
Electronic Journal of Statistics
Vol. 14 (2020) 2957–2987
ISSN: 1935-7524
https://doi.org/10.1214/20-EJS1736

Nonparametric estimation of the ability

density in the Mixed-Effect Rasch

Model

Johanna Kappus, Friedrich Liese∗ and Alexander Meister

Institut für Mathematik,
Universität Rostock,

18051 Rostock, Germany.
e-mail: johanna kappus@t-online.de; alexander.meister@uni-rostock.de

Abstract: The Rasch model is widely used in the field of psychometrics
when n persons under test answer m questions and the score, which de-
scribes the correctness of the answers, is given by a binary n × m-matrix.
We consider the Mixed-Effect Rasch Model, in which the persons are cho-
sen randomly from a huge population. The goal is to estimate the ability
density of this population under nonparametric constraints, which turns
out to be a statistical linear inverse problem with an unknown but es-
timable operator. Based on our previous result on asymptotic equivalence
to a two-layer Gaussian model, we construct an estimation procedure and
study its asymptotic optimality properties as n tends to infinity, as does
m, but moderately with respect to n. Moreover numerical simulations are
provided.
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1. Introduction

We consider the famous Rasch model which is used to analyse psychometric
surveys when n individuals under test answer m questions. The score is given
by a realization of a random binary n×m-matrix X. Its (j, k)th entry indicates
whether the answer of the jth person to the kth question is correct. In this case
we have Xj,k = 1 and we put Xj,k = 0 otherwise. In the standard Rasch model,
all entries Xj,k are assumed to be independent binary random variables which
satisfy

P (Xj,k = 1) =
exp{βj − θk}

1 + exp{βj − θk}
, k = 1, . . . ,m; j = 1, . . . , n ,

where the parameter θk describes the difficulty of the kth question and the
parameter βj represents the ability of the jth person. For fundamental literature
on this model we refer to the books of [29]. The Rasch model has also been used
in the field of econometrics (e.g. [5], [6], [25], [18]).
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In this paper we focus on the Mixed-Effect Rasch Model (MRM), in which the
individuals under test are assumed to be randomly chosen from a huge popula-
tion so that the βj , j = 1, . . . , n, are interpreted as i.i.d. random variables with
some distribution F . Thus the underlying statistical experiment Xn,m equals

Xn,m :=
(
{0, 1}n×m,P({0, 1}n×m), (Pθ,F )(θ,F )∈Θ×F

)
,

where the probability measure Pθ,F satisfies

Pθ,F ({ω}) =
∏n

j=1

∫ {∏m

k=1

exp{ωj,k(β − θk)}
1 + exp{β − θk}

}
dF (β) ,

for all ω ∈ {0, 1}n×m. The specification of the parameter sets Θ and F is defered
to subsection 2.2.

The MRM is studied e.g. in the books of [11] and [37] as well as [24], [31], [33]
and [34]. So far literature on Rasch models has mainly focused on the estimation
of the difficulty parameters, consistency and asymptotic normality (mostly for
bounded m). Therein maximum likelihood (ML), quasi-ML and conditional ML
methods are the most popular procedures, see e.g. [10], [14], [13], [7], [27], [28],
[32]. By the conditional ML approach, the difficulty parameters can be estimated
without estimating the ability distribution before. Also see [36] for a review on
the related literature. [1] consider saddlepoint approximation of the ability pa-
rameters. [8] construct confidence intervals for the ability parameters. [33] and
[34] study the covariance structure and asymptotic distribution of quasi-ML
estimators in the MRM. [24] focus on semiparametric estimation in the MRM
where estimation of the ability distribution via ML-related methods (mainly
parametrically specified where the number of parameters is allowed to increase in
some of the results). [12] considers consistent estimation in the MRM for classes
of discrete ability distributions with a finite number of support points. [15]
studies identification and estimation of parameters under unconstrained abil-
ity distribution; [38] consider log-linear models for the ability distributions; [39]
use skew-normal distributions. Still, to our best knowledge, fully nonparametric
approaches to the estimation of the ability distribution along with rigorous in-
vestigation of the theoretical properties (minimax convergence rates, adaptivity
etc.) are apparently missing. Considering large international surveys, estimation
of the ability distribution seems very important in order to compare the ability
distribution of the students from two different countries, for example.

Therefore the current work focuses on the estimation of the ability density
in the MRM. We provide a fully nonparametric procedure for the estimation of
this density while the difficulty parameters are unknown. Moreover this non-
parametric estimator can be applied to treat parametric submodels and to
construct parametric goodness-of-fit tests as well where the investigation of
the asymptotic distribution of our estimator remains a challenging task. Our
method significantly differs from the existing approaches as we do not use ML-
based techniques but, in fact, we exploit asymptotic equivalence of the MRM to
a two-layer Gaussian experiment (more precisely, a Gaussian observation and –
conditionally on that – another Gaussian observation) in Le Cam’s sense, which
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has recently been proved in [22]. In that paper the authors use some components
of the observation in order to construct an asymptotic confidence region for the
difficulty parameters and leave the problem of nonparametric estimation of the
ability density open for future research. Thus, in the current work, the same
authors tackle exactly this problem. Moreover another asymptotically equiva-
lent Gaussian model with two independent (multivariate) observations will be
derived in the current work.

When working with the asymptotically equivalent version of the MRM, es-
timating the ability density represents a statistical linear inverse problem with
Gaussian noise and an unknown but empirically accessible linear operator. Such
models occur quite frequently in nonparametric statistics, see e.g. [9], [4], [19]
and [35]. Other examples in this class of models concern deconvolution/ image
deblurring from an unknown point-spread function (e.g. [17]) or functional lin-
ear regression (e.g. [16], [26]). Each of these inverse problems has its own major
challenges – also since the procedure and the theoretical results heavily depend
on the operator and its properties; and since the type of the empirical informa-
tion on the operator is various. This holds true for the current model as well.

Two- and three parameter models from logistic item response theory (2-
PL IRT and 3-PL IRT) are popular extensions of the Rasch model for the
analysis of psychometric surveys (e.g. [2], [3]). Therein the probability that the
jth individual provides the correct answer to the kth question is modelled by

P (Xj,k = 1) = bk + (1− bk) · exp{ak(βj − θk)} /
(
1 + exp{ak(βj − θk)}

)
,

with the difficulty parameters ak, bk, θk and the person parameter βj . Note
that the standard Rasch model is included for bk = 0 and ak = 1. There is
no straight forward extension of our procedures to the estimation of the ability
distribution in the corresponding mixed-effect model since the sums of the rows
and the columns do apparently not form a sufficient statistic in general. Thus
the basic arguments from [22] cannot be taken over. Nonparametric estimation
of the ability distribution in 2-PL and 3-PL IRT remains an interesting topic
for future research.

The paper is organized as follows: In section 2 we describe the asymptotically
equivalent experiments, which motivate our estimation procedures and investi-
gation. In section 3 the estimation procedures are provided and explained. In
section 4 the asymptotic properties of these procedures are studied. In section
5 we compute the transforming Markov kernels for the link between the origi-
nal MRM and the asymptotically equivalent models; and we provide numerical
simulations. The proofs are defered to section 6.

2. Preliminaries

2.1. Notation

In the following we introduce some of the frequently used terms where the ter-
minology is partially adopted from [22]. These terms are required to understand
the asymptotically equivalent Gaussian models in Subsection 2.2. A shifted ver-



2960 J. Kappus et al.

sion of the difficulty parameters is given by ϑk := θk − θm for all k = 1, . . . ,m.
The set of all vectors b ∈ {0, 1}m with exactly k components equal to 1 is de-
noted by B(k,m). For any ϑ = (ϑ1, . . . , ϑm−1) and N = (N1, . . . , Nm) ∈ N

m
0 we

define the function

ΨN (ϑ) :=

m∑
k=1

Nk · log
( ∑

b∈B(k,m)

exp
{
−

m−1∑
l=1

ϑlbl

})
.

In order to provide some insight about this function, we mention that, in [22],
some statistics containing the sums of the rows and the columns in the MRM
have been detected to be sufficient; and their asymptotic distribution has been
studied. Therein the conditional expectation of one statistic given the other
equals minus the grandient of ΨN and the corresponding conditional covariance
matrix equals the Hessian matrix of ΨN , see [22], p. 1337. Hence this function
plays a major role in the asymptotically equivalent Gaussian models, on which
our estimation strategy will be based. The function τ maps from R

m+1 to R
m

and is defined by

τ : x = (x0, . . . , xm) �→ (x1, . . . , xm) · n/max
{
n/2,

m∑
j=0

xj

}
.

Moreover ΔΨN (ϑ) stands for the corresponding Hessian matrix, and [·] and ·+
denote componentwise rounding and truncation by zero, respectively. Further-
more we write N(μ,Σ) for the normal distribution with the expectation vector
μ and the covariance matrix Σ. The function which maps all elements of the
domain to 1 is called 1. Finally we define

αk,m,θ :=
∑

b∈B(k,m)

exp
{
−

m∑
l=1

blθl

}
,

βk,m,θ(x) := exp{kx}/
m∏
l=1

(
1 + exp{x− θl}

)
,

qk(θ, F ) := αk,m,θ

∫
βk,m,θ(x)f(x)dx , (2.1)

and the corresponding vector q(θ, F ) and the matrix Q(θ, F ) via

q(θ, F ) :=
(
q0(θ, F ), . . . , qm(θ, F )

)T
,

Q(θ, F ) :=
{
1{j}(k)qk(θ, F )

}
j,k=0,...,m

.

