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Abstract: We consider the problem of estimating sparse approximate fac-
tor models. In a first step, we jointly estimate the factor loading parameters
and the error - or idiosyncratic - covariance matrix based on the Gaussian
quasi-maximum likelihood method. Conditionally on these first step esti-
mators, using the SCAD, MCP and Lasso regularisers, we obtain a sparse
error covariance matrix based on a Gaussian QML and, as an alternative
criterion, a least squares loss function. Under suitable regularity conditions,
we derive error bounds for the regularised idiosyncratic factor model ma-
trix for both Gaussian QML and least squares losses. Moreover, we establish
the support recovery property, including the case when the regulariser is
non-convex. These theoretical results are supported by empirical studies.
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1. Introduction

The need of a joint modelling for high-dimensional random vectors has fostered
a flourishing research in sparse models. The application domains of sparse mod-
elling has been substantially widened by the availability of massive data. For
instance, when dealing with significantly large financial portfolio sizes, it is ar-
duous to build a realistic model that is both statistically precise and provides
intuitive insights among asset relationships: as an example, this gave rise to
sparse matrix precision methods - see the review of [13] - or variance covariance
estimation based on factor models - see [10]. Factor modelling aims at summa-
rizing the information from large data sets through a small number of variables
called factors. For example, [28] developed an arbitrage pricing theory built on
a multiple factor model for asset returns to gain statistical effectiveness when
estimating the co-movements and common shocks from a large portfolio size.

In factor models, the quantity of interest is the variance covariance matrix
Σ of the vector of observations, which is decomposed as a sum of the quadratic
product of the factor loading matrix Λ and the covariance matrix of the idiosyn-
cratic errors Ψ. In the standard factor analysis setting in which the dimension
p - the number of variables composing the vector of observations - is fixed, it
is commonly assumed that the idiosyncratic covariance matrix Ψ is diagonal.
Under such structure assumption for Ψ, [2] derived the large sample properties
of the likelihood-based factor model estimators. [4] extended these asymptotic
results for a potentially diverging p.

[9] developed the notion of approximate factor models, where the matrix
Ψ is not required to be diagonal, which enables the idiosyncratic errors to be
cross-sectionally correlated. Under the assumption of bounded eigenvalues for
Ψ, [5] studied the large sample properties of the likelihood-based factor model
for non-diagonal Ψ and diverging p. However, if we consider the estimation of
all elements of Ψ, the number of parameters exceeds the number of estimating
equations. Thus, the estimation of the diagonal elements of Ψ only is considered
in [5]. As the first study that explicitly modelled sparsity on Ψ and thus relaxed
the diagonal assumption within the likelihood based setting, [6] considered a
conditionally sparse factor framework, in the sense that Ψ is a sparse matrix with
bounded eigenvalues. Using a Gaussian quasi-maximum likelihood approach, [6]
proposed a joint estimation of Λ and Ψ while penalizing Ψ through the adaptive
Lasso and SCAD methods, the so-called Penalised Maximum Likelihood (PML)
method. They derived asymptotic consistency results under the rate log(p) =
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o(n) and a convergence rate for the sparse estimator of Ψ, which is not minimax
optimal.

In this study, we consider the following problem: given n observations of a p
dimensional random vector Xi, conditionally on a suitable first step estimator
of the loading factor matrix Λ, estimate a sparse Ψ. Our main contributions
are as follows: first, we provide error bounds for the sparse estimator of Ψ in
the �1, �2 and �∞ senses for specific scaling behaviours of (n, p, k0), where k0 is
the cardinality of the true unknown sparse support; second, we provide the con-
ditions to satisfy the support recovery property. Assuming a non-diagonal and
sparse Ψ is intuitively meaningful. Indeed, for a portfolio composed with stocks,
when the idiosyncratic components represent stocks’ individual shocks, they are
non-correlated or weakly correlated among the stocks across different indus-
tries/countries/and the like, since the industries/countries/and the like specific
components are not necessarily pervasive for the whole portfolio. This feature
also holds for a portfolio composed with different types of assets (stocks, bonds,
commodities, and the like). Our approach is based on a two-step estimation,
which allows for proper regularity conditions. In a first step, both the loading
factor matrix Λ and idiosyncratic covariance matrix Ψ are obtained based on
a Gaussian quasi-maximum likelihood estimator, whose theoretical properties
were derived by [4, 5]. Importantly at this stage, Ψ is assumed diagonal, which is
a required assumption to obtain consistent estimators: see [5]. Conditionally on
these first step estimators, we then relax the diagonal assumption on Ψ so that
the regularised idiosyncratic matrix corresponds to the solution of a penalised
M-estimator minimized with respect to Ψ only. In this second step, we consider
the Gaussian quasi-maximum likelihood (QML) and, as an alternative, the least
squares loss function, which was proposed by [18]. To the best of our knowledge,
this paper is the first attempt to link general penalised - potentially non-convex
- M-estimators and the likelihood-based inference for conditionally sparse factor
model. Our study shares a similar spirit to that of [6], who derived asymptotic
rates for consistency of the penalised estimator of Ψ. But our work differs from
theirs in two main respects: we provide bounds on �1-, �2- and �∞-errors and the
conditions to satisfy the support recovery property, this for two different losses
- the Gaussian QML and the least squares losses.

The framework we use to derive such error bounds is closely related to the
studies of [21, 22], which covers a broad range of non-convex objective functions
for sparse estimation. Under the assumption of restricted strong convexity (see
e.g. [24]) of the unpenalised loss function and suitable regularity conditions on
the penalty, they derive some error bounds for the penalised estimators and pro-
vide conditions for variable selection consistency. In our study, we extend their
results to the sparse factor model analysis and check the conditions for which
any local minimum lies within statistical precision of the true sparse parame-
ter for both Gaussian QML and least squares based loss functions. Our main
contribution is to quantify the statistical accuracy of the sparse approximate
covariance estimator by deriving error bounds between the penalised estimator
and the true parameter, and discuss the relevance of these theoretical bounds
for each M-criterion. Besides, following [22, 26] we provide sufficient conditions
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for the sparse estimator to satisfy the support recovery property. Within such
penalised M-estimator setting, the scaling behaviours with respect to (n, p, k0)
that we derive for support recovery highly depend on the regularity of the loss
function and the effect of the two-step estimation.

The remainder of the paper is organized as follows. In Section 2, we describe
the approximate factor model framework and the penalised statistical criteria.
In Section 3, we derive the error bounds in the �1, �2 senses. In Section 4, we
provide the conditions for which the support recovery property is satisfied. In
Section 5, we discuss specific applications of the proposed penalised framework.
Section 6 illustrates these theoretical results through simulated and real data
experiments. All intermediary results and proofs are contained in Appendix A.

Notations. Throughout this paper, we denote the cardinality of a set E by

|E|. For a vector v ∈ R
d, the �p norm is ‖v‖p =

( ∑p
k=1 |vk|p

)1/p
for p > 0, and

‖v‖∞ = maxi |vi|. Let the subset A ⊆ {1, · · · , d}, then vA ∈ R
|A| is the vector

v restricted to A. For a matrix A, ‖A‖s, ‖A‖∞ and ‖A‖F are the spectral,
infinity and Frobenius norms, respectively, and ‖A‖max = maxij |Ai,j | is the
coordinate-wise maximum (in absolute value). We write A′ (resp. v′) to denote
the transpose of the matrix A (resp. the vector v). We write vec(A) to denote
the vectorization operator that stacks the columns of A on top of one another
into a vector. We denote by A � 0 (resp. A � 0) the positive definiteness
(resp. semi-definiteness) of A and vech(A) the p(p+1)/2 vector that stacks the
columns of the lower triangular part of A. For a function f : Rd → R, we denote
by ∇f the gradient or subgradient of f and ∇2f the Hessian of f . We denote by
(∇2f)AA the Hessian of f restricted to the block A. We write Ac to denote the
complement of the set A. The expression with high probability refers to event
occurring with probability approaching one when (n, p, k0) tend to infinity. The
scaling results for (n, p, k0) are expressed as f(n) ≥ Mg(k0, p) for 0 < M < ∞
some universal constant and continuous functions f(.), g(.).

2. Framework

We consider a sequence of n observations of a p-dimensional random vector
(Xi), assumed to be independent and identically distributed and following the
factor structure

Xi = ΛFi + εi, (2.1)

where Λ ∈ Mp×m(R) is the loading matrix, Fi is the Rm vector of factor vari-
ables and εi the R

p vector of errors - or idiosyncratic variables. In (2.1), the
vector Xi is observable; none of the right-hand side variables are observable and
the dimension m > 0 is known. We assume E[Fi] = 0 ∈ R

m, E[FiF
′
i ] = Im

the identity matrix of size m, E[Fiε
′
i] = 0 ∈ Mm×p(R) and E[εiε

′
i] = Ψ ∈

Mp×p(R) non-diagonal. The idiosyncratic components (εi) are assumed to be
correlated following the setting of [6, 9]. Based on these assumptions, E[Xi] =
0, Var(Xi) = ΛΛ′ +Ψ. The object of interest is to recover the matrix quantity
Σ : Mp×m(R) ×Mp×p(R) defined as Σ(Λ,Ψ) = ΛΛ′ +Ψ. We assume that the
factors and idiosyncratic variables are uniformly sub-Gaussian.
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Assumption 1. The (Xij)1≤i≤n,1≤j≤p are uniformly sub-Gaussian random
variables, that is, the common factors (Fik)1≤i≤n,1≤k≤m and the unique fac-
tors (εij)1≤i≤n,1≤j≤p are uniformly sub-Gaussian. More formally, we assume
that ∃K ∈ R; ∃σ2

0 > 0; ∀i ∈ {1, . . . , n}; ∀j ∈ {1, . . . , p} such that

K2
(
E[exp(|Xij |2/K2)]− 1

)
≤ σ2

0 .

Remark. The i.i.d. and sub-Gaussian assumptions can be relaxed in favour of
dependent data such as time series with mixing conditions. Whether the i.i.d.
setting is assumed or not, the theoretical error bounds we propose to derive in
Section 3 together with the scaling behaviours would not be altered. However,
it is worth noting that the exponential bound we use to evaluate the probability
to satisfy the former error bounds would be different, should we consider, e.g.,
strongly mixing time series.

The factor model studies that considered a sparse estimator Ψ̂ provided
asymptotic probability bounds only. Based on the principal component method,
[14] considered a two-step estimation, where the loading factor matrix Λ is esti-
mated through an OLS procedure in a first step; in a second step, they obtained
a sparse estimator Ψ̂ using an adaptive threshold technique. [15] considered the
POET estimator, where both ΛE[FtF

′
t ]Λ

′ and Ψ are decomposed based on a
principal component approach and the eigenvalues of the PCA-based represen-
tation of Ψ are penalised. Using the likelihood-based inference approach, [6]
considered a Gaussian QMLE for the joint estimation of (Λ,Ψ) and provided
asymptotic rates for consistency, where Ψ only is regularised by the adaptive
Lasso and SCAD methods.

The main contribution of our study is to provide error bounds for the regu-
larised Ψ̂ and the conditions to satisfy the support recovery property. We quan-
tify the statistical accuracy of the latter based on two different unpenalised loss
functions and for potentially non-convex regularisers. In the rest of the paper,
we denote (Λ0,Ψ0) the true parameters and Σ0 := Σ(Λ0,Ψ0) = Λ0Λ

′
0 +Ψ0.

Assumption 2. The true parameter θΨ0 = vech(Ψ0) is assumed to be sparse
so that k0 = card(A), where A = {1 ≤ i ≤ p(p+ 1)/2 : θi,Ψ0 := vech(Ψ0)i �= 0}
with k0 < p(p+ 1)/2 the total number of parameters.

Under the sparsity assumption, we aim at recovering the true sparse support
A. To do so, we consider a regularisation procedure on the variance-covariance
Ψ so that the problem of interest is⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Ψ̂g = arg min

Ψ∈Ω

{
Gn,p(Λ̃; Ψ) + p(γn, θΨ)

}
, where

(Λ̃, Ψ̃) = arg min
(Λ,Ψ)∈Θ

{
Gn,p(Λ;Ψ)

}
, with

Gn,p(Λ;Ψ) = 1
2p

(
log(|Σ(Λ,Ψ)|) + tr(ŜΣ(Λ,Ψ)−1)

)
,

(2.2)

where Ŝ is the sample variance covariance estimator, θΨ = vech(Ψ), and (Λ̃, Ψ̃)
are first step estimators obtained by estimating without regularisation the fac-
tor model based on the Gaussian QML function Gn,p(.; .) for Λ,Ψ ∈ Θ - Θ
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will be made explicit later -. In the second step, the regularisation procedure is
performed by the regulariser p(γn, .) : R

p(p+1)/2 → R, where γn is the regular-
isation parameter, which depends on the sample size, and enforce a particular
type of sparse structure in the solution Ψ̂g. Ω denotes a p×p-variance covariance
matrices subset defined as

Ω =
{
Ψ : Σ := Σ(Λ̃,Ψ) = Λ̃Λ̃′ +Ψ, Ψ = Ψ′, Ψ � 0,

b1 < λmin(Ψ) < λmax(Ψ) < b2, a < λmin(2Ŝ − Σ), g(θΨ) ≤ R
}
,

for any fixed matrix Λ̃ and for some positive constants b1, b2, a and R. Due
to the potential non-convexity of this penalty, we include the side condition
g(θΨ) ≥ ‖θΨ‖1 with g : Rp(p+1)/2 → R a convex function, typically g(θΨ) =∑p

i≤j |Ψij |, and R a supplementary regularisation parameter to ensure the exis-
tence of local/global optima. We also impose g(θΨ0) ≤ R. Note that Ω is convex:
if λmin(2Ŝ − Λ̃Λ̃′ −Ψk) > a, with k = 1, 2, then

λmin(2Ŝ − Λ̃Λ̃′ − (tΨ1 + (1− t)Ψ2)

≥ tλmin(2Ŝ − Λ̃Λ̃′ −Ψ1) + (1− t)λmin(2Ŝ − Λ̃Λ̃′ −Ψ2) > a.

As an alternative, we consider the regularised estimator Ψ̂ls based on the least
squares type contrast Fn,p(.) defined as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ψ̂ls = arg min
Ψ∈Ω̄

{
Fn,p(Λ̃; Ψ) + p(γn, θΨ)

}
, where

Fn,p(Λ̃; Ψ) = 1
2p‖Σ̂− Λ̃Λ̃′ −Ψ‖2F , and

(Λ̃, Ψ̃) = arg min
(Λ,Ψ)∈Θ

{
Gn,p(Λ;Ψ)

}
, with

Gn,p(Λ;Ψ) = 1
2p

(
log(|Σ(Λ,Ψ)|) + tr(ŜΣ(Λ,Ψ)−1)

)
,

(2.3)

where the parameter set Ω̄ is defined as

Ω̄ =
{
Ψ : Σ := Σ(Λ̃,Ψ) = Λ̃Λ̃′ +Ψ,Ψ = Ψ′,

Ψ � 0, l1 < λmin(Ψ) < λmax(Ψ) < l2, g(θΨ) ≤ R
}
,

for some positive constants l1, l2, R. The notation Ψ̂g (resp. Ψ̂ls) refers to the
Gaussian (resp. least squares) based two-step estimator satisfying (2.2) (resp.
(2.3)). The non-penalised population level parameters correspond to Ψg

0 =
argmin E[Gn,p(Λ̃; Ψ)] and Ψls

0 = argmin E[Fn,p(Λ̃; Ψ)], where both are assumed

to be unique, so that Ψg
0 = Ψls

0 = Ŝ − Λ̃Λ̃′ and both asymptotically converge
to the true parameter Ψ0 (see [4]). Note that in both regularised problems, Ψ̃
must be estimated jointly with Λ̃ in the first step, though it does not enter the
second-step objective.

There actually exist alternative presentations of the sparse approximate fac-
tor model, where only the off-diagonal entries of Ψ are penalised. Similar results
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for statistical consistency actually hold in this case. In our framework, we as-
sume that all components are equally penalised to clarify our arguments. Similar
settings in the context of the graphical Lasso were considered: e.g. [21] or [11].

Furthermore, in many existing studies, the focus is on the sparse estimation
of the covariance matrix. As indicated in [15], the sparsity assumption directly
on the covariance matrix Σ, in which many observed variables are uncorrelated,
is not appropriate in empirical situations since it is natural to think that several
common factors exist for the underlying structure of the observed variables.
Factor analysis stands as the natural method to appropriately deal with the
common factors. In standard factor analysis, the idiosyncratic components are
assumed uncorrelated, that is, the idiosyncratic covariance matrix is diagonal,
which corresponds to the so-called strict factor model. However, this diagonal
assumption is too restrictive in practice: see [6, 15]. Instead of this restrictive
assumption, we assume the sparsity of the idiosyncratic covariance, which allows
for the existence of correlation among the idiosyncratic components. Indeed,
factor models are often treated as approximate, where the observations (Xi) are
correlated given the factors: this is the object of the approximate factor model
of [9].

