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Abstract: The Gaussian width is a fundamental quantity in probability,
statistics and geometry, known to underlie the intrinsic difficulty of estima-
tion and hypothesis testing. In this work, we show how the Gaussian width,
when localized to any given point of an ellipse, can be controlled by the
Kolmogorov width of a set similarly localized. Among other consequences,
this connection, when coupled with a previous result due to Chatterjee,
leads to a tight characterization of the estimation error of least-squares re-
gression as a function of the true regression vector within the ellipse. This
characterization reveals that the rate of error decay varies substantially as
a function of location: as a concrete example, in Sobolev ellipses of smooth-

ness α, we exhibit rates that vary from (σ2)
2α

2α+1 , corresponding to the

classical global rate, to the faster rate (σ2)
4α

4α+1 . We also show how the
local Kolmogorov width can be related to local metric entropy.

AMS 2000 subject classifications: Primary 62F10, 62F30; secondary
62G08.
Keywords and phrases: Complexity measure, ellipse constraint, Kol-
mogorov width, least squares, adaptive estimation.

Received December 2019.

1. Introduction

The Gaussian width is an important measure of the complexity of a set, and
it plays an important role in geometry, statistics and probability theory. Most
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relevant to this paper is its central role in empirical process theory, where the
Gaussian width and its Bernoulli analogue (known as the Rademacher width)
can be used to upper bound the error for various types of nonparametric es-
timators [31, 32, 3, 20, 5, 36]. More recently, these same complexity measures
have also been shown to play an important role in high-dimensional testing
problems [38, 41].

For a general set, it is non-trivial to provide analytical expressions for its
Gaussian or Rademacher widths. There are a variety of techniques for obtain-
ing bounds, including upper bounds via the classical entropy integral of Dudley,
as well as lower bounds due to Sudakov-Fernique (see the book [21] for details on
these and other results). Talagrand [27] introduced the generic chaining tech-
nique that, in principle, leads to sharp lower and upper bounds on Gaussian
widths. However, for an arbitrary set, it is generally impossible to evaluate the
expressions obtained from the generic chaining; we note this area of research is
currently very active (see, e.g., the papers [33, 34]). For applications in statis-
tics, it is of considerable interest to develop techniques that connect and help
control various forms of widths.

In this paper, we study a class of Gaussian widths that arise in the context
of estimation over (possibly infinite-dimensional) ellipses. As we describe below,
many non-parametric problems, among them are regression and density estima-
tion over classes of smooth functions, can be reduced to such ellipse estimation
problems. Obtaining sharp rates for such estimation problems requires studying
a localized notion of Gaussian width, in which the ellipse is intersected with
a Euclidean ball around the element θ∗ being estimated. The main technical
contribution of this paper is to show how this localized Gaussian width can be
bounded, from both above and below, using a localized form of the Kolmogorov
width [24]. As we show with a number of corollaries, this Kolmogorov width can
be calculated in many interesting examples.

Our work makes a connection to the evolving line of work on instance-specific
rates in estimation and testing. Within the decision-theoretic framework, the
classical approach is to study the (global) minimax risk over a certain problem
class. In this framework, methods are compared via their worst-case behavior as
measured by performance over the entire problem class. For the ellipse problems
considered here, global minimax risks in various norms are well-understood; for
instance, see the classic papers [25, 14, 15], as well as the more recent work [17].
When the risk function is near to constant over the set, then the global minimax
risk is reflective of the typical behavior. If not, then one is motivated to seek
more refined ways of characterizing the hardness of different problems, and the
performance of different estimators.

One way of doing so is by studying the notion of an adaptive estimator,
meaning one whose performance automatically adapts to some (unknown) prop-
erty of the underlying function being estimated. For instance, estimators using
wavelet bases are known to be adaptive to unknown degree of smoothness [8, 9].
Similarly, in the context of shape-constrained problems, there is a line of work
showing that for functions with simpler structure, it is possible to achieve faster
rates than the global minimax ones (e.g. [23, 40, 6]). A related line of work,
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including some of our own, has studied adaptivity in the context of hypothesis
testing (e.g., [30, 2, 37]). The adaptive estimation rates established in this work
also share this spirit of being instance-specific.

1.1. Some motivating examples

A primary motivation for our work is to understand the behavior of least-squares
estimators over ellipses. Accordingly, let us give a precise definition of the ellipse
estimation problem, along with some motivating examples.

Given a fixed integer d and a sequence of non-negative scalars, ordered in the
non-decreasing fashion μ1 ≥ μ2 ≥ · · · ≥ μd ≥ 0, we can define an elliptical norm
on R

d via

‖θ‖2E : =

d∑
j=1

θ2j
μj

.

Here for any coefficient μk = 0, we interpret the constraint as enforcing that
θk = 0. For any radius R > 0, this semi-norm defines an ellipse of the form

E(R) : =
{
θ ∈ R

d | ‖θ‖E ≤ R
}
. (1)

We frequently focus on the case R = 1, in which case we adopt the shorthand
notation E for the set E(1). Whereas equation (1) defines a finite-dimensional
ellipse, it should be noted that our theory also applies to infinite-dimensional
ellipses for sequences {μj}∞j=1 that are summable. Such results can be recovered
by studying a truncated version of the ellipse with finite dimension d, and then
taking suitable limits. In order to simplify the exposition, we develop our results
with finite d, noting how they extend to infinite dimensions after stating our
results.

Suppose that for some unknown vector θ∗ ∈ E , we obtain noisy observations
of the form

y = θ∗ + σw, where w ∼ N (0, Id). (2)

We assume that the ellipse E and noise standard deviation σ is known. The goal
of ellipse estimation is to specify a mapping y �→ θ̂(y) such that the associated
Euclidean risk

Ey

[
‖θ̂(y)− θ∗‖22

]
= Ey

[∑
i

(θ̂i − θ∗i )
2
]
,

is as small as possible.

Let us consider some concrete problems that can be reduced to instances of
ellipse estimation.
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Example 1 (Linear prediction with correlated designs). Suppose that we have
observations from the standard linear model

ỹ = Xβ∗ + νw,

where ỹ ∈ R
n is the response vector, X ∈ R

n×p is a (fixed, non-random) design
matrix, and w ∼ N(0, In) is noise. Suppose moreover that we know a priori that
‖β∗‖2 ≤ R for some radius R > 0. Alternatively, we can think of a condition of
this form arising implicitly when using estimators such as ridge regression.

Fig 1. Illustration of the ellipse estimation problem. The goal to estimate an unknown vector
θ∗ belonging to an ellipse based on noisy observations. The local geometry of the ellipse
controls the difficulty of the problem: due to its proximity to the narrow end of the ellipse, the
vector θ∗E is relatively easy to estimate. By contrast, the vector θ∗H should be harder, since it
lies closest to the center of the ellipse. The theory given in this paper confirms this intuition;
see Section 4 for details.

Given an estimate β̂, its prediction accuracy can be assessed via the mean-
squared error E

[
1
n‖Xβ̂ −Xβ∗‖22

]
, where the expectation is taken over the obser-

vation noise. Equivalently, letting θ̂ = Xβ̂/
√
n and θ∗ = Xβ∗/

√
n, our problem

is to minimize the mean-squared error E‖θ̂ − θ∗‖22. After this transformation,
we arrive at the observation model y = θ∗ + ν√

n
w, which is a version of our

original model (2) with d = n and σ = ν√
n
. Moreover, the constraint on the �2-

norm of β∗ translates into an ellipse constraint on θ∗. In particular, the ellipse
is determined by the non-zero eigenvalues of the matrix 1

nXX� ∈ R
n×n.

As shown in Figure 1, it is natural to conjecture that the location of θ∗ within
this ellipse affects the difficulty of estimation. Note that E‖y − θ∗‖22 = ν2/n, so
that on average, the observed vector y lies at squared Euclidean distance ν2/n
from the true vector. In certain favorable cases, such as a vector θ∗E that lies at
or close to the boundary of an elongated side of the ellipse, the side-knowledge
that θ∗ ∈ E is helpful. In other cases, such as a vector θ∗H that lies closer to
the center of the ellipse, the elliptical constraint is less helpful. The theory to
be developed in this paper makes this intuition precise. In particular, Section 4
is devoted to a number of consequences of our main results for the problem of
estimation in ellipses.
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Example 2 (Non-parametric regression using reproducing kernels). We now
turn to a class of non-parametric problems that involve a form of ellipse estima-
tion. Suppose that our goal is to predict a response z ∈ R based on observing
a collection of predictors x ∈ X . Assuming that pairs (X,Z) are drawn jointly
from some unknown distribution P, the optimal prediction in terms of mean-
squared error is given by the conditional expectation f∗(x) : = E[Z | X = x].
Given a collection of samples {(xi, zi)}ni=1, the goal of non-parametric regres-

sion is to produce an estimate f̂ that is as close to f∗ as possible.

Fig 2. (a) Illustration of various kernel functions defined on [−1, 1]× [−1, 1]. Each plot shows
the kernel value K(x, 0) for x ∈ [−1, 1]. (b) Illustration of the kernel eigenvalues {μj}nj=1 for

kernel matrices K generated from the kernel functions in part (a). Each log-log plot shows the
eigenvalue versus the index: note how the Gaussian kernel eigenvalues decay at an exponential
rate, whereas those of the Sobolev-One spline kernel decay at a polynomial rate.
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Assuming that the samples are i.i.d., we can rewrite our observations in the
form

zi = f∗(xi) + γvi, for i = 1, . . . , n, (3)

where vi is an independent sequence of zero-mean noise variables with unit
variance. A computationally attractive way of estimating f∗ is to perform
least-squares regression over a reproducing kernel Hilbert space, or RKHS for
short [1, 18, 12, 35]. Any such function class is defined by a symmetric, positive
definite kernel function K : X×X → R; standard examples include the Gaussian
kernel, Laplace kernel, and the Sobolev (spline) kernels; see Figure 2 for some
illustrative examples. Now suppose that f∗ belongs to the RKHS induced by
the kernel K, say with Hilbert norm ‖f∗‖H ≤ R. In this case, the representer
theorem [18] implies that the observation model (3) is equivalent to

z =
√
nKα∗ + γv for some α∗ ∈ R

n,

where K ∈ R
n×n is the n× n kernel matrix with entries Kij = K(xi, xj)/n for

each i, j = 1, . . . , n, and vector v is a n-dimensional vector formed by vi. The
representer theorem and our choice of scaling ensures that ‖f∗‖2H = (α∗)�Kα∗,
meaning that α∗ belongs to the ellipse of radius R defined by the symmetric
and PSD kernel matrix K.

Note that the matrix K can be diagonalized as K = UDU�, where U is or-
thonormal, and D = diag{μ1, μ2, . . . , μn} is a diagonal matrix of non-negative
eigenvalues. Following this transformation, we arrive at an instance of the stan-
dard ellipse model

y = θ∗ + w where w = γU�v/
√
n, y = U�z/

√
n,

and where θ∗ = U�Kα∗ belongs to the standard ellipse (1) defined by the eigen-
values of K. Note that the noise vector w = γU�v/

√
n has zero-mean entries

each with standard deviation σ = γ/
√
n. The entries of w are not exactly Gaus-

sian (unless the initial noise vector v was jointly Gaussian), but are often well-
approximated by Gaussian variables due to central limit behavior for large n.

1.2. Organization and notation

The remainder of this paper is organized as follows. In Section 2, we introduce
some background on approximation-theoretic quantities, including the Gaussian
width, metric entropy, and the Kolmogorov width. Section 3 is devoted to the
statement of our main results, while Section 4 develops a number of their specific
consequences for ellipse estimation. In Section 5, we provide the proofs of our
main results, with more technical aspects of the arguments provided in the
appendices.

Here we summarize some notation that are used throughout this paper.
Given any functions f(σ, d) and g(σ, d), we denote f(σ, d) � g(σ, d) to in-
dicate f(σ, d) ≤ cg(σ, d) for some universal constant c ∈ (0,∞) that is in-
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dependent of any problem parameters, such as σ, d, θ∗ etc. Similarly, we de-
fine f(σ, d) � g(σ, d). We write f(σ, d) � g(σ, d) if f(σ, d) � g(σ, d) and
f(σ, d) � g(σ, d) are both satisfied.