These quantities also occur as the expectation vector and the covariance matrix
of one statistic in the asymptotically equivalent Gaussian experiment in the next
subsection.

2.2. Asymptotically equivalent models

Let us summarize the conditions on the parameters sets Θ and F which are
assumed in [22] in order to establish asymptotic equivalence of MRM and the
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two-layer Gaussian experiment. As our procedure is based on this result we also
impose these constraints to deduce all theoretical properties of the current paper
while, in practice, the procedure may still be useful when these assumptions are
violated. The vector θ = (θ1, . . . , θm) which contains all difficulty parameters as
its components is imposed to lie in the set

Θ = Θm =
{
θ ∈ [−R,R]m :

m∑
k=1

θk = 0
}
, (2.2)

for some constant R > 0. Therein the difficulty parameters are required to
sum up to zero, which represents a common calibration in order to guarantee
identifiability. The distribution class F contains exactly those distributions F
on R which have a Lebesgue density f that satisfies the tightness condition

f(x) ≥ f(x) ≥ D0 exp
{
−D1|x|

}
, ∀x ∈ R , (2.3)

for some universal envelope function f with
∫
f(x)dx < ∞ and some universal

positive constants D0 and D1. Moreover impose the existence of some β >
3D1 + 29/2 such that

sup
n

mβ
n/n < ∞ , (2.4)

for m = mn; and m ≥ 3. For simplicity, the index n of mn will be omitted in the
sequel. Condition (2.4) allows m, the number of questions, to increase slowly as
n, the number of participants of the survey, tends to infinity. That constraint
seems realistic in many psychometric surveys.

Under the conditions (2.3) and (2.4), [22] prove asymptotic equivalence of
the MRM Xn,m and the experiment Yn,m, in which the 2m-dimensional random
vector (X,Y ) is observed (notation changed with respect to [22]) when n tends
to infinity. The distribution of Y equals L(Y ) = N(nq(θ, F ), nQ(θ, F )). The
conditional distribution of X given Y equals N(ϑ, {ΔΨ[τ(Y )]+(ϑ)}−1) on the
event {[τ(Y )]+,1+· · ·+[τ(Y )]+,m−1 > 0} (put X := 0 otherwise by convention).

This consideration is now continued by showing asymptotic equivalence of
the experiment Yn,m and the experiment Zn,m, in which one observes (X∗, Y )
whereX∗ and Y are independent; Y is as in the experiment Yn,m while L(X∗) =
N(ϑ, {ΔΨnq(θ,F )(ϑ)}−1). For this purpose, no transformation of the data by a
Markov kernel is required. Note that, in the above Hessian matrix, the partial
derivatives are only to be taken with respect to the ϑj , not with respect to the
θ in the index.

Theorem 2.1. Under the conditions (2.2)–(2.4) and m ≥ 3, the experiments
Yn,m and Zn,m are asymptotically equivalent.

Experiment Zn,m is advantageous compared to experiment Yn,m in the regard
that the statistics X∗ and Y are independent. On the other hand, the covariance
matrix of X∗ is unknown to the statistician in the experiment Zn,m; while
Yn,m is preferable for the construction of confidence ellipsoids for the difficulty
parameters as in section 6 in [22] since the conditional covariance matrix of X
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given Y does not depend on F . In the current work, it makes no difference if
one considers model Yn,m or Zn,m for the oracle setting (see subsection 4.2);
whereas model Zn,m is used for the estimation of the ability density under
unknown difficulty parameter in the subsection 4.3.

For basic literature on Le Cam theory we refer to the books of [20], [21]
and [23]. The exact Markov kernels which have been used in [22] to transform
the MRM into the experiment Yn,m are only needed in the simulation section
5 as the original data have to be transformed into data from Yn,m and Zn,m,
respectively, in order to apply our estimation procedure. Therefore those kernels
will be presented in that subsection 5.1.

3. Methodology

3.1. Oracle setting

In this subsection we consider estimation of the ability density f under the
oracle constraint that the difficulty parameters θ = (θ1, . . . , θm) are fully known.
Writing f for the true density of the ability distribution F , we define

h(x) := f(x)/w(x) ,

for some fixed (known) Lebesgue probability density w which has no zeros. We
assume that ∫

f2(x)/w(x)dx < ∞ , (3.1)

so that h ∈ L2(R, w), i.e. h lies in the separable Hilbert space which contains
all measurable functions g from R to itself with

∫
|g(x)|2w(x)dx < ∞ (or, to

be exact, the equivalence classes of those functions which coincide almost ev-
erywhere with respect to the LB measure, i.e. the Lebesgue-Borel measure).
Accordingly 〈·, ·〉w and ‖ · ‖w stand for the corresponding inner product and
norm, respectively. We define the function

γm,θ(x, y) :=

m∑
k=0

αk,m,θβk,m,θ(x)βk,m,θ(y)/

∫
βk,m,θ(z)w(z)dz ,

and the operator Γm,θ which satisfies

[
Γm,θh

]
(x) :=

∫
γm,θ(x, y)h(y)w(y)dy , h ∈ L2(R, w), x ∈ R . (3.2)

We consider the observation Y = (Y0, . . . , Ym) from the experiment Yn,m as
defined in subsection 2.2; and realize that

E

m∑
k=0

Yk · βk,m,θ/〈βk,m,θ,1〉w = n · Γm,θh . (3.3)

Thus, in order to estimate h or f , inversion of the operator Γm,θ is required.
Therefore we study some of its properties, writing Hm,θ for the linear hull of
the functions βk,m,θ, k = 0, . . . ,m.
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Lemma 3.1. (a) The dimension of the linear subspace Hm,θ of L2(R, w) equals
m+ 1.

(b) The mapping Γm,θ is a compact, self-adjoint and positive semi-definite
linear operator from L2(R, w) to Hm,θ ⊆ L2(R, w). The kernel of Γm,θ corre-
sponds to the orthogonal complement of Hm,θ with respect to L2(R, w).

By Lemma 3.1(b), the unit eigenfunctions of Γm,θ, which are denoted by
ϕj,m,θ, integer j ≥ 0, form an orthonormal basis of L2(R, w). Therein we ar-
range that the ϕj,m,θ are sorted such that the corresponding eigenvalues λj,m,θ

decrease in j. As Γm,θ is positive semi-definite all λj,m,θ are non-negative. More-
over Lemma 3.1 yields that the λj,m,θ, j = 0, . . . ,m, are positive while λj,m,θ = 0
for all j > m. This also implies that the ϕj,m,θ are located in Hm,θ for all
j = 0, . . . ,m while ϕj,m,θ lies in the orthogonal complement of Hm,θ for any
j > m.

It follows from (3.3) that

ĥj,m,θ :=

m∑
k=0

Yk · 〈βk,m,θ, ϕj,m,θ〉w/
{
n · λj,m,θ · 〈βk,m,θ,1〉w

}
, (3.4)

is an unbiased oracle estimator of the score 〈h, ϕj,m,θ〉w for all j = 0, . . . ,m.
According to the usual structure of orthogonal series estimators we introduce
the oracle estimator of h by

ĥw
m,θ := 1 +

m∑
j=1

wj,m,θ · ĥj,m,θ · ϕj,m,θ , (3.5)

for some weights wj,m,θ ∈ [0, 1], j = 1, . . . ,m, which remain to be selected.
Therein we have exploited that ϕ0,m,θ = 1 (see Proposition 4.1(a)) and, hence,
〈h, ϕ0,m,θ〉w = 1 since f = h · w is a probability density.

3.2. Estimation of h under unknown θ

While, in practice, the vector θ = (θ1, . . . , θm) is unknown it is empirically avail-
able by the statistic X∗ from the experiment Zn,m whereas the oracle density
estimator in (3.5) is only based on the independent statistic Y . The expectation
of X∗ equals ϑ = (ϑ1, . . . , ϑm−1). The definition of the ϑk along with the fact
that the components of θ sum up to 0 yields that θ = Zmϑ for all θ ∈ Θ where

Zm :=

⎛
⎜⎜⎜⎜⎜⎝

1− 1/m −1/m · · · −1/m
−1/m 1− 1/m · · · −1/m

...
...

...
...

−1/m −1/m · · · 1− 1/m
−1/m −1/m · · · −1/m

⎞
⎟⎟⎟⎟⎟⎠ .

This equation has also been used in [22] in order to construct confidence bands

for θ in an intermediate experiment. That motivates us to use θ̂ := ZmX∗ as
a plug-in estimator of θ. Inserting θ̂ for θ in (3.5) provides the fully accessible

estimator ĥw

m,θ̂
of h.
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3.3. Data-driven selection of the weights

In order to choose the weights ŵj,m,θ̂ we apply a keep-or-kill strategy, also known

as hard thresholding approach (see e.g. [19]). Concretely we put

ŵj,m,θ̂ :=

{
1 , if ĥ2

j,m,θ̂
≥ cW ·m4 · (logn) · n−1 λ−1

j,m,θ̂
,

0 , otherwise,
(3.6)

for some constant cW > 0 to be selected. Writing ŵ := (ŵj,m,θ̂)j=1,...,m we

introduce our final nonparametric estimator of h by ĥŵ

m,θ̂
. The effect of the

plug-in of the estimator θ̂ in Subsection 3.2 and of the weight selection in (3.6)
on the estimation error is studied in Theorem 4.4.