Finally, in the standard factor analysis, the Gaussian QML estimator is the
most commonly used approach since the corresponding estimator is more prefer-
able than the least squares estimator from the viewpoint of efficiency under the
typical Gaussian assumption (e.g., see [2] and [19]). Our analysis will allow to
compare both estimators from theoretical and empirical viewpoints.

The framework we use in Section 3 requires specific regularity conditions
on the non-penalised loss function, namely the restricted strong convexity. Our
two-step estimation allows for such property with respect to the parameter Ψ,
conditionally on the first step estimators. In both (2.2) and (2.3) statistical
criteria, the first step estimators (Λ̃, Ψ̃) are defined as⎧⎨

⎩
(Λ̃, Ψ̃) = arg min

(Λ,Ψ)∈Θ

{
Gn,p(Λ;Ψ)

}
, with

Gn,p(Λ;Ψ) = 1
2p

(
log(|Σ(Λ,Ψ)|) + tr(ŜΣ(Λ,Ψ)−1)

)
,

(2.4)

where Θ is the parameter space. Importantly, specific conditions are required
for identifiability. Indeed, for any orthonormal matrix A ∈ O(m × m) (i.e.,
A′A = AA′ = Im), the rotated estimator Λ̄ = Λ̃A is also the minimizer of
the above contrast function. To avoid this rotational indeterminacy, we use the
following identifiability condition IC5 in [4], assuming E[FiF

′
i ] = Im:

Λ = (Λ′
1,Λ

′
2)

′ with Λ1 =

⎛
⎜⎜⎜⎝

λ11 0 · · · 0
λ21 λ22 · · · 0
...

...
. . .

...
λm1 λm2 · · · λmm

⎞
⎟⎟⎟⎠ and λii �= 0 (i = 1, . . . , r).

Our framework can also accommodate alternative restrictions for identifiability.
For instance, [6] use the constraint E[FiF

′
i ] = Im and Λ′Ψ−1Λ diagonal in their
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joint estimation of Λ,Ψ, a restriction corresponding to IC3’ in Table 1 of [4] for
Ψ diagonal.

In the first step, we consider a diagonal constrained estimation for Ψ whereas
we assume that Ψ is not a diagonal but a sparse matrix. Without the diagonal
constraint, we cannot construct any reasonable estimator for Λ. In fact, for any
Λ ∈ Mp×m(R), we set Ψ̃(Λ) = Σ̂ − ΛΛ′ and then any discrepancy function

including Gn,p(Λ;Ψ) attains the minimum value at (Λ, Ψ̃(Λ)). From the results

in [5], we deduce that the estimator Λ̃ with the diagonal constraint provides rea-
sonable estimators. We will describe more precisely this fact later in the paper.
Moreover, the loading factor matrix Λ is assumed to satisfy the pervasiveness
condition, which is a technical but standard assumption in the factor analysis
literature: see for e.g. [6, 15].

Assumption 3. ∃δ, 0 < δ < ∞, so that δ−1 < λmin(
1
pΛ

′
0Λ0) ≤ λmax(

1
pΛ

′
0Λ0) <

δ.

Thus, in view of assumption 3, the parameter space Θ for the initial estimator
(Λ̃, Ψ̃) in problem (2.4) is defined as

Θ =
{
(Λ,Ψ) : Λ satisfies IC5, δ−1 < p−1λmin(Λ

′Λ) < p−1λmax(Λ
′Λ) < δ,

and Ψ is diagonal with positive diagonal components
}
.

Since our framework compels the sample size n to be large with respect to the
dimension p, we use the probability bounds derived by [5] to control this first
step estimator of the loading factor. In Proposition 1 of [5], these first step
estimators admit the probability bounds

1

p

p∑
k=1

1

Ψ̃kk

‖λ̃k − λ0,k‖22 = Op

(
1

n

)
+Op

(
1

p2

)
,

1

p

p∑
k=1

(Ψ̃kk −Ψ0,kk)
2 = Op

(
1

n

)
+Op

(
1

p2

)
,

where ∀k, ‖λ0,k‖2 ≤ C and C−2 ≤ Ψ̃kk ≤ C2 with C a sufficiently large constant,
λk = (λk1, · · · , λkm)′. Based on these results, the convergence rate of the loading
factor matrix becomes

‖Λ̃− Λ0‖F = Op

(√
p

n

)
+Op

(√
1

p

)
.

Hence based on the identifiability condition IC5 for Λ of [4], we assume the
following convergence rate of the first step estimator Λ̃.

Assumption 4. If ∀k, ‖λ0,k‖2 ≤ C and C−2 ≤ Ψ̃kk ≤ C2 with C a sufficiently

large constant, then the first step estimator Λ̃ satisfies the convergence rate

‖Λ̃− Λ0‖F = Op

(√
p

n

)
+Op

(√
1

p

)
.
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Finally, our framework relies on the following regularity conditions on the
penalty function.

Assumption 5. We consider penalty functions that are assumed to be amenable
regularisers defined as follows. We denote p(., .) : R+ ×R

d the penalty function
- or regulariser -, which is assumed to be coordinate-separable with respect to
θ ∈ Rd, idest

p(γn, θ) =

d∑
k=1

p(γn, θi).

Furthermore, let μ ≥ 0, and p(γn, .) is μ-amenable if

(i) ρ �→ p(γn, ρ) is symmetric around zero and p(γn, 0) = 0.
(ii) ρ �→ p(γn, ρ) is non-decreasing on R

+.

(iii) ρ �→ p(γn,ρ)
ρ is non-increasing on R

+
� .

(iv) ρ �→ p(γn, ρ) is differentiable for any ρ �= 0.
(v) lim

ρ→0+
∂ρp(γn, ρ) = γn.

(vi) ρ �→ p(γn, ρ) +
μ
2 ρ

2 is convex for some μ ≥ 0.
The regulariser p(γn, .) is (μ, ζ)-amenable if in addition

(vii) There exists ζ ∈ (0,∞) such that ∂ρp(γn, ρ) = 0 for ρ ≥ γnζ.

We denote by q : R+×R
d → R the function q(γn, ρ) = γn‖ρ‖1−p(γn, ρ) so that

the function μ
2 ‖ρ‖22 − q(γn, ρ) is convex.

Assumption 2 implies that the true support (unknown) is sparse, that is
the matrix Ψ0 contains zero components. The regularisation - or penalisation -
procedure provides an estimator of A by discarding the covariances among the
idiosyncratic components. Assumption 3, also assumed in [15, 21], is standard in
factor analysis. It requires the factors to impact a non-vanishing proportion of
the observations X1,1, · · · , Xn,p. Assumption 4 allows us to control for the first

step estimator Λ̃. To derive our theoretical properties, assumption 5 provides
regularity conditions that potentially encompass non-convex functions. These
regularity conditions are the same than [20, 21, 22]. In this paper, we focus on
the Lasso, the SCAD due to [12] and the MCP due to [31], given by

Lasso : p(γn, ρ) = γn|ρ|,

MCP : p(γn, ρ) = sign(ρ)γn

∫ |ρ|

0

(1− z/(γnbmcp))+dz,

SCAD : p(γn, ρ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

γn|ρ|,
for |ρ| ≤ γn,

− 1
(2(bscad−1)) (ρ

2 − 2bscadγn|ρ|+ γ2
n),

for γn ≤ |ρ| ≤ bscadγn,

(bscad + 1)γ2
n/2,

for |ρ| > bscadγn,
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where bscad > 2 and bmcp > 0 are fixed parameters for the SCAD and MCP
respectively. The Lasso is a μ-amenable regulariser, whereas the SCAD and
the MCP regularisers are (μ, ζ)-amenable. More precisely, μ = 0 (resp. μ =
1/(bscad − 1), resp. μ = 1/bmcp) for the Lasso (resp. SCAD, resp. MCP). The
parameter μ can be interpreted as a coefficient of non-convexity level: the larger,
the more non-convex the penalty becomes.

Our proposed sparse estimation method of Ψ can be summarized as follows:

Step 1. Solve problem (2.4), where (Λ,Ψ) ∈ Θ and obtain (Λ̃, Ψ̃). The estima-

tor Λ̃ satisfies the rate given in assumption 4.
Step 2. Conditionally on Λ̃ obtained in Step 1., solve the problem

Ψ̂g = arg min
Ψ∈Ω

{
Gn,p(Λ̃; Ψ) + p(γn, θΨ)

}
,

for a specific penalty p(γn, .) satisfying assumption 5 and where Gn,p(.)
is the Gaussian QML. This two step procedure corresponds to problem
(2.2).
or alternatively
Conditionally on Λ̃ obtained in Step 1., solve the problem

Ψ̂ls = arg min
Ψ∈Ω̄

{
Fn,p(Λ̃; Ψ) + p(γn, θΨ)

}
,

for a specific penalty p(γn, .) satisfying assumption 5 and where Fn,p(.)
is the least squares loss. This two step procedure corresponds to prob-
lem (2.3).

We highlight that Ω and Ω̄ impose similar eigenvalue conditions on Ψ and side
condition through R; in the Gaussian loss function case, Ω includes the addi-
tional constraint a < λmin(2Ŝ − Σ), which will be key in view of the regularity
conditions we will rely on to derive our consistency results. Intuitively, the con-
stant a controls for the curvature of the Gaussian loss function as it will enter
in the so-called restricted eigenvalue parameters of this Gaussian loss function
in Corollary 3.3.

Obviously, the regularised problem is not convex with respect to the param-
eter when considering the SCAD or MCP penalty. Therefore, we would like to
weaken the convexity assumption so that we could evaluate the accuracy of θ̂Ψ.
To this goal, the restricted strong convexity is a key ingredient to allow the
management of non-convex loss functions. Intuitively, we would like to handle
a loss function that locally admits some curvature. To ensure this property, we
rely on the strong convexity (local) of the loss function. The strong convexity of
a differentiable loss function corresponds to a strictly positive lower bound on
the eigenvalues of the Hessian matrix uniformly valid over a local region around
the true parameter. This amounts to a curvature condition. More precisely, we
are interested only in a particular direction, that is the difference Δ = θ̂ − θ0
between the estimator θ̂ and true parameter θ0. Hence the notion of restricted
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strong convexity weakens the (local) strong convexity by adding a tolerance
term. A detailed explanation is provided in [24].

Slightly extending the definition of [22], we say that an empirical loss function
Ln satisfies the restricted strong convexity condition (RSC) at θ if there exist
two positive functions α1, α2 and two nonnegative functions τ1, τ2 of (θ, n, d)
such that, for any Δ ∈ R

d,

〈∇θLn(θ +Δ)−∇θLn(θ),Δ〉 ≥ α1‖Δ‖22 − τ1
log d

n
‖Δ‖21, if ‖Δ‖2 ≤ 1,

〈∇θLn(θ +Δ)−∇θLn(θ),Δ〉 ≥ α2‖Δ‖2 − τ2

√
log d

n
‖Δ‖1, if ‖Δ‖2 ≥ 1.

Note that the (RSC) property is fundamentally local and that αk, τk, k = 1, 2
depend on the chosen θ. In [22], their so-called (RSC) condition is similar but
uniform with respect to (n, d). Moreover, to weaken notations, we simply write
αk and τk, k = 1, 2, by skipping their implicit arguments (θ, n, d).

Remark. In the latter (RSC) condition, the threshold one for ‖Δ‖2 has been
chosen for convenience. Actually, it is always possible to reparameterize the
model with θ̄ := rθ for some r > 0. Therefore, the criterion becomes L̄n(θ̄) :=
Ln(rθ). Since ∇θL̄n(θ) = r∇θ̄L̄n(θ̄), the (RSC) is rewritten as

〈∇θ̄L̄n(θ̄ + Δ̄)−∇θ̄L̄n(θ̄), Δ̄〉 ≥ ᾱ1‖Δ̄‖22 − τ̄1
log d

n
‖Δ̄‖21, ‖Δ̄‖2 ≤ r,

〈∇θ̄L̄n(θ̄ + Δ̄)−∇θ̄L̄n(θ̄), Δ̄〉 ≥ ᾱ2‖Δ̄‖2 − τ̄2

√
log d

n
‖Δ̄‖1, ‖Δ̄‖2 ≥ r,

with the new constants (ᾱ1, τ̄1, ᾱ2, τ̄2) := (α1/r
2, τ1/r

2, α2/r, τ2/r).

3. Error bounds

We first provide some error bounds under the assumption that the loss function,
say Ln(.), satisfies the RSC condition and the penalty is μ-amenable. More
precisely, Ln(.) is a generic empirical loss function so that the population risk
function is defined as L(θ) = E[Ln(θ)] assumed to be uniquely minimized at
θ0, which is independent of the sample size n. The regularised estimator thus
satisfies

θ̂ = arg min
θ:‖θ‖1≤R,θ∈Θ

{
Ln(θ) + p(γn, θ)

}
, (3.1)

where R > 0 and ‖θ0‖ ≤ R so that θ0 is a feasible point of the problem and Θ
is a convex set. Then we have the following Theorem.

Theorem 3.1. Suppose θ ∈ Rd and the objective function Ln(.) : Rd �→ R

satisfies the RSC condition and p(γn, .) is μ-amenable, with 3
4μ < α1. Suppose

the choice

4max
{
‖∇θLn(θ0)‖∞, α2

√
log d

n

}
≤ γn ≤

α2

6R
, (3.2)



3326 B. Poignard and Y. Terada

and suppose n ≥
16R2 max{τ21 , τ22 }

α2
2

log d. Let θ̂ be a stationary point of (3.1).

Then θ̂ satisfies

‖θ̂ − θ0‖2 ≤
6γn

√
k0

4α1 − 3μ
, ‖θ̂ − θ0‖1 ≤

6(16α1 − 9μ)

(4α1 − 3μ)2
γnk0,

where k0 = card(A) with A = supp(θ0) = {i : θ0,i �= 0}.
Remark.

(i) This result is based on an optimization reasoning only and is obtained in
a deterministic way. The proof can be found in [25]. As will be clarified
in the following Corollaries, to apply Theorem 3.1, we will need to check
the conditions for which the second step loss functions Gn,p(Λ̃; .) for the

Gaussian case and Fn,p(Λ̃; .) for the least squares case satisfy the RSC
condition. Moreover, we will show that suitable choices of γn and R pro-
vide the probability to satisfy the conditions of Theorem 3.1 with high
probability.

(ii) About (α1, μ): the tightness of the error bounds are sensitive to the dif-
ference 4α1 − 3μ, assuming γn, k0 fixed. Here, α1 should be thought as
the curvature of Ln: the bigger α1 is, the larger the curvature becomes.
On the other hand, μ measures the non-convexity of the penalty function:
the larger μ is, the more non-convex p(γn, .) becomes. Thus, there is a
trade-off between α1 and μ when satisfying the constraint 4α1 > 3μ.

Now, we derive an exponential-type inequality to evaluate the probability of
satisfying the condition (3.2) of Theorem 3.1. To derive such bound, we rely on
the Bernstein inequality applied to the difference ‖Ŝ − Σ0‖max, which appears
in the gradient (with respect to Ψ) of Gn,p(Λ̃; .) and Fn,p(Λ̃; .). The sample

variance covariance matrix is defined as Ŝ := 1
n

∑n
i=1 XiX

′
i.

Lemma 3.2. Under assumption 1, we have the bound

P

(
‖Ŝ − Σ0‖max ≥ h(t;n, p,K, σ2

0)
)
≤ exp(−nt),

where

h(t;n, p,K, σ2
0) = 2K2t+ 4Kσ0

√
t+ 2

√
2Kσ0λ

(
K/(

√
2σ0), n,

(
p

2

))

with λ(K,n, p) :=
√

2 log(2p)
n + K log(2p)

n .

Remark.

(i) This concentration inequality will be applied for bounding the random
quantities ‖∇θΨGn,p(Λ̃; Ψ)‖∞ and ‖∇θΨFn,p(Λ̃; Ψ)‖∞, where the differ-

ence Ŝ − Σ0 must be bounded in these score functions. Moreover, our
losses are functions of Λ̃ so that Λ̃Λ̃′ + Ψ0 appears in the gradient with
respect to Ψ. The transition from Λ̃Λ̃′+Ψ0 to Λ0Λ

′
0+Ψ0 is feasible using

assumption 4.
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(ii) Resuming the remark that follows Assumption 1, should we consider e.g.
strongly mixing time series, where (Ft, εt)t would be a strongly mixing
process with mixing coefficient α(.) satisfying α(ς) ≤ κρς with ς > 0 and
0 < ρ < 1, then our exponential bound would need to be adapted to the
strongly mixing case. To do so, Theorem 2 of [23] could be used under
strongly mixing and bounded random variables. Although the probabil-
ity of satisfying the condition (3.2) would be different in such dependent
framework, the error bounds together with the scaling (n, p) assumptions
would not be altered. The strong mixing assumption is used in the Pe-
nalised Gaussian Maximum Likelihood framework of [6].

In Lemma 3.2, setting t = log p
n implies that ‖Ŝ − Σ0‖max ≤ K

√
log p
n with

probability at least 1 − exp(− log p), for K > 0 sufficiently large. The choice
of t = log p

n is motivated by condition (3.2) in Theorem 3.1, where we aim at
evaluating the probability of satisfying such condition.

