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Abstract: Classical multidimensional scaling is a widely used method in
dimensionality reduction and manifold learning. The method takes in a
dissimilarity matrix and outputs a low-dimensional configuration matrix
based on a spectral decomposition. In this paper, we present three noise
models and analyze the resulting configuration matrices, or embeddings.
In particular, we show that under each of the three noise models the re-
sulting embedding gives rise to a central limit theorem. We also provide
compelling simulations and real data illustrations of these central limit
theorems. This perturbation analysis represents a significant advancement
over previous results regarding classical multidimensional scaling behavior
under randomness.
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1. Background and overview

Inference based on dissimilarities is of fundamental importance in statistics,
data mining and machine learning (Pekalska and Duin, 2005), with applications
ranging from neuroscience (Vogelstein et al., 2014) to psychology (Carroll and
Chang, 1970) and economics (Machado and Mata, 2015). In each of these fields,
rather than directly observing the feature values of the objects, often we observe
only the dissimilarities or “distances” between pairs of objects (inter-point dis-
tances). A common approach to dimensionality reduction and subsequent infer-
ence problems involving dissimilarities is to embed the observed distances into
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some (usually Euclidean) space to recover a configuration that faithfully pre-
serves observed distances, and then proceed to perform inference based on the
resulting configuration (de Leeuw and Heiser, 1982; Borg and Groenen, 2005;
Torgerson, 1952; Cox and Cox, 2008). The popular classical multidimensional
scaling (CMDS) method provides an example of such an embedding scheme into
Euclidean space, in which we have readily available tools to perform statistical
inference. CMDS can also be regarded as a powerful dimension reduction tech-
nique for high dimensional data. Indeed, the ubiquitous PCA (a linear dimension
reduction technique), is equivalent to CMDS on a matrix of pairwise Euclidean
distance between feature vectors. CMDS also forms the basis for several recent
and popular approaches to nonlinear dimension reduction and manifold learn-
ing (Scholkopf et al., 1998; Chen and Buja, 2009), such as Isomap (Tenenbaum
et al., 2000), Laplacian eigenmaps (Belkin and Niyogi, 2003), diffusion maps
(Coifman and Lafon, 2006), locally linear embedding Roweis and Saul (2000),
and random forest manifold learning (Criminisi and Shotton, 2013). These pro-
cedures can be formulated as kernelized variants of classical PCA (see e.g., Ham
et al. (2004)) and thus correspond to CMDS embedding of Euclidean distances
in some high or infinite dimensional vector spaces.

To summarize, classical multidimensional scaling is the problem of, given an
n X n hollow symmetric dissimilarity matrix D and an embedding dimension
d, find a n x d matrix X € R"*?% where the rows X1, Xs,..., X, € R? of X
represent coordinates of points in R% such that the overall inter-point distances
between X; and X; are “as close as possible” to the entries of D. The specific
steps are as follows.

1. Compute the matrix B = —1(I — %)D2 (I- %), where D? is obtained
by element-wise squaring the entries of D. The matrix B is termed the
double centering of D?. Here I denotes the n x n identity matrix and 117
denote the matrix of all ones.

2. Extract the d largest positive eigenvalues si,...,sq of B and the corre-
sponding eigenvectors uq, ..., Uq.

3. Let X = UBS]E/2 € R™¥4 where Ug = (u1,...,uq) is a n X d matrix and
Sp = diag(si,. .., sq) is a diagonal d x d matrix. Each row of X represents

the coordinate of a point in R? so that || X; — X;|| ~ D;; where D;; is the
ij-th entry of D. We shall refer to X as the configuration matrix or the
embedding configuration of D into R?.

In essence, CMDS minimizes the Strain loss function defined as L(X) := || X X " —
B||r where || - || denote the Frobenius norm of a matrix. Furthermore, the re-
sulting configuration X centers all points around the origin and is unique only
up to an orthogonal transformation, i.e., for any configuration X, the configura-
tion XW with W a d x d orthogonal matrix yields the same interpoint distances
as X.

