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1. Introduction

1.1. Preliminaries on early stopping

In machine learning and statistics, one of the central problems is that of coping
with the generalisation error or, put another way, choosing the correct tuning
parameter for an estimation procedure. For iterative procedures, the generali-
sation error typically decreases up to a point at which the algorithm begins to
overfit. Hence, the problem becomes that of choosing a suitable iteration step.
Classically, this problem would be addressed by model selection criteria such as
cross-validation, unbiased risk estimation or Lepski’s balancing principle. These
criteria, however, require that all estimators we want to choose from be com-
puted and then compared against each other. For high dimensional problems in
particular, this may come at a computationally prohibitive cost. An alternative
are early stopping rules, which halt the procedure at an iteration m̂ depend-
ing only on the iterates of index m ≤ m̂ and potentially additional quantities
computed up to that point. Since these require the computation of much fewer
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iterates, they present the potential of simultaneously achieving computational
and statistical efficiency.

In order to locate this work in the literature on early stopping, we shortly
discuss three exemplary approaches: In practical machine learning applications,
early stopping rules are widely adopted. They are usually based on a well
founded heuristic understanding of the regularisation properties of early stop-
ping. For example, the user may split the data into training and validation sets
and iterate the learning algorithm on the training set until the validation error
does not improve any further, see Chapter 7 in Goodfellow et al. [7]. However,
proper theoretical results for such rules are lacking.

Some progress towards theoretical foundations of stopping rules has been
made in the kernel learning literature. For the regression problem of learning f∗

from data generated by Y = f∗(X) + ε, stopping rules have been suggested for
gradient descent procedures, initially, via oracle stopping times, which cannot
be computed from the data, see Bühlmann and Yu [4] and Caponetto et al.
[5]. Later, these have been converted to data dependent rules using empirical
versions of Gaussian and Rademacher complexities, see Raskutti et al. [11] and
Yang et al. [14]. For example, in [11], the authors learn f∗ by applying gra-
dient descent to the problem minz∈Rn ‖Y −

√
Kz‖2, where Y is the vector of

observations and K is the empirical kernel matrix. The procedure is stopped at

T̂ := inf
{
t ∈ N :

1

n

n∑
i=1

min{λ̂i, t
−1/2} > (σt)−1

}
− 1, (1.1)

where the (λ̂i) are the scaled eigenvalues of K and σ is the noise level (up to
a constant). This rule is computable from the data and allows to adapt to the
complexity of the underlying kernel space. Yet, other than the heuristic stopping
rule above, this rule structurally cannot adapt to the true data generating pro-
cess. The kernel matrix and hence the sequence (λ̂i)i=1,...n only depends on the

design variables. Therefore, T̂ does not depend on f∗ itself and will overfit when
the true smoothness of f∗ is larger than the minimal smoothness of functions
from the kernel space.

Finally, additional progress has been made in the literature on statistical
inverse problems, which is another important framework for learning, see e.g.
Rosasco et al. [12]. Blanchard, Hoffmann and Reiß [2] consider early stopping
for a D-dimensional discretisation of the inverse problem Y = Aμ + δẆ with
white noise Ẇ and the sequence (μ̂(m))m=1,...,D of truncated SVD estimators.
They analyse the stopping rule

τ := inf{m ∈ N ∪ {0} : ‖Y −Aμ̂(m)‖2 ≤ δ2D} (1.2)

based on the discrepancy principle, which is well studied for deterministic in-
verse problems, see e.g. Engl et al. [6]. This problem is similar to [11] in that
minimising ‖Y −

√
Kz‖2 can also be understood as solving a finite dimensional

inverse problem. The stopping rule τ , however, structurally differs from T̂ in
that, via Y , it takes the true signal μ into account. Indeed, the authors prove
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that, up to a dimension dependent error term, stopping according to τ satisfies
an oracle inequality, which yields rate optimal adaptation simultaneously over
a range of Sobolev-type ellipsoids of differing smoothness. Therefore, while the
setting in [2] is less general than in the kernel literature, their version of early
stopping is more comprehensive. In addition, their setting can be understood as
a prototypical model of an iterative estimation procedure.

The analysis in this work is a continuation of the third approach above, where
we stop using the (α)-smoothed residuals ‖(AA�)α/2(Y −Aμ̂(m))‖2 for general
α > 0 instead. In the next section, we motivate in detail why this should be
considered and what can be gained by it.

1.2. Model and problem formulation

We recall in detail the setting in Blanchard, Hoffmann and Reiß [2]: They con-
sider problems of the form

Y = Aμ+ δẆ , (1.3)

where A : H1 → H2 is a linear bounded operator between real Hilbert spaces,
μ ∈ H1 is the signal of interest, δ > 0 is the noise level and Ẇ is a Gaussian
white noise in H2. In any practical application, the problem has to be discretised
by the user. Therefore, we can assume that H1 = R

D and H2 = R
P for D ≤ P ,

which both are possibly very large. Further, assume that A : RD → R
P is one-

to-one. By transforming (1.3), using the singular value decomposition (SVD) of
A, we arrive at the Gaussian vector observation model

Yi = λiμi + δεi, i = 1, . . . , D. (1.4)

λ1 ≥ λ2, . . . , λD > 0 are the singular values of A, (μi)i≤D the coefficients of μ in
the orthonormal basis of singular vectors and (εi)i≤D are independent standard
Gaussian random variables.

In order to recover the signal μ = (μi)i≤D from the observation of (1.4), we
use the truncated SVD (cut-off ) estimators μ̂(m),m = 0, . . . , D given by

μ̂
(m)
i := 1{i ≤ m}λ−1

i Yi, i = 1, . . . , D. (1.5)

For a fixed index m, the risk (expected squared Euclidean error) of μ̂(m) can be
decomposed into a bias and a variance term:

B2
m(μ) : = ‖Eμ̂(m) − μ‖2 =

D∑
i=m+1

μ2
i (1.6)

and Vm : = E‖μ̂(m) − Eμ̂(m)‖2 =

m∑
i=1

λ−2
i δ2. (1.7)

In particular, the estimators are ordered with decreasing bias and increasing
variance in m. We reemphasise the importance of this setting as a prototypical
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model of an iterative method. Note that the truncated SVD-estimators are it-
erative in the sense that the SVD of the operator has to be computed alongside
the estimators. This is the case, since in practice, we cannot expect the observa-
tion vector Y to be represented in an SVD basis, see also the detailed discussion
in [2] and the references therein. Other iterative methods often share important
qualitative features with cut-off estimation. Therefore, results from this simple
framework typically carry over to more complex settings. For example, Blan-
chard, Hoffmann and Reiß [3] transfer the results of [2] to general regularisation
schemes, including gradient descent.

In [2], the authors consider stopping according to the discrepancy principle,
i.e. at the smallest m which satisfies

‖Y −Aμ̂(m)‖2 ≤ κ (1.8)

for a suitable critical value κ > 0. Their analysis shows that generally, stopping
according to the condition in (1.8) is optimal (in terms of an oracle inequality)
up to a dimension dependent error term, which stems from the variability of the
residuals. For signals μ, which are not too smooth relative to the approximation
dimension D, this term is of lower order. More precisely, (1.8) yields optimal
results simultaneously for all signals satisfying mb(μ) �

√
D, where

mb(μ) := inf{m ≥ 0 : B2
m(μ) ≤ Vm} (1.9)

is the index at which balance between the squared bias and variance is obtained.
Otherwise, random deviations in the residuals systematically lead to stopping
times which are too large.

Alternatively, Blanchard and Mathé [1] apply the discrepancy principle to
the normal equation A�Y = A�Aμ and stop according to

‖A�(Y −Aμ̂(m))‖2 = ‖(AA�)1/2(Y −Aμ̂(m))‖2 ≤ κ, (1.10)

i.e. the residuals are smoothed by (AA�)1/2. This is motivated by the fact that
in the infinite-dimensional problem, A∗Ẇ can be represented as an element of
H1 when A is Hilbert-Schmidt. The condition in (1.10) is able to to control the
stochastic part of the residuals and avoid the dimension-dependency from [2].
Yet, it typically results in suboptimal convergence rates, since the variability of
the residuals is reduced too much, which leads to stopping times which are too
small.

These results raise the question of whether there is a stopping criterion in
between (1.8) and (1.10) which is able to mitigate the dimension-dependency
from [2] and thereby increase the range of signals for which adaptation is possible
without slipping into the suboptimal regime discussed in [1]. A very natural
consideration is to smooth the residuals by a general power α ≥ 0 of (AA�)1/2

and stop at the smallest index m which satisfies

R2
m,α := ‖(AA�)α/2(Y −Aμ̂(m))‖2 ≤ κ, (1.11)
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where R2
m,α are the (α-)smoothed residuals. The main contribution of this paper

is to answer the posed question in the affirmative for the criterion in (1.11),
provided that the inverse problem is moderately ill-posed. Smoothing with
α > 0 reduces the variability of R2

m,α, which mitigates the constraint from [2].
For values of α which are small relative to the decay of the singular values
of A, smoothing does not produce suboptimal rates. Additionally, it is pos-
sible to eliminate the dimension constraint entirely before the oversmoothing
effect from [1] manifests. In order to further motivate stopping according to
R2

m,α, we compare it to other possible generalisations of the discrepancy prin-
ciple:

Remark 1.1 (Other discrepancy-type rules).