Indeed, Theorem 3.1 is stated in a deterministic manner. When applied to the
approximate factor model, we derive corresponding probabilistic results, where
we establish that for suitable parameter choices (γn, R), the conditions of Theo-
rem 3.1 hold with high probability. To do so, this requires bounding the random
quantity ‖∇θΨGn,p(Λ̃; Ψ0)‖∞ (resp. ‖∇θΨFn,p(Λ̃; Ψ0)‖∞) in the Gaussian (resp.
least squares) based M-estimation problem and verifying the RSC conditions.
This motivates the use of Lemma 3.2.

Corollary 3.3. Suppose the regulariser is μ-amenable, conditionally on the

estimator Λ̃ satisfying ‖Λ̃ − Λ0‖F = Op(
√

p
n ) + Op(

√
1
p ), under the sample

size n ≥ CR2α−2
2 log(p(p + 1)/2), with C > 0 a sufficiently large constant,

with α2 = {λmax(Λ̃Λ̃
′) + λmax(Ψ0) + 1}−3a/2p, if the regularisation parameter

satisfies

4max
{λmax(Ψ

−1
0 )2

2p
‖Λ̃Λ̃′ +Ψ0 − Ŝ‖s, α2

√
log p(p+ 1)/2

n

}
≤ γn ≤

α2

6R
, (3.3)

where Λ̃ satisfies (2.4) and Ψ0 ∈ Ω, suppose 3
4μ < α1 with α1 = α2. Then any

local optimum Ψ̂g of the nonconvex program (2.2) satisfies

‖vech(Ψ̂g −Ψ0)‖2 ≤
6γn

√
k0

2{λmax(Λ̃Λ̃′) + λmax(Ψ0) + 1}−3a/p− 3μ
,

‖vech(Ψ̂g −Ψ0)‖1 ≤
6(8{λmax(Λ̃Λ̃

′) + λmax(Ψ0) + 1}−3a/p− 9μ)γnk0

(2{λmax(Λ̃Λ̃′) + λmax(Ψ0) + 1}−3a/p− 3μ)2
,

(3.4)
with a ∈ Ω so that a > 0, k0 = |A| and A = {1 ≤ i ≤ p(p+ 1)/2 : θi,Ψ0 �= 0}.

Furthermore, under assumption 1 so that the sample variance-covariance es-
timator satisfies the bound in Lemma 3.2, if (γn, R) are chosen so that for
C1, C2,M large constants, C1

√
p/n ≤ γn ≤ C2/R and for a sample size

n ≥ Mλmax(Ψ
−1
0 )4pmax

(
R2, k0

)
, then (3.4) hold with probability at least 1 −

exp(− log p).
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Remark. Corollary 3.3 and its conditions justify a few comments.

(i) The proof relies on the following two steps:

(a) We verify the RSC condition and derive the quantities α1, α2, τ1, τ2
by lower bounding λmin(∇2

θΨθ′
Ψ
Gn,p(Λ̃; Ψ)). Here is the key role of

the minimum eigenvalue constraint a < λmin(2Ŝ −Σ) included in Ω:
this constraint allows us to lower bound the latter minimum eigen-
value. Applying Theorem 3.1, we obtain the error bounds (3.4) in a
deterministic manner.

(b) We bound ‖∇θΨGn,p(Λ̃; Ψ0)‖∞ using Lemma 3.2 for a fixed t = log p
n .

Indeed, the sub-Gaussian assumption enables to evaluate the prob-
ability of satisfying (3.3). In that case, assuming λmax(Ψ

−1
0 )4 as a

constant using the eigenvalue condition from the parameter set Ω,
the required rate becomes max

(
R2, k0

)
p = O(n) due to the control

of the first step estimator. This is a cost not encountered, e.g., by
[21]: in their Corollary 3, which provides error bounds on the Graph-
ical Lasso estimator, [21] assume ‖Ŝ − Σ0‖max ≤ K

√
log p/n, which

implies that γn should satisfy C1

√
log p/n ≤ γn ≤ C2/R. Note that

the bound constraint in Ω on the eigenvalues of Ψ0 is the same as
assumption 3.2-(ii) of [6].

(ii) When p(γn, θΨ) = γn‖θΨ‖1 and g(θΨ) = ‖θΨ‖1, then setting γn ≥ L
√

p/n
and R = m0

√
k0 with a constant m0 ≥ ‖θΨ0‖2, we have the scale n ≥

Mk0p. If we consider these bounds in a deterministic manner and fix
γn ≥ L

√
log p/n, then we would obtain a scaling n ≥ Mk0 log(p), which

agrees with Theorem 3.1 of [6].
(iii) We highlight that using ‖Λ̃Λ̃′‖s ≤ ‖Λ̃Λ̃′−Λ0Λ

′
0‖s+ ‖Λ0Λ

′
0‖s, α2 (and α1)

can be expressed with respect to Λ0. Based on the probability bound of
assumption 4 to control for ‖Λ̃Λ̃′ −Λ0Λ

′
0‖s, with high probability and for

a sufficiently large C > 0, the RSC parameter could be written as

α2 =
(
2{C2

( p
n
+ 2

√
1

n
+

1

p

)
+ C‖Λ0‖F (

√
p

n
+

√
1

p
)}

+λmax(Λ0Λ
′
0) + λmax(Ψ0) + 1

)−3 a

2p
.

We now focus on the error bounds of Ψ̂ls and check the conditions of appli-
cability of Theorem 3.1.

Corollary 3.4. Suppose the regulariser is μ-amenable, conditionally on the

estimator Λ̃ satisfying ‖Λ̃−Λ0‖F = Op(
√

p
n ) +Op(

√
1
p ), under the sample size

n ≥ CR2α−2
2 log(p(p + 1)/2), with C > 0 a sufficiently large constant, with

α2 = 1
p , if the regularisation parameter satisfies

4max
{1

p
‖Ŝ − Λ̃Λ̃′ −Ψ0‖max,

1

p

√
log p(p+ 1)/2

n

}
≤ γn ≤

α2

6R
,
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where Λ̃ satisfies (2.4) and Ψ0 ∈ Ω̄, suppose 3
4μ < α1 with α1 = α2. Then any

local optimum Ψ̂ls of the nonconvex program (2.3) satisfies

‖vech(Ψ̂ls −Ψ0)‖2 ≤
6γn

√
k0

4/p− 3μ
,

‖vech(Ψ̂ls −Ψ0)‖1 ≤
6(16/p− 9μ)γnk0

(4/p− 3μ)2
,

(3.5)

with k0 = |A| and A = {1 ≤ i ≤ p(p+ 1)/2 : θi,Ψ0 �= 0}.
Furthermore, under assumption 1 so that the sample variance-covariance esti-

mator satisfies the bound in Lemma 3.2, if (γn, R) are chosen so that C1

√
p/n ≤

γn ≤ C2/R and for a sample size n ≥ Mpmax
(
R2, k0

)
, for C1, C2,M large con-

stants, then (3.5) hold with probability at least 1− exp(− log p).

Remark. The proof can be decomposed as in Corollary 3.3. Interestingly, the
RSC parameters are much more simple (α1 = α2 = 1/p, τ1 = τ2 = 0) because
lower bounding λmin(∇2

θΨθ′
Ψ
Fn,p(Λ̃; Ψ)) is much more straightforward compared

to the Gaussian case. This emphasizes that our bounds are sensitive to the
curvature of the non-penalised loss function.

4. Support recovery

Based on the Karush-Kuhn-Tucker optimality conditions, [30] developed the
primal dual witness (PDW) approach to derive selection consistency for convex
problems. There exist similar approaches in [8, 32]. The PDW approach con-
sists in plugging the true subset model A in the KKT optimality conditions,
which are necessary and sufficient if the problem is convex, and checking if they
can be satisfied. It means that any solution of the non restricted problem (the
original problem providing A) is also a solution to the restricted problem (the
regularised one). [22] showed that this approach can be extended to a noncon-
vex problem and thus to any stationary point, which is their key contribution.
They prove that all stationary points are consistent for variable selection via a
strict dual feasibility condition and second-order conditions. To obtain the sup-
port recovery property, the RSC condition of the loss function with parameters
(αk, τk)k=1,2 and the μ-amenability of the penalty function are key assump-
tions. More details can be found in Subsection A.1: there, in Theorem A.1, we
provide the conditions of [22] to ensure the success of the PDW construction -
corresponding to Step 3. -, that is the scaling of (γn, R) and the so-called strict
feasibility condition, which characterize the solution of the PDW construction;
then Theorem A.2 establishes the support recovery property together with con-
sistency in the ‖.‖∞-sense under the RSC condition, μ-amenable penalties and
strict dual feasibility; finally, two sufficient conditions in Proposition A.3 en-
sure that strict dual feasibility holds for (μ, ζ)-amenable penalty functions. We
discuss the use of these results after each Corollary we establish for support re-
covery for the sparse approximate factor model estimator. Within this setting,
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we provide �∞-guarantees for the regularised approximate factor estimator to-
gether with the conditions to satisfy the support recovery property. Rather than
stating the support recovery property in a deterministic manner, we evaluate
the probability of satisfying the latter property. More precisely, we show that
any local/global optimum of (2.2) corresponds to the oracle estimator with high
probability. The latter is defined as

Ψ̂O = arg min
Ψ∈Ω,supp(Ψ)⊆supp(Ψ0)

{
Gn,p(Λ̃; Ψ)

}
, (4.1)

with vec(Ψ̂O) = (vec(Ψ̂O
A)

′,0′
Ac)′ and k0 = card(supp(Ψ0)) the total number

of nonzero entries. The matrix K0 = E[∇2
vec(Ψ)vec(Ψ)′Gn,p(Λ0; Ψ0)] denotes the

Fisher information matrix. Importantly, the conditions we derive hold for all
stationary points of (2.2), idest for local/global optimum. Note that for the
sake of clarification, we express all quantities with respect to vec(Ψ). Thus k0
denotes the cardinality of A := supp(Ψ0) = {1 ≤ i ≤ p2 : vec(Ψ0) �= 0}.

Corollary 4.1. Suppose the sample size satisfies n ≥ C‖Ψ−1
0 ‖12F k40p with C > 0

large enough, the regularisation parameters (γn, R) are chosen so that
‖vec(Ψ0)‖1 ≤ R

2 and for C1, C2 > 0

C1

√
p

n
≤ γn ≤ C2

R
,

suppose ‖K−1
0 ‖∞ ≤ β∞ and assumption 1 holds together with sup

1≤j≤p
|Xi,j | ≤

M < ∞, ∀i = 1, · · · , n. Then

(i) Suppose p(γn, .) is μ-amenable and the incoherence condition is satisfied,
that is

‖K0,AcAK
−1
0,AA‖∞ ≤ η < 1. (4.2)

Then with probability 1− exp(− log p), the objective function (2.2) admits
a unique optimum so that Â ⊆ A and for a sufficiently large L̃ > 0

‖Ψ̂g −Ψ0‖max ≤ L̃

√
p

n
+ γnβ∞.

(ii) Suppose p(γn, .) is (μ, ζ)-amenable and for a sufficiently large L̃ > 0

min
i∈A

|vech(Ψ0)i| ≥ γn(ζ + 2β∞) + L̃

√
p

n
,

then with probability 1− exp(− log p), (2.2) admits a unique optimum Ψ̂,
which agrees with the oracle estimator Ψ̂O defined in (4.1) so that

‖Ψ̂g −Ψ0‖max ≤ L̃

√
p

n
.
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Remark. The assumptions and the proof steps of Corollary 4.1 deserve a few
comments.

(i) The proof relies on the use of Theorem A.2. To do so, strict dual feasibil-
ity must be proved (since Theorem A.2 relies on the conditions of Theo-
rem A.1 and strict dual feasibility). To establish strict dual feasibility, we
use Theorem A.1 for μ-amenable penalty functions and Proposition A.3
for (μ, ζ)-amenable penalty functions. Thus the main proof steps can be
summarized according to the following steps:

(a) Establishing strict dual feasibility by upper bounding the quanti-
ties ‖∇vec(Ψ)Gn,p(Λ̃,Ψ0)‖∞ and ‖K̂AcAK̂

−1
AA∇vec(Ψ)Gn,p(Λ̃,Ψ0)‖∞

by (1−δ)/2γn for δ ∈ [0, 1] defined in Theorem A.1 - with τ1 = 0 since
the RSC condition for the Gaussian loss is satisfied with τ1 = τ2 = 0;
here K̂ is defined as in Theorem A.2 for the Gaussian loss, condition-
ally on Λ̃. These bounds correspond to inequalities (A.6) and (A.7)
in Proposition A.3. Note that for the μ-amenable penalty case, the
additional quantity ‖K̂AcAK̂

−1
AA‖∞ must be upper-bounded.

(b) Once strict dual feasibility is established, we can express the upper
bound of ‖Ψ̂g −Ψ0‖max in point (i) of Theorem A.2.

(c) Establishing (ii) of Corollary 4.1 uses the exact same steps as in (i),
except that the (μ, ζ)-amenability allows for a simplification in the
upper bound of ‖Ψ̂g − Ψ0‖max: the term involving ‖K̂AcAK̂

−1
AA‖∞

can be discarded as well as the so-called incoherence condition.

(ii) The uniform boundedness assumption on sup1≤j≤p |Xi,j | ≤ M < ∞ for
any i = 1, · · · , n is a drawback also encountered in Corollary 3 of [22].
This assumption is required to control for the third order derivative, a
quantity that vanishes when considering the least squares loss. In the case
of categorical data only, this assumption is always satisfied.

(iii) Corollary 4.1 is not expressed in a deterministic manner since we pro-
pose to evaluate the probability of satisfying the inequalities (A.3) and
(A.4) in Theorem A.1. This implies controlling, among others, for the in-
fimum norm of the score function evaluated at Ψ0, conditionally on Λ̃. We
thus obtain γn proportional to

√
p/n, which differs with the usual rate√

log p/n obtained in linear/generalized linear or Graphical Lasso models
with Sub-Gaussian variables.

(iv) Let us suppose that the parameter ‖Ψ−1
0 ‖12F is viewed as a constant. Then

the rate k40p = O(n) is necessary due to the first step estimation and
the non-linearity with respect to Σ in the Gaussian QML loss. For sparse
matrix precision estimation, that is estimating Σ−1 (without factor struc-
ture), [22] obtained the rate1 d20 log(p) = O(n) to satisfy the support recov-
ery, where the loss corresponds to a Gaussian QML and d0 is the maximum
number of non-zero coefficients in any row/column of the true matrix pre-
cision. Such scaling is obtained for the side constraint ‖Σ−1‖s ≤ κ rather
than ‖vec(Σ−1)‖1 ≤ R.

1Here, we note that the parameters such as ‖Ψ−1
0 ‖12F are also viewed as constants in [22].
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(v) Note that there is an alternative method for constructing vec(Ψ̂g)A such
that supp(Ψ̂g

A) ⊆ A and vec(Ψ̂g)A is a zero-subgradient point of the pro-
gram (A.1) in Step 1 of the Primal Dual Witness method: this method
is based on the Brouwer’s fixed point Theorem. Intuitively, the idea con-
sists of proving that if there is a zero sub-gradient vector of the penalised
estimator Gn,p(Λ̃,Ψ) + p(γn; vec(Ψ)) within the set {Ψ ∈ Ω, supp(Ψ) ⊆
supp(Ψ0)}, then this vector is the unique optimum. Then Brouwer’s fixed
point Theorem is used to show that such optimum lies in a neighbourhood
of the true value vec(Ψ0) in the ‖.‖∞-sense. Such method was developed
by [27] or [22] for sparse precision matrix estimation based on a Gaussian
ML criterion. More details on the use the Brouwer’s fixed point Theorem
can be found in Chapter 13 of [29].

We now provide the conditions to satisfy the support recovery property for
the least squares type loss function. To do so, we define the oracle estimator as

Ψ̂O = arg min
Ψ∈Ω,supp(Ψ)⊆supp(Ψ0)

{
Fn,p(Λ̃; Ψ)

}
, (4.3)

with vec(Ψ̂O) = (vec(Ψ̂O
A)

′,0′
Ac)′.

Corollary 4.2. Under assumption 1, if the sample size satisfies n ≥ Cp with
C > 0 large enough, suppose the regularisation parameters (γn, R) are chosen
so that ‖vec(Ψ0)‖1 ≤ R

2 and

C

√
p

n
≤ γn ≤ C̃

R
.

Suppose p(γn, .) is (μ, ζ)-amenable and for a sufficiently large L > 0

min
i∈A

|vech(Ψ0)i| ≥ γn(ζ + 2β∞) + L

√
p

n
,

then with probability 1− exp(− log p), (2.3) admits a unique optimum Ψ̂, which
agrees with the oracle estimator Ψ̂O defined in (4.3) so that

‖Ψ̂ls −Ψ0‖max ≤ L

√
p

n
.

Remark.