2. Background

Before proceeding to the statements of our main results, we introduce some
background on the notion of Gaussian width, Kolmogorov width, as well as
setting the estimation problem with ellipse constraint.

2.1. Gaussian width

Given a bounded subset S ⊂ R
d, the Gaussian width of S is defined as

G (S) : = E[sup
u∈S

〈u, w〉] = E

[
sup
u∈S

d∑
i=1

wiui

]
, where wi

i.i.d.∼ N (0, 1).

It measures the size of set S in a certain sense.

It is also useful to define the classical notions of packing and covering en-
tropy. An ε-cover of a set S with respect to the ‖ · ‖2 metric is a discrete set
{θ1, . . . , θN} ⊂ S such that for each θ ∈ S, there exists some i ∈ {1, . . . , N}
satisfying ‖θ − θi‖2 ≤ ε. The ε-covering number N(ε, S) is the cardinality of
the smallest ε-cover, and the logarithm of this number logN(ε, S) is called the
covering metric entropy of set S.

Similarly, an ε-packing of a set S is a set {θ1, . . . , θM} ⊂ S satisfying ‖θi −
θj‖2 > ε for all i �= j. The size of the largest such packing is called the ε-packing
number of S, which we denote by M(ε,S). It is related to the (covering) metric
entropy by the inequalities

logM(2ε,S) ≤ logN(ε,S) ≤ logM(ε,S).

For this reason, we use the term metric entropy to refer to either the covering
or packing metric entropy, since they differ only in constant terms.

The connection between Gaussian width and metric entropy is well-studied
(e.g. [11, 28, 36]). For our future discussion, we collect a few results here as ref-
erence. First, Dudley’s entropy integral [11] is an upper bound for the Gaussian
width—that is,

G (S) ≤ c

∫ diam(S)

0

√
logN(ε,S) dε,

for some universal constant c > 0. This upper bound also holds for more general
sub-Gaussian processes. Dudley’s bound can be much looser than the more re-
fined bounds obtained through Talagrand’s generic chaining, which are tight up
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to a universal constant [28, Thm. 2.4.1]. For Gaussian processes like ours, Su-
dakov minoration (e.g., [4, Thm. 13.4]) provides a lower bound on the Gaussian
width.

G (S) ≥ sup
ε>0

c ε
√
logM(ε,S). (4)

Although we do not directly use this lower bound when proving our main lower
bound (Theorem 2) below, we follow its spirit by constructing a large collection
of well-separated points.

2.2. Kolmogorov width

In this section, we review the definition of the Kolmogorov width (see, e.g. [24])
and briefly discuss its properties. This geometric quantity plays the central role
in our main results.

For a given compact set S ⊂ R
d and integer k ∈ [d], the Kolmogorov k-width

of S is given by

Wk(S) : = min
Πk∈Pk

max
θ∈S

‖θ −Πkθ‖2, (5)

where Pk denotes the set of all k-dimensional orthogonal linear projections,
and Πkθ denotes the projection of θ to the corresponding k-dimensional linear
space. Any projection Πk achieving the minimum in expression (5) is said to be
an optimal projection for Wk(S). Note that the Kolmogorov width Wk(S) is a
non-increasing function of k, meaning that

max
θ∈S

‖θ‖2 = W0(S) ≥ W1(S) ≥ . . . ≥ Wd(S) = 0.

By definition, the Kolmogorov k-width measures how well the set S is ap-
proximated by the set of k dimensional linear spaces. We also make a note
that the Kolmogorov k-width is understood to quantify the performance of the
truncated series estimators (e.g. [10, 16]), and play an important role in density
estimation and compressed sensing (see, [7, 13]). Recently, it is also shown to
determine the local of testing rate in ellipses (see, [37]). We refer the readers
to the book by Pinkus [24] for more details on the Kolmogorov width and its
properties.

3. Main results

Let us first define the notion of localized Gaussian width formally, and then
turn to the statement of our main results.

3.1. Localized Gaussian width

Let B(δ) denote the Euclidean ball of radius δ centered at zero, and for a given
vector θ∗ ∈ E , define the shifted ellipse Eθ∗ : =

{
θ − θ∗ | θ ∈ E

}
. The localized
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Gaussian width at θ∗ and scale δ is defined as

G (Eθ∗ ∩ B(δ)) = E
[

sup
Δ∈Eθ∗∩B(δ)

〈w, Δ〉
]
. (6)

Note that this quantity is simply the ordinary Gaussian width of the set Eθ∗ ∩
B(δ), and we say that it is localized since the Euclidean ball restricts it to a
neighborhood of θ∗. See Figure 3 for an illustration of this set.

Fig 3. An illustration of the set Eθ∗ ∩B(δ). It is the intersection of the ellipse with Euclidean
ball centered at θ∗, and thus varies according to the local geometry of the ellipse.

We note that localized forms of Gaussian and Rademacher complexity are
standard in the literature on empirical processes (e.g., [3, 19]), where it is known
that they are needed to obtain sharp rates. In the case of least-squares estimation
over convex sets, there is an extremely explicit connection between the localized
Gaussian width and the associated estimation error [31, 5, 36]; we describe
this relationship in more detail in Section 4 of the current paper as well as in
Section D.

Our main results, to be stated in the following subsections, provide conditions
under which we can provide a sharp characterization of the localized Gaussian
width (6) in terms of the Kolmogorov width.

3.2. Upper bound on the localized Gaussian width

In order to state our first main result, we introduce an approximation-theoretic
quantity having to do with the quality of a given k-dimensional projection. For
a given integer k ∈ {1, . . . , d} and any k-dimensional linear projection Πk, let
us define the set

Γ(θ∗, δ,Πk) : =

{
γ ∈ R

d

∣∣∣∣∣ γ > 0, sup
Δ∈Eθ∗∩B(δ)

d∑
i=1

[Δi − (ΠkΔ)i]
2

γi
≤ 1

}
.

Here γ > 0 means that γi > 0 for each coordinate i = 1, . . . , n. It can be
verified that the set Γ(θ∗, δ,Πk) is always non-empty since the constant vector
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γ = μ1δ
2 1 always belongs to it. (Here 1 denotes the vector of all ones.) To

provide some intuition for this definition, the vector Δ−Πk(Δ) corresponds to
the error incurred by using the subspace associated with Πk to approximate Δ.
The positive vector γ ∈ R

d allows us to weight the entries of this error vector
in computing the Euclidean norm of the weighted error.

We are now ready to state an upper bound on the localized Gaussian width.

Theorem 1. Given any δ > 0, projection tuple (k,Πk), and vector θ∗ ∈ E, we
have

G (Eθ∗ ∩ B(δ)) ≤ δ
√
k + inf

γ∈Γ(θ∗,δ,Πk)

√√√√ d∑
i=1

γi. (7)

See Section 5.1 for the proof of this result.
Note that Theorem 1 holds for any dimension and projection pair (k,Πk).

Often the case, we can choose a specific pair for which the set Γ(θ∗, δ,Πk) is easy
to characterize. In particular, given any fixed δ > 0, let us define the critical
dimension

k∗(θ
∗, δ) : = arg min

k=1,...,d

{
Wk

(
Eθ∗ ∩ B

(
(1− η)δ

))
≤ 9

10
δ
}
, (8)

for some constant η ∈ (0, 0.1). In words, this integer is the minimal dimension
for which there exists a k∗-dimensional projection that approximates a neigh-
borhood of the re-centered ellipse to 9

10δ-accuracy.
1 Although our notation does

not explicitly reflect it, note that k∗(θ
∗, δ) also depends on the ellipse E .

Given the integer k∗ ≡ k∗(θ
∗, δ), we let Πk∗ ∈ Pk∗ denote the minimizing

projection in the definition (5) of the width, and note that for any vector Δ,
the error associated with this projection is given by Δ−Πk∗(Δ). It can be seen
in our later examples, this particular choice (k∗, Πk∗) often yields tight control
of the localized Gaussian width. So as to streamline notation, we adopt Γ(θ∗, δ)
as a shorthand for Γ(θ∗, δ,Πk∗).

Regularity assumption For many ellipses encountered in practice, the first
term in the upper bound (7) dominates the second term involving the set Γ.
In order to capture this condition, we say the ellipse E is regular at θ∗ if there
exists some pair (k,Πk) such that

inf
γ∈Γ(θ∗,δ,Πk)

d∑
i=1

γi ≤ c δ2 k for all δ > 0. (9)

Here c < ∞ is any universal constant. When this condition holds, Theorem 1
implies the existence of another universal constant c′ such that

G (Eθ∗ ∩ B(δ)) ≤ c′ δ
√
k for all δ > 0.

1The constants η and 9/10 are chosen for the sake of convenience in the proof, but other
choices of these quantities (which both must be strictly less than 1) are also possible.



2998 Y. Wei et al.

As shown in Section A, the regularity condition (9) is a generalization of a
condition previously introduced by Yang et al. [39] in the context of kernel
ridge regression, and it holds for many examples encountered in practice.

As a direct consequence of Theorem 1, the following corollary holds.

Corollary 1. If the regularity assumption (9) is satisfied with dimension and
projection pair (k∗,Πk∗), then the localized Gaussian width satisfies

G (Eθ∗ ∩ B(δ)) ≤ cu δ
√

k∗ for all δ > 0.

Let us illustrate the regularity condition (9) and associated consequences of
Theorem 1 with some examples.

Example 3 (Gaussian width of the Euclidean ball). We begin with a simple
example: suppose that the ellipse E is the Euclidean ball in R

d, specified by the
aspect ratios μj = 1 for all j = 1, . . . , d, and let us use Theorem 1 to upper
bound the Gaussian width at θ∗ = 0. For δ ∈ (0, 1

1−η ) and any integer k < d, we

have Wk(Eθ∗ ∩ B((1− η)δ)) = (1− η)δ, because any k-dimensional projection
must neglect at least one coordinate. Since 1 − η > 9/10, we conclude that
k∗(0, δ) = d for all δ ∈ (0, 1

1−η ). With this choice of k∗, there is no error in the

projection, meaning that infγ∈Γ(θ∗,δ)

∑d
i=1 γi = 0. Consequently, the regularity

condition (9) certainly holds, so that Theorem 1 implies that

G (Eθ∗ ∩ B(δ)) ≤ c′δ
√
d.

In fact, a direct calculation yields that G (Eθ∗ ∩B(δ)) = δ(
√
d−o(1)), where o(1)

is a quantity tending to zero as d grows (e.g., [36]). Consequently, our bound is
asymptotically sharp up to the constant pre-factor in this special case.

We now turn to a second example that arises in non-parametric regression
and density estimation under smoothness constraints:

Example 4 (Gaussian width for Sobolev ellipses). Now consider an ellipse
E defined by the aspect ratios μj = cj−2α, where α > 1/2 is a parameter.
Ellipses of this form arise when studying non-parametric estimation problems
involving functions that are α-times differentiable with Lebesgue-integrable α-
derivative [29]. Let us again use Theorem 1 to upper bound the localized Gaus-
sian width at θ∗ = 0. From classical results on Kolmogorov widths of ellipses [24]
(see also Wei andWainwright [37, Appendix C]), we know that Wk(E0) =

√
μk+1.

Taking into account the intersection with the Euclidean ball, we find that

Wk(Eθ∗ ∩ B((1− η)δ)) = min
{√

μk+1, (1− η)δ
}
,

valid for any δ ∈ (0, 1
1−η

√
μ1) (see also Appendix A for details). Since 1 − η >

9/10, we conclude that

k∗(0, δ) = argmin

{
√
μk+1 ≤ 9

10
δ

}
=

⌈(
10

√
c

9δ

)1/α
⌉
,
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again valid for all δ ∈ (0, 1
1−η

√
μ1). Here the last inequality uses the fact that

μj = cj−2α.
This argument also shows that the corresponding projection subspace is

spanned by the first k∗ standard orthogonal vectors {ei}k∗
i=1. With this pro-

jection, any feasible vector γ ∈ Γ(θ∗, δ) satisfies γi ≥ μi1{i > k∗(0, δ)}, meaning
that

inf
γ∈Γ(θ∗,δ)

d∑
i=1

γi =

d∑
j=k∗+1

μj = c

d∑
j=k∗+1

j−2α ≤ c

∫ ∞

k∗+1

t−2α dt = cδ2−1/α. (10)

On the other hand, we also have δ2k∗(0, δ) � δ2−1/α, so there exists some

constant c′, such that infγ∈Γ(θ∗,δ)

∑d
i=1 γi ≤ c′δ2k∗(0, δ) which validates the

regularity condition (9). Therefore, Theorem 1 guarantees that

G (E0 ∩ B(δ)) ≤ c′′ δ1−(1/2α). (11)

In fact, the above bound (11) can be shown to be tight up to a constant pre-
factor. See the discussion following Corollary 2 in the sequel for further details.