(a) Blanchard and Mathé [1] also choose a stopping criterion in between (1.8)
and (1.10) in order to guarantee optimality. They weigh the residuals
in (1.10) further by 	λ(A

�A) for 	λ(t) := 1/
√
t+ λ, t > 0 and a tuning

parameter λ. In their framework, however, the final choice of λ directly
depends on the smoothness of the true signal and only yields optimal re-
sults for this smoothness class. Therefore, their stopping criterion will not
adapt simultaneously to signals of varying smoothness, which is precisely
the goal of our analysis.

(b) Other well founded variations of the discrepancy principle mostly take the
form

‖Hm(AA�)(Y −Aμ̂(m))‖2 ≤ κ, (1.12)

i.e. the weight of (AA�) depends on m, see e.g. Engl et al. [6]. Compared
to the smoothed residuals, such a rule is computationally more expen-
sive: In our setting, the computation of the first m estimators roughly
requires O(mD2) operations, see [2]. With the update R2

m+1,α = R2
m,α −

λ2α
m+1Y

2
m+1, the additional computational cost of the smoothed residuals

is negligible. Note that the m-th eigenvalue λm already has to be com-
puted for μ̂(m). In contrast, computing (1.12) for i = 0, . . . ,m potentially
requires O(mD2) operations itself. If we regard early stopping as a tool to
treat the computational complexity of the problem, this provides further
motivation for the (α)-smoothed residuals.

The remainder of the paper is structured as follows: In Section 2, we col-
lect the structural assumptions of the analysis and provide an interpretation
of the smoothed residual stopping procedure in (1.11) as estimating the bias
of a smoothed version of the risk. At the end, we present the main results of
the paper, which are derived in Section 3. Its constraints in terms of lower
bounds are explored in Section 4. Finally, Section 5 discusses different choices
for the smoothing parameter α and illustrates the results by Monte-Carlo sim-
ulations.
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2. Framework for the analysis and main results

2.1. Structural assumptions

Throughout the paper, we assume that the inverse problem is moderately ill-
posed, i.e. the singular values (λi)i≤D satisfy a polynomial spectral decay as-
sumption of the form

C−1
A i−p ≤ λi ≤ CAi

−p, i = 1, . . . , D (PSD(p, CA)) (2.1)

for some p ≥ 0 and CA ≥ 1. By dividing Equation (1.4) by λ1, we can further
assume that λi ≤ 1, i = 1, . . . , D. Additionally, we always require that the
critical value κ satisfies

|κ−
D∑
i=1

λ2α
i δ2| ≤ CκsDδ2 with s2D := 2

D∑
i=1

λ4α
i (2.2)

for an absolute constant Cκ > 0.
Note that

∑D
i=1 λ

2
i δ

2 is the expectation of the smoothed residuals for the zero
signal at m = 0, since

R2
0,α =

D∑
i=1

(
λ2+2α
i μ2

i + 2λ1+2α
i μiδεi + λ2α

i δ2ε2i

)
. (2.3)

Similarly, sDδ2 is the standard deviation of the dominant stochastic part of the
term above. Therefore, (2.2) states that up to small deviations, κ should be
chosen as the expectation of the smoothed residuals in the pure noise case.

In the following, we denote essential inequalities up to an absolute constant
by “�,�,∼”. Further dependencies on α, the operator A, i.e. p and CA, and Cκ,
are denoted by indices α,A and κ. Finally, we assume that all smoothing indices
α are bounded from above by some ᾱ > 0. This guarantees that λα

i ∼A i−αp,
i ≤ D. Under (PSD(p, CA)), the order of sD is given by

sD ∼α,A

⎧⎪⎨⎪⎩
D1/2−2αp, αp < 1/4,

logD, αp = 1/4,

1, αp > 1/4.

(2.4)

The fact that the order of sD is decreasing in α will later allow to relax the
constraint from Blanchard et al. [2]. The variance of μ̂(m) is of order

Vm =

m∑
i=1

λ−2
i δ2 ∼A m2p+1δ2. (2.5)

For the analysis of lower bounds in Section 4, we consider signals from Sobolev-
type ellipsoids

Hβ(r,D) :=
{
μ ∈ R

D :
D∑
i=1

i2βμ2
i ≤ r2

}
for some β ≥ 0, r > 0. (2.6)
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For μ ∈ Hβ(r,D), we have the upper bound

B2
m(μ) =

D∑
i=m+1

μ2
i ≤ (m+ 1)−2βr2 (2.7)

for the squared bias of μ̂(m). The bounds in (2.5) and (2.7) are balanced at the
order of the minimax-truncation index

tmm
β,p,r = tmm

β,p,r(δ) := (r2δ−2)1/(2β+2p+1). (2.8)

Taking the asymptotic view that D = D(δ) → ∞ for δ → 0, the rate v2δ is
optimal in the minimax sense if there exist estimators (μ̂δ)δ>0 in the models
corresponding to the ellipsoids Hβ(r,D(δ)) such that

lim sup
δ→0

v−2
δ sup

μ∈Hβ(r,D(δ))

E‖μ̂δ − μ‖2 < ∞ (2.9)

and

lim inf
δ→0

v−2
δ inf

μ̂
sup

μ∈Hβ(r,D(δ))

E‖μ̂− μ‖2 > 0, (2.10)

where the infimum is taken over all estimators μ̂. A deterministic stopping index
of the order of the minimax truncation index tmm

β,p,r in (2.8) yields the rate

R∗
β,p,r(δ) := r2(r−2δ2)2β/(2β+2p+1). (2.11)

This is the minimax rate in the infinite-dimensional Gaussian sequence model.
Note that lower bounding the minimax risk in the infinite-dimensional case, up
to a constant, only requires to consider alternatives in the first tmm

β,p,r components,
see e.g. Proposition 4.23 in Johnstone [8]. Therefore, if D(δ) is chosen at least
of the order of tmm

β,p,r, the rate R∗
β,p,r(δ) is also minimax in our setting. In the

asymptotic considerations, we will always assume that this is the case, since
we can also think of tmm

β,p,r as the minimally sufficient approximation dimension.
Indeed, the error of approximating a signal from an infinite-dimensional Sobolev
ellipsoid of smoothness β by a signal from Hβ(r,D) will only be negligible if
D(δ) � tmm

β,p,r.

2.2. Smoothed residual stopping as bias estimation

For a clearer formulation of the results, we introduce continuous versions of the
bias and the variance by linearly interpolating Equations (1.6) and (1.7). For
t ∈ [0, D], we set

B2
t (μ) : = (�t − t)μ2

�t� +
D∑

i=�t�+1

μ2
i (2.12)
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and Vt : =

	t
∑
i=1

λ−2
i δ2 + (t− �t�)λ−2

�t�δ
2, (2.13)

where �t� and �t are the floor and ceiling functions, respectively. We can define a
continuous cut-off estimator μ̂(t) such that E‖μ̂(t)−μ‖2 = B2

t (μ)+Vt, t ∈ [0, D]:
By randomising between the discrete estimators with index �t� and �t, we set

μ̂
(t)
i := (1{i ≤ �t�}+ ξt1{i = �t})λ−1

i Yi, i = 1, . . . , D, (2.14)

where ξt are Bernoulli random variables with success probabilities t− �t� inde-
pendent of everything else. This also gives a continuous version of the smoothed
residuals:

R2
t,α : = ‖(AA�)α/2(Y −Aμ̂(t))‖2 (2.15)

= (1{t �= �t} − ξt)λ
2α
�t�Y

2
�t� +

D∑
i=�t�+1

λ2α
i Y 2

i

for t ∈ [0, D]. The (α-)smoothed residual stopping time

τα := inf{m ∈ N ∪ {0} : R2
m,α ≤ κ} (2.16)

yet remains integer. In the following, integer indices are denoted by m and
continuous indices are denoted by t.

Applying optional stopping to the martingale Mm :=
∑m

i=1 λ
−2
i (ε2i −1), m ≤

D, yields

E‖μ̂(τα) − μ‖2 = E

( D∑
i=τα+1

μ2
i +

τα∑
i=1

λ−2
i δ2ε2i

)
= E

(
B2

τα(μ) + Vτα

)
. (2.17)

Therefore, at best, the risk at τα behaves like the risk at the classical oracle
index

tc = tc(μ) := argmin
t∈[0,D]

E‖μ̂(t) − μ‖2 (2.18)

which minimises the risk over all deterministic stopping indices. There is, how-
ever, no direct connection between τα and tc. This is intrinsic to the sequential
nature of the analysis, since at truncation index t, we cannot say anything about
the behaviour of the bias for larger indices.

For our purposes, we instead consider the balanced oracle index

tb = tb(μ) := inf{t ≥ 0 : B2
t (μ) ≤ Vt}. (2.19)

Due to the continuity of the functions t �→ Vt and t �→ B2
t (μ), we have that at t

b,
squared bias and variance balance exactly, i.e. B2

tb(μ) = Vtb . Furthermore, the
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balanced oracle risk is comparable to the classical oracle risk: The monotonicity
of t �→ Vt and t �→ B2

t (μ) yields

E‖μ̂(tb) − μ‖2 = B2
tb(μ) + Vtb ≤ 2E‖μ̂(tc) − μ‖2 (2.20)

by distinguishing the cases tc ≤ tb and tc > tb. Assuming that the operator A
and the noise level δ are known, knowledge of the bias is therefore enough to
stop at an index at which the risk is of the order of the classical oracle risk.