(i) The proof follows the same steps as in Corollary 4.1: since we consider
(μ, ζ)-amenable penalty functions, we simply establish inequalities (A.6)
and (A.7) in Proposition A.3 to use Theorem A.2. Note that upper bound-
ing ‖∇vec(Ψ)Fn,p(Λ̃,Ψ0)‖∞ and ‖K̂AcAK̂

−1
AA∇vec(Ψ)Fn,p(Λ̃,Ψ0)‖∞ by (1−

δ)/2γn, for δ ∈ [0, 1] defined in Theorem A.1 - with τ1 = 0 since the RSC
condition for the least squares loss is satisfied with τ1 = τ2 = 0 - and K̂ de-
fined as in Theorem A.2 for the least squares loss, is more straightforward
due to the linearity of the least squares loss.
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(ii) In the Lasso case, which is a μ-amenable regulariser, the mutual incoher-
ence condition does not hold since ‖K̂AcAK̂

−1
AA‖∞ = 1. As a consequence,

strict dual feasibility can not be established for μ-amenable penalties when
the least squares type loss function is considered. Moreover, the required
rate is p = O(n) since the loss function is much easier to manipulate.

5. Applications of the two step sparse approximate factor model

5.1. Risk management

One important application of Corollaries 4.1 and 4.2 concerns risk management.
Indeed, as [16] pointed out, the estimation error ‖Σ(Λ̃, Ψ̂) − Σ0‖max appears
in the sensitivity of the investor’s utility function. If we consider the latter
as the risk minimization with no short-sale constraint ω′Σω, with ω a fixed
portfolio allocation vector, then the estimation error given in equation (2.4) of
[16] satisfies the inequality

|ω′Σ(Λ̃, Ψ̂)ω − ω′Σ0ω| ≤ ‖Σ(Λ̃, Ψ̂)− Σ0‖max‖ω‖21.

This upper bound can be decomposed as

‖Σ(Λ̃, Ψ̂)− Σ0‖max ≤ ‖Λ̃Λ̃′ − Λ0Λ
′
0‖s + ‖Ψ̂−Ψ0‖max

Corollaries 4.1 and 4.2 quantify ‖Ψ̂−Ψ0‖max for both loss function based esti-
mator Ψ̂, whereas ‖Λ̃Λ̃′ − Λ0Λ

′
0‖s is managed using assumption 4.

5.2. Precision matrix

Knowledge of the so-called precision matrix - also known as concentration matrix
-, that is the inverse of the variance-covariance matrix, is key for a broad range of
applications such as graphical models, portfolio optimization, statistical testing,
and the like. If Σ0 admits a factor based decomposition, using

‖Σ(Λ̃, Ψ̂)− Σ0‖s ≤ ‖Λ̃Λ̃′ − Λ0Λ
′
0‖s + ‖Ψ̂−Ψ0‖s,

we can obtain the rate for ‖Σ̂−Σ0‖s. As for ‖Σ̂−1−Σ−1
0 ‖s, using the Woodbury

identity, we have the following bound:

‖Σ̂−1 − Σ−1
0 ‖s

≤ ‖Ψ̂−1 −Ψ−1
0 ‖s + ‖(Ψ̂−1 −Ψ−1

0 )AΨ̂−1‖s + ‖(Ψ̂−1 −Ψ−1
0 )AΨ−1‖s

+ ‖Ψ−1
0 (Λ̃− Λ0)BΛ̃′Ψ−1

0 ‖s + ‖Ψ−1
0 (Λ̃− Λ0)BΛ′

0Ψ
−1
0 ‖s

+ ‖Ψ−1
0 Λ0(Λ̃

′Ψ̂−1Λ̃− Λ′
0Ψ

−1
0 Λ0)Λ

′
0Ψ

−1
0 ‖s,

where A := Λ̃(Ir + Λ̃′Ψ̂−1Λ̃)Λ̃′ and B := Ir + Λ̃′Ψ̂−1Λ̃. From Lemma 11 of [22]
or Lemma 2 of [10], it follows that

‖Ψ̂−1 −Ψ−1
0 ‖s ≤

‖Ψ−1
0 ‖2s‖Ψ̂−Ψ0‖s

1− ‖Ψ−1
0 ‖s‖Ψ̂−Ψ0‖s

.
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Since it is assumed that the minimum eigenvalue of Ψ0 is bounded below by
the constant b1 > 0, the upper bound can be represented as O(b−2

1 )‖Ψ̂−Ψ0‖s.
Thus, we would obtain a rate for ‖Σ̂−1 − Σ−1

0 ‖s using the same approach with
the proof of Theorem 3 in [10] (see, Section C.4.2 of [10]).

6. Empirical applications

6.1. Simulation setting

In all our simulation experiments, we simulate the p-dimensional random vector
Xi based on the data generating process{

Xi ∼ NRp

(
0,Σ0),

Σ0 = Λ0Λ
′
0 +Ψ0,

where Λ0 satisfies the identifiability condition IC5 provided in the parameter set
Ω in Section 2. Each component of Λ0 are simulated in the uniform distribution
U([−0.3, 0.3]) and we fix m = 5 for all simulated experiments performed from
subsection 6.1 to subsection 6.5. The matrix Ψ0 is assumed to be k0-sparse (off-
diagonal elements only), where k0 depends on the size of the problem (arbitrarily
set) and is fixed once only.

First, we propose to illustrate the statistical consistency for p = 500. In the
second penalised step, the total number of parameters is 125000. We set the
number of zero parameters as 106462, which represents approximately 85% of
the total number of parameters. The true subset model is thus k0 := |A| =
18538. Regarding the non-zero components of Ψ0, the off-diagonal elements are
simulated in U([−2, 2]) and the diagonal elements in U([6, 9]). In that case, we
obtain ‖vech(Ψ0)‖1 = 8991.3, ‖vech(Ψ0)‖2 = 184.9 and ‖vech(Ψ0)‖∞ = 8.99.
To recover the sparse support A, we consider both regularised problems (2.2)
for the Gaussian based second step objective function and (2.3) for the least
squares based second step objective function. In both problems, non-convexity
can potentially come from the regulariser, and the second step parameter sets
Ω in (2.2) and Ω̄ in (2.3) are convex. In the first step, (Λ,Ψ) ∈ Θ and are
jointly estimated. To solve the regularised optimization problem, we follow the
composite gradient descent procedure of [21] (see their section 4), which consists
in a three step updating procedure of the optimized parameter value. As an
initial value for the algorithm, we start with Ψ(0) = Ŝ − Λ̃Λ̃′. Importantly, due
to the constraints on the RSC coefficients and the trade-off between α1 and μ
for both the Gaussian based estimator and the least squares based estimator,
we consider the following setting:

• Gaussian loss: a = 1.6245, where a is the lower bound of λmin(2Ŝ −
Σ(Λ̃,Ψ)) and thus bscad = 1.0038e + 07, bmcp = 1.0038e + 07, the values
from which α1 > 3

4μ is satisfied. To compute α1, we replace the first step

estimate Λ̃ by its true value Λ0 and obtained α1 = 7.4719e− 08. For the
SCAD, 4α1 − 3μ = 1.2737e− 11; for the MCP, 4α1 − 3μ = 1.2766e− 11;
finally, for the lasso, 4α1 − 3μ = 2.9888e− 07.
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• Least squares loss: α1 = 0.002. We choose bscad = 520, bmcp = 460. For
the SCAD, 4α1 − 3μ = 0.0022; for the MCP, 4α1 − 3μ = 0.0015; finally,
for the lasso, 4α1 − 3μ = 0.008.

We highlight that the calibration of (α1, μ) has a significant impact for the
convergence of the gradient type algorithm. As described by [22] in their Section
5, when the condition 4α1 > 3μ is violated, multiple stationary points may
emerge in the case of non-convex penalties. Convergence of the gradient descent
type algorithm and statistical consistency are no longer ensured. Although these
authors obtained the convergence of the algorithm to a single optimum with
multiple initial values when 4α1 is slightly smaller than 3μ, we restrict our
analysis and the following simulations to the 4α1 > 3μ case only: this ensures
statistical consistency and allows us to report the theoretical upper bounds.

As for the (γn, R) parameters, we select R = 4
γn

p(γn, vech(Ψ0)) to ensure the

feasibility of Ψ0 following [21, 22]. Furthermore, we set γn = c
√
log(p(p+ 1)/2)/n

with c = 0.5, a constant selected as optimal for both loss functions by a cross-
validation procedure for n = 20000. For general data sets, R cannot be computed
since the true underlying model is unknown, so that a data-driven method such
as cross-validation is required.

We consider samples with size 500, 1000, 1500, · · · , 20000 and for each sam-
ple size, we simulate 200 times the random vector (Xi) and thus obtain 200
sparsity-based estimates Ψ̂g and Ψ̂ls of the theoretical matrix Ψ0. Figure 1a
show the ‖.‖2 consistency with respect to the sample size for both estimate
Ψ̂g and Ψ̂ls. Each point represents the average error of the 200 simulations.
The theoretical bounds are reported for the least squares based estimate and
γn = 0.5

√
log(p(p+ 1)/2)/n. As predicted in Corollaries 3.3 and 3.4, the three

curves for the MCP, SCAD and Lasso converge toward zero as the number of
samples increases. The same remark holds for the ‖.‖1 consistency displayed in
Figure 1b and the ‖.‖∞ displayed in Figure 1c, where the incoherence condition
is not necessary. Although the Lasso requires this condition for the support-
recovery, the ‖.‖∞-error for the lasso-based estimates is reported for information
purposes. The figures highlight that when the problem dimension increases, the
Lasso is significantly outperformed. Besides, the MCP and SCAD for the least
squares case perform better than the Gaussian case for small samples.

6.2. A sensitivity analysis

In this section we perform a sensitivity analysis of the statistical consistency
and the theoretical error bound with respect to γn based on two settings: Ψ0

banded and non-banded. The banded covariance case is relevant for a time series
framework and means that the entries decay based on their distance from the
diagonal elements. We consider two penalisation rates for γn: proportional to√

log(p(p+ 1)/2)/n; proportional to
√

p/n.
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Fig 1. ‖.‖2, ‖.‖1, ‖.‖∞ consistencies for the setting of Subsection 6.1. SCAD, MCP and Lasso
are represented in red, blue and black respectively. The least squares case and Gaussian case
are represented in solid lines and dashed lines respectively. Each point represents an average
of 200 trials for each sample size.
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Non-banded case.

We consider the same simulation setting as in the previous subsection for
p = 50, where the diagonal coefficients of Ψ0 are simulated in U([−2.5, 2.5])
and the diagonal coefficients in U([4, 6.5]). We propose to analyse how the con-
vergence and theoretical bounds are altered depending on the choice of the
tuning γn. The total number of parameters is p(p + 1)/2 = 1275; the total
number of zero parameters is set to 1084, which represents 85% of the total
number of parameters; the true subset model is thus k0 = 191. In such set-
ting, Ψ0 satisfies: ‖vech(Ψ0)‖2 = 39.90 and ‖vech(Ψ0)‖1 = 364.82. To recover
the sparse support and estimate a sparse Ψ, we use the same two-step estima-
tion methods (2.2) and (2.3). We consider two different regularisation parame-
ters γn: after applying a cross-validation procedure for n = 20000, we selected
γn = 0.3

√
p/n; alternatively, we considered γn = 0.3

√
log(p(p+ 1)/2)/n. We

set R = 4
γn

p(γn, vech(Ψ0)).

Regarding the parameters related to the RSC condition and the constraint
α1 > 3

4μ, we consider the following setting:

• Gaussian loss: a = 1.76 and thus bscad = 43880, bmcp = 43879. To compute

α1, we replace the first step estimate Λ̃ by its true value Λ0 and obtained
α1 = 1.7093e − 05. For the SCAD, 4α1 − 3μ = 1.55e − 09; for the MCP,
4α1 − 3μ = 1.51e− 09; for the Lasso, 4α1 − 3μ = 6.84e− 05.

• Least squares loss: α1 = 0.02. We choose bscad = 310, bmcp = 230. For the
SCAD, 4α1− 3μ = 0.0703; for the MCP 4α1− 3μ = 0.0669; for the Lasso,
4α1 − 3μ = 0.08.

Banded case.

To further explore the effect of the regularisation rate, we propose an addi-
tional sensitivity analysis based on a banded Ψ0 matrix for p = 100. To do so,
we replicate the simulation setting of [6] provided in their Subsection 5.1, except
that the coefficients {ai, bi, ci}pi=1 are simulated in 0.9NR(0, 1). In such setting,
the total number of parameters is 5050; the total number of zero coefficients
is set to 4656 so that k0 = 394. Then, Ψ0 satisfies: ‖vech(Ψ0)‖2 = 63.59 and
‖vech(Ψ0)‖1 = 829.30. We also considered two different regularisation parame-
ters γn: after applying a cross-validation procedure for n = 20000, we selected
γn = 0.2

√
p/n; alternatively, we considered γn = 0.2

√
log(p(p+ 1)/2)/n. We

set R = 4
γn

p(γn, vech(Ψ0)).

As for the parameters related to the RSC conditions, we consider the setting:

• Gaussian loss: a = 0.0015 and thus bscad = 1.05 + 09, bmcp = 1.05 + 09.
We obtained α1 = 7.16e− 10. For the SCAD, 4α1 − 3μ = 9.80e− 12; for
the MCP, 4α1 − 3μ = 9.80e− 12; for the Lasso, 4α1 − 3μ = 2.86e− 09.

• Least squares loss: α1 = 0.01. We choose bscad = 350, bmcp = 280. For the
SCAD, 4α1− 3μ = 0.0314; for the MCP 4α1− 3μ = 0.0293; for the Lasso,
4α1 − 3μ = 0.04.

For both Ψ0 cases, the consistency patterns, the theoretical upper bounds
and their sensitivities with respect to γn are reported in Panels 2a-2f for the
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‖.‖2 sense and Panels 3a-3f for the ‖.‖1 sense. Panels 4a-4f contains the con-
sistency patterns in the ‖.‖∞ sense only since the corresponding theoretical
upper bounds are not as explicit as in the ‖.‖2, ‖.‖1 cases. For all cases, the
consistency is more favorable when using the rate

√
log(p(p+ 1)/2)/n. This is

in line with the theoretical upper bounds, which depend on γn: using a tighter
rate provides tighter bounds as depicted in our figures. Note that for ‖.‖1 con-
sistency, we reported in the non-banded/Lasso case the line corresponding to
‖vech(Ψ0)‖1 (figure 3e, gray colour) since the theoretical upper becomes infor-
mative for n < 20000. Finally, the choice of the SCAD/MCP values (bscad, bmcp),
although larger than the optimal SCAD value bscad = 3.7 identified by [12] and
MCP value bmcp = 3.5 selected by [21], they allow for informative theoretical
upper bounds. However, for both sizes p, the theoretical upper bound for the
‖.‖1-error is not reported due to the large sample size n ≥ 30000 required to
reach from below ‖vech(Ψ0)‖1 for all regularisation cases.

6.3. Relevance of the error bounds

An important issue is how “informative” these error bounds are. Their rates
depend on the regularisation parameter γn, as highlighted in subsection 6.2, on
the curvature of the loss function through the RSC parameters and the non-
convexity of the penalty, where the trade-off expressed through the constraint
4α1 > μ is a key element in our theoretical analysis. For the Gaussian loss func-
tion, the constraint 4α1 > μ is satisfied for significantly large values of bscad
and bmcp so that μ is small enough compared to α1, which depends on a con-

trolling for the minimum eigenvalues of 2Ŝ−Σ. Hence the denominator implies
that the upper bounds for both the ‖.‖1 and ‖.‖2 errors are non-informative.
The Gaussian-based theoretical upper bounds would thus require a sample size
of significantly large order to obtain informative upper bounds. This setting
changes for the least squares loss function, where the RSC parameter α1 is large
enough so that the denominator becomes larger. This requires from bscad and
bmcp to still be large enough to obtain informative theoretical upper bounds.

6.4. A comparison to some competitors

We now propose a comparison of our penalised estimation method with some
alternative factor based approaches. To do so, we consider a simulation setting
for p = 200 and non-banded Ψ0. The total number of parameters is 20100 in
the second step for a fixed Λ. The off-diagonal coefficients of Ψ0 are simulated
in the uniform distribution U([−3, 3]) and the diagonal coefficients in U([6, 9]).
The total number of zero parameters is set to 17085, which represents 85%
of the total number of parameters, so that the true subset model is given by
k0 = 3015. To estimate Ψ0, we consider the following penalisation approaches:
our proposed two-step Gaussian and least squares based penalised losses for the
Lasso, SCAD and MCP; the PML approach of [6], which consists in the joint
estimation of (Λ,Ψ) based on a Gaussian QML, where Ψ only is penalised by
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Fig 2. ‖.‖2 consistency for the setting of Subsection 6.2. For each penalty case, the results for

γn = 0.3
√

log(p(p+ 1)/2)/n (resp. γn = 0.3
√

p/n) represented in red (resp. blue). The Gaus-
sian case and least squares case are represented in solid lines and dashed lines respectively.
The horizontal gray line represents ‖vech(Ψ0)‖2. The theoretical upper bounds are represented
in dashed-dotted lines. Each point represents an average of 200 trials for each sample size.



3340 B. Poignard and Y. Terada

Fig 3. ‖.‖1 consistency for the setting of Subsection 6.2. For each penalty case, the results for

γn = 0.3
√

log(p(p+ 1)/2)/n (resp. γn = 0.3
√

p/n) represented in red (resp. blue). The Gaus-
sian case and least squares case are represented in solid lines and dashed lines respectively.
The horizontal gray line represents ‖vech(Ψ0)‖1. The theoretical upper bounds are represented
in dashed-dotted lines. Each point represents an average of 200 trials for each sample size.