3.3. Lower bound on the localized Gaussian width

So far, we have derived an upper bound for the localized Gaussian width. In
this section, we use information-theoretic methods to prove an analogous lower
bound on the localized Gaussian width. This lower bound involves both the
critical dimension k∗(θ

∗, δ), as previously defined in equation (8), and also a
second quantity, one which measures the proximity of θ∗ to the boundary of the
ellipse. More precisely, for a given θ∗ ∈ E , define the mapping Φ : R+ → R+ via

Φ(δ) =

{
1 if δ > ‖θ∗‖2/(1− η)

1 ∧min
{
r ≥ 0 | δ2 ≤ 1

(1−η)2

∑d
i=1

r2

(r+μi)2
(θ∗i )

2
}

otherwise.

(12)

As shown byWei andWainwright [37, Appendix F], this mapping is well-defined,
and has the limiting behavior Φ(δ) → 0 as δ → 0+; for completeness, we include
the verification of these claims in Section G, along with a sketch of the function.
Let us denote Φ−1(x) as the largest positive value of δ such that Φ(δ) ≤ x. Note
that by this definition, we have Φ−1(1) = ∞.

Recall that the elliptical norm on R
d is defined via ‖θ‖2E : =

∑d
j=1

θ2
j

μj
. We are

now ready to state our lower bound for the localized Gaussian width.

Theorem 2. There exist universal constants c	, c > 0 such that for all θ∗ ∈ E,

G (Eθ∗ ∩ B(δ)) ≥ c	 δ
√

1− ‖θ∗‖2E
√

k∗(θ∗, δ),

for all δ ∈
(
0, cΦ−1

(
(‖θ∗‖−1

E − 1)2
)
∧√

μ1

)
.



3000 Y. Wei et al.

See Section 5.2 for the proof of this theorem.
We remark that the regularity condition (9) is not necessary for this re-

sult to hold. Additionally, note that the inequality δ < cΦ−1
(
(‖θ∗‖−1

E − 1)2
)

is equivalent to ‖θ∗‖E < 1

1+
√

Φ(δ/c)
. With this assumption, we consider the

cases which are slightly bounded away from the boundary of the ellipse. Con-
cretely, if we assume that ‖θ∗‖E ≤ 1/2, then (‖θ∗‖−1

E − 1)2 ≥ 1 therefore
Φ−1
(
(‖θ∗‖−1

E − 1)2
)
= ∞.

3.4. Some consequences

One useful consequence of Theorem 1 and Theorem 2 is in providing sufficient
conditions for tight control of the localized Gaussian width. If the ellipse E is
regular at θ∗, then the above theorems imply the localized Gaussian width (6) is
equivalent to δ

√
k∗(θ∗, δ) up to a multiplicative constant. Specifically, we have

the sandwich relation

c	δ
√

k∗(θ∗, δ) ≤ G (Eθ∗ ∩ B(δ)) ≤ cuδ
√

k∗(θ∗, δ), (13)

for some universal positive constants c	 and cu and 0 < δ < cΦ−1
(
(‖θ∗‖−1

E −1)2
)
.

Recall our earlier calculation from Example 3, where we showed that the
localized Gaussian width scales as δ

√
d, up to multiplicative constants. The

sandwich relation (13) shows that this same scaling holds more generally with
d replaced by k∗(θ

∗, δ). Thus, we can think of k∗(θ
∗, δ) corresponding to the

“effective dimension” of the set Eθ∗ ∩ B(δ).
It is worthwhile pointing out that our results have a number of corollaries,

in particular in terms of how local Gaussian widths and Kolmogorov widths are
related to metric entropy. Recall the notion of the metric (packing) entropy as
previously defined in Section 2.1. The following corollary provides a sandwich
for k∗(θ

∗, δ) in terms of the metric entropy of the set Eθ∗ ∩ B(δ).

Corollary 2. There are universal constants cj > 0 such that for any pair (θ∗, E)
satisfying the regularity condition (9), we have

c1 logM
(δ
2
, Eθ∗ ∩ B(δ)

) (i)

≤ k∗(θ
∗, δ)

(ii)

≤ c2 logM
(
c0δ, Eθ∗ ∩ B(δ)

)
, (14)

for all δ ∈ (0, 1/e).

See Section B for the proof. The lower bound (i) is a relatively straightforward
consequence of Sudakov’s inequality (4), when combined with our results con-
necting the Kolmogorov and Gaussian widths. The upper bound (ii) requires a
lengthier argument.

Recall that in Example 4, we argued that for the Sobolev ellipse with smooth-
ness α > 1/2, the Kolmogorov width at θ∗ = 0 is given by k∗(0, δ) = c (1/δ)(1/α).
Combining this calculation with Corollary 2, we find that the metric entropy
is logM

(
δ/2, Eθ∗ ∩ B(δ)

)
= (1/δ)1/α up to a multiplicative constant. This is

a known fact that can be verified by constructing explicit packings of these
function classes, but it serves to illustrate the sharpness of our results in this
particular context.
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4. Consequences for estimation

In the previous section, we established upper and lower bounds on the localized
Gaussian width in Theorem 1 and Theorem 2. We now turn to some conse-
quences of these bounds, in particular for the problem of constrained least-
squares estimation. Our development involves combining ideas due to Chatter-
jee [5] on concentration of such least-squares estimators with our analysis of the
localized Gaussian width.

Suppose that we are given observations y ∼ N (θ∗, σ2In) with θ∗ ∈ E ac-
cording to the earlier model (2), and we consider the constrained least squares
estimator (LSE)

θ̂ : = argmin
θ∈E

‖y − θ‖22. (15)

Let us assume that the ellipse E is regular at θ∗, so that the localized Gaussian
width satisfies the bounds (13) with constants c	 and cu. Connecting the error

‖θ̂ − θ∗‖2 to these Gaussian width bounds involves the following two functions

gu(δ) : =
δ2

2
− σc	δ

√
k∗(θ∗, δ),

g	(δ) : =
δ2

2
− σcuδ

√
k∗(θ∗, δ),

(16)

with the critical dimension k∗(θ
∗, δ) defined in expression (8). We note that sim-

ilar expressions emerge from the analysis of Chatterjee [5], wherein the above
expressions involving the Kolmogorov width are replaced by the localized Gaus-
sian width. Indeed, as we elaborate below, the above relationship (13) provides
the link between these two widths.

With these definitions, let us consider the fixed point equation

δ = c	σ
√

k∗(θ∗, δ) for δ ≤ cΦ−1
(
(‖θ∗‖−1

E − 1)2
)
∧√

μ1. (17)

Since δ �→ k∗(δ) is a non-increasing function of δ (see Wei and Wainwright [37,
Appendix E]) while δ �→ δ is increasing, if this fixed point problem (17) has a
solution, then the solution is unique and we denote it as δ∗.

We can now give a precise statement relating the estimation rate of θ̂ to the
solution δ∗ of the fixed point equation (17).

Proposition 1 (Least squares on ellipses). Let E be regular at θ∗, and let δ∗ be
the solution to the fixed point problem (17). Suppose furthermore the following
conditions hold

(a) The function g	 is unimodal in δ.
(b) There exists a constant c1 ∈ (0, 1) such that c2uk∗(δ) ≤ 1

4c21
c2	k∗(δ∗) for

δ = c1δ∗,
(c) There exists a constant c2 > 1 such that δ ≥ 2σcu

√
k∗(δ) for δ = c2δ∗.
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Then the error of the least squares estimator (15) satisfies

cδ∗ ≤ ‖θ̂ − θ∗‖2 ≤ c′δ∗, with prob. ≥ 1− 3 exp(−c′′δ2∗/σ
2), (18)

for some constants that depend only on c1 and c2.

See Section D for the proof of this result.
Note that this result is stated for the ellipse E(R) with R = 1. For arbitrary R

one can easily rescale to obtain similar results; see equation (37) in Section D.1
for more detail. When we say g	 is unimodal, we mean that there is some t such
that g	 is nondecreasing for δ < t and nonincreasing for δ > t.

Equation (18) provides a high probability bound on the least-squares error.
If furthermore δ∗ � σ (which holds true in many cases including the examples
shown below), then the probability 1−3 exp(−c′′δ2∗/σ

2) goes to one, and we are
guaranteed that the mean-squared error is sandwiched as

cδ2∗ ≤ E‖θ̂ − θ∗‖22 ≤ c′δ2∗ (19)

for some universal constants (c, c′) by integrating the high probability bound;
see Section D (in particular the expectation bound (35)) for details.

We claim the conditions of Proposition 1 are relatively mild. Note that the

related function g(t) : = δ2

2 −σG (Eθ∗ ∩B(δ)) is strongly convex [5, Thm. 1.1], as
mentioned in Section D.1. So it is reasonable to believe that its approximation
g	 is unimodal. Moreover, the assumptions (b) and (c) essentially assert that g	

does not change too drastically at two points c1δ∗ and c2δ∗ close to the critical
radius δ∗. In the next section, we will check these assumptions for different
examples.

Note that fixed point problem (17) can be viewed as a kind of a critical
equation (e.g., [36, Ch. 13] and [39]), whose solution δ∗ we call the critical
radius. The proof of Proposition 1 relies on a result of Chatterjee [5] where the
estimation rate is controlled in terms of the optimizer of a particular function
that involves the localized Gaussian width. In order to compute this optimizer,
one needs “exact” control of the localized Gaussian width. Upper bounds on the
localized Gaussian width are tractable, but a matching lower bound is usually
hard to obtain. The proof of Proposition 1 shows that with two-sided control of
the localized Gaussian width (13), the estimation error also satisfies a matching
lower bound. To be clear, the result obtained here is only tight up to universal
constants, and moreover requires a regularity condition. We believe the latter
is an artifact of our proof that is possibly removable, whereas pinning down
tight constants, as in the paper [5], seems to require new techniques. In the next
section, we illustrate the consequence of this result with some examples.

4.1. Adaptive estimation rates

We now demonstrate the consequences of Proposition 1 via some examples.
We begin with the simple problem of estimation for θ∗ = 0, where we see a
number of standard rates from the ellipse estimation literature. We then consider
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some more interesting examples of extremal vectors, and show how the resulting
estimation rates differ from the classical ones.

4.1.1. Estimating at θ∗ = 0

We begin our exploration by considering ellipse-constrained estimation problem
at θ∗ = 0. In this section, we focus on two type of ellipses that are specified
by aspect ratios μj that follow an α-polynomial decay and τ -exponential decay
respectively. The first one corresponds to estimating a function in α-smooth
Sobolev class—that is, functions that are almost everywhere α-times differen-
tiable, and with the derivative f (α) being Lebesgue integrable. The exponential
decay corresponds to functions that are almost infinitely smooth everywhere.
Examples of this kind include the reproducing Hilbert spaces with the Gaussian
kernel, which satisfies such bound with τ = 2 (real line) or τ = 1 (compact
domain) for the Lebesgue measure.

α-polynomial decay Consider an ellipse E defined by the aspect ratios μj =
cj−2α for some α > 1/2. In Example 4, inequality (10), it is verified that this
ellipse is regular at 0, and that k∗(δ) � δ−1/α. Thus, solving the fixed point

problem (17) yields δ∗ � σ
2α

2α+1 , and one can check that the conditions for
Proposition 1 are met which in turn gives

c
(
σ2
) 2α

2α+1 ≤ ‖θ̂ − θ∗‖22 ≤ C
(
σ2
) 2α

2α+1 ,

with probability ≥ 1 − exp
(
−c′σ− 2

2α+1

)
for some constants C > c > 0 and c′.

One may notice that the rate
(
σ2
) 2α

2α+1 coincides with the minimax estimation
rate for the α-smooth Sobolev function class. We show in Section 4.2 that this
is indeed the case more generally.