The smoothed residuals R2
t,α contain some information about the bias: We

can write

ER2
t,α = B2

t,α(μ) +

D∑
i=1

λ2α
i δ2 − Vt,α, t ∈ [0, D], (2.21)

where the α-bias and the α-variance

B2
t,α(μ) : = (�t − t)λ2+2α

�t� μ2
�t� +

D∑
i=�t�+1

λ2+2α
i μ2

i (2.22)

and Vt,α : =

	t
∑
i=1

λ2α
i δ2 + (t− �t�)λ2α

�t�δ
2 (2.23)

are smoothed versions of B2
t (μ) and Vt. Since λi ≤ 1 for all i = 1, . . . , D, the

smoothed quantities B2
t,α and Vt,α are always smaller than their nonsmoothed

counterparts. Analogously to tb, we define the α-balanced oracle

tbα = tbα(μ) := inf{t ≥ 0 : B2
t,α(μ) ≤ Vt,α} (2.24)

at which the squared α-bias and the α-variance balance.
The stopping condition R2

m,α ≤ κ can be reformulated as

B̂2
m,α(μ) := R2

m,α + Vm,α − κ ≤ Vm,α, (2.25)

which yields

τα = inf{m ≥ 0 : B̂2
m,α(μ) ≤ Vm,α}. (2.26)

Due to (2.21), B̂2
m,α(μ) is an unbiased estimator of B2

m,α(μ) for κ =
∑D

i=1 λ
2α
i δ2.

Therefore, stopping according to τα can be understood as estimating the α-bias
and stopping when the estimate is smaller than the α-variance. For the specific
choice of κ above, τα directly mimics tbα. For other choices of κ, τα mimics the
(α-)oracle-proxy index

t∗α = t∗α(μ) := inf{t ≥ 0 : EB̂2
t,α ≤ Vt,α} = inf{t ≥ 0 : ER2

t,α ≤ κ}. (2.27)

This is illustrated in Figure 1. The oracle-proxy index satisfies⎧⎪⎪⎨⎪⎪⎩
t∗α > tbα, κ <

∑D
i=1 λ

2α
i δ2,

t∗α = tbα, κ =
∑D

i=1 λ
2α
i δ2,

t∗α < tbα, κ >
∑D

i=1 λ
2α
i δ2.

(2.28)
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Fig 1. Bias estimation with oracle indices. Here, α = 0 to ensure that all curves fit into one
plot.

Assumption (2.2) can therefore be understood as a requirement on the difference
between t∗α and tbα. So far, this yields the following picture: Approximately, τα
is centred around the oracle proxy t∗α, which is close to the α-balanced oracle
tbα for an appropriate choice of κ. In turn, tbα is related to the balanced oracle
tb due to the connection between the bias and the variance and their smoothed
counterparts. Generally, we can therefore hope for adaptation as long as tbα and
tb are of the same size.

With respect to the difference between tbα and tb, we note:

Lemma 2.1. The mapping α �→ tbα, α ≥ 0 is monotonously decreasing in α.
Further, tbα ≤ tb for all α ≥ 0.

Proof. Let α, α′ ≥ 0 with α ≤ α′. Then, for any t ∈ [0, D] which satisfies
B2

t,α(μ) ≤ Vt,α, we have

B2
t,α′(μ) ≤ λ

2(α′−α)
�t� B2

t,α(μ) ≤ λ
2(α′−α)
�t� Vt,α ≤ Vt,α′ . (2.29)

Analogous reasoning yields tbα ≤ tb for all α ≥ 0.

Therefore, smoothing increases the difference between tbα and tb and will
generally induce smaller stopping times τα.

Under (PSD(p, CA)), we also have essential upper bounds for tbα and tbα: For
tb, the bounds on the size of the bias and the variance in (2.7) and (2.5) show
that

tb(μ) �A tmm
β,p,r(δ) = (r2δ−2)1/(2β+2p+1) for all μ ∈ Hβ(r,D). (2.30)
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For tbα, analogously to (2.7) and (2.5), we obtain

B2
m,α(μ) �A r2m−(2β+2p+2αp) for all μ ∈ Hβ(r,D) (2.31)

and Vm,α ∼A

⎧⎪⎨⎪⎩
m1−2αpδ2/(1− 2αp), αp < 1/2,

log(m)δ2, αp = 1/2,

δ2, αp > 1/2

(2.32)

for sufficiently large values of m ≥ 0. Given that tbα is large enough, this gives
the essential upper bound

tbα(μ) �A tmm
β,p,r,α(δ) for all μ ∈ Hβ(r,D), (2.33)

where

tmm
β,p,r,α = tmm

β,p,r,α(δ) :=

⎧⎪⎨⎪⎩
((1− 2αp)r2δ−2)1/(2β+2p+1), αp < 1/2,

(r2δ−2/ log(r2δ−2))1/(2β+2p+1), αp = 1/2,

(r2δ−2)1/(2β+2p+2αp), αp > 1/2

(2.34)

is the α-minimax truncation index.

For αp < 1/2, tmm
β,p,r,α is of the same order as tmm

β,p,r, but smoothing shrinks
tmm
β,p,r,α by a power of (1− 2αp). In the same way, we obtain that for αp ≥ 1/2,
the α-balanced oracle is of order strictly smaller than the minimax-truncation
index tmm

β,p,r(δ). Since there are signals μ ∈ Hβ(r,D), for which tb(μ) ∼ tmm
β,p,r(δ),

we can therefore only expect to achieve adaptation on Hβ(r,D) as long as
αp < 1/2.

2.3. Main results

Based on the understanding of the stopping procedure developed in Sections 2.1
and 2.2, we can now formulate our main theorem. It provides an oracle inequality
for the risk at τα in terms of the risk at the balanced oracle tb.

Theorem 2.2 (Balanced oracle inequality). Assume (PSD(p, CA)) with αp <
1/2 and (2.2). Then, there exists a constant Cα,A,κ depending on α, p, CA and
Ck such that

E‖μ̂(τα) − μ‖2 ≤ Cα,A,κ

(
E‖μ̂(tb) − μ‖2 + s

(2p+1)/(1−2αp)
D δ2

)
.

For tb �α,A,κ s
1/(1−2αp)
D , the risk of stopping at τα is of the order of the balanced-

oracle risk.

Theorem 2.2 is derived in Section 3.

We comment on the result: s
(2p+1)/(1−2αp)
D δ2 is a dimension-dependent error

term. Since Vt ∼A t2p+1δ2, it is of order V
s
1/(1−2αp)
D

. Its existence stems from the
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stochastic variability of the residuals, which is discussed in Section 4.1. Since
the risk at tb is of the order of Vtb , this error term is of lower order as long as

tb �α,A,κ s
1/(1−2αp)
D ∼α,A,κ

⎧⎪⎨⎪⎩
D

1/2−2αp
1−2αp , αp < 1/4,

(logD)2, αp = 1/4,

1, αp > 1/4.

(2.35)

Equation (2.35) determines for what signals we can obtain optimal estimation
results and shows the advantage of smoothing: For α = 0, we obtain the same
result as in Blanchard et al. [2], i.e. we need to require tb �A,κ

√
D. For values

α > 0, this constraint is weakened and thereby guarantees that the dimension
dependent error term is of lower order for a larger class of signals. For αp = 1/4,
the error is only a log-term. For αp > 1/4, it is of constant size.

Intuitively, under our assumptions, τα behaves like tbα. As seen in Lemma 2.1,
tbα is monotonously decreasing in α. While decreasing the variance, smoothing
therefore increases the squared bias B2

tbα
(μ). For αp < 1/2, this results in an

increase in the constant Cα,A,κ. For αp ≥ 1/2, tbα and tb can be of different
order such that the squared bias at tbα is strictly larger than the risk at tb.
Then, an oracle inequality is no longer possible. The details of this are further
discussed in Section 4.2. One of the basic assumptions in Blanchard and Mathé
[1] is that A is Hilbert-Schmidt. In our setting, this is the case when p > 1/2,
which is the exact point when the discrepancy principle for the normal equation,
i.e. α = 1, loses the optimal rate. Therefore, the above reasoning provides a nice
explanation for their nonoptimality result.

Finally, our result directly translates to an asymptotic minimax upper bound
over the Sobolev-type ellipsoids Hβ(r,D): When D = D(δ) → ∞ for δ → 0,
the risk at tb is of optimal order when D(δ) grows faster than the minimax
truncation index tmm

β,p,r(δ), see the discussion in Section 2.1. The same is true for

the dimension-dependent error as long as s
1/(1−2αp)
D �α,A,κ tmm

β,p,r. Therefore, we
obtain:

Corollary 2.3 (Adaptive rates for Sobolev ellipsoids). Assume (PSD(p, CA))
with αp < 1/2 and (2.2). Then, there exists a constant Cα,A,κ depending on
α, p, CA and Ck such that

sup
μ∈Hβ(r,D)

E‖μ̂(τα) − μ‖2 ≤ Cα,A,κR∗
β,p,r(δ)

for any β, r > 0 with D � tmm
β,p,r �α,A,κ s

1/(1−2αp)
D .

By comparing the size of tmm
β,p,r = (r2δ−2)1/(2β+2p+1) with sD, Corollary 2.3

yields a range of Sobolev-type ellipsoids Hβ(r,D) for which stopping according
to the smoothed residual stopping time τα is simultaneously minimax adap-
tive. How this can used to choose a suitable smoothing parameter α is further
discussed in Section 5.1.
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3. Derivation of the main results

In this section, we derive the result in Theorem 2.2. By defining the stochastic
error term

St :=

	t
∑
i=1

λ−2
i δ2ε2i + (t− �t�)λ−2

�t�δ
2ε2�t�, t ∈ [0, D], (3.1)

we obtain

E‖μ̂(t) − μ‖2 = E(B2
t (μ) + St), t ∈ [0, D] (3.2)

and E‖μ̂τα − μ‖2 = E(B2
τα(μ) + Sτα). (3.3)

This allows to decompose the difference between the risk at the smoothed resid-
ual stopping time τα and the risk at any deterministic index t ∈ [0, D] into a
bias part and a stochastic part:

E‖μ̂(τα) − μ‖2 − E‖μ̂(t) − μ‖2 ≤ E
(
B2

τα(μ)−B2
t (μ)

)+
+ E(Sτα − St)

+. (3.4)

3.1. An oracle-proxy inequality

Initially, we compare the risk at the smoothed residual stopping time τα with
the risk at the oracle-proxy index t∗α. For the bias part in (3.4), we can further
decompose:

E
(
B2

τα(μ)−B2
t (μ)

)+ ≤ λ
−(2+2α)
�t� E

(
B2

τα,α(μ)−B2
t,α(μ)

)+
(3.5)

≤ λ
−(2+2α)
�t�

[
E
(
B2

τα,α(μ)−B2
t∗α,α(μ)

)+
+

(
B2

t∗α,α(μ)−B2
t,α(μ)

)+]
.