Sparse approximate factor models 3341

Fig 4. ‖.‖∞ consistency for the setting of Subsection 6.2. For each penalty case, the results

for γn = 0.3
√

log(p(p+ 1)/2)/n (resp. γn = 0.3
√

p/n) represented in red (resp. blue). The
Gaussian case and least squares case are represented in solid lines and dashed lines respec-
tively. Each point represents an average of 200 trials for each sample size.
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the adpative Lasso; the POET2 of [15], where Ψ is penalised using an adaptive
hard-thresholding rule. As for the choice of (γn, R) in the penalised two-step
estimation and joint estimation (that is the method of [6]) cases, we set γn =
c
√
log(p(p+ 1)/2)/n. The parameter R is defined as in the previous section. For

the POET case, we employed the soft thresholding pij(ρ) = sgn(ρ)(|ρ| − τij)+

with the adaptive threshold τij = cγn

√
θ̂ij (γn = 1/

√
p+

√
log(p(p+ 1)/2)/n)

described in equation (3.2) of [15], where θ̂ij depends on the first step estimation
of the loading factors. For all these cases, we set the constant c = 0.3, a value
selected by cross-validation for n = 20000 for the joint estimation case.

The consistency results in the ‖.‖2, ‖.‖1, ‖.‖∞ senses are reported in Pan-
els 5a, 5b and 5c, respectively. For all cases, the error decreases with the sample
size, which agrees with our Corollaries and the consistency results established
in [6] (see their Theorems 3.1 and Theorem 3.2) and [15] (see their Theorem
1). The two-step SCAD and MCP penalised least squares based cases and the
PML provide similar patterns. Note that the two-step SCAD and MCP pe-
nalised Gaussian based case provide the same pattern (in these Panels, their
corresponding errors are overlapping) since their component bscad, bmcp are sig-
nificantly large to satisfy the condition 4α1 > 3μ. Interestingly, when n is large,
the POET estimator is less desirable than alternative estimators.

6.5. Illustration of the support recovery property

For both banded and non-banded Ψ0 cases, given the sparse approximate fac-
tor model structure Σ0 = Λ0Λ

′
0 + Ψ0 and sample size n, we drew hundred

batches of n independent samples from the associate Gaussian distribution
Xi ∼ NRp(0,Σ0), where we considered two cases, p = 100, 300. Λ0 is defined
as in the previous simulation settings. For the banded case, we considered the
same setting as in subsection 6.2 such that the number of zero coefficients is
4656 and k0 = 394 for p = 100. When p = 300, the number of zero coefficients
is set as 43956 and the non-zeros as 1194. For the non-banded case, we selected
k0 = 1010 so that the total number of zero coefficients is 4040 when p = 100.
For the case p = 300, then the number of zero coefficients is defined as 36120
so that k0 = 9030. We report the variable selection performance through the
number of zero coefficients correctly estimated, denoted as C, the number of
zero coefficients incorrectly estimated (i.e. an estimated zero coefficient whereas
the true parameter is non-zero), denoted as IC1, the number of nonzero co-
efficients incorrectly estimated (i.e. an estimated non-zero coefficient whereas
the true parameter is zero), denoted IC2, in Table 1 (resp. Table 2) for both
banded and non-banded cases when p = 100 (resp. p = 300), averaged for these

2The Principal Orthogonal complEment Thresholding (POET) is based on the spectral

decomposition of the sample variance covariance Ŝ =
∑K

i=1 λ̂iζ̂iζ̂
′
i + R̂K , where R̂K =∑p

i=1 λ̂iζ̂iζ̂
′
i, with λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p are the ordered eigenvalues of Ŝ, ζ̂i the corresponding

eigenvalues. A hard-thresholding procedure is then proposed to penalise R̂K . Note that K is
the number of of diverging eigenvalues.
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Fig 5. ‖.‖2, ‖.‖1, ‖.‖∞ consistencies for the setting of Subsection 6.4. For each case, the
SCAD, MCP, Lasso in the two-step approach, the adaptive Lasso PML and POET are rep-
resented in red, blue, gray, black and cyan. For the two-step approach, the Gaussian (resp.
least squares) loss case is represented in solid (resp. dashed) line. Each point represents an
average of 200 trials for each sample size.
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hundred batches. The mean squared error is reported as an estimation accuracy
measure.

We considered our proposed penalised two-step approach for both Gaussian
and least squares losses, named as 2S-Lasso, 2S-SCAD and 2S-MCP. Although
support recovery is not established in [6] and [15], we reported their proposed es-
timators, named as PML-aLasso and POET respectively. In the simulations, we
selected the penalisation parameter γn = c

√
log(p(p+ 1)/2)/n and the thresh-

old τij = cγn

√
θ̂ij (γn = 1/

√
p+

√
log(p(p+ 1)/2)/n) in the POET case, with

c = 0.5 when p = 100, 300. For the two-step method, for the least squares loss,
we selected bscad = 120, bmcp = 80 (resp. bscad = 260, bmcp = 230) for both Ψ0

cases when p = 100 (resp. p = 300). For the Gaussian loss, in both cases these
parameters are set sufficiently large to satisfy the condition 4α1 > μ.

Our simulation results indicate the challenge to perfectly recover the true
sparse model for all sparse estimator candidates. In the banded case, the PML,
the Gaussian and the least squares based penalised methods perform well. In
small sample sizes, the PML method of [6] provides good performance results,
whereas the difference tends to mitigate with our two-step methods when n
increases. Interestingly, in the non-banded case, the PML method tends to ex-
cessively shrink the parameters, which translates into a large number of incor-
rectly identified zero coefficients IC2. Compared to the latter method, our pro-
posed two-step approach offers better results. For all cases, the two-step Gaus-
sian MCP/SCAD penalised method provide similar results: since bscad, bmcp are
large to satisfy the constraint 4α1 > 3μ, these penalisation methods conse-
quently behave similarly. We note that IC2 increases with the sample size since
a less severe penalisation is applied on the parameters: more non-zero coeffi-
cients tend to be estimated. Interestingly, although the POET method provides
good performances in the non-banded case, its ability to correctly identify zero
coefficients significantly diminishes in the banded case.

One key reason for the difficulty to obtain perfect support recovery lies in the
accurate estimation of the loading matrix. In both the proposed method and
the PML one, large values of p are required for accurate estimation of the factor
loadings. Indeed, we cannot ensure the consistency of the loading estimators
without the assumption p → ∞ [5, 6].

6.6. A real data example

In this section, we propose to assess the relevance of our methodology through
a portfolio allocation analysis. Portfolio allocation models may suffer from in-
stability, which results from the instability of the variance covariance estimate.
One application of the sparse approximate factor model based variance covari-
ance matrix consists in optimal portfolio allocation since it is a key input of the
investment problem as a risk measure. We carry out an out-of-sample analysis of
the portfolio forecasting performances using the global minimum variance port-
folio approach (GMVP). The GMVP is an investment strategy, whose explicit
solution is given by the portfolio vector of weights ω = Σ−1ι/ι′Σ−1ι, where Σ is
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Table 1

Model selection and precision accuracy for p = 100 based on 100 replications. The penalised
two step Gaussian (resp. least squares) case is reported on the left (resp. right) side.

Truth 2S-Lasso 2S-SCAD 2S-MCP PML-aLasso POET

Banded case

n = 5000
C 4656 4656− 4656 4656− 4655.8 4656− 4654.8 4656 4312.2
IC1 0 273− 195.2 233.8− 157.5 233.8− 131.8 67 40.4
IC2 0 0− 0 0− 0.2 0− 1.2 0 343.8
MSE 567.8− 297.4 394.8− 138.9 391.3− 89.1 198.2 1342.2

n = 10000
C 4656 4655.8− 4654.7 4656− 4642.5 4656− 4624.7 4636 4342.2
IC1 0 250.5− 139.3 170.8− 85 170.8− 72.3 30.8 36.4
IC2 0 0.25− 1.25 0− 13.5 0− 31.25 38.4 313.8
MSE 461.3− 188.6 253.1− 64.5 247.35− 49.8 165.83 1367.0

n = 30000
C 4656 4646− 4572.9 4568.5− 4502.4 4568.5− 4517.1 4574.7 4364.1
IC1 0 140.1− 60.7 101.9− 46.2 101.9− 42.7 34.6 32.4
IC2 0 376.4− 77.5 175.5− 198.2 175.5− 201.4 93.6 291.9
MSE 211.1− 79.6 173.6− 39.2 171.3− 38.7 216.5 1384.5

n = 50000
C 4656 4635.5− 4422.3 4351.7− 4286.7 4351.7− 4252.4 4240.2 4366.4
IC1 0 74.9− 45.3 99.5− 35.5 99.5− 33 27.1 31.4
IC2 0 90.5− 233.7 324.3− 339.3 324.3− 323.6 276 289.7
MSE 96.9− 57.7 111.9− 33.6 109.6− 36.3 79.1 1387.8

Non-banded case

n = 5000
C 4040 4040− 4040 4040− 4040 4040− 4040 4040 3787.7
IC1 0 802.3− 650.2 747.3− 592.6 747.3− 569.2 826.8 633.5
IC2 0 0− 0 0− 0 0− 0 0 252.3
MSE 241.1− 220.8 223.1− 198.4 222.9− 179.2 222.6 242.6

n = 10000
C 4040 4040− 4040 4040− 4040 4040− 4040 4040 3766.4
IC1 0 684.1− 507.8 604.1− 385.9 604.1− 377.2 786.6 608.9
IC2 0 0− 0 0− 0 0− 0 0 273.6
MSE 230.2− 183.7 193.2− 140.9 192.6− 111.7 199.6 240.9

n = 30000
C 4040 4040− 4040 4039.7− 4020.8 4039.7− 3979.2 4040 3732.1
IC1 0 482.3− 387 395.3− 288.9 395.3− 273.1 714.8 580.3
IC2 0 0− 1.1 0.4− 17.7 0.4− 35.8 0 307.9
MSE 188.1− 102.7 109.9− 47.5 107.81− 33.2 119.93 157.5

n = 50000
C 4040 4040− 4017.1 4004.8− 3963.6 4004.8− 3911.2 4034.1 3716.8
IC1 0 347.8− 284.2 313.1− 237.4 313.1− 204.2 618.2 570.9
IC2 0 0− 21.5 19− 28.1 19− 59.2 0.1 323.2
MSE 153.5− 67.0 61.7− 27.8 60.2− 22.3 92.75 138.5
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Table 2

Model selection and precision accuracy for p = 300 based on 100 replications. The penalised
two step Gaussian (resp. least squares) case is reported on the left (resp. right) side.

Truth 2S-Lasso 2S-SCAD 2S-MCP PML-aLasso POET

Banded case

n = 5000
C 43956 43956− 43956 43956− 43956 43956− 43956 43956 40158.0
IC1 0 860.5− 750.5 847.6− 828.2 847.6− 824 282 90.0
IC2 0 0− 0 0− 0 0− 0 0 3798.0
MSE 1767.5− 1195.9 1738.6− 1293.5 1711.6− 1258.8 944.6 1203.3

n = 10000
C 43956 43956− 43956 43954.3− 43956 43954.3− 43956 43952 39821.9
IC1 0 821.5− 617.7 801.6− 743.5 801.6− 732.3 255.8 80.1
IC2 0 0− 0 2.5− 0 2.5− 0 3.7 4134.2
MSE 1456.4− 811.9 1392.8− 924.6 1374.1− 865.2 831.1 1225.6

n = 30000
C 43956 43925− 43948.8 43889.5− 43956 43889.5− 43955.1 43955.2 39101.1
IC1 0 630.5− 311.4 619− 435.5 619− 407.6 232.5 72.4
IC2 0 30.4− 5 13.8− 0 13.8− 0 2.5 4854.9
MSE 1340.9− 779.8 843.2− 254.1 812.4− 211.9 982 1246.0

n = 50000
C 43956 43891.5− 43750.2 43857.6− 43917.9 43857.6− 43898.2 43601.1 38749.2
IC1 0 377.1− 217.8 431.9− 263.3 431.9− 253.1 212.8 70.1
IC2 0 48.1− 210.8 21.5− 39.8 21.5− 58.6 13.6 5206.8
MSE 455.9− 162.5 454.9− 102.6 451.6− 91.1 561.8 1250.2

Non-banded case

n = 5000
C 36120 36120− 36120 36120− 36120 36120− 36120 36120 35663.9
IC1 0 8545.1− 8234.4 8156.4− 7992.3 8156.4− 7937.5 8558.9 4815.80
IC2 0 0− 0 0− 0.1 0− 0.2 0 456.1
MSE 1500.1− 1407 1386.8− 1234.8 1329.5− 1198.2 1452 647.0

n = 10000
C 36120 36120− 36120 36120− 36114 36120− 36111.3 36120 35806.1
IC1 0 8357.3− 7584.9 7586.1− 6883.4 7586.1− 6727.4 8382.9 4426.1
IC2 0 0− 0.1 0.1− 6.4 0.1− 8.6 0 313.9
MSE 1439.7− 1229.5 1229.1− 858.6 1215.7− 796.4 1359.5 558.5

n = 30000
C 36120 36120− 36013.6 36011.1− 34936.9 36011.1− 34704.5 34521.6 35837.5
IC1 0 7601− 5417.4 5376.5− 4070.8 5376.5− 3952.3 7476.6 3982.4
IC2 0 0− 106.8 109.4− 867.2 109.4− 956.5 2.6 282.5
MSE 1226.8− 725 718.8− 323.3 711.2− 304.5 1035.3 468.2

n = 50000
C 36120 36119.1− 35305.9 35073.9− 34229.3 35073.9− 33915.5 35742.1 35817.1
IC1 0 5843.3− 2987.5 4049.2− 2651.5 4049.2− 2510.3 7047.9 3836.5
IC2 0 0.6− 756.5 957.5− 1018.1 957.5− 1204.5 32.7 302.8
MSE 838.9− 508.6 438.8− 256.7 436.3− 255.8 725.3 441.1
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the p×p variance covariance matrix of the p-dimensional vector of asset returns
and ι is a p × 1 vector of 1’s. As a function depending only on Σ, the GMVP
performance essentially depends on the precise measurement of Σ.

To evaluate the out-of-sample forecasting performances of Σ, we consider
a portfolio of monthly financial returns composed of the MSCI stock index
based on the sample December 1998-March 2018, which yields a total sample
size T = 231, and for the following 23 countries: Australia, Austria, Belgium,
Canada, Denmark, Finland, France, Germany, Greece, Hong Kong, Ireland,
Italy, Japan, Netherlands, New Zealand, Norway, Portugal, Singapore, Spain,
Sweden, Switzerland, the United-Kingdom, the United-States. For each variance
covariance model, we estimate the portfolio weights using a 60 month rolling
window, idest corresponding to 5 years of observed returns. For each time t, we
use the observed returns based on the last h = 60 months, which then allows
to compute the GMVP ω̂ based on an estimate of Σ. This estimate is based on
the factor decomposition approach, where we consider the POET, the adaptive
Lasso PML, our MCP/SCAD/Lasso two-step approach denoted by 2S-MCP, 2S-
SCAD, 2S-Lasso, respectively, and a 60 month rolling window sample variance
covariance matrix, denoted by Sample. The tuning parameters for the penalised
methods are set to obtain the best performance for each method (for the POET,
(m, c) = (2, 0.2); for PML, (m, c) = (2, 0.4); for the proposed two-step method,
(m, c) = (3, 0.3); here m is the number of factors and c the constant scaling the
rate 1/

√
p+

√
log(p(p+ 1)/2)/n for the POET and

√
log(p(p+ 1)/2)/n for the

other cases). We propose an out-of-sample analysis only for the least squares
based method for the following two reasons: first, in light of the performances in
terms of variable selection and MSE of Tables 1 and 2, the least squares based
sparse estimator of Ψ is more desirable; due to the lack of curvature of the
Gaussian based loss function, which translates into an extremely low parameter
α1 - whose analytical expression is given in 3.3 -, then the Gaussian loss based
estimator Ψ̂g is highly sensitive to the initial value Ψ(0) of the algorithm, which
is in line with Figures 5.(c) and 5.(d), Section 5 of [21], and Figures 2.(c) and
2.(d), Section 5 of [22]. Finally, the equally weighted portfolio approach, denoted
by 1/p, is reported as an alternative investment strategy.

Let rt be the vector of monthly returns based on the 23 stocks at time t. For
each method, we compute the t + 1 out-of-sample portfolio return as r̂t+1 :=
ŵ′rt+1. Thus, using the m = T − h = 231− 60 out-of-sample portfolio returns,
we then compute the empirical average return μ̂ and the empirical variance σ̂2,
for each method, as follows:

μ̂ =
1

m

231∑
t=60+1

r̂t, σ̂2 =
1

m− 1

231∑
t=60+1

(r̂t − μ̂)2.

The out-of-sample average return (AVG) and standard deviation (SD) are used
as the criteria for the performance evaluation.