τ-exponential decay Consider another case where the ellipse E is defined
by the aspect ratios μj = c1 exp(−c2j

τ ), for some τ > 1/2. Then a slight
modification of the computation in Example 4 yields

k∗(δ) = argmink{
√
μk+1,

9

10
δ} � log

1
τ

(
1

δ

)
.

In order to establish the regularity condition, notice that in this case, the quan-
tity infγ∈Γ(θ∗,δ)

∑d
i=1 γi is achieved in limit by γi = μi1{i > k∗(δ)} and further

more

inf
γ∈Γ(θ∗,δ)

d∑
i=1

γi =

d∑
j=k∗+1

c1e
−c2j

τ

(20)

�
∫ ∞

k∗

e−c2t
τ

dt ≤ 1

τkτ−1
∗

∫ ∞

kτ
∗

e−c2u du � μk∗

kτ−1
∗

≤ δ2,
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which by definition, shows that E is regular at θ∗ = 0.

Solving the fixed point problem (17) yields δ∗ � σ log
1
2τ
(
1
σ

)
up to other

polylogarithmic factors in σ. One can check that the conditions for Proposition 1
are met, so we have, up to polylogarithmic factors,

cσ2 log
1
τ (σ−1) ≤ ‖θ̂ − θ∗‖22 ≤ Cσ2 log

1
τ (σ−1),

with probability ≥ 1− exp−c′ log
1
τ (1/σ) for some constants C > c > 0 and c′.

4.1.2. Estimating at extremal vectors

In the previous section, we studied the adaptive estimation rate for θ∗ = 0. In
this section, we study some non-zero cases of the vector θ∗. For concreteness
and simplicity, we restrict our attention to vectors that are non-zero on some
coordinate s ∈ [d] = {1, . . . , d}, and zero on all other coordinates. Even for such
simple vectors, our analysis reveals some interesting and adaptive scalings.

Given integer s ∈ [d], consider θ∗ : = (
√
μs − r)es for some

r ∈ [t∗	 (s, E), t∗u(s, E)] where t∗	 (s, E), t∗u(s, E) are small constants that are de-
fined in Wei and Wainwright [37, Corollary 2]. Note that the shrinkage −r away
from the boundary is due to the boundary issue in Theorem 2. We believe it
is an artifact of our analysis that is possibly removable. We make a note that
the extremal vectors considered here are sparse vectors, with most of the entries
equal to zero. This sparsity arises because we have considered ellipses that are
specified by diagonal quadratic forms; in the more general setting, the “easy”
points would not correspond to such sparse vectors.

So as to streamline notation, we adopt k∗(δ) as a shorthand for k∗(θ
∗, δ). Wei

and Wainwright [37, Appendix D] showed that with ξ = (1− η)δ, we have

k∗(δ) = k∗
( ξ

1− η

)
≤ arg max

1≤k≤d

{
μ2
k ≥ 1

64
ξ2μs

}
︸ ︷︷ ︸

=: mu

.

This upper bound is proved by considering the projection onto the
mu-dimensional subspace spanned by {e1, . . . , emu}. At the same time, we prove
in Lemma 6 that

k∗(δ) ≥ 0.09 ·m	, where m	 : = arg max
1≤k≤d

{
μ2
k ≥ δ2μs

}
.

α-polynomial decay Consider an ellipse E with μj = cj−2α for some α >
1/2. From the above calculation, we can conclude that

mu, m	, k∗ � (μsδ
2)−

1
4α ,

Let us verify the regularity condition (9) with dimensionmu and projection Πmu

to the linear subspace spanned by the vectors {e1, . . . , emu}. We make the ob-
servation that γ = 4(0, . . . , 0, μmu+1, . . . μd) is feasible for the set Γ(θ∗, δ,Πmu),
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since Δi − (ΠkΔ)i equals to zero in the first mu dimensions, equals to Δi for
i > mu, and further

d∑
i=1

Δ2
i

γi
=

d∑
i=mu+1

(θi − θ∗)2

γi
≤

d∑
i=mu+1

2θ2i + 2θ∗2

γi
=

1

2
(

d∑
i=mu+1

2θ2i
4μi

+
2θ∗2

4μi
)≤ 1,

where the last step uses the fact that both θ∗ and θ belong to E . Therefore one
has

inf
γ∈Γ(θ∗,δ,Πmu )

γi ≤
d∑

i=mu+1

μi �
∫ ∞

mu+1

t−2αdt = (mu + 1)−2α+1 ≤ δ2mu,

where the last step follows from mu � (μsδ
2)−

1
4α . Thereby we establish the

regularity condition at θ∗.
As long as s � (σ2)−2/(4α+1), solving the fixed point problem (17) yields

δ∗ � σ
4α

4α+1 , and one can check that the conditions for Proposition 1 are met.
Thus,

c
(
σ2
) 4α

4α+1 ≤ ‖θ̂ − θ∗‖22 ≤ C
(
σ2
) 4α

4α+1 ,

with probability ≥ 1− exp
(
−c′σ− 2

4α+1

)
for some constants C > c > 0 and c′.

τ-exponential decay Now consider ellipse E with μj = c1 exp(−c2j
τ ) for

some τ > 1/2. From the above calculation, we can conclude that

mu, m	, k∗ � log
1
τ

(
1

δ

)
.

Let us verify the regularity condition (9) with dimension mu and projec-
tion Πmu to the linear subspace spanned by {e1, . . . , emu}. Since the vector
γ = 4(0, . . . , 0, μmu+1, . . . μd) is feasible for the set Γ(θ∗, δ,Πmu), by similar cal-
culation from inequality (20), we can show that the ellipse is regular at θ∗.

Solving the fixed point problem (17) yields δ∗ � σ log
1
2τ
(
1
σ

)
up to other poly-

logarithmic factors in σ. One can check that the conditions for Proposition 1
are met, so we have, up to polylogarithmic factors,

cσ2 log
1
τ (σ−1) ≤ ‖θ̂ − θ∗‖22 ≤ Cσ2 log

1
τ (σ−1),

with probability ≥ 1 − exp
(
−c′ log

1
τ (σ−1)

)
for some constants C > c > 0 and

c′.

Numerical results To illustrate our findings from above, Figure 4 provides
a numerical plot of the mean-squared error of the constrained least squared
estimator (15) for estimating the vector θ∗ = 0 (blue curve) and the vector
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Fig 4. Log-log plot of E‖θ̂− θ∗‖22 against σ for the ellipse with polynomial decay μj = j−2 in
d = 500 dimensions. The blue curve is the case θ∗ = 0, and the red curve is θ∗ = e1.

θ∗ = e1 (red curve). In each case, the plot shows the error decreases as a
function of the inverse noise level 1

σ2 .

The underlying ellipse is defined by the eigenvalues μj = j−2α with α =

1. Consequently, the predicted scaling of the mean=squared error is (σ2)
2α

2α+1

for the zero vector, and (σ2)
4α

4α+1 for the “spiked” e1 vector. Based on these
predictions, our our theory suggests that on a log-log plot, the mean-squared
error should decay at a linear rate with slopes −2/3 and −4/5 respectively, and
indeed the empirical least-squares fit shown in Figure 4 matches this predicted
behavior closely.

4.2. Minimax risk bounds

As another consequence of our main results, in this section, we show that the
LSE is minimax optimal for ellipse estimation problem that is described above.
Here the minimax risk over the ellipse E is defined as

M(E) : = inf
θ̂

sup
θ∗∈E

E
∗
θ‖θ̂ − θ∗‖22,

where the supremum is taken over distributions N (θ∗, σ2In) indexed by θ∗ ∈ E ,
and the infimum is taken over all estimators. By this criteria, estimators are
compared on their worst-case performance.

In the following, we show that the minimax optimal risk is achieved by the
LSE estimator and the risk is characterized through the solution to the fixed
point problem (17). Let δ∗(0) be the solution to the fixed point problem (17)
for θ∗ = 0.
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Corollary 3. There are universal constants c, C > 0, the global minimax risk
of estimation over the entire ellipse E satisfies

M(E) ≥ cσ2k∗(0, δ∗). (21a)

If furthermore the ellipse is regular (9) for all θ∗ ∈ E, then we also have

M(E) ≤ Cσ2k∗(0,
1

2
δ∗). (21b)

We prove this result in Section C.
In contrast to the minimax lower bound of Yang et al. [39], our minimax lower

bound (21a) does not require the regularity assumption (9). See Section A for
a discussion of how the notion of regularity of Yang et al. [39] is a special case
of our notion. The lower bound is proved by showing that the ellipse contains
a k∗-dimensional ball, and then applying the standard minimax bound in for
estimation in a k∗-dimensional space.

On the other hand, the upper bound (21b) does require the regularity as-
sumption, which allows us to apply Proposition 1. It implies that the risk of
the LSE for each problem θ∗ ∈ E is upper bounded by � δ2∗(θ

∗). Furthermore,
we show that among all θ∗, the largest upper bound δ2∗(θ

∗) is the case θ∗ = 0,
which yields the upper bound in Corollary 3. Thus, the hardest problem for the
LSE is estimating θ∗ = 0, and its risk there matches the lower bound. In short,
the LSE is minimax optimal for ellipses that are regular.

5. Proofs

We now turn to the proofs of our main results, namely Theorem 1 and Theo-
rem 2. The proofs of more technical results are deferred to appendices.

5.1. Proof of Theorem 1

For any dimension and projection pair (k, Πk), we can write

E sup
Δ∈Eθ∗∩B(δ)

〈w, Δ〉 ≤ E sup
Δ∈Eθ∗∩B(δ)

〈w, ΠkΔ〉︸ ︷︷ ︸
T1

+E sup
Δ∈Eθ∗∩B(δ)

〈w, Δ−ΠkΔ〉︸ ︷︷ ︸
T2

.

We now proceed to upper bound the two terms T1 and T2.

Bounding T1 From standard properties of orthogonal projections onto sub-
spaces, we have 〈w −Πkw, ΠkΔ〉 = 0 for any w and Δ. By combining this fact
with the Cauchy-Schwarz inequality, the term T1 is upper bounded as

T1 = E sup
Δ∈Eθ∗∩B(δ)

〈w, ΠkΔ〉 = E sup
Δ∈Eθ∗∩B(δ)

〈Πkw, ΠkΔ〉

≤ E sup
Δ∈Eθ∗∩B(δ)

‖Πkw‖2‖ΠkΔ‖2.
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By the non-expansiveness of projection onto a subspace, we have ‖ΠkΔ‖2 ≤

‖Δ‖2
(i)

≤ δ, where inequality (i) follows from the inclusion Δ ∈ B(δ). Thus, we
have established that

T1 ≤ δE‖Πkw‖2 ≤ δ
√
k, (22a)

where the last step follows from first applying Jensen’s inequality, and then
noting that the distribution of Πkw is a k-dimensional standard Gaussian vector.

Bounding T2 For a given vector γ ∈ Γ(θ∗, δ), define the diagonal matrix
A : = diag(

√
γ1, . . . ,

√
γd). Noting that 〈w, Δ − ΠkΔ〉 = 〈Aw, A−1(Δ − ΠkΔ)〉

and then applying the Cauchy-Schwarz inequality, we find that

T2 ≤ E sup
Δ∈Eθ∗∩B(δ)

‖Aw‖2 ‖A−1(Δ−ΠkΔ)‖2.

By the definition of Γ(θ∗, δ,Πk), we must have ‖A−1(Δ − ΠkΔ)‖2 ≤ 1. Thus,
we have the upper bound

T2 ≤ E‖Aw‖2 ≤

√√√√ d∑
i=1

γi, (22b)

where the last step is due to Jensen’s inequality. Since our choice of γ was
arbitrary, we may add an infimum over γ ∈ Γ(θ∗, δ,Πk). Combining the two
bounds (22a) and (22b) concludes the proof.

5.2. Proof of Theorem 2

As in the preceding proof, we adopt k∗ as convenient shorthand for the quantity
k∗(θ

∗, δ). We now divide our analysis into two cases, depending on whether or
not ‖θ∗‖E ≤ 1/2.

5.2.1. Case I

First, suppose that ‖θ∗‖E ≤ 1
2 , which implies that Φ(δ) ≤ (‖θ∗‖E − 1)2 ≤ 1.

Under this condition, Lemma 2 from the paper [37] guarantees that

Wk(Eθ∗ ∩ B((1− η)δ)) ≤ 3

2
min
{
(1− η)δ,

√
μk+1

}
.