In Appendix A.1, we bound the probability P{τα ≤ m} for m ≥ 0 to derive the
following estimate for the first term in the square brackets:

Proposition 3.1. For any signal μ ∈ R
D, we have

E
(
B2

τα,α(μ)−B2
t∗α,α(μ)

)+ ≤ C(B2
t∗α,α(μ) + sDδ2),

where C ≥ 1 is an absolute constant.

Plugging the bound from Proposition 3.1 into (3.5) gives an inequality for
the bias part in (3.4).

Corollary 3.2. For any signal μ ∈ R
D and t ∈ [0, D], we have

E
(
B2

τα(μ)−B2
t (μ)

)+ ≤ Cλ
−(2+2α)
�t�

(
B2

t∗α,α(μ) + sDδ2
)
,

where C ≥ 1 is an absolute constant.

In Appendix A.1, we also bound the probability P{τα ≥ m} for m ≥ 0, which
yields the following bound for the stochastic part in (3.4):
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Proposition 3.3. Assume (PSD(p, CA)) with αp < 1/2 and (2.2). Then,

E(Sτα − St∗α)
+ ≤ Cα,A,κ

(
Vt∗α + s

(2p+1)/(1−2αp)
D δ2

)
,

where Cα,A,κ ≥ 1 is a constant depending on α, p, CA and Cκ.

Together, Corollary 3.2 and Proposition 3.3 show that under a set of fairly
general assumptions, the risk at the smoothed residual stopping time τα essen-
tially behaves like the risk at the deterministic oracle-proxy index t∗α. Note that
the result holds for all signals μ ∈ R

D and not only for Sobolev-type ellipsoids.

Theorem 3.4 (Oracle-proxy inequality). Assume (PSD(p, CA)) with αp < 1/2
and (2.2). Then, there exists a constant Cα,A,κ depending on α, p, CA and Cκ

such that

E‖μ̂(τα) − μ‖2 ≤ Cα,A,κ

(
E‖μ̂(t∗α) − μ‖2 + s

(2p+1)/(1−2αp)
D δ2

)
.

For t∗α �α,A,κ s
1/(1−2αp)
D , the risk at τα is of the order of the risk at t∗α.

Proof. After plugging the inequalities from Corollary 3.2 and Proposition 3.3
into Equation (3.4) with t = t∗α, only the remaining bias part has to be estimated.

For any m ≥ 0, however, we have λ
−(2+2α)
m B2

m,α(μ) ≤ B2
m(μ). This yields

λ
−(2+2α)
�t∗α� (B2

t∗α,α(μ) + sDδ2) �A B2
t∗α
(μ) + (t∗α)

2p+2αpsDδ2 (3.6)

�A B2
t∗α
(μ) + Vt∗α + s

(2p+1)/(1−2αp)
D δ2

by distinguishing the cases where t∗α is smaller or greater than s
1/(1−2αp)
D .

The proof of Proposition 3.3 relies on the growth of m �→ Vm,α − B2
m,α(μ)

for m ≥ �t∗α, which can be insufficient for αp ≥ 1/2 even if we assume that
μ ∈ Hβ(r,D). This suggests that a result as in Theorem 3.4 for αp ≥ 1/2
requires additional assumptions on the decay of m �→ B2

m,α(μ). We note a
sufficient condition from the literature, see e.g. Kindermann and Neubauer [9]
or Szabó et al. [13].

Remark 3.5 (Oracle-proxy inequality under polished tails). Assume that the
signal μ is not only an element of Hβ(r,D) but additionally the projection onto
the first D components of an infinite-dimensional signal μ̃, which satisfies a
polished tail condition of the form

∞∑
i=m

μ̃2
i ≤ C0

ρm∑
i=m

μ̃2
i for all m ≥ 1 (3.7)

for an integer constant ρ ≥ 2 and C0 > 0. Then, we have E(Sτα − St∗α)
+ �A,κ

(t∗α)
2p+1δ2 also when αp ≥ 1/2 and κ ≥

∑D
i=1 λ

2α
i δ2, see Proposition A.1(i) in

Appendix A.2. Under this condition, we obtain E‖μ̂(τα)−μ‖2 �A E‖μ̂(t∗α)−μ‖2
the same way as in Theorem 3.4.
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3.2. Comparison of the oracle risks

In this section, we derive the balanced oracle inequality in Theorem 2.2 from the
oracle-proxy inequality in Theorem 3.4. We do this by comparing the different
bias and variance quantities at t∗α, t

b
α and tb. Initially, we bound the difference

between the α-risk terms at t∗α and tbα.

Lemma 3.6. We have

(Vt∗α,α − Vtbα,α)
+ ≤

( D∑
i=1

λ2α
i δ2 − κ

)+

and
(
B2

t∗α,α(μ)−B2
tbα,α(μ)

)+ ≤
(
κ−

D∑
i=1

λ2α
i δ2

)+

.

Proof. For the first inequality, we assume without loss of generality that tbα < t∗α.
The monotonicity of t �→ B2

t,α(μ), the fact that ER
2
t∗α,α = κ and Equation (2.21)

yield

Vt∗α,α = B2
t∗α,α(μ) +

D∑
i=1

λ2α
i δ2 − κ ≤ B2

tbα,α(μ) +

D∑
i=1

λ2α
i δ2 − κ (3.8)

≤ Vtbα,α(μ) +

D∑
i=1

λ2α
i δ2 − κ.

For the second inequality, we analogously assume without loss of generality
that t∗α < tbα. The monotonicity of t �→ Vt,α, the fact that ER2

t∗α,α ≤ κ and
Equation (2.21) then yield

B2
t∗α,α(μ) ≤ Vt∗α,α + κ−

D∑
i=1

λ2
i δ

2 ≤ Vtbα,α + κ−
D∑
i=1

λ2
i δ

2 (3.9)

≤ B2
tbα,α(μ) + κ−

D∑
i=1

λ2
i δ

2.

Under our assumptions, the first inequality in Lemma 3.6 allows to bound
the size of t∗α:

Corollary 3.7. Assume (PSD(p, CA)) with αp < 1/2 and (2.2). Then,

t∗α �α,A,κ tbα + s
1/(1−2αp)
D ≤ tb + s

1/(1−2αp)
D .

Proof. Under (PSD(p, CA)) with αp < 1/2, we have

δ−2(Vt∗α,α − Vtbα
) �A

∫ t∗α

tbα

t−2αp dt =
(t∗α)

1−2αp − (tbα)
1−2αp

1− 2αp
. (3.10)

Now, the result follows from Lemma 3.6 and assumption (2.2).
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We can now essentially compare the order of the risk at t∗α, t
b
α and tb.

Proposition 3.8 (Comparison of the oracle risks). Assume (PSD(p, CA)) with
αp < 1/2 and (2.2). Then,

E‖μ̂(tbα) − μ‖2 ∼α,A,κ E‖μ̂(tb) − μ‖2

and E‖μ̂(t∗α) − μ‖2 �α,A,κ E‖μ̂(tb) − μ‖2 + s
(2p+1)/(1−2αp)
D δ2.

Proof. For the second statement, we note that, as in (3.4), we can write

E‖μ̂(t∗α) − μ‖2 − E‖μ̂(tb) − μ‖2 ≤
(
B2

t∗α
(μ)−B2

tb(μ)
)+

+ (Vt∗α − Vtb)
+. (3.11)

We treat the two terms on the right-hand side separately. For the bias part, we
can assume t∗α ≤ tb. Analogously to (3.5), we have

B2
t∗α
(μ)−B2

tb(μ) ≤ λ
−(2+2α)

tb
B2

t∗α,α(μ) (3.12)

≤ λ
−(2+2α)

tb

(
Vtb,α + κ−

D∑
i=1

λ2α
i δ2

)
�α,A,κ

(
(tb)2p+1 + (tb)2p+2αpsD

)
δ2,

since Vtb,α �α,A,κ (tb)1−2αpδ2.
For the variance part, we can assume t∗α ≥ tb and obtain

Vt∗α − Vtb ≤ λ
−(2+2α)
�t∗α� (Vt∗α,α − Vtb,α) �A,κ (t∗α)

2p+2αpsDδ2 (3.13)

�α,A,κ ((tb)2p+2αpsD + s
(2p+1)/(1−2αp)
D )δ2

using Lemma 3.6 and Corollary 3.7. The intended inequality now follows from

(tb)2p+1δ2 ∼A Vtb ∼ E‖μ̂(tb) − μ‖2 (3.14)

and distinguishing the cases where tb is smaller or greater than s
1/(1−2αp)
D .