4. Theoretical properties

In this section we study the asymptotic properties of the mean integrated
squared error (MISE), which is defined by

MISE(ĥ, h) := Eh

∥∥ĥ− h‖2w ,

for the (oracle and realistic) estimators of h from section 3. For that purpose
the spectrum (eigenvalues and eigenfunctions) of the operator Γm,θ in (3.2) is
studied in the following subsection.

4.1. Spectrum of the operator Γm,θ

The following proposition provides important properties of the eigenvalues λj,m,θ

of Γm,θ. The decay of the eigenvalues is crucial to establish convergence rates
of the MISE.

Proposition 4.1. (a) The eigenfunction ϕ0,m,θ coincides with 1; and λ0,m,θ =
1. The eigenspace with the eigenvalue 1 is one-dimensional.

(b) Assume that the density w is bounded and has a continuous and uniformly
bounded derivative. Then, for all sequences (Jm)m and (J∗

m)m of positive integers

which satisfy limm→∞ Jm/ log1/2 m = 0 and limm→∞ J∗
m/ logν m = 0 for some

ν ∈ [1/2, 1), it holds that

lim
m→∞

sup
j=0,...,Jm

sup
θ∈Θ

∣∣λj,m,θ − 1
∣∣ = 0 ,

lim inf
m→∞

inf
j=0,...,J∗

m

inf
θ∈Θ

exp
{
c logμ m

}
· λj,m,θ ≥ 1 ,

for all constants c > 0 and μ > 2ν − 1.
(c) The sequence (Γm,θ(m)

)m with θ(m) ∈ Θm has no limit point with respect
to the induced operator norm of L2(R, w), regardless of the specific sequence
(θ(m))m.
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Proposition 4.1(c) shows that no (strong) limit operator of the Γm,θ exists
for large m, which complicates the analysis of the statistical inverse problems
compared to the usual setting. Proposition 4.1(b) allows to control the asymp-
totic behaviour of the first �logμ m eigenvalues for μ < 1/2 and, at least in
terms of a lower bound, for μ < 1 as well. Furthermore, an upper bound on the
supremum norm of the unit eigenfunctions ϕj,m,θ of Γm,θ will be established in
the following lemma under the condition

w(x) ≥ 2D0 exp{−D1|x|} , ∀x ∈ R , (4.1)

with the constants D0 and D1 from (2.3). We provide

Lemma 4.1. Under (4.1) there exists some constant D∗ ∈ (0,∞) which only
depends on R, D0 and D1 such that

‖ϕj,m,θ‖∞ ≤ D∗ m1/2+D1/2 · λ−1/2
j,m,θ .

for all j = 1, . . . ,m.

Finally, the fact that θ is not exactly known but must be estimated by θ̂, see
subsection 3.2, motivates us to study the proximity between the corresponding
eigenvalues λj,m,θ for different values of θ in the following lemma.

Lemma 4.2. The function θ �→ λj,m,θ is continuously differentiable and, for
any l = 1, . . . ,m, it holds that∣∣∣ ∂

∂θl
λj,m,θ

∣∣∣ ≤ 2λj,m,θ .

4.2. Asymptotic optimality in the oracle setting

Let us consider the asymptotic quality of the estimator (3.5) in the oracle setting
of subsection 3.1. In the following proposition an upper bound on its MISE is
provided.

Proposition 4.2. It holds that

MISE(ĥw
m,θ, h) ≤ 1

n
· ‖h‖∞

m∑
j=1

w2
j,m,θ/λj,m,θ +

m∑
j=1

|wj,m,θ − 1|2 〈ϕj,m,θ, h〉2w

+
∑
j>m

〈ϕj,m,θ, h〉2w .

Now impose that h = f/w lies in the function class H where H = H(m, θ,D0,
D1, D2, hm) collects all functions h ∈ L2(R, w) such that hw is a Lebesgue
probability density; we have

h(x)w(x) ≥ D0 exp(−D1|x|) , for LB-almost all x ∈ R ,

see (2.3); and
‖h‖∞ ≤ D2 ,
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(put f := D2w to satisfy (2.3)); and we impose that the scores of h fulfill∣∣〈h, ϕj,m,θ〉w
∣∣ ≤ hm,j ,

for all integer j = 0, . . . ,m; and∑
j>m

〈h, ϕj,m,θ〉2w ≤ h2m,m+1 ,

for some fixed positive-valued vector hm := (hm,j)j=0,...,m+1. The latter condi-
tion replaces the usual Sobolev condition; where Sobolev-like polynomial decay
of the hm,j but also more restrictive exponential tails are included by appropri-
ate selection of hm.

Under oracle choice of the weights wj,m,θ (known hm and θ) the following
asymptotic upper bound on the MISE can be established uniformly on h ∈ H.

Theorem 4.1. Select wj,m,θ := n·λj,m,θ ·h2m,j/
(
n·λj,m,θ ·h2m,j+1

)
, j = 1, . . . ,m.

Then,

sup
h∈H

MISE(ĥw
m,θ, h) ≤ h2m,m+1 + max{1, D2} ·

m∑
j=1

h2m,j

1 + n · λj,m,θ · h2m,j

.

The proof follows from Proposition 4.2 by straight forward calculation. Under
additional constraints on hm we will show asymptotic minimax optimality of our
estimator (3.5) up to a constant factor.

Theorem 4.2. Grant the inequality (4.1). Assume that hm,0 ≥ 1, hm,m+1 = 0
and

max
k=1,...,m

hm,k/
√
λk,m,θ + n · λ2

k,m,θ · h2m,k ≤ c∗ ·m−(3+D1)/2 ,

for all integer m ≥ 1 and some constant c∗. Moreover impose that D2 ≥ 3/2. Let

(ĥn)n be an arbitrary estimator sequence, where ĥn is based on the observation
from the experiment Yn,m. Then there exists some z > 0 such that

lim sup
n→∞

sup
h∈H

Ph

[
‖ĥn − h‖2w ≥ z ·

m∑
j=1

h2m,j

1 + n · λj,m,θ · h2m,j

]
> 0 .

Whenever the second term of the upper bound in Theorem 4.1 dominates the
first one Theorem 4.1 and 4.2 yield “blind” rate minimaxity as neither hm nor
the decay of the eigenvalues λj,m,θ is specified explicitly. Indeed the condition
m → ∞ (as n → ∞) is required in order to identify h under nonparametric
constraints, as will be shown in the following theorem.

Theorem 4.3. Grant (4.1); and fix some constant m and θ. Then, for any
density f = h ·w such that h ∈ L2(R, w) is bounded away from zero, there exists
some h̃ �= h such that the parameters f and f̃ = h̃ · w lead to the same data
distribution (under known θ), both in the experiment Yn,m and in Zn,m for all
integer n ≥ m.
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4.3. Asymptotic properties of the fully data-driven estimator

Now we study the asymptotic quality of the estimator ĥŵ

m,θ̂
from subsection 3.3

in the experiment Zn,m, which has been introduced in subsection 2.2 and shown
to be asymptotically equivalent to model Yn,m in Theorem 2.1 and, thus, to the
original MRM Xn,m as well.

The smoothness properties contained in the definition of the function class H
are robustified with respect to θ; concretely define the new function setH∗ as the
intersection of the classes H(m, θ′, D0, D1, D2, hm) for θ′ ∈ Θ with |θ′ − θ| ≤ cΘ
for some universal constant cΘ > 0. Then the following result can be established.

Theorem 4.4. Consider the experiment Zn,m; and grant the assumptions of
Theorem 2.1; and that m → ∞. Write

Mn,m := h2m,m+1 +
m∑
j=1

h2m,j/
(
1 + n · λj,m,θ · h2m,j

)
,

and fix some arbitrary cW > 0. Then the estimator ĥŵ

m,θ̂
with the weight selection

(3.6) satisfies

lim
d→∞

lim sup
n→∞

sup
θ∈Θ

sup
h∈H∗

Pθ,h

[
‖ĥŵ

m,θ̂
− h‖2w ≥ d ·m4 · (logn) · Mn,m

]
= 0 .

Theorem 4.4 shows that the convergence rates from Theorem 4.1 can be
maintained up to deterioration by the factor m4 log n. The factor log n occurs
frequently in adaptation by the keep-or-kill strategy (unless appropriate block-
wise shrinkage is considered; however, in the current problem, where the exact
decay of the eigenvalues λj,m,θ is unexplored, this seems very hard to handle).

The factor m4 stems from the statistical risk of the plug-in estimator θ̂, see [22].
If we were allowed to use the true θ this factor could be removed.

5. Implementation and simulations

In this section we address the computational aspects of our estimation procedure
ĥŵ

m,θ̂
and investigate its finite-sample performance by numerical simulations.

5.1. Computation of the transforming Markov kernels

The estimator ĥŵ

m,θ̂
is designed to treat data from the experiment Yn,m or Zn,m.

Therefore, before applying this estimator, the original data from the MRM
experiment Xn,m have to be transformed by the Markov kernels provided in
[22]. These transformations are listed in the following. While in [22] specific
contamination by Gaussian noise is required between step 1 and 2 as well as
between step 2 and 3 in order to prove asymptotic equivalence, these blurring
steps are omitted here.
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1. In the MRM experiment Xn,m one observes a binary n × m-matrix X.
Compute the statistic X[1] := (T1, . . . , Tm−1, N1, . . . , Nm) where

Sj =

m∑
k=1

Xj,k, Nk =

n∑
j=1

1{k}(Sj), Tk =

n∑
j=1

Xj,k .