By definition, the critical dimension k∗ : = arg min
k=1,...,d

{Wk(Eθ∗ ∩ B((1− η)δ)) ≤
9
10δ} can be upper bounded as

k∗ ≤ arg min
k=1,...,d

{3
2

√
μk+1 ≤ 9

10
δ} = : k′∗, (23)
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where we have used the fact that 9
10 ≤ 1 − η, and Wk(Eθ∗ ∩ B((1 − η)δ)) is

non-decreasing in k.

Let Ek′
∗ denote the k′∗-dimensional subspace of vectors that are zero is their

last d−k′∗ coordinates. Recalling that S(r) denotes a Euclidean sphere of radius
r, we claim that

G (Eθ∗ ∩ B(δ))
(i)

≥ G
(
S(

3

10
δ) ∩ Ek′

∗

)
(ii)
=

3

10
δ
√
k′∗. (24)

Taking this claim as given for the moment, combining it with the bounds
‖θ∗‖E ≤ 1/2 and k∗ ≤ k′∗, we find that

G (Eθ∗ ∩ B(δ)) ≥ 3

10
δ
√
1− ‖θ∗‖2E

√
k∗(θ∗, δ),

which completes the proof of Theorem 2 in this case.

Proof of inequality (24) In this proof, we adopt the convenient shorthand
b = 3/10. Part (ii) of the inequality can be seen from the spherical example in
the discussion of Theorem 1. It only remains to prove part (i). Let us first show
that S(2bδ) ∩ Ed−k′

∗ ⊂ E . Recalling the definition of k′∗ from equation (23), we
have

d∑
i=1

x2
i

μi
=

k′
∗∑

i=1

x2
i

μi

(iii)

≤
k′
∗∑

i=1

x2
i

μk′
∗

=
(2bδ)2

μk′
∗

(iv)

≤ 1,

where inequality (iii) follows from the non-increasing order of μi and inequality
(iv) follows from the definition of k′∗.

In order to establish the inclusion Bk′
∗(bδ) ⊂ Eθ∗ , we make use of the fact

that ‖θ∗‖E ≤ 1/2. Since ‖2θ∗‖E ≤ 1, we have 2θ∗ ∈ E . For any v ∈ Sk′
∗(bδ),

since Bk′
∗(2bδ) ⊂ E we have 2v ∈ E . Combining these two facts together and the

convexity of set E , we have v + θ∗ ∈ E . It further implies that Bk′
∗(bδ) ⊂ Eθ∗

and finishes the proof of inequality (24).

5.2.2. Case II

Otherwise, we may assume that ‖θ∗‖E > 1/2, in which case Φ(δ/c) ≤ (‖θ∗‖E −
1)2 < 1, and hence by definition of the function Φ, we have δ < c‖θ∗‖2/a. For
the remainder of the proof, we assume that k∗ ≥ 160. The case when k∗ < 160
is addressed separately at the end of this proof.

The proof of Theorem 2 requires two auxiliary lemmas. The first is a packing
lemma, proved in Wei and Wainwright [37, Lem. 4]. Here we state a slightly
altered version of this claim that is better suited to our purposes. Let M denote
the diagonal matrix with entries 1/μ1, . . . , 1/μd, and adopt the shorthands a : =
1− η and b : = 3

10 based on the definition of the critical dimension (8).
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Lemma 1. For any vector θ∗ ∈ E such that ‖θ∗‖2 > aε, there exists a vector
θ† ∈ E, a collection of d-dimensional orthonormal vectors {ui}k∗

i=1 and an upper
triangular matrix of the form

H : =

⎡⎢⎢⎢⎢⎢⎣
1 h3,2 h4,2 · · · hk∗,2

1 h4,3 · · · hk∗,3

1 · · · hk∗,4

. . .
...
1

⎤⎥⎥⎥⎥⎥⎦ ∈ R
k∗−1,k∗−1

with ordered singular values ν1 ≥ · · · ≥ νk∗−1 ≥ 0 such that:

(a) The vectors u1, Mθ†, and θ† − θ∗ are all scalar multiples of one another.
(b) We have ‖θ† − θ∗‖2 = aδ.
(c) Letting H·,i denote the ith column of H, for every i ∈ [k∗ − 1], the vector

θ† ± bδ
[
u2 · · ·uk∗

]︸ ︷︷ ︸
: =U

H·,i belongs to the ellipse E.

(d) We have ‖θ†‖E ≤ ‖θ∗‖E .
(e) For any integers t1 ∈ [k∗ − 1], t2 ∈ [k∗ − 2], we have

νt1
(i)

≤ a

3b

√
k∗ − 1

t1
, and νt2+1

(ii)

≥ 1− t2
k∗ − 1

−
√

a2 − 9b2

9b2
.

Before proving Theorem 2, let us introduce some notation. Let H, U and θ†

be as given in the Lemma 1 above and let X : = UH have columns x1, . . . , xk∗−1

Let V be the matrix of right singular vectors of H so that H�H = V Σ2V �,
where Σ2 is diagonal with the squared singular values ν21 ≥ · · · ≥ ν2k∗−1 of H in
order.

Let m1 : = �(k∗ − 1)/8� and m2 : = �(k∗ − 1)/4�, and define the sparsity
level s : = ρk∗−1

16 for some constant2ρ ∈ (0, 1). For a given s-sized subset S
of {m1, . . . ,m2}, any vector of the form zS = (zS1 , . . . , z

S
k∗−1) ∈ {−1, 0, 1}k∗−1

with zeros in all positions not indexed by S is called as an S-valid sign vector.
Any such sign vector can be used to define the perturbed vector

θS : = θ† + bδ
1√
32s

UHV zS (25)

The following lemma guarantees the existence of a large collection T of s-sized
subsets of {m1, . . . ,m2} such that the collection {θS : S ∈ T } has certain
desirable properties.

Lemma 2. There exists a collection T of s-sized subsets of {m1, . . . ,m2} such
that:

(a) The collection T has cardinality at least
(
 1

16 (k∗−1)�
s

)
.

2The arguments that follow do not depend on the specific choice of ρ, and taking ρ = 1/2
suffices. However in the proof of Corollary 2, we re-use these arguments for a different value
of ρ.
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(b) For each S ∈ T , there is a S-valid sign vector zS such that the associated
perturbation θS belongs to the ellipse E, and moreover satisfies the bounds:

δ2
(i)

≤ ‖θS − θ∗‖22
(ii)

≤ 4

1− ‖θ∗‖2E
δ2. (26)

See Section E.1 for the proof of this lemma.

Turning back to the proof of Theorem 2, consider those perturbation vectors
(25) that are defined via Lemma 2. For each S ∈ T , we define the vectors

Δ̃S : = θS − θ∗, and ΔS : =
δ

‖Δ̃S‖2
Δ̃S .

Inequality (26) implies that δ

‖Δ̃S‖2
≤ 1. By the convexity of the set Eθ∗ , we have

ΔS ∈ Eθ∗ ∩ S(δ) for each S ∈ T . By restricting the supremum to a smaller
subset, we obtain the lower bound

E sup
Δ∈Eθ∗∩S(δ)

〈w, Δ〉 ≥ Emax
S∈T

〈w, ΔS〉.

Re-writing the definition (25) in the form θS = θ† + bδ√
32s

UHV zS , it follows

that

ΔS : =
δ

‖Δ̃S‖2
Δ̃S = δ

(
1

‖Δ̃S‖2
(θ† − θ∗) +

bδ√
32s‖Δ̃S‖2

UHV zS

)
,

which further guarantees that

Emax
S∈T

〈w, ΔS〉≥ δEmax
S∈T

〈w, bδ√
32s‖Δ̃S‖2

UHV zS〉+ δEmax
S∈T

〈w, 1

‖Δ̃S‖2
(θ† − θ∗)〉

=Emax
S∈T

〈w, bδ√
32s‖Δ̃S‖2

UHV zS〉,

where the second equality follows since E〈w, θ† − θ∗〉 = 0. The right-hand side
is non-negative, since for any fixed choice of S0 ∈ T , we have

Emax
S∈T

〈w, 1

‖Δ̃S‖2
UHV zS〉 ≥ E〈w, 1

‖Δ̃S0‖2
UHV zS0〉 = 0.

Noting that inequality (26)(ii) can be rewritten as ‖Δ̃S‖22 ≤ 4
1−‖θ∗‖2

E
δ2, we find

that

Emax
S∈T

〈w, 1

‖Δ̃S‖2
UHV zS〉 ≥

√
1− ‖θ∗‖2E

4δ2
Emax

S∈T
〈w, UHV zS〉.

Putting together the pieces, we have established that

E sup
Δ∈Eθ∗∩S(δ)

〈w, Δ〉 ≥ bδ

16

√
1− ‖θ∗‖2E

s
Emax

S∈T
〈w, UHV zS〉. (27)
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Our next step is to lower bound the expected maximum on the RHS, and to
this end, we state an auxiliary result:

Lemma 3. Under the conditions of Theorem 2, we have

Emax
S∈T

〈w, UHV zS〉 ≥ 1

4
E

[
max
S∈T

∑
i∈S

wi

]
. (28)

See Section E.2 for the proof of this lemma.
Let us now control the term on the right-hand side of inequality (28). Let A

be the event that there are least s positive elements among the i.i.d. standard
Gaussian random variables {wi}m2

i=m1
. By the law of total expectation, we have

E

[
max
S∈T

∑
i∈S

wi

]
= E

[
max
S∈T

∑
i∈S

wi | A
]

︸ ︷︷ ︸
T1

P[A] + E

[
max
S∈T

∑
i∈S

wi | Ac
]

︸ ︷︷ ︸
T2

P[Ac].

Beginning our analysis with T1, under the event A, there exists some (random)
subset S′ ∈ T of cardinality |S′| ≥ s such that wi > 0 for all i ∈ S′. (When
there are multiple such sets, we choose one of them uniformly at random.) In
terms of this set, we have

T1 = E

[
max
S∈T

∑
i∈S

wi | A
]
≥Ew,S′

[∑
i∈S′

wi | A
]
=
∑
S′

Ew

[∑
i∈S′

wi | S′
]
P[S′ | A],

where P[S′ | A] denotes the conditional probability of the randomly chosen S′

given that A holds. Since we are conditioning on a random set S′ on which each
wi is positive, we have

Ew

[∑
i∈S′

wi | S′
]
= Ew

[∑
i∈S′

wi | wi > 0
]

≥ sE[wi | wi > 0] = s
√

2/π.

Since
∑

S′ P[S′ | A] = 1, we have proved that T1 ≥ s
√

2/π.
Turning to the term T2, we begin by observing that for any fixed S0 ∈ T ,

we have

max
S∈T

∑
i∈S

wi ≥
∑
i∈S0

wi ≥ −
∑
i∈S0

|wi|.

Using this observation we can conclude that

E

[
max
S∈T

∑
i∈S

wi | Ac
]
≥ E

[
−
∑
i∈S0

|wi| | Ac
]

(i)
= E

[
−
∑
i∈S0

|wi|
]
= −s

√
2/π.

where (i) follows from the fact Ac only depends on the sign of wi and the
distribution of |wi| is independent of Ac. Combining these two lower bounds,
we find that

Emax
S∈T

∑
i∈S

wi ≥ s
√

2/π(1− 2P[Ac]).
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We now bound the probability of event Ac. Recall that event A holds if and
only if there are at least s positive elements among the i.i.d. standard Gaussian
random variables {wi}m2

i=m1
. Since s : = �(m2 − m1)/4�, with probability no

larger than exp(−(m2 − m1)D( 14 ‖
1
2 )) ≤ e−0.1(m2−m1), there are more than

(m2 −m1)/4 components among wm1 , . . . , wm2 that are positive, meaning that
P[Ac] ≤ e−0.1(m2−m1). Thus, we have the lower bound

E

[
max
S∈T

∑
i∈S

wi ≥ s
√

2/π(1− 2e−0.1(m2−m1))
]
≥ 1

5
s,

where the last step uses the fact that m2 −m1 ≥ k∗/16 > 10.
Combining this last bound with inequalities (27) and (28) yields

E sup
Δ∈Eθ∗∩S(δ)

〈w, Δ〉 ≥ bδ

16

√
1− ‖θ∗‖2E

s
Emax

S∈T
〈w, UHV zS〉

≥ b

64
δ

√
1− ‖θ∗‖2E

s
E

[
max
S∈T

∑
i∈S

wi

]
≥ b

320
δ
√
(1− ‖θ∗‖2E)s

≥ c′
√
1− ‖θ∗‖2E · δ

√
k∗,

where the last step uses the fact that s = ρk∗−1
16 .