The essential inequality “�α,A,κ” in the first statement follows by replacing
t∗α with tbα in (3.12) and noting both that B2

tbα,α(μ) = Vtbα,α and Vtbα
≤ Vtb , since

tbα ≤ tb. The reverse direction “�α,A,κ” follows immediately from the fact that
the risk at tb is always of smaller order than the risk at any other t ∈ [0, D].

Together with Theorem 3.4, Proposition 3.8 yields the result in Theorem 2.2.

4. Constraints in terms of lower bounds

4.1. Undersmoothing for αp ≤ 1/4

The first constraint in Theorem 2.2 is the dimension-dependent error term

s
(2p+1)/(1−2αp)
D δ2 ∼A V

s
1/(1−2αp)
D

. (4.1)
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We show that an error of this order is unavoidable: From the identity in (2.17)
and the monotonicity of t �→ Vt, we obtain that for any i0 ∈ {0, . . . , D},

E‖μ̂(τα) − μ‖2 ≥ E(Vi01{τα ≥ i0}) ≥ P{τα ≥ i0}Vi0 . (4.2)

By considering the zero signal μ = 0, we can isolate the error, which stems di-
rectly from the stochastic variability of the smoothed residuals. In Appendix A.2,

we show that for αp ≤ 1/4, we stop later than i0 = s
1/(1−2αp)
D with nonvanishing

probability for D = Dδ → ∞ when δ → 0. This causes a dimension-dependent
error of the size V

s
1/(1−2αp)
D

. Since this reasoning can be extended to μ �= 0, we

obtain:

Proposition 4.1 (Dimension-dependent lower bound). Assume (PSD(p, CA))
with αp ≤ 1/4 and (2.2). Then, we have for any μ ∈ R

D that

E‖μ̂(τα) − μ‖2 ≥ Cs
(2p+1)/(1−2αp)
D δ2

with an absolute constant C > 0, provided that δ is sufficiently small and D =
Dδ → ∞ for δ → 0.

The proof of Proposition 4.1 shows that decreasing the admissible order of
|κ−

∑D
i=1 λ

2α
i δ2| beyond sDδ2 does not decrease the order of the lower bound. At

the same time, increasing the admissible order of |κ−
∑D

i=1 λ
2α
i δ2| may increase

the order of the lower bound. This further motivates assumption (2.2).

4.2. Oversmoothing for αp ≥ 1/2

The second constraint in Theorem 2.2 is αp < 1/2. We already anticipated in
Section 2.3 that for αp ≥ 1/2, an oracle inequality is no longer possible, since
tbα can be of strictly smaller order than tb. We make this precise by providing a
lower bound. Analogously to (4.2), the monotonicity of t �→ B2

t (μ) yields that
for any i0 ∈ {0, . . . , D}, we have

E‖μ̂(τα) − μ‖2 ≥ E(B2
i0(μ)1{τα ≤ i0}) ≥ P{τα ≤ i0}B2

i0(μ). (4.3)

Intuitively, τα centres around t∗α. Therefore, we can hope to bound the prob-
ability in (4.3) from below against a constant when i0 is of the order of t∗α.
If t∗α ≤ tbα, this gives a bound in terms of B2

tbα
(μ). From (2.28), we have that

t∗α ≤ tbα exactly when κ ≥
∑D

i=1 λ
2α
i δ2. Under this assumption, we obtain:

Proposition 4.2 (α-balanced oracle lower bounds). Assume (PSD(p, CA)) and

κ ≥
∑D

i=1 λ
2α
i δ2. Then, there exists a constant C ′

A > 0 depending on p and CA

such that

sup
μ∈Hβ(r,D)

E‖μ̂(τα) − μ‖2 ≥ C ′
ARβ,r,p,α(δ)
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with

Rβ,r,p,α(δ) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r2
(
r−2δ2/(1− 2αp)

)2β/(2β+2p+1)
, αp < 1/2,

r2(r−2δ2 log(r2δ−2))2β/(2β+2p+1), αp = 1/2,

r2(r−2δ2)2β/(2β+2p+2αp), αp > 1/2,

provided that δ is sufficiently small and tmm
β,p,r(δ) = o(D).

The proof is postponed to Appendix A.2.
Proposition 4.2 directly reflects the bound on tbα from (2.33). As long as

αp < 1/2, the lower bound is of the order of the minimax rateR∗
β,r,p(δ), however,

we lose a power of 1/(1 − 2αp) in the constant. This is exactly what would be
expected from the possible loss of smoothing in the size of tbα deduced in (2.33).
Note that this result also implies that the constant in Theorem 2.2 grows at
least this fast in α. For αp ≥ 1/2, the balanced oracles tbα and tb are of different
order. Since τα reflects the size of tbα rather than tb, we oversmooth and stop
too early such that rate optimal adaptation is no longer possible.

For α = 1 and p > 1/2, the lower bound for αp > 1/2 in Proposition 4.2 is the
same rate that Blanchard and Mathé [1] achieve via the discrepancy principle for
the normal equation (up to a log-factor). In our setting, this also is the correct
rate. In Appendix A.2, we separately control the stochastic error for αp ≥ 1/2.
We can then prove:

Proposition 4.3. Assume (PSD(p, CA)) with αp ≥ 1/2, κ ≥
∑D

i=1 λ
2α
i δ2

and (2.2). Then, there exists a constant CA,κ depending on p, CA and Cκ such
that

sup
μ∈Hβ(r,D)

E‖μ̂(τα) − μ‖2 ≤ CA,κRβ,r,p,α(δ) (4.4)

with Rβ,r,p,α(δ) from Proposition 4.2.

Proof. From (3.4) with t = tmm
β,p,r,α and Proposition A.1(ii) in Appendix A.2, we

obtain

E‖μ̂(τα) − μ‖2 − E‖μ̂(tmm
β,p,r,α) − μ‖2 (4.5)

�A,κ λ
−(2+2α)
�tmm

β,p,r,α�
(
B2

t∗α,α(μ) + sDδ2
)
+ (tmm

β,p,r,α)
2p+1δ2

�A,κ λ
−(2+2α)
�tmm

β,p,r,α�
(
Vt∗α,α + sDδ2

)
+ (tmm

β,p,r,α)
2p+1δ2

�A,κ (tmm
β,p,r,α)

2p+2αpVtmm
β,p,r,α,α + (tmm

β,p,r,α)
2p+1δ2.

Since Vtmm
β,p,r,α

∼A log(tmm
β,p,r,α)δ

2 for αp = 1/2 and Vtmm
β,p,r,α

∼A δ2 for αp > 1/2,
this gives the result.

Note that in addition to (2.2), an assumption on κ such as κ ≥
∑D

i=1 λ
2α
i δ2

is necessary for αp ≥ 1/2. Otherwise, κ = 0 satisfies (2.2), which yields that
τα = D.
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Table 1

Overview of the smoothing regimes.

αp < 1/4 1/4 ≤ αp < 1/2 1/2 ≤ αp

Risk at tbα ∼ Risk at tb Risk at tbα ∼ Risk at tb Risk at tbα �� Risk at tb,
tbα �� tb, stop too early

Dimension error No dimension error Dimension error

Stop too late for tb �� s
1/(1−2αp)
D

Undersmoothing Loss in the constant Oversmoothing

5. Discussion and simulations

The results from Sections 2, 3 and 4 reveal three different smoothing regimes:
For αp ≤ 1/4, the risk at tbα is of the same order as the risk at tb. There
is, however, an dimension-dependent error present and we potentially stop too

late when tb ��α,A,κ s
1/(1−2αp)
D , i.e. we undersmooth. For 1/4 < αp < 1/2,

the risk at tbα is still of the same order as the risk at tb and the dimension-
dependent error disappears. Note, however, that we lose in the constant Cα,A,κ

from Theorem 2.2, which was discussed in detail after Proposition 4.2. For 1/2 ≤
αp, the risk at tbα can be of smaller order than the risk at tb. We potentially
stop too early, i.e. we oversmooth. This is summarised in Table 1.

In Section 5.2, we discuss particular choices of α and in Section 5.2, we
compare our theoretical results with the estimation results for simulated data.

5.1. Choosing the smoothing parameter α

We consider the problem of choosing a suitable smoothing parameter α ≥ 0 in
order to adaptively estimate signals from Hβ(r,D) for fixed r > 0 and a range
of smoothness levels β in [βmin,∞). Here, we assume that βmin is a minimal
a priori smoothness available to the user. This yields the minimally sufficient
approximation dimension D ∼ tmm

βmin,p,r
= (r2δ−2)1/(2βmin+2p+1), see the discus-

sion in Section 2.1. Note that the choice βmin = 0, which provides a sufficient
approximation for any degree of smoothness β ≥ 0, may already be computa-
tionally feasible. For D ∼ tmm

βmin,p,r
, the size of the standard deviation term is of

order

sD ∼α,A

⎧⎪⎪⎨⎪⎪⎩
(tmm

βmin,p,r
)1/2−2αp, αp < 1/4,

log tmm
βmin,p,r

, αp = 1/4,

1, αp > 1/4.

(5.1)

When a maximal degree of smoothness βmax is known, the user may consider
the tradeoff between the smoothing parameter α and the constant Cα,A,κ in
Theorem 2.2. The optimal smoothing index is then given by the smallest α,
which guarantees adaptation over all β ∈ [βmin, βmax]. By Corollary 2.3, this
index is given by the smallest α ∈ [0, 1/(4p)) such that

tmm
βmax,p,r �α,A,κ (tmm

βmin,p,r)
1/2−2αp
1−2αp , (5.2)
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i.e. 2βmax + 2p+ 1 ≤ 1− 2αp

1/2− 2αp
(2βmin + 2p+ 1).

