the width between neighboring change points d (taking
values 40, 30 and 20) and the bandwidth γ (ranging from 0.2 to 15). Here, the significance
level α = 0.1, tolerance b = 5 and signal strength a = 1.5.

assumptions on the noise, such as in Example 3.1 using the Gaussian autocorre-
lation model. Figure 3 suggests that γ should be chosen to be about 8 for weak
signals, while it can be as small as 4 for strong signals, almost regardless of
the noise autocorrelation. To avoid producing interference between neighboring
change points, the minimal distance between change points d = infj |vj − vj−1|
defined in (2.2) should be large. On the other hand, if d is not large, then we
can choose the bandwidth γ to be about d/c where the effective support of the
smoothing kernel is ±cγ. This has been shown in simulations in Figure 4 where
c = 4 and γ = d/4.

4.3. Comparison with algorithm FDRSeg

As mentioned in Section 1, FDRSeg is the newest method which can control FDR
for change point detection. In this subsection, we compare the performance of
our method dSTEM with the algorithm FDRSeg. First, it is worth mentioning
that our method is mainly designed for autocorrelated random noise, while
FDRSeg requires independent and identically distributed random error, which
is just a special case of our method (ν = 0). Note that FDRSeg contains only one
parameter αF, which controls the theoretical upper bound of FDR at 2αF/(1−
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Table 1

Performance comparison of dSTEM and FDRSeg under independent noise. The parameter
αF is the only parameter in FDRSeg, controlling the theoretical upper bound of FDR to

2αF/(1− αF).

dSTEM FDRSeg

a = 1

γ FDR Power αF FDR Power
9 0.113 0.723

0.05 0.119 0.840
10 0.117 0.781
11 0.124 0.820

0.1 0.155 0.865
12 0.131 0.848

a = 1.5

γ FDR Power αF FDR Power
6 0.091 0.896

0.05 0.033 0.943
7 0.089 0.943
8 0.088 0.965

0.1 0.090 0.957
9 0.083 0.974

a = 2

γ FDR Power αF FDR Power
4 0.085 0.932

0.05 0.008 0.971
5 0.088 0.978
6 0.082 0.987

0.1 0.049 0.983
7 0.085 0.989

Table 2

Performance comparison of dSTEM and FDRSeg under autocorrelated noise (ν = 1).

dSTEM FDRseg

a = 1

γ FDR Power αF FDR Power
9 0.112 0.733

0.05 0.808 1.000
10 0.118 0.792
11 0.127 0.827

0.1 0.815 1.000
12 0.134 0.851

a = 1.5

γ FDR Power αF FDR Power
6 0.088 0.908

0.05 0.796 1.000
7 0.086 0.949
8 0.086 0.968

0.1 0.802 1.000
9 0.084 0.976

a = 2

γ FDR Power αF FDR Power
4 0.084 0.952

0.05 0.785 1.000
5 0.083 0.980
6 0.083 0.988

0.1 0.795 1.000
7 0.081 0.990

αF). However, they suggest that in practice their method should give FDR ≤ αF.
Thus, we let αF be 0.05 and 0.1.

Table 1 shows the realized FDR and detection power under independent noise
situation. We see that for small signal a = 1, dSTEM can almost control FDR
and its power is 84.8% when γ = 12; while FDRSeg can attain a little larger
power, but it is hard to control FDR when α = 0.1. For larger signal a, both
two methods can control FDR and attain a similar large power. Table 2 shows
the results under the situation of autocorrelated noise (ν = 1). In this case,
the performance of dSTEM is nearly the same as that in independent scenario,
while FDRSeg tends to estimate a large number of change points, leading to a
large FDR, which means it can hardly control FDR.
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5. Data example

5.1. Magnetometer sensor readings

In the field of mobile security, two-factor authentication/verification is of great
importance, which is an extra layer of security of your mobile device, such as
smartphones, wearable, and smart home devices, designed to ensure that you
are the only person who can unlock your device, even if someone knows your
password. In recent years, gesture based key establishment is a popular topic in
communication security and computer science [29, 28, 16].

Modern mobile devices embedded with various motion sensors including ac-
celerometer, gyroscope and magnetometer are used to measure and record the
gesture performing process. Obtaining accurate readings of magnetometer is
the foundation of magnetometer baesd research. However, during data collec-
tion, there are always noises which might be caused by hardware imperfection,
manipulation error or sensitivity of the sensor. Particularly, finding the start
point and associated end point for each gesture is a big challenge. The goal of
this analysis is to find such change points.