2. Find y such that
∣∣ − ∇ΨN (y) − X[1][1 : m − 1]

∣∣ is minimized over a
certain discretized grid (approximate inversion of the function −∇ΨN )
where X[1][1 : m− 1] denotes the first m− 1 components of X[1]. Replace
X[1][1 : m − 1] by that y; and keep the latter m components as they are.
The outcome is denoted by X[2].

3. Generate the N(n, n)-distributed random variable V independently ofX[2].
Calculate

N∗ := max{n/2, V } ·X[2][m : 2m− 1] / n ,

and N∗
0 := V −

∑m
j=1 N

∗
j where X[2][m : 2m − 1] denotes the latter m

components of X[2]. Replace X[2][m : 2m− 1] by the (m+ 1)-dimensional
vector (N∗

0 , N
∗). The outcome is the 2m-dimensional vector X[3].

Finally the vector X[3] is viewed as (X,Y ) or (X∗, Y ) from the experiments

Yn,m and Zn,m, respectively. It is inserted in the estimator ĥŵ

m,θ̂
from section 3.

The simulation results are described in the following subsection.

5.2. Numerical simulations

We generate data from the original MRM experiment in four settings. Therein
two different ability densities are considered, namely

f1(x) =
1

4
· (|x|+ 1) · exp(−|x|) ,

f2(x) =
1

2
f1(x+ 3.5) +

1

2
f1(x− 3) .

Three different values of the difficulty parameter vector θ are used: (−1.5, 1, 1,
−0.5), (3,−1,−1,−1) and (0.4, 0.6,−2, 0.2, 0.8). In each setting it holds that
n = 1, 000. Moreover we choose the weight function w as w(x) = 0.5 · f1(0.5x)
and cW = 0.001. This small value of cW takes into account that, in practice,
smaller threshold levels are expected than those motivated by the upper bound
m4 log n in (3.6). We consider the estimated ability densities f̂ := w · ĥŵ

m,θ̂
. In

each setting 50 independent replicates have been computed, where five of them
(chosen at random) are shown in each of the Figures 1–6, along with the true
curves, which are plotted in dashed linestyle. The following table provides the

means and the standard deviations of the errors
( ∫

|f̂−f |2
)1/2

, taken over all 50
replicates. The results indicate that the estimator is able to distinguish between
the unimodal and the bimodal shape of density f1 and f2, respectively, quite
well. We realize that, for m = 5 as in Figure 5 and 6, the simulation results are
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Fig 1. density f1, θ = (−1.5, 1, 1,−0.5). Fig 2. density f2, θ = (−1.5, 1, 1,−0.5).

Fig 3. density f1, θ = (3,−1,−1,−1). Fig 4. density f2, θ = (3,−1,−1,−1).

Fig 5. density f1, θ = (0.4, 0.6,−2, 0.2, 0.8). Fig 6. density f2, θ = (0.4, 0.6,−2, 0.2, 0.8).

Figure 1 2 3 4 5 6
Mean 0.0511 0.0822 0.0593 0.0943 0.0536 0.0794
Standard deviation 0.0394 0.0145 0.0311 0.0138 0.0725 0.0139
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not worse than in the case of m = 4 in the Figures 1–4; however the numerical
effort of the computation increases significantly, in particular due to Step 2 in
Subsection 5.1.

6. Proofs

Proof of Theorem 2.1: First we mention that the probability of the event
{[τ(Y )]+,1 + · · ·+ [τ(Y )]+,m−1 > 0} tends to 1 uniformly with respect to θ ∈ Θ
and F ∈ F thanks to Lemma 5.2 in [22]. Therefore it suffices to prove that

lim
n→∞

sup
θ,F

Eθ,F H2
(
N(ϑ, {ΔΨ[τ(Y )]+(ϑ)}−1),N(ϑ, {ΔΨnq(θ,F )(ϑ)}−1)

)
= 0 ,

(6.1)
where H2(f, g) :=

∫
(
√
f − √

g)2/2 denotes the squared Hellinger distance be-
tween two densities f and g. According to equation (A.4) in [30], the squared
Hellinger distance between two multivariate normal densities with a joint ex-
pectation vector can be bounded from above as follows.

Eθ,F H2
(
N(ϑ, {ΔΨ[τ(Y )]+(ϑ)}−1),N(ϑ, {ΔΨnq(θ,F )(ϑ)}−1)

)
≤ Eθ,F

∥∥{ΔΨ[τ(Y )]+(ϑ)}1/2
(
{ΔΨ[τ(Y )]+(ϑ)}−1

− {ΔΨnq(θ,F )(ϑ)}−1
)
{ΔΨ[τ(Y )]+(ϑ)}1/2

∥∥2
F

≤ 4
∥∥{ΔΨnq(θ,F )(ϑ)}−1/2

∥∥2(Eθ,F

∥∥{ΔΨ[τ(Y )]+(ϑ)}1/2 −{ΔΨnq(θ,F )(ϑ)}1/2
∥∥4
F

)1/2
+ 2
∥∥{ΔΨnq(θ,F )(ϑ)}−1

∥∥2 Eθ,F

∥∥{ΔΨ[τ(Y )]+(ϑ)}1/2 − {ΔΨnq(θ,F )(ϑ)}1/2
∥∥4
F
,

(6.2)

where, here, ‖ · ‖F and ‖ · ‖ denote the Frobenius norm and the induced matrix
norm, respectively. For all symmetric and positive semi-definite (m−1)×(m−1)-
matrices A and B, it holds that

‖A1/2 −B1/2‖2F ≤
√
m− 1 · ‖A−B‖F ,

so that

Eθ,F

∥∥{ΔΨ[τ(Y )]+(ϑ)}1/2 − {ΔΨnq(θ,F )(ϑ)}1/2
∥∥4
F

≤ (m− 1)Eθ,F

∥∥ΔΨ[τ(Y )]+(ϑ)−ΔΨnq(θ,F )(ϑ)
∥∥2
F

≤
(
m2(m− 1)/2 + 8(m− 1)(m+ 1)

m∑
k=0

Eθ,F

∣∣nqk(θ, F )− Yj

∣∣2)

· max
k=0,...,m

∥∥∥Δϑ log
( ∑

b∈B(k,m)

exp
{
−

m−1∑
l=1

ϑlbl

})∥∥∥2
F

≤ 4(m− 1)3 ·
(
m2/2 + 8(m+ 1)n

)
.
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Note that
∥∥{ΔΨnq(θ,F )(ϑ)}−p

∥∥2 is bounded from above by the smallest eigen-
value of ΔΨnq(θ,F )(ϑ), raised to the (−2p)th power, for p ∈ {1/2, 1}. The Lem-
mata 4.3 and 5.1 from [22] provide the lower bound

(1− q0(θ, F )− qm(θ, F )) · n · (m− 1)−2 exp{−6R}/(1 + exp{2R}) ,

on that eigenvalue. From the proof of Lemma 5.2 in [22], it follows that

inf
θ,F

inf
m≥3

(
1− q0(θ, F )− qm(θ, F )

)
> 0 ,

and, hence, that the term (6.2) has the asymptotic upper bound O
(
m8/n +

m4/n1/2
)
with universal constant factors (only depending on R and f). Finally

the condition (2.4) completes the proof of (6.1).

Proof of Lemma 3.1: (a) It suffices to show that the βk,m,θ, k = 0, . . . ,m,
are linearly independent elements of L2(R, w). As the βk,m,θ are bounded and
measurable functions they are located in L2(R, w). Now assume that

m∑
k=0

bk · βk,m,θ(x)w(x) = 0 , for LB-almost all x ∈ R ,

for some b0, . . . , bm ∈ R. It follows that Pm

(
exp(x)

)
= 0 for LB-almost all

x ∈ R, where

Pm(x) :=

m∑
k=0

bk · xk ,

and, hence, that the polynomial Pm has infinitely many zeros in the interval
(0,∞) so that b0 = · · · = bm = 0.

(b) Linearity of Γm,θ is obvious. Also we easily realize that Γm,θh lies in
Hm,θ for any h ∈ L2(R, w). Therein note that

∫
βk,m,θ(z)w(z)dz > 0 for all

k = 0, . . . ,m. Therefore the range of Γm,θ is finite-dimensional so that Γm,θ is
a compact operator. Since γm,θ(x, y) = γm,θ(y, x) for all x, y ∈ R the operator
Γm,θ is self-adjoint, i.e. we have that

〈Γm,θh, h
′〉w = 〈h,Γm,θh

′〉w , ∀h, h′ ∈ L2(R, w) ,

by Fubini’s theorem. Moreover we deduce that

〈h,Γm,θh〉w =
m∑

k=0

αk,m,θ

(∫
βk,m,θ(x)h(x)w(x)dx

)2
/

∫
βk,m,θ(y)w(y)dy ≥ 0,

for all h ∈ L2(R, w) so that Γk,θ is positive semi-definite. As the βk,m,θ, k =
0, . . . ,m, are linearly independent, as shown in part (a), and αk,m,θ > 0, we
have 〈βk,m,θ, h〉w = 0 for all k = 0, . . . ,m if and only if Γm,θh = 0. Therefore
the kernel of Γm,θ equals the orthogonal complement of Hm,θ.