When no such βmax is known, the natural choice for the smoothing index is
α = 1/(4p), which is the smallest index at which the dimension dependent error
is of lower order for any β ≥ βmin: Theorem 2.2 together with (2.20) yields that
for all β ≥ βmin,

E‖μ̂(τ1/(4p)) − μ‖2 ≤ CA,κ

(
min

t∈[0,D]
E‖μ̂(t) − μ‖2 + (log tmm

βmin,p,r)
2(2p+1)δ2

)
(5.3)

with a constant CA,κ depending on p, CA and Cκ. For any β ≥ βmin, t
mm
β,p,r is

essentially larger than log tmm
βmin,p,r

up to a constant depending on β. Therefore,
for any β ≥ βmin,

E‖μ̂(τ1/(4p)) − μ‖2 ≤ CA,κ,βR∗
β,p,r(δ) for all μ ∈ Hβ(r,D) (5.4)

with a constant CA,κ,β > 0 which depends on p, CA, Cκ and β.
This clearly shows the advantage of smoothing compared to no smoothing:

We can directly influence the range of adaptation, whereas whithout smoothing,
the range is fixed and we cannot expect to adapt to signals of smoothness
greater than 2βmin+p+1/2. Additionally, the discussion above yields a natural
choice for α, i.e. α = 1/(4p), which in particular depends only on the degree
of the polynomial spectral decay p. This choice can further be optimised given
additional information about βmax.

Finally, we may not have access to arbitrary powers of (AA�) and only be able
to choose between α = 0 and α = 1. For the direct comparison of nonsmoothed
residual stopping and the discrepancy principle for the normal equation, our
results show the following: As long as p < 1/2, we should clearly prefer the
α = 1. When p is only slightly larger than 1/2, no method is clearly better than
the other and our choice should depend on the size of D and possibly additional
prior knowledge about the signals we want to estimate. Finally, when p is sub-
stantially larger than 1/2, we should prefer nonsmoothed residual stopping. In
particular, the two-step procedure from Blanchard et al. [2] – when computa-
tionally affordable – should produce uniformly better results, since we neither
pay in the rate nor in the constant.

5.2. Estimation results for simulated data

In this section, the properties of smoothed residual stopping, which have been
analysed in the previous sections are illustrated by Monte Carlo simulations.
Analogous to the simulations in Blanchard et al. [2], we set

δ = 0.01, p = 0.5, λi = i−p, i = 1, . . . D and κ =

D∑
i=1

λ2α
i δ2 (5.5)

such that t∗α = tbα. In this setting, the natural parameter choice from Section 5.1
is α = 1/(4p) = 0.5. The threshhold at which we enter the oversmoothing regime



3416 B. Stankewitz

Fig 2. SVD coefficients for four signals of different smoothness.

is α = 1/(2p) = 1. We consider the signals μ(∞), μ(3.0), μ(2.1) and μ(0.5) defined
by

μ
(∞)
i = 5 exp(−0.1i), μ

(3.0)
i = 500|Ui|i−2.05, (5.6)

μ
(2.1)
i = 5000| sin(0.01i)|i−1.6, μ

(0.5)
i = 250| sin(0.002i)|i−0.8,

with (Ui)i≤D independent standard uniform random variables. μ(∞), μ(2.1) and
μ(0.5) are the supersmooth, smooth and rough signals from [2], respectively. The
random signal μ(3.0) will further illustrate the effect of gradually increasing
the smoothing index α. All signals are indexed by their smoothness parameter
2β for the corresponding Sobolev-type ellipsoid Hβ(r,D), i.e. they are ordered
(μ(∞), μ(3.0), μ(2.1), μ(0.5)) from smooth to rough. The SVD coefficients (μi)i≤D

of the signals and their decay are illustrated in Figure 2.
Initially, we set D = Dδ = 10000 to make our results directly compa-

rable with [2]. In this setting, the integer valued classical oracle indices of
(μ(∞), μ(3.0), μ(2.1), μ(0.5)) are given by (43, 58, 504, 1331). The balanced coun-
terparts are (37, 52, 445, 2379). For any of the signals, 1000 realisations of the
model

Yi = λiμi + δεi, i = 1, . . . D (5.7)

are simulated. For each of these, we calculate the smoothed residual stopping
time τα for smoothing parameters α ∈ {0, 0.2, 0.5, 1, 1.5}. As in [2], we compute
the relative efficiency(

min
m≤D

E‖μ̂(m) − μ‖2
)1/2

/‖μ̂(τα) − μ‖, (5.8)

which serves as an estimate for the inverse of the square root of the constant
between E‖μ̂(τα)−μ‖2 and E‖μ̂(tc)−μ‖2. Additionally, we determine the relative
stopping time �tbα/τα. Boxplots of these quantities are presented in Figure 3.
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Fig 3. Boxplots of simulation results for D = 10000.

The simulation of the relative efficiency closely matches the theoretical re-
sults. For no to little smoothing of the residuals, i.e. α ∈ {0, 0.2}, the risk of
estimating the smooth signals μ(∞) and μ(3) is clearly dominated by the dimen-
sion dependent error term in Theorem 2.2, i.e. we are in the undersmoothing
regime, see Table 1.

This is evident, since the relative efficiency does not concentrate well and
can take values close to zero, i.e. the loss at the stopping time can be much
larger than the oracle risk. Smoothing is able to mitigate this. Indeed, for the
natural parameter choice α = 1/(4p) = 0.5, the relative efficiency concentrates
around a reasonable constant across all signals. Note, however, that for the
rougher signals μ(2.1) and μ(0.5), smoothing has worsened the constant. This
shows that the tradeoff between the range of adaptation and the constant dis-
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cussed in Sections 4.2 and 5.1 cannot be neglected in practice. Finally, we observe
a clear dropoff in the quality of estimation over all signals for a ≥ 1/(2p) = 1,
which is also expected from Table 1, since we are entering the oversmoothing
regime.

The same effects are illustrated by the behaviour of the stopping time itself.
The boxplots of �tbα/τα reflect our findings from Section 3.1 that τα centers
around t∗α, which is equal to tbα in our case. For α ∈ {0, 0.2}, we are in the
undersmoothing regime and large deviations from tbα are possible due to the
result in Proposition 4.1. By gradually increasing α, these vanish and for α ≥ 1,
τα evermore resembles the deterministic stopping time tbα. Numerical evaluation
of tbα shows that for α ≥ 1, tbα itself rapidly decreases for all signals considered,
resulting in stopping times which are substantially too early. This increases the
bias of μ̂(τα), which explains the loss in the relative efficiency. The size of the
loss suggests that for α ≥ 1, we are indeed in the oversmoothing regime.

Finally, we directly illustrate the behaviour of convergence rates in the asymp-
totical setting where Dδ → ∞ for δ → 0. We consider the estimation for the
super-smooth signal μ(∞) and the rough signal μ(0.5). For different smoothing
indices α, these already display all three possible regimes for the convergence
rate. In the simulations, we use values of D = Dk = 100 · 2k for k = 0, . . . , 10
with corresponding noise levels

δk =

√
r2max/D

2βmin+2p+1
k , k = 0, . . . , 10 (5.9)

where rmax = 1000 and 2βmin = 0.5. In this scenario, D0.01 = 10000 as before
and Dδk grows as the minimax truncation tmm

0.5,p,r index of the rough signal

μ(0.5), i.e. we assume that we want to be able to cover signals up to at least
this roughness. Again, we simulate 1000 realisations from (5.7) and consider
the stopped estimator for smoothing indices α ∈ {0, 0.2, 0.5, 1, 1.5}. We take
the mean squared loss as an estimate for the risk and compare the convergence
behaviour of the stopped estimator with the optimal rate, which is achieved by
stopping at tc and the rate of stopping deterministically at

√
D, which gives

the dimension-dependent rate D(2p+1)/2δ2 = Dδ2 from Proposition 4.1 for no
smoothing. The results are displayed in Figure 4.

We consider the results for μ(∞). For α = 0, we are in the undersmoothing
regime and obtain the Dδ2-rate, i.e. we do about as good as stopping at a
deterministic index of size

√
D. This is exactly what we would expect from the

lower bound in Proposition 4.1. Smoothing of the residuals improves the rate.
Numerical calculations show that the simulated behaviour for α = 1/(4p) = 0.5
is optimal up to a factor of 2.5. Note, however, that for α = 1/(2p) = 1, the
results already deteriorate again, which is consistent with the fact that this is the
threshhold case from Table 1 at which we should lose rate optimality. Finally,
for α = 1.5, we are deep into the oversmoothing regime and obtain substantially
suboptimal behaviour.

For μ(0.5), the picture is different. Since μ(0.5) is particularly rough, the risk
initially increases with the approximation dimension, simply because a larger
part of the signal is considered. As tb is always substantially greater than

√
D, we
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Fig 4. Log-log plot of the risk rates for μ(∞) and μ(0.5) and different smoothing indices.

never suffer from undersmoothing due to the stochastic variability of the resid-
uals. Therefore, α = 0 outperforms all other indices. As predicted by Proposi-
tion 4.2, the results deteriorate with increasing α. For α ∈ {0, 0.2, 0.5}, however,
they group tightly together. This is exactly what is expected from the theoret-
ical results, since for smoothing up to the natural choice α = 1/(4p) = 0.5, we
should only observe a loss in the constant but not in the rate. For values of α
greater than the threshhold 1/(2p) = 1, we clearly observe oversmoothing.

Summarising, the simulations reiterate the theoretical results from
Sections 2.3 and 4 as well as the discussion in Section 5.1. In particular, the
parameter choice α = 1/(4p) yields reasonable estimation results across the
board for all signals. At the same time, the tradeoff between the range of adap-
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tation and the constant in front of the rate is important. Therefore, if prior
information about the maximal possible smoothness is available to the user, it
should be incorporated to further optimise the choice of α.