The annualised results of the portfolio analysis are reported in Table 3. First,
although the minimum variance method may not always provide better AVG
performances with respect to the 1/p approach - the expected return does not
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Table 3

Estimated GMVP performances of the proposed 2S-methods and competing methods.

Method Sample 1/p POET PML 2S-MCP 2S-SCAD 2S-Lasso
AVG 0.0996 0.0540 0.1067 0.1153 0.1332 0.1337 0.1329
SD 0.1138 0.1719 0.0976 0.1272 0.1261 0.1258 0.1261

intervene in the GMVP strategy optimisation -, our proposed method signifi-
cantly outperforms the competing models in terms of AVG. The performances
are more mixed in terms of SD: although our proposed approach outperforms the
PML, the likelihood based methods (both two-step and PML) are outperformed
by the POET in the SD sense.

7. Discussion

The focus of this paper is devoted to the sparse estimation of Ψ using the two-
step approach (2.2) and as an alternative (2.3), where the diagonal assumption
on the latter matrix is relaxed. Our main contributions consisted in the deriva-
tion of error bounds in the �2, �1, �∞ senses as well as the conditions for support
recovery of the true sparse support of Ψ0. To obtain such bounds, the restricted
strong convexity of the loss functions Gn,p(Λ̃; Ψ0),Fn,p(Λ̃; Ψ0) is a key property:
Corollaries 3.3 and 3.4 partly focused on verifying such regularity condition. Fur-
thermore, non-convex penalty functions are more desirable in terms of support
recovery since the so-called incoherence condition can be relaxed as emphasized
in Corollaries 4.1 and 4.2.

Various issues and extensions can be further considered. Rather than only pe-
nalising the idiosyncratic variance covariance matrix, penalising both the load-
ing factor matrix Λ and Ψ would be relevant. However, a careful treatment
of the rotational indeterminacy should be carried out when regularizing Λ. To
avoid the rotational indeterminacy, we need to consider an appropriate con-
straint on Λ (e.g., IC5 in [6]). However, the sparsity of Λ also highly depends on
the constraint on Λ. We may obtain a sparse solution under the constraint but
not the simplest and sparsest solution, which could be easily interpreted. With-
out constraints on Λ, we cannot ensure the positive definiteness of the Hessian
of the loss function, and thus obtaining theoretical guarantees is challenging.
Addressing this issue can be part of a future work.

Acknowledgements

This work was supported by the Japan Society for the Promotion of Science
(B.Poignard was supported by Grant 19K23193; Y. Terada was supported by
Grants 16K16024 and 20K19756). The authors gratefully acknowledge the help-
ful comments of the Associate Editor and referees.



Sparse approximate factor models 3349

References

[1] Abadir, K.M. and Magnus, J.R. (2005). Matrix algebra. Cambridge
University Press. MR2408356

[2] Anderson, T.W. and Amemiya, Y. (1988). The asymptotic normal dis-
tribution of estimators in factor analysis under general conditions. The
Annals of Statistics, Vol. 16, No. 2, 759-771. MR0947576

[3] Bai, J. (2003). Inferential theory for factor models of large dimensions.
Econometrica, Vol. 71, 135–171. MR1956857

[4] Bai, J. and Li, K. (2012). Statistical analysis of factor models of high
dimension. The Annals of Statistics, Vol. 40, No. 1, 436-465. MR3014313

[5] Bai, J. and Li, K. (2016). Maximum likelihood estimation and inference
for approximate factor models of high dimension. The Review of Economics
and Statistics, Vol. 98, No. 2.

[6] Bai, J. and Liao, K. (2016). Efficient estimation of approximate factor
models via penalised maximum likelihood. Journal of Econometrics, Vol.
191, 1-18. MR3434432
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Appendix A: Technical appendix

A.1. Intermediary results

We provide the primal dual witness method (PWD), as in [22]. The parameter
vector θ ∈ R

d belongs to the convex set Θ. The PDW approach relies on the
following steps.

Step 1. We define the estimator

θ̂A = arg min
θ∈R|A|:g(θ)≤R,θ∈Ω

{
Ln(θ) + p(γn, θ)

}
. (A.1)

We solve problem (A.1), under the constraint Â ⊆ A and prove ‖θ̂A‖1 < R.

Step 2. Defining ẑA ∈ ∂‖θ̂A‖, we choose ẑAc satisfying the orthogonality
condition

∇θLn(θ̂)−∇θq(γn, θ̂) + γnẑ = 0, (A.2)

with ẑ = (ẑA, ẑAc), θ̂ = (θ̂A, 0Ac) and q(γn, ρ) = γn|ρ|−p(γn, ρ) for ρ ∈ R. Note
that the vector version of q is given in assumption 5. We then prove the strict
dual feasibility ‖ẑAc‖∞ < 1.

Step 3. We prove that θ̂ is a local optimum of (3.1) and that any stationary

point of (3.1) satisfies supp(θ̂) ⊆ A.
The PDW procedure does not allow for practically solving the regularisation

problem (3.1) as step 1 requires to know the true subset model A = supp(θ0) =
{i : θ0,i �= 0}. However, this approach is useful as a proof method to characterize

the optimal solution Ψ̂. In Step 1, the criterion (A.1) is striclty convex under

the RSC condition. This implies that for ‖θ̂A‖1 < 1, the subgradient condition

(A.2) must hold at θ̂A for the restricted problem (A.1). [22] proves that, although
problem A.1 may be non-convex, the RSC condition and regularity conditions
on the penalty function allow them to prove that the optimum obtained in Step
3 is a local optimum: see in particular their Lemma 10.

Using optimization reasoning, [22] provide conditions on γn, R to ensure the
success of the PDW technique, which depends on Step 3, under the assumption
that Ln(.) satisfies the RSC condition with parameters (αk, τk)k=1,2 and 4α1 >

3μ. Indeed, these conditions guarantee that the support of θ̂ satisfying (A.2) in
Step 2 is the unique stationary point of the criterion (3.1): to be precise, the
first condition concerns the suitable scaling of γn and R; the second condition
ensures strict dual feasibility - that is ‖ẑAc‖∞ < 1 in Step 2. This is the object
of the following Theorem.

Theorem A.1 ([22]). Suppose Ln(.) satisfies the RSC condition with
(αk, τk)k=1,2 parameters and p(γn, .) is a μ-amenable penalty, with 0 ≤ μ < α1.
Suppose

(i) The parameters (γn, R) satisfy

4max
{
‖∇θLn(θ0)‖∞, α2

√
log k0

n

}
≤ γn ≤

√
(4α1 − 3μ)α2

384k0
, (A.3)
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max
{
2‖θ0‖1,

48k0γn

4α1 − 3μ

}
≤ R ≤ min

{ α2

8γn
,
α2

τ2

√
n

log p

}
. (A.4)

(ii) For some δ ∈ [
4Rτ1 log d

nγn
, 1], the vector ẑ from the PDW construction

satisfies the strict dual feasibility condition

‖ẑAc‖∞ ≤ 1− δ. (A.5)

Then for any k0-sparse vector θ0, the program (3.1) with a sample size n ≥
2τ1

2α1−μk0 log d has a unique stationary point given by the primal output θ̂ of the
PDW construction.

Suitable calibrations of γn and R, and thus a proper scaling (n, d, k0), are
necessary. Using exponential bounds, it is possible to evaluate the probability of
satisfying (A.3) and (A.4) and thus the probability of the PDW success. In all
their applications of interest - linear model, generalized linear model, Gaussian
graphical Lasso - [22] obtain the upper bound ‖∇θLn(θ0)‖∞ ≤ C

√
log d/n

with high probability. This motivates the choice γn proportional to
√
log d/n to

satisfy (A.3). Finally, it is worth noting that the trade-off between the curvature
of the loss function through α1 and the non-convexity degree of the penalty
function through μ appears. As our simulations emphasize this trade-off for the
Gaussian loss in particular, significantly large values for bscad, bmcp are necessary
to ensure 4α1 > 3μ.

In their Theorem 2, [22] provide an additional error bound under the condi-
tions of Theorem A.1. It also provides the guarantees that the unique optimum
- local or global - (3.1) is the oracle estimator. The latter is defined as the non-
penalised estimator obtained from minimizing the criterion Ln(θ) over the true
support A. This is the object of the following Theorem.

Theorem A.2 ([22]). Under the conditions of Theorem A.1, suppose strict dual
feasibility (A.5) holds, suppose p(γn, .) is μ-amenable with μ ∈ [0, α1). Then the
unique stationary solution of (3.1) satisfies

(i)

‖θ̂ − θ0‖∞ ≤ ‖K̂−1
AA∇θLn(θ0)‖∞ + γn‖K̂−1

AA‖∞,

with K̂ =
∫ 1

0
∇2

θθ′Ln(θ0 + u(θ̂ − θ0))du.
(ii) If p(γn, .) is (μ, ζ)-amenable and if the lower bound

min
i∈A

|θ0,i| ≥ γn
(
ζ + ‖K̂−1

AA‖∞
)
+ ‖K̂−1

AA∇θLn(θ0)‖∞,

holds, then θ̂ agrees with the oracle estimator θ̂O and we have the bound

‖θ̂ − θ0‖∞ ≤ ‖K̂−1
AA∇θLn(θ0)‖∞.

These inequalities are expressed in a deterministic manner. As in Theo-
rem A.1, exponential bounds allow for upper bounding ‖∇θLn(θ0)‖∞, which
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will provide explicit convergence rates over the ‖.‖∞-error. The application of
Theorem A.2 requires that strict dual feasibility holds under the RSC condi-
tion. In their Proposition 1, [22] provide sufficient conditions to satisfy strict
dual feasibility in the case of a (μ, ζ)-amenable regulariser, which thus allows
for using Theorem A.2. These conditions are given in the following Proposition.

Proposition A.3 ([22]). Under the conditions of Theorem A.1, suppose p(γn, .)
is (μ, ζ)-amenable. Suppose

θ0,min ≥ γn(ζ + ‖K̂−1
AA‖∞) + ‖K̂−1

AA∇θLn(θ0)A‖∞,

with θ0,min = min
i∈A

|θi| and K̂ =
∫ 1

0
∇2

θθ′Ln(θ0 + u(θ̂ − θ0))du. Then strict dual

feasibility holds provided

‖∇θLn(θ0)‖∞ ≤
1− δ

2
γn, and (A.6)

‖K̂AcAK̂
−1
AA∇θLn(θ0)A‖∞ ≤

1− δ

2
γn. (A.7)

A.2. Proofs

Proof of Lemma 3.2. Since we have

E [|X − E[X]|m]

≤ E [{|X|+ |E[X]|}m] ≤ 2m−1{E[|X|m] + |E[X]|m} ≤ 2mE[|X|m],

we obtain

E [|XkiXkj − σij |m] ≤ 2mE [|XkiXkj |m] ≤
{
E[|Xki|2m]E[|Xkj |2m]

}1/2
.

From E[exp(t|X|)]− 1 ≥ tkE[|X|k]/k! for t ≥ 0, we have

E[|X|2m]/K2m ≤ m!
(
E[exp(|X|2/K2)]− 1

)
.

Combining these facts with the sub-Gaussian assumption, we obtain

E [|XkiXkj − σij |m] ≤ 2mm!σ2
0K

2(m−1) =
m!

2
(2K2)m−2(2

√
2Kσ0)

2. (A.8)

Let γij(Xk) := (XkiXkj − σij)/(2
√
2Kσo) and we have E[γij(Xk)] = 0. More-

over, by (A.8)

E [|γij(Xk)|m] ≤ m!

2

(
K√
2σ0

)m−2

=:
m!

2
Km−2

∗ .

By Lemma 14.3 in [7],

P

(
max
i≤j

∣∣∣∣∣ 1n
n∑

k=1

γij(Xk)

∣∣∣∣∣ ≥ K∗t+
√
2t+ λ

(
K∗, n,

(
p

2

)))
≤ exp(−nt),



3354 B. Poignard and Y. Terada

where

λ(K,n, p) :=

√
2 log(2p)

n
+

K log(2p)

n
.

Therefore, denoting

h(t;n, p,K, σ2
0) = 2K2t+ 4Kσ0

√
t+ 2

√
2Kσ0λ

(
K/(

√
2σ0), n,

(
p

2

))
,

we obtain
P

(
‖Ŝ − Σ0‖max ≥ h(t;n, p,K, σ2

0)
)
≤ exp(−nt)

Proof of Corollary 3.3. We first establish the RSC property. To do so, we derive
the first and second order derivatives of the Gaussian QML function Gn,p(Λ̃; Ψ)
defined in (2.2). Using the differential operator applied with respect to Ψ, for
any fixed Λ̃, we obtain

dGn,p(Λ̃; Ψ)

=
1

2p

(
tr(Σ(Λ̃,Ψ)−1dΣ(Λ̃,Ψ))− tr(Σ(Λ̃,Ψ)−1dΣ(Λ̃,Ψ)Σ(Λ̃,Ψ)−1Ŝ)

)
.

Moreover, we have
A := dΣ(Λ̃,Ψ) = dΨ.

Using the trace operator property tr(X ′Y ) = tr(XY ′) = tr(Y ′X), we obtain

dGn,p(Λ̃; Ψ) =
1

2p
tr(Σ(Λ̃,Ψ)−1

(
Σ(Λ̃,Ψ)− Ŝ

)
Σ(Λ̃,Ψ)−1(dΨ)).

Hence in vech(.) form, the derivative becomes

∇θΨGn,p(Λ̃; Ψ) =
1

2p
vech(Σ(Λ̃,Ψ)−1

(
Σ(Λ̃,Ψ)− Ŝ

)
Σ(Λ̃,Ψ)−1).

Taking the ‖.‖∞ norm, we have on the true parameter Ψ0

‖∇θΨGn,p(Λ̃; Ψ0)‖∞ = ‖∇ΨGn,p(Λ̃; Ψ0)‖max

≤ ‖∇ΨGn,p(Λ̃; Ψ0)‖s ≤ ‖Σ(Λ̃,Ψ0)
−1‖2s‖Σ(Λ̃,Ψ0)− Ŝ‖s/(2p).

We also have λmax(Σ(Λ̃,Ψ0)
−1) = λmax((Λ̃Λ̃

′ + Ψ0)
−1) ≤ λmax(Ψ

−1
0 ). Hence,

we obtain ‖∇θΨGn,p(Λ̃; Ψ0)‖∞ ≤ λmax(Ψ
−1
0 )2‖Σ(Λ̃,Ψ0) − Ŝ‖s/(2p). We now

focus on the Hessian matrix. Omitting the arguments in Σ, the second order
differential is given by

d2Gn,p(Λ̃; Ψ) = 1
2p tr

(
− Σ−1(dΨ)Σ−1(dΨ) + Σ−1(dΨ)Σ−1ŜΣ−1(dΨ)

+Σ−1ŜΣ−1(dΨ)Σ−1(dΨ)
)

We aim at extracting the form tr(L(dΛ)′M(dΛ)) for L (resp. M) any square
m×m matrix (resp. p× p). Since dΨ = (dΨ)′, we have

∇2
vec(Ψ)vec(Ψ)′Gn,p(Λ̃; Ψ)
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=
1

2p
vec

(
{Σ−1 ⊗ Σ−1

(
Ŝ − Σ

)
Σ−1}+ {Σ−1ŜΣ−1 ⊗ Σ−1}

)
,

which can be expressed in vech(.) form as

∇2
θΨθ′

Ψ
Gn,p(Λ̃; Ψ) =

1

2p
D′

p

(
{Σ−1 ⊗ Σ−1

(
Ŝ − Σ

)
Σ−1}+ {Σ−1ŜΣ−1 ⊗ Σ−1}

)
Dp,

whereDp is the p
2×p(p+1)/2 duplication matrix, which allows for the treatment

of redundant terms: see exercise 13.65 of [1]. For some Ψ1 ∈ Ω and u ∈ [0, 1],
let us define Ψ = Ψ0 + uΓ where Γ = Ψ1 −Ψ0. Then Ψ ∈ Ω and

fn(Ψ) := vech(Γ)′
{
∇2

θΨθ′
Ψ
Gn,p(Λ̃; Ψ)

}
vech(Γ)

≥ vech(Γ)′D′
p

(
{Σ−1 ⊗ Σ−1

(
Ŝ − Σ

)
Σ−1}

+{Σ−1ŜΣ−1 ⊗ Σ−1}
)
Dpvech(Γ)/(2p)

≥ ‖vech(Γ)‖22λmin

(
2Ŝ − Σ

)
λmin(Σ

−1)3/(2p),

since the spectrum of A⊗B is the cross product of the spectrums of A and B,
and λmin(Ψ) = inf

x
x′Ψx/‖x‖2. We now focus on λmin(Σ

−3), where we have

λmax(Σ) ≤ λmax(Λ̃Λ̃
′) + λmax(Ψ) ≤ λmax(Λ̃Λ̃

′) + λmax(Ψ0) + λmax(Ψ1 −Ψ0),

which implies

λmin(Σ
−3) ≥ {λmax(Λ̃Λ̃

′) + λmax(Ψ)}−3 ≥ {λmax(Λ̃Λ̃
′) + λmax(Ψ0) + 1}−3.