In order to finish the proof, we deal with the case of k∗ < 160 separately.
According to part (b) of Lemma 1, if we denote v1 : = θ∗ − θ†, then θ† ∈ E and
‖v1‖2 = aδ. It is also shown in the proof of Wei and Wainwright [37, Lem. 5] that
θ∗+v1 ∈ E . Therefore the two points ±v1 are both contained in Eθ∗ ∩B(δ) for a
sufficiently small δ. As a result, we have G (Eθ∗ ∩ S(δ)) ≥ G ({±v1}) = aδ

√
2/π,

which establishes the lower bound in Theorem 2 with constant c′ = a
4
√
5π

.

6. Discussion

In this paper, we studied the behavior of localized Gaussian widths over ellipses.
These localized widths are known to play a fundamental role in controlling the
difficulty of associated testing and estimation problems. Despite its fundamental
importance, the localized Gaussian width is hard to compute in general. The
main contribution of our paper was to show how the localized Gaussian width
can be bounded, both from above and below, via the localized Kolmogorov
dimension. These Kolmogorov dimensions can be computed in many interesting
cases, which leads to an explicit characterization of the estimation error of least-
squares regression as a function of the true regression vector within the ellipse.
We used this characterization to show how the difficulty of estimating a vector
θ∗ within the ellipse can vary dramatically as a function of the location of θ∗.
Estimating the all-zeros vector (θ∗ = 0) is always the hardest sub-problem, and
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leads to the global minimax rate. Much faster rates of estimation can be obtained
for vectors located near “narrower” portions of the ellipse boundary. While much
of the analysis in this paper is specific to ellipses, we do anticipate that the
general procedure of moving from Gaussian width to the Kolmogorov width
could be useful in studying adaptivity and local geometry in other estimation
problems.
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Apendix

This appendix is organized as follows. We first provide more explanation to
our ellipse regularity by relating with the kernel regularity concept defined in
Yang et al. [39] in Section A. It is then followed by the proof of Corollary 2
in Section B and the proof of Corollary 3 in Section C. We provide the proof
of Proposition 1 in Section D and the details needed to establish Theorem 2
in Section E. A number of auxiliary results that are used for proving our main
results are collected in Section F. Finally, for completeness, the well-definedness
of the function Φ is provided in Section G.

Appendix A: Properties of kernel regularity

In this section, we relate our definition of regularity (9) to a concept introduced
in previous work by Yang et al. [39]. In the context of kernel ridge regression,
they defined the quantity

k̃∗ ≡ k̃∗(δ) : = argmin
k

{μk+1 ≤ δ2} (29)

with the convention k̃∗ = d if the minimization is over an empty set. They said
that an ellipse is regular if

d∑
j=k̃∗+1

μj ≤ ck̃∗δ
2, for all δ > 0, (30)
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where c > 0 is some universal constant that does not depend on d. They used
this property to prove a minimax lower bound on the prediction error for kernel
ridge regression.

Let us now show that our regularity assumption (9) is a generalization of the
condition (30), in that it reduces to it in the special case θ∗ = 0. In order to
establish this claim, we begin by observing that for any k ∈ {1, . . . , d − 1}, we
have Wk(Eθ∗∩B((1−η)δ)) = min{μ1/2

k+1, (1−η)δ} because the minimization in the
definition (5) is achieved by the projection onto the subspace span{e1, . . . , ek},
and the maximization is achieved by θ = min{μ1/2

k+1, (1−η)δ}ek+1. On the other
hand, for k = d we have Wk(Eθ∗ ∩ B((1− η)δ)) = 0. Putting these two together
gives

k∗(0, δ) = min
{
k | μk+1 ≤ 81

100
δ2
}
,

(with the convention k∗ = d if the minimum is over an empty set). Thus, we
have recovered definition (29) up to a constant factor in δ.

Since the optimal projection Πk∗ is the projection onto the linear subspace
span{e1, . . . , ek∗}, we can consider a sequence of positive vectors approaching
γ : = (μi1{i > k})di=1 to obtain

inf
γ∈Γ(θ∗,δ)

d∑
i=1

γi ≤
d∑

i=k∗+1

μi.

Consequently, our regularity condition (9) holds as long as
∑d

i=k∗+1 μi ≤ ck∗δ
2.

Thus, it matches the notion of regularity (30) considered in Yang et al. [39].

Appendix B: Proof of Corollary 2

Throughout this proof, we use c, c′, c′′ etc. to denote universal constants that
do not depend on any problem parameters such as δ, μi and θ∗ and their values
can vary from line to line.

The proof of inequality (i) in equation (14) is straightforward. By combining
the Sudakov minoration (4) with our upper bound (13) on the localized Gaussian
width, we find that

c′δ
√
logM(δ/2, Eθ∗ ∩ B(δ)) ≤ G (Eθ∗ ∩ B(δ)) ≤ cuδ

√
k∗(θ∗, δ).

Thus, we have proved inequality (i) in equation (14).
We now turn to the proof the second inequality (ii). It is convenient to divide

our analysis into two cases depending on whether or not ‖θ∗‖E ≤ 1
2 .

Case 1 ‖θ∗‖E ≤ 1
2 . As shown earlier in equation (24) from the proof of The-

orem 2, the set Eθ∗ ∩ B(δ) contains the k′∗-dimensional sphere S( 3
10δ) ∩ Ek′

∗ .
Thus, by a standard volume argument [26, 36], it must have log packing num-
ber bounded from below by ck′∗ log

1
δ . This quantity is lower bounded by k∗ up

to some universal constant, which establishes inequality (ii) in this case.
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Case 2 ‖θ∗‖E > 1
2 . We follow the notation from Section 5. In the proof of

Theorem 2 (in particular, see equation (25) and Lemma 2), we constructed a
set of vectors θS that after rescaling, all lie in our set Eθ∗ ∩ B(δ). Each such
vector θS is formed by taking a certain point θ† near θ∗, and adding certain
combinations of orthogonal vectors ui. We argue here that there is a subset of
these scaled vectors of size � k∗ that are pairwise separated from each other by
a distance � δ.

We are only interested in proving bounds up to constant factors, meaning
that we may assume without loss of generality that k∗ ≥ 32 × 104; otherwise
the result (14) holds immediately with a sufficiently large choice of c′.

Recall the earlier definition s : = ρk∗−1
16 for a fixed constant ρ ∈ (0, 1); for

this argument, we take ρ = 10−4. By Lemma 4.10 in Massart [22], we can find a

subset of s-sparse vectors contained in the binary hypercube {0, 1} 1
16 (k∗−1) with

log cardinality at least

s log
1
16 (k∗ − 1)

s
� k∗,

and such that any pair of distinct elements differs in at least (2 − 2ρ)s en-
tries. Transferring this result to the context of Lemma 2, we are guaranteed a
collection of vectors of log cardinality � k∗ such that

‖zS − zS
′‖22 > (2− 2ρ)s

for zS �= zS
′
in our packing.

Recalling that V �H�HV = Σ2 and the definition (25) of θS , we then have

‖θS − θS
′‖22 =

b2δ2

32s
‖UHV (zS − zS

′
)‖22

=
b2δ2

32s
(zS − zS

′
)�Σ2(zS − zS

′
).

Since zS and zS
′
are zero in their first m1 − 1 components, we can use inequal-

ity (ii) from Lemma 1 to bound the relevant diagonal entries of Σ. Doing so
yields

‖θS − θS
′‖22 ≥ b2δ2

32s

(
1− 1

8
−
√

a2 − 9b2

9b2

)2

‖zS − zS
′‖22.

Thus, we have obtained a collection of vectors θS , indexed by subsets S, such
that ‖θS − θS

′‖2 � δ for S �= S′.
Finally, we need to show that after shrinking these θS toward θ∗ and re-

centering, we obtain a packing of Eθ∗ ∩ B(δ). For each S recall the definitions

Δ̃S : = θS − θ∗ and ΔS : = δ

‖Δ̃S‖2
Δ̃S . From discussion below Lemma 2, we have

already showed that each vector ΔS lies in Eθ∗ ∩ B(δ); it only remains to verify
that distinct pairs are well-separated.
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First, direct computation yields

‖ΔS −ΔS′‖22 = 2δ2
(
1− 〈Δ̃S , Δ̃S′〉

‖Δ̃S‖2‖Δ̃S′‖2

)
. (31)

In order to show that the right-hand side is lower bounded by a constant multiple
of δ2, it suffices to upper bound the inner product term. Using the fact that
θ† − θ∗ has norm aδ and is orthogonal to the columns of U (see Lemma 1), we
have

〈Δ̃S , Δ̃S′〉 = 〈θ† − θ∗ +
bδ√
32s

UHV zS , θ† − θ∗ +
bδ√
32s

UHV zS
′〉

= a2δ2 +
b2δ2

32s
zSΣ2zS

′
.

If zS �= zS
′
are from our packing, then by construction they differ on at least

(2− 2ρ)s components, so they must agree on at most ρs components. Applying
the inequality (i) from Lemma 1 to bound the relevant entries of Σ2, we can
continue from above to obtain

〈Δ̃S , Δ̃S′〉 ≤ a2δ2 +
b2δ2

32
· 8( a

3b
)2 · ρ

≤ a2
(
1 +

ρ

36

)
δ2 < δ2.

The last inequality follows from our earlier choice of a : = 1 − 10−5 and ρ : =
10−4. Dividing both sides by ‖Δ̃S‖2‖Δ̃S′‖2 ≥ δ2 (where this inequality follows
from Lemma 2), we can continue from our earlier step (31) to obtain

‖ΔS −ΔS′‖22 ≥ cδ2.

Putting together the pieces, we have exhibited the claimed packing of Eθ∗ ∩B(δ)
of log cardinality � k∗ and packing radius � δ.

Appendix C: Proof of Corollary 3

We divide our proof into two parts, corresponding to the upper and lower bounds
respectively.

Upper bound Let us start with the proof of the upper bound. Under the
regularity assumption, we may apply Proposition 1 to bound the mean-squared
error Eθ∗‖θ̂ − θ∗‖22 of the LSE; in particular, it is upper bounded by δ2∗(θ

∗) up
to an universal constant. (Recall that δ∗(θ

∗) is the solution to the fixed point
equation (17).)

In order to arrive at the desired minimax upper bound, we need to show that
the function θ∗ �→ δ∗(θ

∗) is maximized at θ∗ = 0. Since k∗ is a non-increasing
function of δ (see the paper Wei and Wainwright [37, Appendix E]), a larger
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k∗(θ
∗) corresponds to a larger value of δ∗(θ

∗). These two quantities are related
via the equation

δ∗(θ
∗) = c	σ

√
k∗(θ∗, δ∗).

The following lemma bounds the supremum of k∗.

Lemma 4. The critical dimensions at any θ∗ can be controlled as

k∗(θ
∗, δ) ≤ k∗(0,

1

2
δ) + 1 for all δ ∈

(
0, Φ−1((‖θ∗‖−1

E − 1)2) ∧√
μ1

)
.

The proof of this lemma is given in Section F.2. Note that it implies the claimed
upper bound upper bound (21b).

Lower bound By definition, the minimax risk decreases when the supremum
is taken over a smaller subset. In order to establish the lower bound, we restrict
the supremum to a ball around zero. Recall our calculations from Example 4,
where we showed that the Kolmogorov width of a local ball around θ∗ = 0 is
given by

Wk(Eθ∗ ∩ B((1− η)δ)) = min
{√

μk+1, (1− η)δ
}
.

The corresponding k∗(0, δ) is given by

k∗(0, δ) : = arg min
k=1,...,d

{
Wk

(
E ∩ B

(
(1− η)δ

))
≤ 9

10
δ
}
.

By inspection, we have the upper bound k∗(0, δ) = argmink=1,...,d

{√
μk+1 ≤

9
10δ
}
. We also have the lower bound

√
μk∗(0,δ) ≥ 9

10δ for every δ ≤ √
μ1. Note

that the ellipse E always contains a k-dimensional ball centered at zero with
radius

√
μk. Combined with the bounds just stated, for every δ ∈ (0,

√
μ1], the

ellipse also contains a ball of radius 9
10δ centered at zero of dimension k∗(0, δ).