Proof of Proposition 4.1: (a) As
∑m

k=0 αk,m,θ·βk,m,θ = 1 we have that Γm,θ1 = 1
and, hence, 1 is an eigenfunction of Γm,θ with the eigenvalue 1. For any unit
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eigenfunction ϕj,m,θ of Γm,θ it holds that

λj,m,θ·
∫

|ϕj,m,θ(x)|w(x)dx =

∫ ∣∣{Γm,θϕj,m,θ

}
(x)
∣∣w(x)dx

≤
m∑

k=0

αk,m,θ

∣∣〈βk,m,θ, ϕj,m,θ〉w
∣∣ ≤ ∫ |ϕj,m,θ(x)|w(x)dx ,

so that λ0,m,θ = 1 is the largest eigenvalue of Γm,θ. Moreover, consider that
‖1‖w = 1.

Whenever λj,m,θ = 1 the above inequality is sharp so that∣∣〈βk,m,θ, ϕj,m,θ〉w
∣∣ = 〈βk,m,θ, |ϕj,m,θ|〉w , ∀k = 0, . . . ,m .

As the functions βk,m,θ · w take on only positive values the eigenfunction
ϕj,m,θ coincides with either a non-negative function or a non-positive function
Lebesgue-almost everywhere. For all j ≥ 1, it holds that∫

ϕj,m,θ(x)w(x)dx = 0 ,

due to the orthogonality of the eigenfunctions, so that j = 0 follows. Therefore
the eigenspace with the eigenvalue 1 is the linear span of 1.

(b) For some arbitrary h ∈ L2(R, w) we have that

‖h‖2Γ,m,θ := 〈h,Γm,θh〉w =

m∑
k=0

αk,m,θ

∣∣〈βk,m,θ, h〉w
∣∣2/〈βk,m,θ,1〉w

= E
∣∣∣ ∫ Gm,θ(x)h(x)w(x) dx

∣∣∣2/∫ Gm,θ(x)w(x) dx , (6.3)

where K1, . . . ,Km are independent Bernoulli random variables with P (Kl =
1) = ηl := exp{−θl}/(1 + exp{−θl}); and

Gm,θ(x) := exp
{
x

m∑
l=1

Kl

} m∏
l=1

1 + exp(−θl)

1 + exp(x− θl)
.

Courant’s min-max theorem provides that

λj,m,θ = sup
H

inf
h∈H,‖h‖w=1

E
∣∣∣ ∫ Gm,θ(x)h(x)w(x) dx

∣∣∣2/∫ Gm,θ(x)w(x) dx

= sup
F

inf
f∈F,‖f‖2=1

E
∣∣∣ ∫ Gm,θ(x/σm,θ)w

1/2(x/σm,θ)f(x) dx
∣∣∣2

/∫
Gm,θ(x/σm,θ)w(x/σm,θ) dx ,

(6.4)

where the suprema are taken over all (j + 1)-dimensional linear subspaces H
and F of L2(R, w) and L2(R), respectively; and

σ2
m,θ :=

m∑
l=1

ηl(1− ηl) .
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Therein we have used that the linear operator which maps each h ∈ L2(R, w)
to the function

x �→ σ
−1/2
m,θ h(x/σm,θ)w

1/2(x/σm,θ)

is an isometric isomorphism from L2(R, w) to L2(R).
Writing K∗

l := Kl − ηl for the centered versions of the Kl the function
Gm,θ(·/σm,θ) may be represented by

Gm,θ(x/σm,θ) = exp{xZm,θ}
/ m∏

l=1

gl,θ(x) ,

with

gl,θ(x) := ηl exp{(1− ηl)x/σm,θ} + (1− ηl) exp{−ηlx/σm,θ} ,

and

Zm,θ :=

m∑
l=1

K∗
l /σm,θ .

Taylor approximation yields that

gl,θ(x) = exp
{1
2
ηl(1− ηl)x

2/σ2
m,θ

}
·
(
1 +Rl,m,θ(x)

)
,

where the remainder term satisfies∣∣Rl,m,θ(x)
∣∣ ≤ 1

24
|x|3 σ−3

m,θ exp{|x|/σm,θ} +
1

32
x4 σ−4

m,θ exp
{
x2/
(
8σ2

m,θ

)}
,

for all x ∈ R. Hence, for all |x| ≤ σm,θ, it holds that∣∣∣Gm,θ(x/σm,θ) − exp
{
Z2
m,θ/2

}
· exp

{
− 1

2

(
x− Zm,θ

)2}∣∣∣
≤ exp

{
Z2
m,θ/2

}
· exp

{
− 1

2

(
x− Zm,θ

)2} ·
(
exp
{
m|x|3/(4σ3

m,θ)
}
− 1
)
,

(6.5)

Since m/4 ≥ σ2
m,θ ≥ m/(1 + exp{R})2, it follows for ρm := (D logm)1/2 and

some constant D > 0 that∣∣∣ ∫
|x|≤ρm

Gm,θ(x/σm,θ)w(x/σm,θ)dx

− exp{Z2
m,θ/2}w(0)

∫
|x|≤ρm

exp
{
− 1

2

(
x− Zm,θ

)2}
dx
∣∣∣

≤ exp{δ2m/2} · O
(
m−1/2 log2 m

)
, (6.6)

on the event Em,θ(δm) := {|Zm,θ| ≤ δm}, for some δm ∈ (1, ρm/2), where,
throughout this proof, the constants contained in O(· · · ) may only depend on
w, R and D. Therein we impose that the function w and its derivative are
uniformly bounded; and that ρm < σm,θ, which is satisfied for m sufficiently
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large with respect to R and D. Under the same constraints which we have used
to establish (6.6) we derive that∣∣∣ ∫

|x|≤ρm

Gm,θ(x/σm,θ)f(x)w
1/2(x/σm,θ) dx

− exp{Z2
m,θ/2}w1/2(0)

∫
|x|≤ρm

exp
{
− 1

2

(
x− Zm,θ

)2}
f(x)dx

∣∣∣
≤ exp{δ2m/2} · O

(
m−1/2 log7/4 m

)
, (6.7)

for all f ∈ L2(R) with ‖f‖2 = 1 using the Cauchy-Schwarz inequality in L2(R).
Moreover, if Em,θ(δm) occurs, we have that∣∣∣ exp{Z2

m,θ/2}w(0)
∫
|x|>ρm

exp
{
− 1

2

(
x− Zm,θ

)2}
dx
∣∣∣ ≤ exp{δ2m/2} · O

(
m−D/8

)
,

(6.8)

and that

exp{Z2
m,θ/2}w1/2(0)

∫
|x|>ρm

exp
{
− 1

2

(
x− Zm,θ

)2}|f(x)|dx
≤ exp{δ2m/2} · O

(
m−D/8

)
. (6.9)

Finally we study the terms∫
|x|>ρm

Gm,θ(x/σm,θ)w(x/σm,θ) dx , (6.10)∫
|x|>ρm

Gm,θ(x/σm,θ)|f(x)|w1/2(x/σm,θ) dx . (6.11)

Taking the derivative of logGm,θ we deduce that Gm,θ is a strictly unimodal
function on the event

{∑m
l=1 Kl ∈ [1,m − 1]

}
(and hence on Em,θ(δm) for m

large enough with respect to R) where the unique mode xm,θ satisfies

Φm,θ(xm,θ) = Zm,θ , (6.12)

with

Φm,θ(x) :=
1

σm,θ

m∑
l=1

( 1

1 + exp{−θl}
− 1

1 + exp{x− θl}
)

= (exp{x} − 1)σm,θ − (exp{x} − 1)2
1

σm,θ

m∑
l=1

η2l /(1 + exp{x− θl}) .

The function Φm,θ increases strictly and satisfies∣∣Φm,θ(±ρm/σm,θ)∓ ρm
∣∣ = O

(
m−1/2 logm

)
,

so that, on the event Em,θ(δm), the mode xm,θ is located in the interval
[−ρm/σm,θ, ρm/σm,θ] for ρm > 2δm and m sufficiently large with respect to
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w, R and D. Therefore the term (6.10) is bounded from above by

max
{
Gm,θ(ρm/σm,θ), Gm,θ(−ρm/σm,θ)

}
· σm,θ ≤ exp{δ2m/2} · O

(
m(4−D)/8

)
,

and the term (6.11) obeys the upper bound

max
{
Gm,θ(ρm/σm,θ), Gm,θ(−ρm/σm,θ)

}
· σ1/2

m,θ ≤ exp{δ2m/2} · O
(
m(2−D)/8

)
,

if Em,θ(δm) occurs, thanks to (6.5). Combining these results with (6.6)–(6.9),
we deduce that∣∣∣ ∫ Gm,θ(x/σm,θ)w(x/σm,θ)dx−

√
2π exp{Z2

m,θ/2}w(0)
∣∣∣

≤ exp{δ2m/2} · O
(
m−1/2 log2 m

)
,∣∣∣ ∫ Gm,θ(x/σm,θ)f(x)w

1/2(x/σm,θ)dx

− exp{Z2
m,θ/2}w1/2(0)

∫
exp
{
− 1

2
(x− Zm,θ)

2
}
f(x)dx

∣∣∣
≤ exp{δ2m/2} · O

(
m−1/2 log7/4 m

)
, (6.13)

on Em,θ(δm) when D ≥ 8. Whenever w(0) > 0 holds, in addition, then (6.4) and
(6.13) provide that

λj,m,θ

≥ sup
F

inf
f∈F,‖f‖2=1

E 1Em,θ(δm)