In this paper, the data was collected from an experiment where several sim-
ple gestures, for example, shaking the smartphone in different directions and at
different speeds, were designed. In particular, the smartphone defines a coordi-
nate system of the embedded magnetometer, which is shown in Figure 5. The
magnetometer can record the speed of smartphone movement as the readings
along X, Y and Z axes. In our case, we will only show the results of the readings
on X-axis, since readings along other two axes could be processed similarly.

In this data analysis, the sample size is n = 6510. The bandwidth was chosen
not too large in order to avoid interference between neighboring change points.
Choosing γ = 18 implies that the effective support of the Gaussian kernel up to
5 standard deviations on each side, for a total of 180 points, is still well below
the typical distance between change points, which is about 300 sample points.
Figure 6 shows results of the detected change points. Due to the measurement
error and magnetic-field interference, the real underlying data will be interfered
by slight fluctuations, leading to lots of (349) local maxima and minima, as
shown in Figure 6 (top right). However, despite that, our method can still find
the true change points, whose number is actually not large, as shown in the
bottom left panel. In the bottom right panel, it is obvious that the start points
and associated end points are very well detected.

Figure 7 shows the results of FDRSeg, it is obvious that FDRSeg estimates
too many (1609) change points, which is nonsense and consistent with the sim-
ulation results under autocorrelated noise.

5.2. Array-CGH data

Array-based comparative genomic hybridization (array-CGH) is a high-through-
put high-resolution technique used to evaluate changes in the number of copies
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Fig 5. The coordinate system of the magnetometer embedded in a smartphone.

of alleles at thousands of genomic loci simultaneously. The output is often
called Copy Number Variation (CNV) data. Changes in copy number are rep-
resented by segments whose mean is displaced with respect to the background.
To detect these changes, it is costumary to search for change points along the
genome.

In this paper, we apply our method to chromosome 1 of tumor sample #18
from the dataset of [12] and [21]. This sample is one of 37 formalin-fixed breast
cancer tumors in that dataset and it was chosen for its visual appeal in the
illustration of our method. The data in chromosome 1 of tumor sample #18
consists of 968 average copy number reads mapped onto 968 unequally spaced
locations along the chromosome. For simplicity, the data was analyzed ignoring
the gaps in the genomic locations. Figure 8 (top left) shows the data with
spacings between reads artificially set to 1. Note that ignoring the spacings does
not affect the presence or absence of change points.

To analyze the data, the dSTEM algorithm was applied with a truncated
Gaussian smoothing kernel wγ(t) = (1/γ)φ(t/γ)1(t ∈ [−4γ, 4γ]) with γ = 10.
Again, a bandwidth of γ = 10 was chosen not too large in order to avoid
interference between neighboring change points. Figure 8 (top right) shows the
estimated first derivative (2.6). Figure 8 (bottom left) marks 19 local maxima
(green) and 19 local minima (red).
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Fig 6. Magnetometer example. Top left: Observed data. Top right: Estimated first derivative
of the smoothed data, and local maxima (green), local minima (red), and significant height
threshold (black dashed line). Bottom left: The first derivative, and the detected positive (green
upward triangle) and negative (red downward triangle) change points. Bottom right: The
observed data and its change points.

Fig 7. Magnetometer example. Left: Observed data. Right: Detected change points (red) by
FDRSeg.

P-values corresponding to local maxima and minima were computed ac-
cording to (2.9) using the distribution (2.11). The required parameters σ′

γ
2
=

Var(z′γ(t)), λ4,γ = Var(z′′γ (t)), λ6,γ = Var(z′′′γ (t)) were estimated empirically
from the estimated first, second and third derivatives over the observed data
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sequence. However, the empirical variances were computed using truncated av-
erages instead of regular averages in order to avoid bias from the extreme deriva-
tives at the change points without assuming their presence or location in ad-
vance. The BH algorithm was applied to the 38 p-values FDR level 0.2, yielding a
p-value significance threshold of 4.42×10−4. The corresponding absolute height
threshold of 0.089 is marked as dashed lines in Figure 8 (bottom left). The sig-
nificant peaks are plotted on the original data in Figure 8 (bottom right) with
a location tolerance of b = 2 for visual reference.