Therefore

fn(Ψ) ≥ ‖vech(Γ)‖22{λmax(Λ̃Λ̃
′) + b2}−3λmin

(
2Ŝ − Σ

)
≥ ‖vech(Γ)‖22{λmax(Λ̃Λ̃

′) + λmax(Ψ0) + 1}−3a/p.

We thus deduce that

vech(Ψ−Ψ0)
′∇2

θΨθ′
Ψ
Gn,p(Λ̃; Ψ

∗)vech(Ψ−Ψ0)

≥ ‖vech(Γ)‖2F {λmax(Λ̃Λ̃
′) + λmax(Ψ0) + 1}−3a/(2p),

where Ψ∗ lies between Ψ and Ψ0. The RSC condition would thus be satisfied
for the parameters

α1 = {λmax(Λ̃Λ̃
′) + λmax(Ψ0) + 1}−3a/(2p), α2 = α1, τ1 = τ2 = 0.

This bound holds for all vech(Γ) ∈ R
p(p+1)/2. The RSC condition also holds for

‖vech(Γ)‖2 ≥ 1 by Lemma 9 of [21]. Hence, based on Theorem 3.1, we obtain
the desired upper bounds for the ‖.‖1 and ‖.‖2 errors.

We now evaluate the probability so that condition (3.2) is satisfied. The
Jacobian is upper bounded by

‖∇θΨGn,p(Λ̃; Ψ0)‖∞ = ‖∇ΨGn,p(Λ̃; Ψ0)‖max
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≤ λmax(Ψ
−1
0 )2‖Σ(Λ̃,Ψ0)− Ŝ‖s/(2p).

Moreover, Σ(Λ̃,Ψ0)− Ŝ = Σ0 − Ŝ + Λ̃Λ̃′ − Λ0Λ
′
0, which implies

‖Σ(Λ̃,Ψ0)− Ŝ‖s ≤ ‖Σ0 − Ŝ‖s + ‖Λ̃Λ̃′ − Λ0Λ
′
0‖s.

Besides

‖Λ̃Λ̃′−Λ0Λ
′
0‖F = ‖Λ̃(Λ̃−Λ0)

′+(Λ̃−Λ0)Λ
′
0‖F ≤ 2max{‖Λ̃‖F , ‖Λ0‖F }‖Λ̃−Λ0‖F ,

and under the first step probability bounds are ‖Λ̃−Λ0‖F = Op(
√

p
n )+Op(

√
1
p ),

for C > 0 sufficiently large

‖Λ̃‖F ≤ ‖Λ̃− Λ0‖F + ‖Λ0‖F ≤ C(

√
p

n
+

√
1

p
) + ‖Λ0‖F .

We thus obtain for C sufficiently large

‖Λ̃Λ̃′ − Λ0Λ
′
0‖F ≤ 2(C(

√
p
n +

√
1
p ) + ‖Λ0‖F )C(

√
p
n +

√
1
p )

≤ 2{C2
(
p
n + 2

√
1
n + 1

p

)
+ C‖Λ0‖F (

√
p
n +

√
1
p )}

Besides, ‖Σ0 − Ŝ‖s ≤ p‖Σ0 − Ŝ‖max, thus for C,K > 0 sufficiently large, with
probability at least 1− exp(− log p), since ‖Λ0‖F is of p-order, we obtain

‖∇θΨGn,p(Λ̃; Ψ0)‖∞ = ‖∇ΨGn,p(Λ̃; Ψ0)‖max ≤ ‖∇ΨGn,p(Λ̃; Ψ0)‖s

≤ ‖Ψ−1
0 ‖2s
2p

(
Kp

√
log p

n
+ 2{C2

( p
n
+ 2

√
1

n
+

1

p

)
+ C‖Λ0‖F (

√
p

n
+

√
1

p
)}

)

≤ L

√
p

n
,

for L > 0 sufficiently large, where we used the eigenvalue constraint in Ω, and
sample size n > Mpλmax(Ψ

−1
0 )4 for M > 0. Consequently, under the scaling

assumption γn ≥ L
√

p
n , we obtain

‖vech(Ψ̂g)− vech(Ψ0)‖2 ≤
6γn

√
k0

4α1 − 3μ
,

‖vech(Ψ̂g)− vech(Ψ0)‖1 ≤
6(16α1 − 9μ)γnk0

(4α1 − 3μ)2
,

with probability at least 1− exp(− log p).

Proof of Corollary 3.4. We first establish the RSC condition. Using the differ-
ential operator with respect to Ψ, for any fixed Λ̃, we have

dFn,p(Λ̃; Ψ) = −1

p
tr(Σ̂− Λ̃Λ̃′ −Ψ)(dΨ).
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Hence

∇θΨFn,p(Λ̃; Ψ) = −1

p
vech

(
Σ̂− Λ̃Λ̃′ −Ψ

)
.

As for the Hessian, by identification, we obtain

∇2
vec(Ψ)vec(Ψ)′Fn,p(Λ̃; Ψ) =

1

p
vec(Ip ⊗ Ip),

or expressed with respect to θΨ

∇2
θΨθ′

Ψ
Fn,p(Λ̃; Ψ) =

1

p
D′

p(Ip ⊗ Ip)Dp.

Thus

vech(Ψ−Ψ0)
′∇2

θΨθ′
Ψ
Fn,p(Λ̃; Ψ

∗)vech(Ψ−Ψ0) ≥ ‖vech(Γ)‖22/p,

where Ψ∗ lies between Ψ and Ψ0. The RSC condition would thus be satisfied
for the parameters

α1 =
1

p
, α2 = α1, τ1 = τ2 = 0.

We thus deduce the bounds (3.5). Now using the sub-Gaussian assumption, and
using the same development on Σ̂− Λ̃Λ̃′ −Ψ0 as in the proof of Corollary 3.3,
we have

‖∇θΨFn,p(Λ̃; Ψ0)‖∞ = ‖Σ̂− Λ̃Λ̃′ −Ψ0‖max/p ≤ ‖Σ̂− Λ̃Λ̃′ −Ψ0‖s/p

≤
(
Kp

√
log p

n
+ 2{C2

( p
n
+ 2

√
1

n
+

1

p

)
+ C‖Λ0‖F (

√
p

n
+

√
1

p
)}

)
/p

≤ L

√
p

n
.

Consequently, under the scaling assumption γn ≥ L
√

p
n , then (3.5) hold with

probability 1− exp(− log p).

Proof of Corollary 4.1. Point (i). We aim at proving the strict dual feasibility
condition. To do so, following the PDW construction, we consider the estimator

Ψ̂ = arg min
Ψ:Ψ∈Ω,supp(Ψ)⊆supp(Ψ0)

{
Gn,p(Λ̃; Ψ) + p(γn, vec(Ψ))

}
, (A.9)

where we take the penalisation with respect to vec(Ψ) for the sake of clarification
of our arguments, so that we will consider gradient and Hessian quantities with
respect to vec(Ψ) from now on. In the rest of the proof, we denote θΨ := vec(Ψ).
By the zero gradient condition (A.2) of the PDW step, we obtain

∇θΨGn,p(Λ̃; Ψ̂)−∇θΨGn,p(Λ̃; Ψ0)+∇θΨGn,p(Λ̃; Ψ0)−∇θΨq(γn, vec(Ψ̂))+γnẑ=0.

This implies

K̂vec(Ψ̂−Ψ0) +∇θΨGn,p(Λ̃; Ψ0)−∇θΨq(γn, vec(Ψ̂)) + γnẑ = 0,
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with K̂ =
∫ 1

0
∇2

θΨθ′
Ψ
Gn,p(Λ̃; Ψ0 + u(Ψ̂−Ψ0))du. Equivalently, we have

(
K̂AA K̂AAc

K̂AcA K̂AcAc

)(
vec(Ψ̂−Ψ0)A

0

)

+

(
∇θΨGn,p(Λ̃; Ψ0)A −∇θΨq(γn, vec(Ψ̂)A)

∇θΨGn,p(Λ̃; Ψ0)Ac −∇θΨq(γn, vec(Ψ̂)Ac)

)
+ γn

(
ẑA
ẑAc

)
= 0.

Consequently, we obtain

ẑAc =
1

γn

{
∇θΨq(γn, vec(Ψ̂)Ac)−∇θΨGn,p(Λ̃; Ψ0)Ac

+K̂AcAK̂
−1
AA

(
∇θΨGn,p(Λ̃; Ψ0)A −∇θΨq(γn, vec(Ψ̂)A) + γnẑA

)}
.

Using the regularity condition (v), we have

∇θΨq(γn, vec(Ψ̂)Ac) = ∇θΨq(γn,0Ac) = 0Ac .

This implies

ẑAc

=
1

γn

{
−∇θΨGn,p(Λ̃; Ψ0)Ac + K̂AcAK̂

−1
AA

(
∇θΨGn,p(Λ̃; Ψ0)A

−∇θΨq(γn, vec(Ψ̂)A) + γnẑA
)}

.

Taking the �∞-norm, we obtain

‖ẑAc‖∞
≤ 1

γn
‖ − ∇θΨGn,p(Λ̃; Ψ0)Ac + K̂AcAK̂

−1
AA∇θΨGn,p(Λ̃; Ψ0)A‖∞

+
1

γn
‖K̂AcAK̂

−1
AA

(
γnẑA −∇θΨq(γn, vec(Ψ̂)A)

)
‖∞

≤ 1

γn
‖ − ∇θΨGn,p(Λ̃; Ψ0)Ac + K̂AcAK̂

−1
AA∇θΨGn,p(Λ̃; Ψ0)A‖∞

+‖K̂AcAK̂
−1
AA‖∞,

using ‖γnẑA − ∇θΨq(γn, vec(Ψ̂)A)‖∞ = ‖∇θΨq(γn, vec(Ψ̂)A)‖∞ ≤ γn from
Lemma 8 of [22]. Furthermore, we have

‖ − ∇θΨGn,p(Λ̃; Ψ0)Ac + K̂AcAK̂
−1
AA∇θΨGn,p(Λ̃; Ψ0)A‖∞

≤ ‖∇θΨGn,p(Λ̃; Ψ0)‖∞ + ‖K̂AcAK̂
−1
AA∇θΨGn,p(Λ̃; Ψ0)A‖∞.

To verify inequality (A.7), we have

K̂ −∇2
θΨθ′

Ψ
Gn,p(Λ̃,Ψ0)
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=

∫ 1

0

(
∇2

θΨθ′
Ψ
Gn,p(Λ̃; Ψ0 + s(Ψ̂−Ψ0))−∇2

θΨθ′
Ψ
Gn,p(Λ̃; Ψ0)

)
ds

=

∫ 1

0

s∇θΨ

(
∇2

θΨθ′
Ψ
Gn,p(Λ̃; Ψ̄)

)
vec(Ψ̂−Ψ0)ds,

where we used the mean value theorem with the matrix parameter Ψ̄ satisfying
‖Ψ̄−Ψ0‖F ≤ ‖Ψ̂−Ψ0‖F . Let w = p2, for any (u, v) ∈ R

w × R
w, for any fixed

first step estimate Λ̃, we have

|u′
{
K̂ −∇2

θΨθ′
Ψ
Gn,p(Λ̃,Ψ0)

}
v|

= |
∫ 1

0

{
s

w∑
i,j,k=1

(
∇3

ijkGn,p(Λ̃; Ψ̄)vec(Ψ̂−Ψ0)kuivj
)}

ds|

≤
∫ 1

0

s|
{ w∑
i,j,k=1

(
∇3

ijkGn,p(Λ̃; Ψ̄)vec(Ψ̂−Ψ0)kuivj
)}

|ds,

where ∇3
ijk refers to the third order derivative with respect to θΨ. Element by

element, for any fixed first-step estimate Λ̃, for any i, j, k = 1, · · · , w, the third
order derivative applied with respect to θΨ is given by

∂3
ijkGn,p(Λ̃; Ψ̄)

=
1

2p

{
tr(Σ−1(∂kΣ)Σ

−1(∂jΣ)Σ
−1(∂iΣ) + Σ−1(∂jΣ)Σ

−1(∂kΣ)Σ
−1(∂iΣ))

}
− 1

2p

{
tr(Σ−1(∂kΣ)Σ

−1(∂jΣ)Σ
−1(∂iΣ)Σ

−1Ŝ

+Σ−1(∂jΣ)Σ
−1(∂kΣ)Σ

−1(∂iΣ)Σ
−1Ŝ)

+tr(Σ−1(∂kΣ)Σ
−1(∂iΣ)Σ

−1(∂jΣ)Σ
−1Ŝ

+Σ−1(∂iΣ)Σ
−1(∂kΣ)Σ

−1(∂jΣ)Σ
−1Ŝ)

+tr(Σ−1(∂iΣ)Σ
−1(∂jΣ)Σ

−1(∂kΣ)Σ
−1Ŝ)

+tr(Σ−1(∂jΣ)Σ
−1(∂iΣ)Σ

−1(∂kΣ)Σ
−1Ŝ)

}
= − 1

2p

{
tr(Σ−1(∂kΣ)Σ

−1(∂jΣ)Σ
−1(∂iΣ)Σ

−1(Ŝ − Σ)

+Σ−1(∂jΣ)Σ
−1(∂kΣ)Σ

−1(∂iΣ)Σ
−1(Ŝ − Σ))

+tr(Σ−1(∂kΣ)Σ
−1(∂iΣ)Σ

−1(∂jΣ)Σ
−1Ŝ

+Σ−1(∂iΣ)Σ
−1(∂kΣ)Σ

−1(∂jΣ)Σ
−1Ŝ)

+tr(Σ−1(∂iΣ)Σ
−1(∂jΣ)Σ

−1(∂kΣ)Σ
−1Ŝ)

+tr(Σ−1(∂jΣ)Σ
−1(∂iΣ)Σ

−1(∂kΣ)Σ
−1Ŝ)

}
= − 1

2p

{
tr(Σ−1(∂kΣ)Σ

−1(∂jΣ)Σ
−1(∂iΣ)Σ

−1(2Ŝ − Σ)

+Σ−1(∂jΣ)Σ
−1(∂kΣ)Σ

−1(∂iΣ)Σ
−1(2Ŝ − Σ))
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+tr(Σ−1(∂iΣ)Σ
−1(∂jΣ)Σ

−1(∂kΣ)Σ
−1Ŝ)

+tr(Σ−1(∂jΣ)Σ
−1(∂iΣ)Σ

−1(∂kΣ)Σ
−1Ŝ)

}
where Σ = Σ(Λ̃, Ψ̄) and ∂kΣ = ∂kΨ. Importantly, supp(Ψ̂) ⊆ supp(Ψ0)
since we consider the estimator (A.9). This implies that each component of
∇3

ijkGn,p(Λ̃; Ψ̄) is multiplied vec(Ψ̂ − Ψ0), whose non-zero components are of
order k0. Restricting to these elements, and by the Cauchy-Schwartz inequality,
we have

|∇θΨ

{
u′∇2

θΨθ′
Ψ
Gn,p(Λ̃; Ψ̄)v

}
vec(Ψ̂−Ψ0)|2

≤
{ w∑
i,j,k=1

∂3
ijkGn,p(Λ̃; Ψ̄)2u2

i v
2
j

}
‖vec(Ψ̂−Ψ0)‖22.

Moreover, taking the supremum on the unit sphere and restricting to matrices
with respect to the A block, we have

w∑
i,j,k=1

∂3
ijkGn,p(Λ̃; Ψ̄)2u2

i v
2
j

≤ p2
(
L1‖Σ−1‖3F ‖Σ−1(2Ŝ − Σ)‖F + L2‖Σ−1‖4F

1

n

n∑
i=1

‖Xi,A‖22
)2
/(4p2),

where L1, L2 are positive constants and Xi,A denotes the vector Xi restricted
to A. Besides

‖Σ−1(2Ŝ − Σ)‖F ≤ 2‖Σ−1‖F ‖Ŝ‖F + k0 ≤ L3‖Ψ−1
0 ‖F k0 + k0,

with L3 > 0 when restricting to A, where we used the sub-Gaussian assumption
and ‖Xi,A‖22 ≤ Mk0. Now using the consistency of ‖vec(Ψ̂−Ψ0)‖22 obtained in

Corollary 3.3 and the rate of γn obtained when bounding ‖∇ΨGn,p(Λ̃; Ψ0)‖max,
we obtain

{ w∑
i,j,k=1

∂3
ijkGn,p(Λ̃; Ψ̄)2u2

i v
2
j

}
‖vec(Ψ̂−Ψ0)‖22

≤
(
L′
1‖Ψ−1

0 ‖4F k0 + L1‖Ψ−1
0 ‖3F k0 + L′

2‖Ψ−1
0 ‖4F k0

)2‖Ψ−1
0 ‖4F k0

p

n
.