∣∣∣ ∫ Gm,θ(x/σm,θ)w
1/2(x/σm,θ)f(x)dx

∣∣∣2
/∫

Gm,θ(x/σm,θ)w(x/σm,θ)dx

≥ sup
F

inf
f∈F,‖f‖2=1

E 1Em,θ(δm)

∣∣[N ∗ f
]
(Zm,θ)

∣∣2/N (Zm,θ)

− exp{δ2m/2} · O
(
m−1/2 log2 m

)
,

(6.14)

where N denotes the N(0, 1)-density and ∗ denotes convolution.
Now we focus on the distribution of Zm,θ. Writing

μm,θ :=

m∑
l=1

ηl ,

Fourier inversion yields that

P
(
Zm,θ = (k − μm,θ)/σm,θ

)
= P
( m∑

l=1

Kl = k
)

=
1

2π

∫ π

−π

exp{−ikt}
m∏
l=1

(
ηl exp{it}+ 1− ηl

)
dt

= σ−1
m,θ N

(
(k − μm,θ)/σm,θ

)
± O
(
m−1 log2 m

)
,
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for all integer k = 0, . . . ,m. It follows that

E 1Em,θ(δm)

∣∣[N ∗ f
]
(Zm,θ)

∣∣2/N (Zm,θ)

≥
m∑

k=0

1
{
|k − μm,θ| ≤ δm · σm,θ

}
·
∣∣[N ∗ f

](
(k − μm,θ)/σm,θ

)∣∣2/σm,θ

− exp{δ2m/2} · O
(
δmm−1/2 log2 m

)
,

(6.15)

since

‖N ∗ f‖∞ ≤ 1

2π

∫
exp{−t2/2}|fft(t)|dt ≤ 2−1/2π−1/4 ,

for all f ∈ L2(R) with ‖f‖2 = 1 by the Cauchy-Schwarz inequality and Parse-
val’s identity where fft denotes the Fourier transform of the function f . Anal-
ogously we deduce that∣∣[N ∗ f ](x)− [N ∗ f ](y)

∣∣
=

1

2π

∫ ∣∣ exp{−ixt} − exp{−iyt}
∣∣ exp{−t2/2}|fft(t)|dt ≤ π−1/2 · |x− y| ,

for all x, y ∈ R, so that

m∑
k=0

1
{
|k − μm,θ| ≤ δm · σm,θ

}
·
∣∣[N ∗ f

](
(k − μm,θ)/σm,θ

)∣∣2/σm,θ

=

m∑
k=0

1
{
|k − μm,θ| ≤ δm · σm,θ

}

·
∫ (k−μm,θ+1/2)/σm,θ

x=(k−μm,θ−1/2)/σm,θ

∣∣[N ∗ f
](
(k − μm,θ)/σm,θ

)∣∣2dx
≥
∫
|x|≤δm−1/(2σm,θ)

∣∣[N ∗ f
]
(x)
∣∣2dx − O

(
δm ·m−1/2

)
. (6.16)

Piecing together (6.14)–(6.16) yields that

λj,m,θ ≥ sup
F

inf
f∈F,‖f‖2=1

∫
|x|≤δm−1/(2σm,θ)

∣∣[N ∗ f
]
(x)
∣∣2dx

− exp{δ2m/2} · O
(
δmm−1/2 log2 m

)
, (6.17)

for all integer j ≥ 0.

We define

LS
2 (R) :=

{
f ∈ L2(R) : supp f ⊆ [−S, S]

}
,

which forms an infinite-dimensional closed linear subspace of L2(R) for any

S > 0. Also we fix that δm := c log1/2 m for some constant c ∈ (0, 1). By
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Jensen’s inequality we derive that∫
|x|>R

∣∣[N ∗ f ](x)
∣∣2dx ≤ E

∫
|x|>R

|f(x− Z)|2dx ≤ 2E

∫
x>R−|Z|

|f(x)|2dx

≤ 2

∫
x>R/2

|f(x)|2dx + 2P (|Z| > R/2) ,

for any R > 0, f ∈ L2(R) with ‖f‖2 = 1 and L(Z) = N(0, 1). Putting R = δm
and using Parseval’s identity we deduce from (6.17) that

λj,m,θ ≥ inf
f∈F,‖f‖2=1

1

2π

∫
exp{−t2}

∣∣fft(t)
∣∣2dt − O

(
m(c2−1)/2 log5/2 m

)
− O
(
m−c2/2

)
, (6.18)

imposing that F is a (j + 1)-dimensional linear subspace of L
δm/4
2 (R), where

fft denotes the Fourier transform of the function f . More precisely, we select
any orthonormal system f0, . . . , fj in L1

2(R) where the fl are located in the
first order Sobolev space, in addition; and put F equal to the linear hull of the

x �→ 2δ
−1/2
m fl(4x/δm), l = 0, . . . , j. Then, for all f ∈ F with ‖f‖2 = 1, we have

that

inf
f∈F,‖f‖2=1

1

2π

∫
exp{−t2}

∣∣fft(t)
∣∣2dt

= inf
{ 1

2π

∫
exp
{
− 4t2/δ2m

}∣∣∣ j∑
l=0

αlf
ft
l (t)

∣∣∣2dt :

j∑
l=0

α2
l = 1

}

≥ exp{−4d2/c2} ·
(
1− d−2(logm)−1 sup

{∫ ∣∣∣ j∑
l=0

αlf
′
l (t)
∣∣∣2dt : j∑

l=0

α2
l = 1

})
,

(6.19)

for any d > 0 where we have used integral substitution, the Fourier repre-
sentation of the Sobolev norm and Parseval’s identity again. Let ϕ be some
continuously differentiable function which is supported on [−1, 1] and satisfies
‖ϕ‖2 = 1. Then put

fl(x) :=
√

2j ϕ
(
2j(x− [1 + 2l]/[2j])

)
, l = 0, . . . , j .

The derivatives f ′
l form an orthogonal system as well. In particular we have

∫ ∣∣∣ j∑
l=0

αlf
′
l (t)
∣∣∣2dt = 4j2‖ϕ′‖22 ,

whenever
∑j

l=0 a
2
l = 1 so that (6.18) and (6.19) yield the claimed asymptotic

behaviour of the eigenvalues.
(c) Assume convergence of some subsequence (Γσ(m),θ(σ(m))

)m to some con-
tinuous linear operator Γ. As the set of all compact, self-adjoint and positive
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semidefinite operators from L2(R, w) to itself is closed, Γ is compact, self-adjoint
and positive semidefinite as well. Let λj denote the (j + 1)th largest eigenvalue
of Γ for any integer j ≥ 0. Thanks to the imposed convergence and part (b) of
the proposition, it holds that λj = 1 since∣∣λj,σ(m),θ(σ(m))

− λj

∣∣ ≤ ∥∥Γσ(m),θ(σ(m))
− Γ
∥∥ .

Therefore the eigenspace of Γ with the eigenvalue 1 is infinite-dimensional, which
contradicts the compactness of Γ.

Proof of Lemma 4.1: We derive that

β′
k,m,θ(x) = βk,m,θ(x) ·

(
k −m+

m∑
l=1

1/
(
1 + exp(x− θl)

))
.

Thus, for k ∈ [1,m− 1], there exists a unique xk,m,θ such that βk,m,θ(xk,m,θ) =
‖βk,m,θ‖∞ where β′

k,m,θ(xk,m,θ) = 0 so that

xk,m,θ ∈ [−R,R] + log(k/(m− k)) ⊆
[
−R− log(m− 1), R+ log(m− 1)

]
.

We establish that

〈βk,m,θ,1〉w =

∫
βk,m,θ(x)w(x)dx

= inf
{
βk,m,θ(x) : |x− xk,m,θ| ≤ Δ

}
·
∫
|x−xk,m,θ|≤Δ

w(x)dx

≥ ‖βk,m,θ‖∞
(
1−mΔ

)
·
∫
|x−xk,m,θ|≤Δ

w(x)dx ,

for any Δ ∈ (0, 1/m) since ‖β′
k,m,θ‖∞ ≤ m · ‖βk,m,θ‖∞. Now let us choose

Δ := 1/(2m) so that

〈βk,m,θ,1〉w ≥ 1

2
‖βk,m,θ‖∞ ·

∫
|x−xk,m,θ|≤1/(2m)

w(x)dx

≥ D0 exp{−D1(R+ 1/2)} ·m−1−D1 · ‖βk,m,θ‖∞ .

If k = 0 then ‖βk,m,θ‖∞ = 1 and

〈βk,m,θ,1〉w ≥
∫ −R−logm

−∞
β0,m,θ(x)w(x)dx ≥ (1 + 1/m)−m

∫ −R−logm

−∞
w(x)dx

≥ 2D0

D1
exp{−D1R− 1} ·m−D1 .