Appendix A

A.1. Proof appendix for the main result

Proof of Proposition 3.1. If B2
τα,α(μ) > B2

t∗α,α(μ), then we have that τα ≤ �t∗α�.
This yields

E
(
B2

τα,α(μ)−B2
t∗α,α(μ)

)+
=

	t∗α
−1∑
m=0

λ2+2α
m+1 μ

2
m+1P{τα ≤ m} (A.1)

+ (t∗α − �t∗α�)λ2+2α
�t∗α� μ2

�t∗α�P{τα ≤ �t∗α�}.

For a fixed m ≤ �t∗α�, we consider the event {τα ≤ m} = {R2
m,α ≤ κ}. The

probability of this event can be bounded by

P{R2
m,α ≤ κ} = P

{ D∑
i=m+1

λ2α
i (λ2

iμ
2
i + 2λiμiδεi + δ2ε2i ) ≤ κ

}
(A.2)

= P

{ D∑
i=m+1

λ2α
i

(
2λiμiδεi + δ2(ε2i − 1)

)
≤ −(ER2

m,α − κ)
}

(A.3)

≤ P

{ D∑
i=m+1

λ2α
i δ2(ε2i − 1) ≤

−(ER2
m,α − κ)

2

}
(A.4)

+ P

{ D∑
i=m+1

λ1+2α
i μiδεi ≤

−(ER2
m,α − κ)

4

}
≤ exp

(−(ER2
m,α − κ)2

16s2Dδ4

)
+ exp

( −(ER2
m,λ − κ)2

32δ2
∑D

i=m+1 λ
2+4α
i μ2

i

)
(A.5)

≤ exp

(−
(
B2

m,α(μ)−B2
t∗α,α(μ)

)2
16s2Dδ4

)
+ exp

(−
(
B2

m,α(μ)−B2
t∗α,α(μ)

)2
32δ2B2

m,α(μ)

)
.

(A.6)

In order to obtain (A.5), we use Lemma 1 from Laurent and Massart [10] and

the Gaussian tail bound P{Z ≤ −t} ≤ e−t2/(2σ2), t > 0, for a random variable
Z distributed according to N(0, σ2). Further, we use that for m ≤ �t∗α�,

ER2
m,α − κ = ER2

m,α − ER2
t∗α,α (A.7)

= B2
m,α(μ)−B2

t∗α,α(μ) + Vt∗α,α − Vm,α

≥ B2
m,α(μ)−B2

t∗α,α(μ)

to obtain (A.6).
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We set

F (t) : = exp
( −t2

16s2Dδ4

)
+ exp

( −t2

32δ2(B2
t∗α,α(μ) + t)

)
, t ≥ 0. (A.8)

The monotonicity of t �→ B2
t,α and F and a Riemann sum approximation yield

E
(
B2

τα,α(μ)−B2
t∗α,α(μ)

)+
(A.9)

≤
	t∗α
−1∑
m=0

λ2+2α
m+1 μ

2
m+1F (B2

m,α(μ)−B2
t∗α,α(μ))

+ (t∗α − �t∗α�)λ2+2α
�t∗α� μ2

�t∗α�F (B2
	t∗α
,α(μ)−B2

t∗α,α(μ))

≤
∫ ∞

B2
t∗α,α

(μ)

F (t−B2
t∗α,α(μ)) dt ≤

∫ ∞

0

F (t)t dt

≤ 1

2

√
2π8s2Dδ4 +

∫ B2
t∗α,α(μ)

0

exp
( −t2

64δ2B2
t∗α,α(μ)

)
dt+

∫ ∞

B2
t∗α,α

(μ)

exp
( −t

64δ2

)
dt

≤
√
4πsDδ2 +

1

2

√
2π · 32δ2B2

t∗α,α(μ) + 64δ2 ≤ 74sDδ2 + 2B2
t∗α,α(μ).

For the last inequality, we use the binomial identity to obtain
√
πδ2B2

t∗α,α(μ) ≤
(πδ2 +B2

t∗α,α(μ))/2 and the estimate
√
4π + 2π ≤ 10.

Proof of Proposition 3.3. The Cauchy-Schwarz inequality and Eε4m = 3 yield

E(Sτα − S�t∗α�)
+ = δ2

D∑
m=�t∗α�+1

λ−2
m E(ε2m1{τα ≥ m}) (A.10)

≤ δ2
D∑

m=�t∗α�+1

λ−2
m

√
Eε4m

√
P{τα ≥ m}

≤
√
3δ2

D∑
m=�t∗α�+1

λ−2
m

√
P{τα ≥ m}.

The smoothed residual stopping time satisfies τα ≥ m exactly when R2
m−1,α > κ.

For m ≥ �t∗α+ 1, the probability above can therefore be estimated by

P{R2
m−1,α > κ} = P

{ D∑
i=m

λ2α
i (λiμi + δεi)

2 > κ
}

(A.11)

= P

{ D∑
i=m

λ2+2α
i μ2

i + 2λ1+2α
i μiδεi + λ2α

i δ2ε2i > κ
}

(A.12)

≤ P

{ D∑
i=m

λ2α
i δ2(ε2i − 1) >

κ− ER2
m−1,α

2

}
(A.13)
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+ P

{ D∑
i=m

λ1+2α
i μiδεi >

κ− ER2
m−1,α

4

}
≤ exp

( −(κ− ER2
m−1,α)

2

16
∑D

i=m λ4α
i δ4 + 8δ2λ2α

m (κ− ER2
m−1,α)

)
(A.14)

+ exp

( −(κ− ER2
m−1,α)

2

32δ2
∑D

i=m λ2+4α
i μ2

i

)
.

The last inequality follows again from Lemma 1 in [10] and the Gaussian tail

bound P{Z ≤ −t} ≤ e−t2/(2σ2), t > 0, for a random variable Z distributed
according to N(0, σ2).

Since αp < 1/2, we have the following essential lower bound for the numerator
in the exponential terms in (A.14):

κ− ER2
m−1,α ≥ ER2

t∗α,α − ER2
m−1,α (A.15)

= B2
t∗α,α(μ)− Vt∗α,α + Vm−1,α −B2

m−1,α(μ)

�A

m−1∑
i=�t∗α�+1

i−2αpδ2 ≥ δ2
∫ m

�t∗α�+1

t−2αp dt

≥ δ2

1− 2αp

(
m1−2αp − �t∗α1−2αp

)
.

For the denominators, we use the upper bounds

D∑
i=m

λ4α
i ≤ s2D, (A.16)

λ2α
m (κ− ER2

m−1,α) ≤ λ2α
m

( D∑
i=1

λ2α
i δ2 + CκsDδ2 −

D∑
i=m

λ2α
i δ2

)
(A.17)

≤ (1 + Cκ)s
2
Dδ2,

and

D∑
i=m

λ2+4α
i μ2

i ≤ λ2α
m B2

m−1,α(μ) (A.18)

≤ λ2α
m

(
Vm,α + κ−

D∑
i=1

λ2α
i δ2

)
≤ (1 + Cκ)s

2
Dδ2,

for m ≥ �t∗α+ 1.
Together, this yields

E(Sτα − S�t∗α�)
+ � δ2

D∑
m=�t∗α�

m2p exp

(
−(m1−2αp − �t∗α1−2αp)2

CA,κ(1− 2αp)2s2D

)
(A.19)
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for a constant CA,κ > 0 depending on p, CA and κ. By a Riemann sum approx-
imation, the sum in (A.19) can essentially be estimated from above by∫ ∞

�t∗α�
t2p exp

(
−(t1−2αp − �t∗α1−2αp)2

CA,κ(1− 2αp)2s2D

)
dt (A.20)

∼α,A

∫ ∞

�t∗α�1−2αp

u
2p+2αp
1−2αp exp

(
−(u− �t∗α1−2αp)2

CA,κ(1− 2αp)2s2D

)
du

�α,A

∫ ∞

0

(u+ �t∗α1−2αp)
2p+2αp
1−2αp exp

(
−u2

CA,κ(1− 2αp)2s2D

)
du

�α,A,κ �t∗α2p+2αpsD + s
(2p+1)/(1−2αp)
D .

�α,A,κ (t∗α)
2p+1 + s

(2p+1)/(1−2αp)
D .

Noting that E(S�t∗α�−St∗α)
+ �A (t∗α)

2pδ2 and Vt ∼A t2p+1δ2 yields the result.

A.2. Proof appendix for supplementary results

Proof of Proposition 4.1. For μ = 0 and a fixed i0, we have τα ≥ i0 if and only
if

R2
i0−1,α =

D∑
i=i0

λ2α
i (λi · 0 + δεi)

2 =

D∑
i=i0

λ2α
i δ2ε2i > κ. (A.21)

This condition can be reformulated to

D∑
i=i0

λ2α
i (ε2i − 1)−

i0−1∑
i=1

λ2α
i > δ−2κ−

D∑
i=1

λ2α
i . (A.22)

Assumption (2.2) and the fact that
∑i0−1

i=1 λ2α
i �α,A i1−2αp

0 imply that there
exists a constant Cα,A,κ > 0 depending only on α, p, CA and Cκ such that for

i0 ∼ s
1/(1−2αp)
D ,

s−1
D

D∑
i=i0

λ2α
i (ε2i − 1) > Cα,A,κ (A.23)

is sufficient for (A.22). Since αp ≤ 1/4, the left-hand side normalises: We have

s̃2D : = Var

D∑
i=i0

λ2α
i (ε2i − 1) (A.24)

= 2

D∑
i=i0

λ4α
i �A

{
D1−4αp − i1−4αp

0 , αp < 1/4,

logD − log i0, αp = 1/4,

which implies that s̃2D → ∞ for δ → 0, since i0 = o(D). This yields that the sum
in (A.23) satisfies Lindeberg’s condition. By Slutzky’s Lemma, the left-hand side
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in (A.23) then converges in distribution to a centred Gaussian random variable
Z and

P

{
s−1
D

D∑
i=i0+2

λ2α
i (ε2i − 1) > Cα,A,κ

}
δ→0−−−→ P{Z > Cα,A,κ} > 0. (A.25)

This implies that P{τα ≥ i0} ≥ C for some constant C > 0 and δ sufficiently
small. Together with (4.2), this gives

E‖μ̂(τα) − 0‖2 ≥ P{τα ≥ i0}Vi0 ≥ Cs
(2p+1)/(1−2αp)
D δ2, (A.26)

since Vi0 ∼A i2p+1
0 δ2.