As a consequence, taking the supremum with respect to unit vector u, v ∈ R
A,

we obtain

‖K̂AA −∇2
θΨθ′

Ψ
Gn,p(Λ̃,Ψ0)AA‖s ≤ L

√
‖Ψ−1

0 ‖12F
k30p

n
, (A.10)

for L sufficiently large. Moreover, we have

∇2
θΨθ′

Ψ
Gn,p(Λ̃; Ψ0)AA − E[∇2

θΨθ′
Ψ
Gn,p(Λ0; Ψ0)]AA
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= ∇2
θΨθ′

Ψ
Gn,p(Λ̃; Ψ0)AA −∇2

θΨθ′
Ψ
Gn,p(Λ0; Ψ0)AA

+∇2
θΨθ′

Ψ
Gn,p(Λ0; Ψ0)AA − E[∇2

θΨθ′
Ψ
Gn,p(Λ0; Ψ0)]AA.

By a Taylor expansion, we obtain

∇2
θΨθ′

Ψ
Gn,p(Λ̃; Ψ0)AA −∇2

θΨθ′
Ψ
Gn,p(Λ0; Ψ0)AA

= ∇θΛ

{
∇2

θΨθ′
Ψ
Gn,p(Λ̄; Ψ0)AA

}
vec(Λ̃− Λ0),

where ‖Λ̄ − Λ0‖F ≤ ‖Λ̃ − Λ0‖F . Let θ = (θ′Λ, θ
′
Ψ)

′ with θΛ = vec(Λ). Element-
by-element, let k = 1, · · · ,m(m + 1)/2 + (p − m)2 and i, j = 1, · · · , p2, the
derivative with respect to θk,Λ applied to the second derivative with respect to
∂2
θi,Ψθj,Ψ

Gn,p(Λ̄; Ψ0) is

∂3
ijkGn,p(Λ̄; Ψ0)

=
1

2p
tr(Σ−1(∂kΣ)Σ

−1(∂jΣ)Σ
−1(∂iΣ) + Σ−1(∂jΣ)Σ

−1(∂kΣ)Σ
−1(∂iΣ))

− 1

2p

{
tr(Σ−1(∂kΣ)Σ

−1(∂jΣ)Σ
−1(∂iΣ)Σ

−1Ŝ)

+tr(Σ−1(∂jΣ)Σ
−1(∂kΣ)Σ

−1(∂iΣ)Σ
−1Ŝ)

+tr(Σ−1(∂kΣ)Σ
−1(∂iΣ)Σ

−1(∂jΣ)Σ
−1Ŝ)

+tr(Σ−1(∂iΣ)Σ
−1(∂kΣ)Σ

−1(∂jΣ)Σ
−1Ŝ)

+tr(Σ−1(∂iΣ)Σ
−1(∂jΣ)Σ

−1(∂kΣ)Σ
−1Ŝ)

+tr(Σ−1(∂jΣ)Σ
−1(∂iΣ)Σ

−1(∂kΣ)Σ
−1Ŝ)

}
= − 1

2p

{
tr(Σ−1(∂kΣ)Σ

−1(∂jΣ)Σ
−1(∂iΣ)Σ

−1(Ŝ − Σ)

+Σ−1(∂jΣ)Σ
−1(∂kΣ)Σ

−1(∂iΣ)Σ
−1(Ŝ − Σ))

+tr(Σ−1(∂kΣ)Σ
−1(∂iΣ)Σ

−1(∂jΣ)Σ
−1Ŝ)

+tr(Σ−1(∂iΣ)Σ
−1(∂kΣ)Σ

−1(∂jΣ)Σ
−1Ŝ)

+tr(Σ−1(∂iΣ)Σ
−1(∂jΣ)Σ

−1(∂kΣ)Σ
−1Ŝ)

+tr(Σ−1(∂jΣ)Σ
−1(∂iΣ)Σ

−1(∂kΣ)Σ
−1Ŝ)

}
,

where ∀k, ∂kΣ(Λ̄,Ψ0) = (∂kΛ̄)Λ̄
′ + Λ̄(∂kΛ̄)

′. Thus, using the same approach
when controlling for K̂−∇2

θΨθ′
Ψ
Gn,p(Λ̃,Ψ0), by the Cauchy-Schwartz inequality

and since ‖Λ̃ − Λ0‖F = Op(
√

p
n ) + Op(

√
1
p ), we obtain for a sufficiently large

constant C > 0

‖∇2
θΨθ′

Ψ
Gn,p(Λ̃; Ψ0)AA −∇2

θΨθ′
Ψ
Gn,p(Λ0; Ψ0)AA‖s

≤ ‖∇θΛ{∇2
θΨθ′

Ψ
Gn,p(Λ̄; Ψ0)AA}A‖2‖Λ̃− Λ0‖F ≤ C

√
‖Ψ−1

0 ‖8F k20
p

n
.
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Moreover, regarding the control over the Hessian evaluated at the true param-
eter, we obtain with probability 1− exp(− log p) that

‖∇2
θΨθ′

Ψ
Gn,p(Λ0; Ψ0)AA − E[∇2

θΨθ′
Ψ
Gn,p(Λ0; Ψ0)]AA‖s

≤ ‖Σ−1‖3s‖Ŝ − E[XiX
′
i]‖s/(2p) ≤ ‖Ψ−1

0 ‖3F (Kp

√
log p

n
)/(2p).

Consequently, for C,M > 0 sufficiently large,

‖∇2
θΨθ′

Ψ
Gn,p(Λ̃; Ψ0)AA − E[∇2

θΨθ′
Ψ
Gn,p(Λ0; Ψ0)]AA‖s

≤ ‖∇2
θΨθ′

Ψ
Gn,p(Λ̃; Ψ0)AA −∇2

θΨθ′
Ψ
Gn,p(Λ0; Ψ0)AA‖s

+‖∇2
θΨθ′

Ψ
Gn,p(Λ0; Ψ0)AA − E[∇2

θΨθ′
Ψ
Gn,p(Λ0; Ψ0)]AA‖s

≤ C

√
‖Ψ−1

0 ‖8F k20
p

n
+M‖Ψ−1

0 ‖3F

√
log p

n
, (A.11)

with probability at least 1−exp(− log p). Thus by inequalities (A.10) and (A.11),
we have

‖K̂AA − E[∇2
θΨθ′

Ψ
Gn,p(Λ0,Ψ0)]AA‖s ≤ L

√
‖Ψ−1

0 ‖12F
k30p

n
,

for L a sufficiently large constant. Using Lemma 11 of [22], we obtain

‖K̂−1
AA − E[∇2

θΨθ′
Ψ
Gn,p(Λ0,Ψ0)]

−1
AA‖s ≤ L

√
‖Ψ−1

0 ‖12F
k30p

n
. (A.12)

Based on the same arguments for deriving (A.10), we have

max
i∈Ac

‖e′i
(
K̂AcA −∇2

θΨθ′
Ψ
Gn,p(Λ̃,Ψ0)AcA

)
‖2 ≤ L

√
‖Ψ−1

0 ‖12F
k30p

n
,

and

max
i∈Ac

‖e′i
(
∇2

θΨθ′
Ψ
Gn,p(Λ̃; Ψ0)AcA − E[∇2

θΨθ′
Ψ
Gn,p(Λ0; Ψ0)]AcA

)
‖2

≤ L

√
‖Ψ−1

0 ‖12F
k30p

n
,

which implies

max
i∈Ac

‖e′i
(
K̂AcA − E[∇2

θΨθ′
Ψ
Gn,p(Λ0; Ψ0)]AcA

)
‖2 ≤ L

√
‖Ψ−1

0 ‖12F
k30p

n
. (A.13)

Following inequality (A.7), we have

‖K̂AcAK̂
−1
AA∇θΨGn,p(Λ̃,Ψ0)A‖∞ ≤ M1 +M2,
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with

M1 =

‖E[∇2
θΨθ′

Ψ
Gn,p(Λ0,Ψ0)]AcAE[∇2

θΨθ′
Ψ
Gn,p(Λ0,Ψ0)]

−1
AcA∇θΨGn,p(Λ̃,Ψ0)A‖∞,

and

M2 =

‖
{
K̂AcAK̂

−1
AA − E[∇2

θΨθ′
Ψ
Gn,p(Λ0,Ψ0)]AcAE[∇2

θΨθ′
Ψ
Gn,p(Λ0,Ψ0)]

−1
AA

}
×∇θΨGn,p(Λ̃,Ψ0)A‖∞.

By assumption, the population level Hessian is bounded. As for the gradient,
using Corollary 3.1, we obtain with probability 1−exp(− log p) thatM1 ≤ C

√
p
n .

As for M2, we have

M2 ≤
max
i∈Ac

‖e′i{K̂AcAK̂
−1
AA−E[∇2

θΨθ′
Ψ
Gn,p(Λ0,Ψ0)]AcAE[∇2

θΨθ′
Ψ
Gn,p(Λ0,Ψ0)]

−1
AA}‖2

‖∇θΨGn,p(Λ̃,Ψ0)A‖2. (A.14)

We proved

‖∇θΨGn,p(Λ̃,Ψ0)A‖2
≤

√
k0‖∇θΨGn,p(Λ̃,Ψ0)A‖∞ =

√
k0‖∇ΨGn,p(Λ̃,Ψ0)A‖max

≤ L̃‖Ψ−1
0 ‖2F

√
k0

√
p

n
, (A.15)

for L̃ a sufficiently large constant with high probability. Moreover

‖e′i{K̂AcAK̂
−1
AA − E[∇2

θΨθ′
Ψ
Gn,p(Λ0,Ψ0)]AcAE[∇2

θΨθ′
Ψ
Gn,p(Λ0,Ψ0)]

−1
AA}‖2

≤ ‖e′iE[∇2
θΨθ′

Ψ
Gn,p(Λ0; Ψ0)]AcAΥ1‖2 + ‖e′iΥ2E[∇2

θΨθ′
Ψ
Gn,p(Λ0; Ψ0)]

−1
AA‖2

+‖e′iΥ2Υ1‖2, (A.16)

with
Υ1 = K̂−1

AA − E[∇2
θΨθ′

Ψ
Gn,p(Λ0; Ψ0)]

−1
AA,

Υ2 = K̂AcA − E[∇2
θΨθ′

Ψ
Gn,p(Λ0; Ψ0)]AcA.

By inequalities (A.12) and (A.13), we obtain

‖Υ1‖s ≤ L

√
‖Ψ−1

0 ‖12F
k30p

n
, max

i∈Ac
‖e′iΥ2‖2 ≤ L

√
‖Ψ−1

0 ‖12F
k30p

n
.

Hence, using inequalities (A.14), (A.15) and (A.16), we obtain for a sufficiently
large constant C̃ that

M2 ≤ C̃
√
k0

√
‖Ψ−1

0 ‖4F
p

n

√
‖Ψ−1

0 ‖12F
k30p

n
.
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Moreover, using the incoherence condition,

‖K̂AcAK̂
−1
AA‖∞

≤ ‖K̂AcAK̂
−1
AA − E[∇2

θΨθ′
Ψ
Gn,p(Λ0; Ψ0)]AcAE[∇2

θΨθ′
Ψ
Gn,p(Λ0; Ψ0)]

−1
AA‖∞

+ ‖E[∇2
θΨθ′

Ψ
Gn,p(Λ0; Ψ0)]AcAE[∇2

θΨθ′
Ψ
Gn,p(Λ0; Ψ0)]

−1
AA‖∞

≤ L

√
‖Ψ−1

0 ‖12F
k40p

n
+ η.

Thus, putting the pieces together, we have for L1, L2, L3 > 0 sufficiently large

‖zAc‖∞ ≤ 1

γn

(
L1

√
‖Ψ−1

0 ‖12F
k40p

n
+ L2

√
‖Ψ−1

0 ‖4F
p

n

)
+ L3

√
‖Ψ−1

0 ‖12F
k40p

n
+ η.

Hence, then strict dual feasibility of Theorem A.1 is satisfied when

1

1− η
L

√
p

n
≤ γn,

under the scaling n > C‖Ψ−1
0 ‖12F k40p.

We now turn to the �∞-bound. Under the scaling n > C‖Ψ−1
0 ‖12F k40p, we have

‖K̂−1
AA∇θΨGn,p(Λ̃; Ψ0)A‖∞

≤ ‖{K̂−1
AA − E[∇2

θΨθ′
Ψ
Gn,p(Λ0; Ψ0)]

−1
AA}∇θΨGn,p(Λ̃; Ψ0)A‖∞

+‖E[∇2
θΨθ′

Ψ
Gn,p(Λ0; Ψ0)]

−1
AA∇θΨGn,p(Λ̃; Ψ0)A‖∞

≤
√
k0‖K̂−1

AA − E[∇2
θΨθ′

Ψ
Gn,p(Λ0; Ψ0)]

−1
AA‖s‖∇θΨGn,p(Λ̃; Ψ0)A‖∞

+‖E[∇2
θΨθ′

Ψ
Gn,p(Λ0; Ψ0)]

−1
AA∇θΨGn,p(Λ̃; Ψ0)A‖∞

≤ C1

√
k0

√
‖Ψ−1

0 ‖12F
k30p

n

√
‖Ψ−1

0 ‖4F
p

n
+ C2

√
‖Ψ−1

0 ‖4F
p

n
,

for C1, C2 > 0. By inequality (A.12), we obtain

‖K̂−1
AA − (E[∇2

θΨθ′
Ψ
Gn,p(Λ0; Ψ0)]AA)

−1‖∞

≤
√

k0‖K̂−1
AA − (E[∇2

θΨθ′
Ψ
Gn,p(Λ0; Ψ0)]AA)

−1‖s ≤ L

√
‖Ψ−1

0 ‖12F
k40p

n
≤ β∞.

Hence

‖K̂−1
AA‖∞ ≤

‖K̂−1
AA−(E[∇2

θΨθ′
Ψ
Gn,p(Λ0; Ψ0)]AA)

−1‖∞+‖(E[∇2
θΨθ′

Ψ
Gn,p(Λ0; Ψ0)]AA)

−1‖∞
≤ 2β∞.

Consequently, by part (i) of Theorem A.2, we obtain

‖Ψ̂−Ψ0‖max ≤ L̃

√
p

n
+ γnβ∞,

for L̃ > 0.
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Point (ii). For (μ, ζ)-amenable penalties, we apply Proposition A.3 of [22] and
control for each norm quantities. To do so, the same approach as in the proof
of (i) can be applied. Since the regulariser is assumed to be (μ, ζ)-amenable, we
have by Lemma 5 of [22] that γnẑA −∇θΨq(γn, vec(Ψ̂)A) = 0. Hence we have

‖ẑAc‖∞ ≤ 1

γn
‖ − ∇θΨGn,p(Λ̃; Ψ0)Ac + K̂AcAK̂

−1
AA∇θΨGn,p(Λ̃; Ψ0)A‖∞.

Following the same steps as in the proof of part (i), we upper bound both
‖∇θΨGn,p(Λ̃; Ψ0)Ac‖∞ and ‖K̂AcAK̂

−1
AA∇θΨGn,p(Λ̃; Ψ0)A‖∞ and apply Propo-

sition A.3, thus establishing strict dual feasibility. Then the remainder follows
from part (ii) of Theorem A.2.

Proof of Corollary 4.2. We first establish strict dual feasibility. We denote the
parameter vector as θΨ = vec(Ψ), we have

ẑAc =
1

γn

{
−∇θΨGn,p(Λ̃; Ψ0)Ac + K̂AcAK̂

−1
AA

(
∇θΨGn,p(Λ̃; Ψ0)A

−∇θΨq(γn, vec(Ψ̂)A) + γnẑA
)}

.

Taking the �∞-norm, we obtain

‖ẑAc‖∞ ≤ 1
γn

‖ − ∇θΨGn,p(Λ̃; Ψ0)Ac + K̂AcAK̂
−1
AA∇θΨGn,p(Λ̃; Ψ0)A‖∞

+ 1
γn

‖K̂AcAK̂
−1
AA

(
γnẑA −∇θΨq(γn, vec(Ψ̂)A)

)
‖∞

≤ 1
γn

‖ − ∇θΨGn,p(Λ̃; Ψ0)Ac + K̂AcAK̂
−1
AA∇θΨGn,p(Λ̃; Ψ0)A‖∞,

using γnẑA −∇θΨq(γn, vec(Ψ̂)A) = 0 from Lemma 8 of [22]. Then we have

‖ẑAc‖∞ ≤ 1

pγn
‖vec(Ŝ − Λ̃Λ̃′ −Ψ0)Ac − K̂AcAK̂

−1
AAvec(Ŝ − Λ̃Λ̃′ −Ψ0)A‖∞,

which implies with probability 1− exp(− log p) that

‖ẑAc‖∞ ≤ 2

pγn
‖vec(Ŝ − Λ̃Λ̃′ −Ψ0)‖∞ =

2

pγn
‖Ŝ − Λ̃Λ̃′ −Ψ0‖max ≤ 1

γn
L

√
p

n
,

using the arguments in the proof of Corollary 3.4. Provided γn > L
√

p
n , strict

dual feasibility holds and support recovery is satisfied by Theorem A.1 of [22].
As for the �∞-bound, using ‖K̂−1

AA‖∞ = 1, we have

‖K̂−1
AA∇θΨFn,p(Λ̃; Ψ0)‖∞ = 1

p‖K̂
−1
AAvec(Ŝ − Λ̃Λ̃′ −Ψ0)‖∞

≤ L
√

p
n ,

for L > 0 large enough, with probability 1− exp(− log p).
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