Finally, in the case of k = m, again ‖βk,m,θ‖∞ = 1 as
∑m

l=1 θl = 0 and

〈βk,m,θ,1〉w ≥
∫ ∞

R+logm

βm,m,θ(x)w(x)dx ≥ (1 + 1/m)−m

∫ ∞

R+logm

w(x)dx



Mixed-Effect Rasch Model 2979

≥ 2D0

D1
exp{−D1R− 1} ·m−D1 ,

so that, for some constant D∗ > 0, it holds that

max
k=0,...,m

‖βk,m,θ‖∞ / 〈βk,m,θ,1〉w ≤ (D∗)2 ·m1+D1 . (6.20)

Then, for any j ≤ m,

λj,m,θ · ‖ϕj,m,θ‖∞ =
∥∥Γm,θϕj,m,θ

∥∥
∞

≤
∥∥∥ m∑

k=0

αk,m,θ · βk,m,θ · 〈βk,m,θ, ϕj,m,θ〉w/〈βk,m,θ,1〉w
∥∥∥
∞

≤
∥∥∥ m∑

k=0

αk,m,θ · βk,m,θ · 〈βk,m,θ, ϕj,m,θ〉2w/〈βk,m,θ,1〉2w
∥∥∥1/2
∞

≤
(

max
k=0,...,m

‖βk,m,θ‖∞ / 〈βk,m,θ,1〉w
)1/2 · λ1/2

j,m,θ ,

using Jensen’s inequality in the second line as
∑m

k=0 αk,m,θβk,m,θ = 1. Piecing
together this inequality with (6.20) completes the proof.

Proof of Lemma 4.2: By Taylor approximation we deduce for any fixed m and
θ′, θ ∈ Θ that

∥∥∥Γm,θ′ − Γm,θ −
m∑
l=1

(θ′l − θl) Γl,m,θ

∥∥∥ = o(|θ − θ′|) ,

where, here, ‖ · ‖ stands for the induced operator norm of L2(R, w) and Γl,m,θ

denotes the compact linear operator which maps any h ∈ L2(R, w) to the func-
tion

x �→
∫

∂γm,θ

∂θl
(x, y)h(y)w(y) dy .

Hence, Courant’s min-max theorem yields that

λj,m,θ′ ≥min
{ j∑

k=0

v2kλk,m,θ +

j∑
k,k′=0

vkvk′

m∑
l=1

〈ϕk,m,θ,Γl,m,θϕk′,m,θ〉w (θ′l − θl)

: v ∈ R
j+1, |v| = 1

}
− o(|θ′ − θ|), (6.21)

for any θ, θ′ ∈ Θ where the remainder term does not depend on j. Taking
the limit θ′ → θ that vector v which minimizes the term in (6.21) tends to
(0, . . . , 0, 1)† for any fixed j and m so that

λj,m,θ′ ≥ λj,m,θ +

m∑
l=1

〈ϕj,m,θ,Γl,m,θϕj,m,θ〉w (θ′l − θl) − o(|θ′ − θ|) . (6.22)
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On the other hand Courant’s min-max theorem also provides that

λj,m,θ′ ≤max
{∑

k≥j

v2k λk,m,θ +
∑

k,k′≥j

vk vk′

m∑
l=1

〈ϕk,m,θ,Γl,m,θϕk′,m,θ〉w (θ′l − θl)

:
∑
k≥j

v2k = 1
}

+ o(|θ′ − θ|). (6.23)

Again, as θ′ → θ, that sequence (vk)k≥j which maximizes the term in (6.23)
converges to (1, 0, 0, . . .) in the Hilbert space l2({j, j + 1, . . .}) so that

λj,m,θ′ ≤ λj,m,θ +

m∑
l=1

〈ϕj,m,θ,Γl,m,θϕj,m,θ〉w (θ′l − θl) + o(|θ′ − θ|) . (6.24)

Combining (6.22) and (6.24) we conclude that the function θ �→ λj,m,θ is con-
tinuously differentiable and its partial derivatives satisfy

∂

∂θl
λj,m,θ = 〈ϕj,m,θ,Γl,m,θϕj,m,θ〉w

=

m∑
k=0

α
[l]
k,m,θ 〈βk,m,θ, ϕj,m,θ〉2w/〈βk,m,θ,1〉w + 2λj,m,θ〈ψl,θ · ϕj,m,θ, ϕj,m,θ〉w ,

with

α
[l]
k,m,θ := −

∑
b∈B(k,m)

exp{−b†θ} · bl − αk,m,θ〈βk,m,θ · ψl,θ,1〉w/〈βk,m,θ,1〉w ,

ψl,θ(x) := exp{−θl}/
(
exp{−x}+ exp{−θl}

)
.

As ‖ψl,θ‖∞ ≤ 1 and 0 ≥ α
[l]
k,m,θ ≥ −2αk,m,θ the claim of the lemma has been

verified.

Proof of Proposition 4.2: Orthogonal expansion with respect to {ϕj,m,θ}j yields
that

E‖ĥn − h‖2w =

m∑
j=1

E
∣∣∣wj,m,θ

m∑
k=0

〈βk,m,θ, ϕj,m,θ〉w · Yk

/
{
nλj,m,θ〈βk,m,θ,1〉w

}
− 〈h, ϕj,m,θ〉w

∣∣∣2 +∑
j>m

〈h, ϕj,m,θ〉2w .

(6.25)

Since

E

m∑
k=0

〈βk,m,θ, ϕj,m,θ〉w · Yk /
{
nλj,m,θ〈βk,m,θ,1〉w

}
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=

m∑
k=0

αk,m,θ〈βk,m,θ, ϕj,m,θ〉w · 〈βk,m,θ, h〉w /
{
λj,m,θ〈βk,m,θ,1〉w

}
=
〈
Γm,θϕj,m,θ, h

〉
w
/λj,m,θ = 〈ϕj,m,θ, h〉w ,

we have that

E
∣∣∣wj,m,θ

m∑
k=0

〈βk,m,θ, ϕj,m,θ〉w · Yk /
{
nλj,m,θ〈βk,m,θ,1〉w

}
− 〈h, ϕj,m,θ〉w

∣∣∣2

= w2
j,m,θ var

( m∑
k=0

〈βk,m,θ, ϕj,m,θ〉w · Yk /
{
nλj,m,θ〈βk,m,θ,1〉w

})
+ |wj,m,θ − 1|2 〈ϕj,m,θ, h〉2w

= w2
j,m,θ

m∑
k=0

αk,m,θ〈βk,m,θ, ϕj,m,θ〉2w〈βk,m,θ, h〉w /
{
nλ2

j,m,θ〈βk,m,θ,1〉2w
}

+ |wj,m,θ − 1|2〈ϕj,m,θ, h〉2w
≤ w2

j,m,θ 〈Γm,θϕj,m,θ, ϕj,m,θ〉w · λ−2
j,m,θn

−1 · max
k=0,...,m

|〈βk,m,θ, h〉w|/〈βk,m,θ,1〉w

+ |wj,m,θ − 1|2 〈ϕj,m,θ, h〉2w
≤ w2

j,m,θ · ‖h‖∞ λ−1
j,m,θ · n−1 + |wj,m,θ − 1|2 〈ϕj,m,θ, h〉2w ,

which completes the proof.

Proof of Theorem 4.2: In the experiment Yn,m one observes (X,Y ). As the
conditional distribution of X given Y does not depend on f , the statistic Y is
sufficient for f (and, thus, h) when θ is known so that ĥn may be viewed as
being based on Y . We introduce the functions

hν := 1+

m∑
k=0

h∗m,k · νk · ϕk,m,θ ,

with νk ∈ {−1, 1} for all k = 1, . . . ,m and

h∗m,k := ch · hm,k/
√
1 + n · λk,m,θ · h2m,k ,

for some constant ch ∈ (0, 1/min{1, 2D∗c∗}). Also we define fν := hν · w.
Thanks to Proposition 4.1(a), fν integrates to 1 for all ν; and thanks to Lemma
4.1, |1 − hν | is bounded by 1/2 so that non-negativity of fν is guaranteed.
Furthermore hν is located in H for all ν ∈ {−1, 1}m.

Put ρn :=
∑m

k=1(h
∗
m,k)

2 and assume that

lim sup
n→∞

sup
h∈H

Ph

(
‖ĥn − h‖2w > z · ρn

)
= 0 ,

for all z > 0. Since

sup
h∈H

Eh
‖ĥn − h‖2w

ρn + ‖ĥn − h‖2w
≤
∫ ∞

0

sup
h∈H

Ph

(
‖ĥn − h‖2w > zρn

)
(1 + z)−2dz ,



2982 J. Kappus et al.

Fatou’s lemma implies that

lim sup
n→∞

sup
h∈H

Eh
‖ĥn − h‖2w

ρn + ‖ĥn − h‖2w
= 0 .

Then we estimate the maximal risk from below by the Bayesian risk with respect
to the a priori measure Q under which all νk are i.i.d. random variables with
Q(ν1 = 1) = Q(ν1 = −1) = 1/2. Therefore,

lim sup
n→∞

EQ Ehν

‖ĥn − hν‖2w
ρn + ‖ĥn − hν‖2w

= 0 . (6.26)

Writing ĥn,j := 〈ĥn, ϕj,m,θ〉w, Bessel’s inequality yields that

‖ĥn − hν‖2w ≥
m∑
j=1

∣∣ĥn,j − h∗m,jνj
∣∣2 .

As we are considering lower bounds we may assume |ĥn,j | ≤ h∗m,j for all j
without any loss of generality so that

m∑
j=1

∣∣ĥn,j − h∗m,jνj
∣∣2 ≤ 4

m∑
j=1

(h∗m,j)
2 = 4ρn , Q-a.s. .