Now we are ready to control the minimax risk. First notice that

M(E) : = inf
θ̂

sup
θ∗∈E

Eθ∗‖θ̂ − θ∗‖22 ≥ inf
θ̂

sup
θ∗∈B( 9

10 δ)∩Ek∗(0,δ)

Eθ‖θ̂ − θ∗‖22, (32)

where recall that Em denotes the space which contains d-dimensional vectors
with their last d−m coordinates all equal to zero.

By standard results (e.g., see the book [36]), estimating a m-dimensional
vector in a r radius ball has minimax risk lower bounded as

inf
θ̂

sup
θ∗∈B(r)∩Em

Eθ‖θ̂ − θ∗‖22 � min{r2,mσ2}.

Substituting this lower bound into inequality (32), we find that

M(E) � min{
( 9
10

δ
)2
, k∗(0, δ)σ

2}, (33)

for each δ ≤ √
μ1. From the definition (17), we have δ∗(0) = c	σ

√
k∗(0, δ∗).

Taking δ = δ∗(0) in inequality (33) yields the claimed lower bound (21a).
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Appendix D: Proof of Proposition 1

This section is devoted to the proof of Proposition 1.

D.1. Reduction to bounding localized Gaussian width

Chatterjee [5] provided one way of obtaining upper and lower bounds on the

error ‖θ̂−θ∗‖2 of the least squares estimator for a general convex set, under the
Gaussian sequence model (2). Define the function

g(t) : =
δ2

2
− σG (Eθ∗ ∩ B(δ)), (34)

which can be shown to be strongly convex on (0,∞) with a unique minimizer
δ0 > 0. Then:

Theorem 3 ([5, Thm. 1.1, Cor. 1.2]). The least squares estimator θ̂ satisfies

∣∣‖θ̂ − θ∗‖2 − δ0
∣∣ ≤ t

√
δ0, w.p. ≥ 1− 3 exp

(
− t4

32σ2(1 + t/
√
δ0)2

)
,

for any t > 0. Furthermore, there is a universal constant C > 0 such that∣∣E‖θ̂ − θ∗‖22 − δ20
∣∣ ≤ Cδ

3/2
0 σ1/2, if δ0 ≥ σ. (35)

In particular, if we take t = c
√
δ0, it is guaranteed that∣∣‖θ̂ − θ∗‖2 − δ0

∣∣ ≤ cδ0, w.p. ≥ 1− 3 exp(−c′δ20/σ
2). (36)

The following simple lemma shows how sandwiching g between two functions
allows us to obtain upper and lower bounds for its minimizer δ0.

Lemma 5. Suppose that there are functions g	, gu such that g	(δ) ≤ g(δ) ≤
gu(δ) for all δ ∈ [0,∞). Then for any r ≥ inf

δ≥0
gu(δ), we have

δ0 ∈ {δ ≥ 0 : g	(δ) ≤ r}.

In particular, if g	 is unimodal, then this sub-level set is an interval.

The proof of this lemma is simple. For a given r ≥ infδ≥0 g
u(δ), we have

g	(δ0)
(i)

≤ g(δ0)
(ii)
= inf

δ≥0
g(δ)

(iii)

≤ inf
δ≥0

gu(δ) ≤ r

where inequalities (i) and (iii) follow from the assumed sandwich relation, and
equality (ii) follows from the fact that δ0 is the minimizer of g.

Lemma 5 and the bound (36) together show that bounds on the localized
Gaussian width that appears in the definition (34) of g can be used to obtain
high probability upper and lower bounds on the error of the LSE.
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Fig 5. Visualization of Lemma 5 when r = infδ≥0 g
u(δ), and g� is convex.

We remark that the case for estimation over E(R) for R > 0 reduces to
the case R = 1 by rescaling. Let E(R)θ∗ : = {θ − θ∗ : θ ∈ E(R)} denote the
re-centered ellipse. Note that g can be rewritten as

g(δ) : =
δ2

2
− σG (E(R)θ∗ ∩ B(δ)) = R2

[
δ̃2

2
− σ̃G (Eθ̃∗ ∩ B(δ̃))

]
︸ ︷︷ ︸

g̃(δ̃)

(37)

after the changes of variables δ̃ : = δ/R, θ̃∗ : = θ∗/R, and σ̃ : = σ/R. Then one
can focus on bounding g̃ and ultimately re-scale by R any bounds obtained for
the minimizer of g̃ in order to obtain bounds for the original minimizer δ0.

D.2. Main portion of the proof

Recall the two functions defined in equation (16). Under our assumptions, the
bounds (13) hold, so that the critical function g from equation (34) is sandwiched
as g	(δ) ≤ g(δ) ≤ gu(δ) for all δ. Now Lemma 5 is applicable for ellipse E ,
constant r = − δ2∗

2 = gu(δ∗) and function pair (gu, g	), so we know δ0 ∈ {δ ≥ 0 |
g	(δ) ≤ r}.

Since function g	 is convex in δ, there are two solutions δ′ and δ′′ to the
equation

g	(δ) = −δ2∗
2
, (38)

and Lemma 5 guarantees that

δ′ ≤ δ0 ≤ δ′′. (39)
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Moreover, we show below that c1δ∗ ≤ δ0 ≤ c2δ∗. Taking this inequality to be
true for the moment, combining it with equation (36) yields

(1− c)c1δ∗ ≤ ‖θ̂ − θ∗‖2 ≤ (1 + c)c2δ∗, with prob. ≥ 1− 3 exp(−c′δ2∗/σ
2),

which concludes the proof. Note that we arrive at the expectation bounds (19)
by simply applying the earlier result (35).

It remains to show that c1δ∗ ≤ δ′ and δ′′ ≤ c2δ∗. After some manipulation
using the fixed point equation (17), equation (38) can be rewritten as

(
δ − σ

√
c2uk∗(δ)

)2
= σ2(c2uk∗(δ)− c2	k∗(δ∗)).

Note that the solutions δ to the equality (38) must satisfy c2uk∗(δ) ≥ c2	k∗(δ∗),
as required for the right-hand side to be non-negative. In addition, they must
satisfy one of the following two equations:

δ = σ
√
c2uk∗(δ) + σ

√
c2uk∗(δ)− c2	k∗(δ∗) : = h+(δ), (40a)

δ = σ
√
c2uk∗(δ)− σ

√
c2uk∗(δ)− c2	k∗(δ∗) : = h−(δ). (40b)

Note that any solution δ′′ to the first equation (40a) is larger than any solution
δ′ to the second equation (40b). Indeed, we have δ′ = h−(δ

′) < h+(δ
′), so the

non-increasing nature of h+ guarantees that the solution δ′′ to the equation
δ = h+(δ) must be larger than δ′.

• We first consider the solution δ′′ to the first equation (40a). It is easy to
check that

σcu
√
k∗(δ) ≤ h+(δ) ≤ 2σcu

√
k∗(δ).

Recall k∗(δ) is non-increasing in δ. We know δ′′ is smaller than the solution
to δ = 2σcu

√
k∗(δ), which in turn is smaller than c2δ∗ (by assumption (c)

of Proposition 1). We thus have δ∗ ≤ δ′′ ≤ c2δ∗.
• Next we consider the solution δ′ to the second equation (40b). We claim

that δ′ ≥ c1δ∗. In order to show this, we prove that h−(δ) satisfies

h−(c1δ∗)
(i)

≥ c1δ∗, for some c1 ∈ (0, 1) and h−(δ∗)
(ii)

≤ δ∗. (41)

Take the above inequalities as given for now, we can combine them with
the fact that h−(δ) is a non-decreasing function of δ to conclude that the
fixed point solution δ′ of (40a) satisfies c1δ∗ ≤ δ′ ≤ δ∗.

Putting these two pieces together with inequality (39), we conclude the proof
of Proposition 1. It remains to prove the inequalities (41).
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Proof of part (i) Applying the simple inequality c2uk∗(c1δ∗) − c2	k∗(δ∗) ≤
c2uk∗(c1δ∗) yields

h−(c1δ∗) =
σc2	k∗(δ∗)√

c2uk∗(c1δ∗) +
√
c2uk∗(c1δ∗)− c2	k∗(δ∗)

≥ σc2	k∗(δ∗)

2
√
c2uk∗(c1δ∗)

≥ c1σ
√

c2	k∗(δ∗),

where the last inequality follows by the fact that c2uk∗(c1δ) ≤ 1
4c21

c2	k∗(δ∗) (cf.

Assumption (b) in Proposition 1). The fixed point equation (17) further implies
that

h−(c1δ∗) ≥ c1σ
√
c2	k∗(δ∗) = c1δ∗,

which proves our claim (i).

Proof of part (ii) Using the fact that c2uk∗(δ∗) ≥ c2	k∗(δ∗), we find that

h−(δ∗)=
σc2	k∗(δ∗)√

c2uk∗(δ∗) +
√
c2uk∗(δ∗)− c2	k∗(δ∗)

≤ σc2	k∗(δ∗)√
c2uk∗(δ∗)

≤ σ
√

c2	k∗(δ∗)= δ∗,

where the last equality follows from the fact that δ∗ is a solution of the fixed
point equation. This completes the proof of claim (ii).

Appendix E: Auxiliary proofs for Theorem 2

In this section, we collect the proofs of various auxiliary results that underlie
Theorem 2.

E.1. Proof of Lemma 2

The set class T to be demonstrated consists of all s-sized subsets of a particular
subset T ⊂ {m1, . . . ,m2}; the subset T is constructed to have cardinality at least

�k∗−1
16 �, so that the set class T has at least

(
 1
16 (k∗−1)�

s

)
elements.

Consider the k∗ − 1 diagonal elements of the matrix V �X�BXV . The sum
of these diagonal elements is tr

(
V �X�BXV

)
. Furthermore, the pigeonhole

principle ensures that the smallest 15
16 (k∗ − 1) of the diagonal elements are each

at most

16

k∗ − 1
tr
(
V �X�BXV

)
=

16

k∗ − 1
tr
(
X�BX

)
≤ 16 max

i≤k∗−1
‖xi‖2E . (42)

Let T be the indices of those 15
16 (k∗ − 1) diagonal elements that are also in

{m1, . . . ,m2}. By construction, we have |T | ≥ m2 −m1 − 1
16 (k∗ − 1) = k∗−1

16 , as
desired.
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Given the set class T defined by the subset T , we now show that inequality
(i) in equation (26) holds. Note that Lemma 1 implies that any sign vector zS

supported on S satisfies

‖θS − θ∗‖22 = ‖θ† − θ∗‖22 +
b2δ2

32s
‖UHV zS‖22.

Here the decomposition uses the fact that θ† − θ∗ is parallel to u1, as guaran-
teed by part (a) of Lemma 1; this property ensures that θ† − θ∗ is orthogonal
to u2, . . . , uk∗ . Since the columns of U are orthogonal unit vectors, we have
‖UHV zS‖22 = ‖HV zS‖22. Then recalling that V �H�HV = Σ2 is a diagonal
matrix containing the squared singular values of H, we may use inequality (ii)
in Lemma 1 to obtain

‖θS − θ∗‖22 = a2δ2 +
b2δ2

32s
‖HV zS‖22

≥
[
a2 +

b2

32

(
1− m2

k∗ − 1
−
√

a2 − 9b2

9b2

)2]
δ2

≥
(
a2 +

b2

29

)
δ2

where the last step follows from inequality (48). Here let us take η small enough,
for instance 10−5 such that the right hand side above is greater than δ2. (We
have made these choices of constants for the sake of convenience in the proof,
but note that other choices of these quantities are also possible.)

Now, we prove that θS ∈ E and inequality (ii) in equation (26) holds, in par-
ticular by using a probabilistic argument. Recall that B := diag(μ−1

1 , . . . , μ−1
d )

so that ‖x‖2E = x�Bx. For a given subset S, we specify a random choice of zS ,
in which for each j ∈ S, the value zSj ∈ {−1,+1} is an independent Rademacher

variable. Using this random choice of zS , we then let θS be defined as in equa-
tion (25), so that it is now a random vector.