Fig 8. Data example. Top left: Observed data. Top right: Estimated first derivative. Bottom
left: Local maxima (upward triangles), local minima (downward triangles) of the estimated
first derivative, and significance height threshold (black dashed line). Bottom right: The de-
tected positive (green) and negative (red) change points.

6. Discussion

6.1. Increasing and decreasing change points

In this paper, we combined both local maxima and minima of the derivative as
candidate peaks, and then applied a multiple testing procedure to find a uniform
threshold (in absolute value) for detecting all change points. This approach
is sensible when the distributions (number and height) of true increasing and
decreasing change points are about the same. Alternatively, different thresholds
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for detecting increasing and decreasing change points could be found by applying
separate multiple testing procedures to the sets of candidate local maxima and
local minima. While we applied the BH algorithm to control FDR, in principle
other multiple testing procedures may be used to control other error rates.

6.2. The smoothing bandwidth

A natural and important question is how to choose the smoothing bandwidth γ.
We can see that either a small γ (if the noise is highly autocorrelated) or a
relatively large γ (if the noise is less autocorrelated) is preferred in order to
increase power, but only to the extent that the smoothed signal supports h′

j,γ(t)
have little overlap and that detected change points are not displaced by more
than the desired tolerance b (recall that the value of b is not used in the dSTEM
algorithm itself, but it may be determined by the needs of the specific scientific
application). Considering the Gaussian kernel to have an effective support of
±cγ, a good value of γ may be about min(b, d/(2c)), where d is the separation
between change points. For example, if we consider the Gaussian kernel to have
an effective support of ±4γ and the separation between change points is d = 100,
we may choose γ to be no larger than γ = 10. Since the location of the change
points is unknown, a more precise optimization of γ may require an iterative
procedure. Moreover, if some change points are close together and others are far
apart, an adaptive bandwidth may be preferable. We leave these as problems
for future research.

6.3. Extensions to more general models

The problem of change point detection has been extensively studied and there
are many different models due to various applications. As a novel approach, we
believe that our method can be extended to solve the detection problem in other
useful models. The following are two possible extensions for future study.

6.3.1. Structure breaks detection in piecewise linear models

We have studied in this paper the case when the signal is a piecewise constant
function. However, in practice, it is common that the signal is a linear trend with
multiple structure breaks, which can be treated as change points. Detecting the
structure breaks has important applications in econometrics and time series; see
for example [2, 25]. Specifically, adopting similar notations in this paper, the
target piecewise linear model can be reduced to the following signal-plus-noise
model

y(t) = μ(t) + z(t),

where z(t) is the Gaussian noise and the signal μ(t) is a piecewise linear function
of the form

μ(t) = cj + kjt, t ∈ [vj−1, vj),
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with cj , kj ∈ R, j = 1, 2, 3, . . . and 0 = v0 < v1 < v2 < · · · . Assume the
structures of μ(t) are different at neighboring vj , j ≥ 1. That is, the neighboring
coefficient vectors (cj , kj) and (cj+1, kj+1) are not equal for j ≥ 1. We are
interested in finding the location and number of these structure breaks vj .

Our dSTEM algorithm could be extended to solve this problem. However,
there are several challenges. One is that the structure of differentiated smoothed
signal μ′

γ(t) would be more complicated, especially depending on the values of
coefficients cj and kj at neighboring vj . For example, the local extrema of μ′

γ(t)
depend on both the change of slopes and the jump at vj , and their location
may not be exactly at vj . On the other hand, a change in slope would produce
different values of the background signal on both sides of the structure breaks,
creating a change point in the derivative. A possible solution to this problem
could involve estimating and testing second derivatives by filtering with a second
order differential kernel.

6.3.2. Change point detection for models with nonstationary Gaussian noise

We have assumed stationary Gaussian noise in our model for simplicity. The
stationarity assumption allowed us to use an explicit formula for the height
distribution of local extrema [4, 6]. However, in many applications, nonstation-
ary noise is more realistic. To our knowledge, there are no existing methods
for change point detection with nonstationary noise. Our work here provides a
promising approach to solving this problem. To compute p-values, the height
distribution of local extrema for smooth nonstationary Gaussian processes can
be computed explicitly as long as the covariance function of the process is known
[4, 6]. Otherwise, p-values could be approximated using the approximate over-
shoot distribution. However, challenges include how to estimate the covariance
function and to prove FDR control and power consistency in this setting.
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Supplementary Material

An R package named “dSTEM”, for performing the dSTEM algorithm 2.1 for
change point detection, is available in R Cran.
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