Finally, we note that for μ �= 0,

P{R2
i0,α ≥ κ} = P

{ D∑
i=i0

λ2+2α
i μ2

i + 2λ1+2α
i μiδεi + λ2α

i δ2ε2i > κ
}

(A.27)

≥ P

{ D∑
i=i0

2λ1+2α
i μiδεi + λ2α

i δ2ε2i > κ
}

≥ P

{ D∑
i=i0

2λ1+2α
i μiδεi ≥ 0,

D∑
i=i0

λ2α
i δ2ε2i > κ

}

=
1

2
P

{ D∑
i=i0

λ2α
i δ2ε2i ≥ κ

}
,

which shows that (A.26) also holds for μ �= 0.

Proof of Proposition 4.2. We consider a signal μ = μ(δ) ∈ Hβ(r,D) with only
one nonzero coefficient at position i0 + 1 given by

μ2
i0+1 := λ

−(2+2α)
i0+1

i0∑
i=2

λ2α
i δ2 and μi := 0 for all i �= i0 + 1. (A.28)

Note that the coefficient μi0+1 is chosen in a way that the α-balanced oracle tbα
is slightly smaller than i0 but of the same order. Under the assumption on κ, a
sufficient condition for the stopping criterion R2

i0,α
≤ κ is given by

i0∑
i=2

λ2α
i δ2 + 2λ1+2α

i0+1 μi0+1δεi0+1 +

D∑
i=i0+1

λ2α
i δ2ε2i ≤

D∑
i=1

λ2α
i δ2. (A.29)

We consider the different regimes of αp:

(a) If αp ≤ 1/4, then we consider the condition

εi0+1 ∈ [−1, 0] and

D∑
i=i0+2

λ2α
i (ε2i − 1) ≤ 0, (A.30)
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which is sufficient for (A.29). Due to the independence of the (εi)i≤D, we
only have to control the second part of the event defined by (A.30). If
we choose i0 = i0(δ) � tmm

β,p,r(δ), then the standardisation of this term
normalises in the same way as in the proof of Proposition 4.1 due to the
growth condition on D. We have

λ
−(2+2α)
i0+1

i0∑
i=2

λ2α
i ∼A

1

1− 2αp
(i0 + 1)2p+1 (A.31)

for i0 sufficiently large. Therefore, we can choose

i0 ∼ ((1− 2αp)δ−2r2)1/(2β+2p+1) (A.32)

when δ is sufficiently small while still maintaining μ ∈ Hβ(r,D). This
yields

E‖μ̂(τα) − μ‖2 �A (1− 2αp)−1i2p+1
0 δ2 (A.33)

�A r2(r−2δ2/(1− 2αp))2β/(2β+2p+1).

(b) If 1/4 < αp < 1/2, then we rearrange (A.29) to

2λα
i0+1

√√√√ i0∑
i=2

λ2α
i εi0+1 +

D∑
i=i0+1

λ2α
i (ε2i − 1) ≤ λ2α

1 . (A.34)

If we choose i0 = i0(δ) � tmm
β,p,r(δ), both terms on the left-hand side

of (A.34) converge to zero in probability, since their variances are multiples
of

λ2α
i0+1

i0∑
i=2

λ2α
i �A (i0 + 1)1−4αp and

D∑
i=i0+1

λ4α
i �A

D∑
i=i0+1

i−4αp, (A.35)

which both vanish for δ → 0. Since λ2α
1 > 0, this yields P{τα ≤ i0} → 1

for δ → 0, which gives the same result as in (a).
(c) If αp ≥ 1/2, the same reasoning as in (b) allows to bound the probability

P{τα ≤ i0} from below for δ → 0. Since

λ
−(2+2α)
i0+1

i0∑
i=2

λ2α
i ∼A

{
i2p+1
0 log(i0), αp = 1/2,

i2p+2αp
0 , αp > 1/2,

(A.36)

we can choose i0 of order tmm
β,p,r,α(δ) while still maintaining μ ∈ Hβ(r,D).

This yields the bound

E‖μ̂(τα) − μ‖2 �A

⎧⎨⎩(tmm
β,p,r,α)

2p+1 log(tmm
β,p,r,α)δ

2, αp = 1/2,

r2(r−2δ2)2β/(2β+2p+2αp), αp > 1/2.
(A.37)

This finishes the result.
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Proposition A.1 (Control of the stochastic error for αp ≥ 1/2). Assume

(PSD(p, CA)) with αp ≥ 1/2, κ ≥
∑D

i=1 λ
2α
i δ2 and (2.2). Then, we have the

following control over the stochastic error:

(i) For any μ ∈ Hβ(r,D) which is the D-dimensional projection of a signal
satisfying the polished tail condition (3.7), there exists a constant CA,κ > 0
depending on p, CA and Cκ such that

E(Sτα − St∗α)
+ ≤ CA,κ(t

∗
α)

2p+1δ2.

(ii) For any μ ∈ Hβ(r,D), there exists a constant CA,κ > 0 depending on
p, CA and Cκ such that

E(Sτα − Stmm
β,p,r,α

)+ ≤ CA,κ(t
mm
β,p,r,α)

2p+1δ2.

Proof. We proceed as in the proof of Proposition 3.3 up to the inequality
in (A.14). We split the two exponential terms in three and estimate from above
with

exp

(−(κ− ER2
m−1,α)

2

32
∑D

i=m λ4α
i δ4

)
+ exp

(−(κ− ER2
m−1,α)

16δ2λ2α
m

)
(A.38)

+ exp

( −(κ− ER2
m−1,α)

2

32δ2
∑D

i=m λ2+4α
i μ2

i

)
.

For (i), we have

B2
�t∗α�,α(μ) =

D∑
i=�t∗α�+1

λ2+2α
i μ2

i (A.39)

�A �t∗α−(2p+2αp)

ρ(�t∗α�+1)∑
i=�t∗α�+1

μ2
i

�A

ρ(�t∗α�+1)∑
i=�t∗α�+1

λ2+2α
i μ2

i .

Choosing m− 1 ≥ ρ(�t∗α+ 1), we obtain that

B2
m−1,α(μ) =

D∑
i=m

λ2+2α
i μ2

i ≤ cAB
2
�t∗α�,α(μ) (A.40)

for a constant cA < 1 depending on p, CA.
For (ii), choosing m − 1 ≥ C ′

At
mm
β,p,r,α for a constant C ′

A > 1 depending on p
and CA yields

B2
m−1,α(μ) �A r2(C ′

At
mm
β,p,r,α)

−(2β+2p+2αp). (A.41)
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Setting t̄ := t∗α for (i) or t̄ := tmm
β,p,r,α for (ii), we can therefore choose a

constant C ′
A > 1 such that for m− 1 ≥ C ′

A�t̄,

κ− ER2
m−1,α = κ−

D∑
i=1

λ2α
i δ2 + Vm−1,α −Bm−1,α(μ) (A.42)

≥
{
κ−

∑D
i=1 λ

2α
i δ2 + Vm−1,α − cABt∗α,α(μ), t̄ = t∗α,

κ−
∑D

i=1 λ
2α
i δ2 + Vm−1,α −B2

m−1,α(μ) t̄ = tmm
β,p,r,α,

≥
{
(1− cA)

(
κ−

∑D
i=1 λ

2α
i δ2 + Vt∗α,α

)
, t̄ = t∗α,

κ−
∑D

i=1 λ
2α
i δ2 + Vm−1,α −B2

m−1,α(μ) t̄ = tmm
β,p,r,α,

�A δ2,

where we have used (A.41) and the definition of tmm
β,p,r,α from (2.34) for the last

inequality. Additionally, we have the estimates

D∑
i=m

λ4α
i �A λα

m (A.43)

and

D∑
i=m

λ2+4α
i μ2

i ≤ λ2α
m B2

m−1,α(μ) (A.44)

≤ λ2α
m

(
κ−

D∑
i=1

λ2α
i δ2 + Vm−1,α

)
�A,κ λ2α

m log(m)δ2,

where we have used Equation (2.21), assumption (2.2) and that without loss
of generality, m ≥ t∗α. Note that the log factor occurs only for αp = 1/2. We
therefore obtain that for a constant C ′′

A,κ > 0 depending on p, CA and Cκ,

E(Sτα − S�t̄�)
+ �A δ2

�C′
A t̄�∑

m=�t̄�
m2p + δ2

D∑
m=�C′

A t̄�+1

m2p exp(−mαp/(C ′′
A,κ logm))

�A,κ t̄2p+1δ2. (A.45)

Noting that E(S�t̄� − St̄)
+ �A t̄2pδ2 finishes the proof.
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