Now part (a) of Lemma 1 guarantees that the vector Bθ† is orthogonal to

u2, . . . , uk∗ . As a consequence, we have ‖θS‖2E = (θ†)�Bθ† + b2δ2

32s ‖XV zS‖2E .
Let us focus on the expectation of the second term in the equation above. By

the linearity and cyclic invariance properties of trace, we have

E‖XV zS‖2E = E[(zS)�V �X�BXV zS ]

= tr
(
V �X�BXV E[zS(zS)�]

)
= tr

(
V �X�BXV IS

)
,

where IS = E[zS(zS)�] is the diagonal matrix whose ith diagonal entry is 1 if
i ∈ S and zero otherwise. The last expression is the sum of s diagonal entries of
V �X�BXV indexed by elements of T , so that our earlier bound (42) implies
that

E‖XV zS‖2E ≤ 16 s max
i≤k∗−1

‖xi‖2E .
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Letting i∗ denote the maximizer of the right-hand side, then combining the
previous few displays yields

E‖θS‖2E = (θ†)�Bθ† +
b2δ2

32s
E‖XV zS‖2E ≤ (θ†)�Bθ† +

b2δ2

2
‖xi∗‖2E .

Again using the fact that Bθ† and xi∗ are orthogonal, we have ‖θ† + bδxi∗‖2E =
‖θ†‖2E + b2δ2‖xi∗‖2E , and thus

E‖θS‖2E ≤ 1

2
‖θ†‖2E +

1

2
‖θ† + bδxi∗‖2E ≤ ‖θ∗‖2E + 1

2
, (43)

where the last step is due to the fact that ‖θ†‖E ≤ ‖θ∗‖E by construction, as
well as ‖θ† + bδxi∗‖2E ≤ 1, by claim (c) in Lemma 1.

Similarly, part (a) of Lemma 1 implies the vector θ† − θ∗ is orthogonal to all
of the vectors u2, . . . , uk∗ , whence

‖θS − θ∗‖22 = ‖θ† − θ∗‖22 +
b2δ2

2s
‖UHV zS‖22.

By properties of the trace along with the fact that IS = E[zS(zS)�] is the
diagonal matrix with ith diagonal entry equal to 1 if i ∈ S and zero otherwise,
we then have

E‖θS − θ∗‖22 = ‖θ† − θ∗‖22 +
b2δ2

32s
V �H�HV IS .

By noting V �H�HV = Σ2 is diagonal with the squared singular values of H
and applying the bound (i) from Lemma 1, we have

E‖θS − θ∗‖22 ≤
(
a2 +

b2

32
· a2

9b2
· k∗ − 1

m1

)
δ2 ≤

(
1 +

1

36

)
a2δ2 < 2δ2. (44)

By a union bound and Markov’s inequality, the two inequalities (43) and (44)
imply

P

(
‖θS‖2E > 1 or ‖θS − θ∗‖22 >

4

1− ‖θ∗‖2E
δ2
)
≤ E‖θS‖2E +

1− ‖θ∗‖2E
4δ2

E‖θS − θ∗‖22

<
‖θ∗‖2E + 1

2
+

1− ‖θ∗‖2E
2

= 1.

We conclude that there exists some sign vector zS satisfying both inequalities
(i) and (iii).

E.2. Proof of Lemma 3

We prove Lemma 3 via two successive applications of the Sudakov-Fernique
comparison inequality. In order to keep our presentation self-contained, let us
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restate a version of this result here (e.g., see Theorem 3.15 in Ledoux and
Talagrand [21]). For a given a pair of centered Gaussian vectors {Xj , j =
1, . . . , N} and {Yj , j = 1, . . . , N}, suppose that

var(Xi −Xj) ≤ var(Yi − Yj) for all (i, j) ∈ [N ]× [N ].

The Sudakov-Fernique comparison then asserts that E[max
j∈[N ]

Xj ] ≤ E[max
j∈[N ]

Yj ].

Using this result, we now prove our claim. For each S ∈ T , define the zero-
mean Gaussian random variable gS : = 〈w, UHV zS〉. First, define a diagonal
matrix D : = diag(0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸

m1:m2

, 0, . . . , 0), and the zero-mean Gaussian ran-

dom variables g̃S : = 3
4 〈w, DzS〉. We claim that the Sudakov-Fernique compar-

ison implies that

Emax
S∈T

〈w, UHV zS〉 ≥ 1

4
Emax

S∈T
〈w, DzS〉. (45)

See below for the details of this claim. Second, we introduce the vector ẑS with
components ẑSi : = |zSi |, and define a third Gaussian process using the variables

ĝS : = 〈w, D(ẑS − ẑS
′
)〉. We also claim that

Emax
S∈T

〈w, DzS〉 ≥ E

[
max
S∈T

∑
i∈S

wi

]
. (46)

These two claims in conjunction imply the claim of Lemma 3. Let us now prove
inequalities (45) and (46).

Proof of inequality (45) We claim that the processes {gS , S ∈ T } and
{g̃S , S ∈ T } satisfy the Sudakov-Fernique conditions. In order to prove this
claim, we need to verify that for all subsets S, S′ ∈ T , we have relation
var(gS − gS

′
) ≥ var(g̃S − g̃S

′
). On one hand, we have

var(gS − gS
′
) = E〈w, UHV (zS − zS

′
)〉2 = ‖UHV (zS − zS

′
)‖22

= ‖HV (zS − zS
′
)‖22,

where the last step uses the orthonormality of U . On the other hand, we have
the equality var(g̃S − g̃S

′
) = ‖D(zS − zS

′
)‖22. Consequently, it suffices to show

that there exists an orthogonal matrix V such that

(HV )�HV � 1

16
D2. (47)

In order to see this fact, part (e) of Lemma 1 implies that the m2 largest

eigenvalues of H�H = V Σ2V � is lower bounded by 1− m2

k∗−1 −
√

a2−9b2

9b2 . With

the choice of the constants (a, b) specified above (see paragraph below Lemma 1),
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it is guaranteed that a2−9b2

9b2 ≤ 1
4 . This observation and the definition m2 : =

�(k∗ − 1)/4� together imply that

1− m2

k∗ − 1
−
√

a2 − 9b2

9b2
≥ 1− 1

4
− 1

2
=

1

4
, (48)

which implies the claim (47), and further completes the proof of the lower
bound (45).

Proof of inequality (46) The vector ẑS defined above is an indicator vector
for the support of zS . Defining a third Gaussian process using the variables
ĝS : = 〈w, D(ẑS − ẑS

′
)〉, we have

var(g̃S − g̃S
′
) = ‖D(zS − zS

′
)‖22 ≥ ‖D(ẑS − ẑS

′
)‖22 = var(ĝS − ĝS

′
).

A second application of the Sudakov-Fernique inequality then yields

Emax
S∈T

〈w, DzS〉 ≥ Emax
S∈T

〈w, DẑS〉 = E

[
max
S∈T

∑
i∈S

wi

]
,

where in the last step we recall the fact that S is supported on the set
{m1, . . . ,m2}.

Appendix F: Proof of auxiliary lemmas

In this section, we collect the proofs of various auxiliary lemmas.

F.1. Proof of Lemma 6

Let us first state the lemma used in Section 4.1.2.

Lemma 6. For an extremal vector of the form θ∗ =
√
μses − res, the critical

dimension (8) is lower bounded as

k∗(δ) ≥ 0.09 · arg max
1≤k≤d

{
μ2
k ≥ δ2μs

}
.

The rest of this section is devoted to the proof of this lemma.

Defining the integer m : = max{2, argmax1≤k≤d

{
μ2
k ≥ δ2μs

}
}, Wei and

Wainwright [37] show that we can inscribe an (m− 1)-dimensional �∞ ball with
radius δ/

√
m− 1 into the ellipse E ; in particular, see [37, Appendix D]. We

claim that the Kolmogorov k-widths of the s-dimensional �∞ ball of radius 1√
s

are lower bounded as

Wk(B∞(1/
√
s)) ≥ 1− k

s
. (49)
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Taking this claim as given for the moment, we use it to complete the proof of
Lemma 6. Using the lower bound (49), we have

Wk

(
Eθ∗ ∩ B(ξ)

)
≥ Wk

(
B∞(

ξ√
m− 1

)
)
≥
(
1− k

m− 1

)
ξ.

With ξ : = (1 − η)δ and k = (1 − 0.9
1−η )(m − 1) the above becomes Wk

(
Eθ∗ ∩

B((1− η)δ)
)
≥ 0.9δ, so by the definition of the critical dimension (8), we have

k∗(δ) ≥ (1− 0.9

1− η
)(m− 1) ≥ 0.09 · arg max

1≤k≤d

{
μ2
k ≥ δ2μs

}
,

as claimed.

The only remaining detail is to prove inequality (49).

Proof of inequality (49) Define the set V : = {v ∈ R
s | vi = ± 1√

s
} with

cardinality M = 2s. We claim that for any k-dimensional subspace W ⊆ R
s,

there exists some v ∈ V such that

‖v −ΠW (v)‖22 ≥ 1− k

s
. (50)

Then by definition of Kolmogorov width, the inequality (49) holds. In order to
prove the lower bound (50), we take an orthonormal basis z1, . . . , zk of W and
extend it to an orthonormal basis z1, . . . , zm for Rs. We then have

∑
v∈V

‖v −ΠW (v)‖22 =
∑
v∈V

s∑
j=k+1

〈v, zj〉2 =

s∑
j=k+1

∑
v∈V

〈v, zj〉2 = (s− k) · M
s
,

where we have used the fact that∑
v∈V

〈v, zj〉2 = M · 1
s
‖zj‖22 =

M

s
.

Therefore, there must exist some v ∈ V such that ‖v−ΠW (v)‖22 ≥ 1− k
s , which

establishes the inequality (49).

F.2. Proof of Lemma 4

Recalling our calculations from Example 4, we found that

k∗(0,
1

2
δ) = argmink{

√
μk+1 ≤ 9

10
· 1
2
δ}.

Consequently, in order to prove Lemma 4, it suffices to show that

k∗(θ
∗, δ) ≤ argmin

k
{2√μk ≤ 9

10
δ} for all δ ≤ √

μ1.
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By definition of the critical dimension (8), it is sufficient to show that the Kol-
mogorov width is upper bounded as

Wk(Eθ∗ ∩ B(aδ)) ≤ min{aδ, 2
√
μk}, (51)

where a : = 1− η.
We claim that the set Eθ∗ ∩ B(aδ) is contained within the set 2E ∩ B(aδ).

Indeed, note that any v ∈ Eθ∗∩B(aδ) has Euclidean norm bounded as ‖v‖2 ≤ aδ
and Hilbert norm bounded as ‖v + θ∗‖E ≤ 1. The Cauchy-Schwarz further
guarantees that

‖v‖2E = ‖v + θ∗ − θ∗‖2E ≤ 2‖v + θ∗‖2E + 2‖θ∗‖2E ≤ 4,

where the last step follows from the fact that both θ∗ and v + θ∗ lie in ellipse
E . We have thus established the claimed set inclusion.

From this set inclusion, we have

Wk(Eθ∗ ∩ B(aδ)) ≤ Wk(2E ∩ B(aδ)) = min{aδ, 2
√
μk},

which establishes the claim (51). Putting pieces together completes the proof of
Lemma 4.

Appendix G: Well-definedness of the function Φ

In this section, we verify that the function Φ from equation (12) is well-defined.
We again use the shorthand a : = 1− η. In order to provide intuition, Figure 6
provides an illustration of Φ.

Fig 6. Illustration of the function Φ.

We begin with the case when δ < ‖θ∗‖2/a. For simplicity of notation, let

r(δ) : = min
{
r ≥ 0 | a2δ2 ≤

d∑
i=1

r2

(r + μi)2
(θ∗i )

2
}
.
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Note that for each for each μi ≥ 0, the function f(r) : =
∑d

i=1
r2

(r+μi)2
(θ∗i )

2 is

non-decreasing in r. It is also easy to check that

lim
r→0+

f(r) = 0, and lim
r→∞

f(r) = ‖θ∗‖22.

Then the quantity r(δ) is uniquely defined and positive whenever δ < ‖θ∗‖2/a.
Note that as δ → ‖θ∗‖2

a , a2δ2 → ‖θ∗‖22 therefore r(δ) → ∞.
It is worth noticing that given any θ∗ where ‖θ∗‖2 does not depend on δ, r

goes to zero when δ → 0, namely limδ→0+ Φ(δ) = 0.
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