Thus it follows from (6.26) that

lim sup
n→∞

m∑
j=1

EQ Ehν |ĥn,j − h∗m,jνj |2/(5ρn) = 0 . (6.27)

By ην,j,± we denote the N(nq(θ, hν,j,±), nQ(θ, hν,j,±))-density where hν,j,±
stands for the function hν when νj is replaced by ±1. We deduce that

EQ Ehν |ĥn,j − h∗m,jνj |2

=
1

2
EQ

∫ (
|ĥn,j(x)− h∗m,j |2ην,j,+(x) + |ĥn,j(x) + h∗m,j |2ην,j,−(x)

)
dx

≥ (h∗m,j)
2 EQ

∫
min
{
ην,j,+, ην,j,−

}
(x)dx ,

and, hence,

m∑
j=1

EQ Ehν |ĥn,j−h∗m,jνj |2/(5ρn) ≥ 1

5
inf

j=1,...,m
EQ

∫
min
{
ην,j,+, ην,j,−

}
(x)dx .

This represents a contradiction to (6.27) if we can show that

lim inf
n→∞

inf
j=1,...,m

EQ

∫
min
{
ην,j,+, ην,j,−

}
(x)dx > 0 . (6.28)

Le Cam’s inequality provides that∫
min
{
ην,j,+, ην,j,−

}
(x)dx ≥ 1−

{
1−
(
1−H2(ην,j,+, ην,j,−)

)2}1/2
,
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with the Hellinger distance H(f, g). The squared Hellinger distance between the
normal densities ην,j,+ and ην,j,− equals

H2(ην,j,+, ην,j,−)

= 1− exp
{
−n

4

m∑
k=0

(qk(θ, hν,j,+)− qk(θ, hν,j,−))
2/(qk(θ, hν,j,+)+ qk(θ, hν,j,−))

}

·
m∏

k=0

{
1−
(qk(θ, hν,j,+)− qk(θ, hν,j,+)

qk(θ, hν,j,+) + qk(θ, hν,j,+)

)2}1/4
.

Therein we write qk(θ, h) for qk(θ, F ) when F is the distribution induced by the
density hw. Note that

m∑
k=0

(
qk(θ, hν,j,+)− qk(θ, hν,j,−)

)2
/
(
qk(θ, hν,j,+) + qk(θ, hν,j,−)

)
≤ 4(h∗m,j)

2 · 〈Γm,θϕj,m,θ, ϕj,m,θ〉w = 4(h∗m,j)
2 λj,m,θ ,

since hν,j,+(x) + hν,j,−(x) ≥ 1 for all x ∈ R. Moreover,∣∣qk(θ, hν,j,+)− qk(θ, hν,j,−)
∣∣/(qk(θ, hν,j,+) + qk(θ, hν,j,−)

)
≤ 2h∗m,j

∣∣〈βk,m,θ, ϕj,m,θ〉w
∣∣/〈βk,m,θ,1〉w ≤ 2D∗m(1+D1)/2λ

−1/2
j,m,θ h

∗
m,j ,

for all k = 0, . . . ,m, thanks to Lemma 4.1. We conclude that

H2(ην,j,+, ην,j,−) ≤ 1− exp
{
− n(h∗m,j)

2λj,m,θ

}
·
(
1− 4(D∗)2m1+D1(h∗m,j)

2λ−1
j,m,θ

)(m+1)/4

≤ 1− 2−1/4 · exp
{
− c2h
}
,

if ch ≤ 1/(4c∗D∗) so that (6.28) has been verified.

Proof of Theorem 4.3: Define

h̃ := h + c · v ,

for some constant c > 0 and some element v of the orthogonal complement
H⊥

m,θ of the linear subspace Hm,θ of L2(R, w). Without any loss of generality,
v may be viewed as essentially bounded, which can be seen as follows: Clearly
the set of all essentially bounded functions is dense in L2(R, w). Thus, for any
b ∈ H⊥

m,θ ⊆ L2(R, w), there exists some sequence (bn)n of essentially bounded
L2(R, w)-functions which converges to b. Let un and vn denote the orthogonal
projections of bn onto Hm,θ and H⊥

m,θ, respectively. As

‖vn − b‖2w + ‖un‖2w = ‖bn − b‖2w ,

the sequence (vn)n in H⊥
m,θ converges to b as well. Being a linear combination of

βk,m,θ, k = 0, . . . ,m, un is essentially bounded and so is vn = bn−un. Therefore
the set of all essentially bounded elements of H⊥

m,θ is dense in H⊥
m,θ.
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Choosing c > 0 sufficiently small ensures nonnegativity of h̃. As 〈ϕ0,m,θ, v〉w =

0 and ϕ0,m,θ = 1 according to Proposition 4.1, f̃ = h̃w is a density. As

〈βk,m,θ, v〉w = 0 for all k = 0, . . . ,m, the parameters f and f̃ lead to iden-
tical data distribution, both in experiment Yn,m and in Zn,m.

Proof of Theorem 4.4: Using the arguments from the proof of Theorem 2.1,
which involve the Lemmata 4.3 and 5.1 from [22], we deduce that

sup
θ∈Θ

Eθ

( m∑
l=1

|θ̂l − θl|
)2

= O(m4/n) , (6.29)

with universal constants which only depend on R, D0, D1 and D2. Writing

σ̃2
j := cW ·m4 · (logn) · n−1λ̂−1

j,m,θ̂
,

we consider that

∥∥ĥŵ

m,θ̂
− h
∥∥2
w

−
∑
j>m

〈h, ϕj,m,θ̂〉
2
w =

m∑
j=1

∣∣1{ĥ2
j,m,θ̂

≥ σ̃2
j } · ĥj,m,θ̂ − 〈h, ϕj,m,θ̂〉w

∣∣2

=
m∑
j=1

1{ĥ2
j,m,θ̂

≥ σ̃2
j } · D̂2

j + 1{ĥ2
j,m,θ̂

< σ̃2
j } · 〈h, ϕj,m,θ̂〉

2
w

≤
m∑
j=1

1{〈h, ϕj,m,θ̂〉
2
w ≥ σ̃2

j /4} · D̂2
j + 1{D̂2

j ≥ σ̃2
j /4} · D̂2

j

+ 1{〈h, ϕj,m,θ̂〉
2
w ≤ 4σ̃2

j } · 〈h, ϕj,m,θ̂〉
2
w + 1{D̂2

j ≥ σ̃2
j } · 〈h, ϕj,m,θ̂〉

2
w .

(6.30)

Conditionally on X∗, the random variables D̂j := ĥj,m,θ̂ − 〈h, ϕ̂j,m,θ̂〉w are

N(μ̂j , σ̂
2
j )-distributed with

μ̂j := λ−1

j,m,θ̂

m∑
k=0

(
αk,m,θ〈βk,m,θ, h〉w − αk,m,θ̂〈βk,m,θ̂, h〉w

)
〈βk,m,θ̂, ϕj,m,θ̂〉w

/〈βk,m,θ̂,1〉w ,

σ̂2
j := n−1λ−2

j,m,θ̂

m∑
k=0

αk,m,θ〈βk,m,θ, h〉w〈βk,m,θ̂, ϕj,m,θ̂〉
2
w/〈βk,m,θ̂,1〉

2
w .

We define

rj,θ(x) := exp{x− θj}/(1 + exp{x− θj}) ,

Rm,θ,θ̂(x) :=

m∏
j=1

(
1 + rj,θ(x) · (exp{θj − θ̂j} − 1)

)
− 1 ,

and deduce that

βk,m,θ(x)− βk,m,θ̂(x) = βk,m,θ̂(x) ·Rm,θ,θ̂(x) .
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Moreover it holds that

∣∣αk,m,θ̂ − αk,m,θ

∣∣ ≤ αk,m,θ̂ ·
(
exp
{ m∑

l=1

|θ̂l − θl|
}
− 1
)
,

∥∥Rm,θ,θ̂

∥∥
∞ ≤ exp

{
exp{R}

m∑
l=1

|θ̂l − θl|
}
− 1 ,

and hence that

σ̂2
j ≤ D2 · exp

{(
1 + exp{R}

)
·

m∑
l=1

|θ̂l − θl|
}
· n−1λ−1

j,m,θ̂
,

almost surely. In order to bound the term μ̂j , consider that, a.s.,

∣∣μ̂j

∣∣ ≤ D2 · λ−1/2

j,m,θ̂
·
(
exp
{ m∑

l=1

|θ̂l − θl|
}
− 1
)
+
∣∣〈Rm,θ,θ̂ · h, ϕj,m,θ̂〉w

∣∣ .
Taking the conditional expectation given X∗ in (6.30) yields the upper bound

m∑
j=1

1{〈h, ϕj,m,θ̂〉
2
w ≥ σ̃2

j /4} · (μ̂2
j + σ̂2

j ) + 1{〈h, ϕj,m,θ̂〉
2
w ≤ 4σ̃2

j } · 〈h, ϕj,m,θ̂〉
2
w

+ O
(
1 + σ̂j ·

∣∣σ̃j/2− |μ̂j |
∣∣+ μ̂2

j

)
· exp

{
− (σ̃j/2− |μ̂j |)2/(2σ̂2

j )
}
.

The first line in the above expression is bounded from above byMn,m multiplied
by (logn)m4 and a constant; while the second line obeys the uniform upper
bound of o(1/n) and, hence, is negligible. Thanks to Lemma 4.2, the asymptotic
behaviour of the eigenvalues λj,m,θ̂ equals that of the λj,m,θ; concretely

h2m,j/(1 + h2m,jnλj,m,θ̂) ≤
(
1 +OP (m

2n−1/2)
)
· h2m,j/(1 + h2m,jnλj,m,θ) ,

again with universal constants.
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