CMDS can be applied whenever the notion of dissimilarity come into play, be
it the difference between two time series (Vogelstein et al., 2014) or, in psychome-
tric applications, the difference between two people’s perception of the same ob-
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ject (Jaworska and Chupetlovska-Anastasova, 2009). See also the books Pekalska
and Duin (2005); Cox and Cox (2010); Borg and Groenen (2005) and the ref-
erences therein. Note that as the entries of D represents dissimilarities, they do
not need to satisfy the triangle inequality, i.e., we can have D;; > D;, + Dy;.
As we allude to earlier, by using CMDS one obtains a Euclidean represen-
tation of the data even when the true representation is unknown or possibly
ill-defined and/or complex and high-dimensional. The Euclidean representation
then allows for the use of a large and extremely diverse suite of classical, ro-
bust, and efficient inference methodologies. However, in most of the real world
applications, the measurement of distance or dissimilarity is greatly affected by
a wide range of factors, such as instrument precision or faulty sensors, which in
turn introduce randomness (noise) into the “observed” distance matrix. While
CMDS is widely used in these settings, its behaviour under randomness re-
mains largely unexplored. Several recent papers have highlighted this omission.
Zhang et al. (2016) write “Despite the popularity of multi-dimensional scaling,
very little is known about to what extent the distances between the embedded
points could faithfully reflect the true pairwise distances when observed with
noise.”; Fan et al. (2018) write “[W]e are not aware of any statistical results
measuring the performance of MDS under randomness, such as perturbation
analysis when the objects are sampled from a probabilistic model.” and Peter-
freund and Gavish (2018) write “To the best of our knowledge, the literature
does not offer a systematic treatment on the influence of ambient noise on MDS
embedding quality.” The current paper addresses this acknowledged gap in the
literature.

2. Noise model and embedding

In this section, we propose three different but related noise models for the matrix
of observed dissimilarities. Suppose we have inter-point distances of n points
in R?, and the resulting distance matrix is given by D € R™*", i.e. D;; =
| X; — X;||. Let D? denote the element-wise squaring of the entries of D and A or
A? (the element-wise squaring of the entries of A) be the observed dissimilarity
matrix (such as measured via a scientific experiment). We consider three error
models for A or A2,

2.1. Model 1: A2 =D? 4+ E

An error model proposed in R.Sibson (1979) and Zhang et al. (2016) is A? =
D? + E, where we think of D? as the true but unobserved “signal” matrix and
E as the “noise”. We shall assume that E satisfies the following conditions:

(i) E[E] =0, hence E[A?] = D2.

(ii) F is hollow and symmetric.
(iii) The entries E;; for i < j are independent and Var(E;;) = o2 for all 4, j.
(iv) BEach E;;, for ¢ < j, follows a sub-Gaussian distribution.
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One possible criticism of this noise model is that some of the entries of A? could
be negative. Since the entries of A? have interpretations as squared dissimilar-
ities, it is more desirable that they are all non-negative. However, as we will
see later, the CMDS embedding of A2 is well-defined and valid even when A2
have negative entries as it is based on the truncated eigendecomposition of A2,
a symmetric matrix.

2.2. Model 2: A = |D + E|

Another realistic error model is A = |D + E| where the absolute value is taken
element wise. In this model the noise is added directly onto the distance D;; =
| X; — X;|| as opposed to Model 1 in which the noise is added onto the squared
distance. For this model we will require that the random matrix E satisfies
conditions (i) to (iv) in Section 2.1 along with the following constant third and
fourth moment conditions, i.e.,

(v) E[E};] = v for all 4, 5.
(vi) E[E};] = ¢ for all 4, j.

We emphasize that, under this noise model, the ij-th entry of A is A;; =
|D;; + E;;| and are guaranteed to be non-negative. Thus, in contrast to Model
1, all of the entries of A are proper dissimilarities. Meanwhile the ij-th entry of
AQ is AZQJ = DZQJ + Q?ijDij + Elzj and hence, taking Eij = QEUDU + Eija the
noise perturbations E;; on the entries of A? satisfy

1. E[E”] = 0'2 >0

2. Var[Eij] = 02DZ.2j + 2vD;; + & and thus the Eij does not have constant
variances.

3. The Eij = Efj are sub-exponential, as opposed to sub-Gaussian, random
variables.

Since CMDS is computed via the eigendecomposition of B = — (I — %)AQ(I—
%), the non-constant variance and the sub-exponential of the noise Eij for A?
lead to quite different finite-sample and limit results for Model 2, when compared

to Model 1. We illustrate these differences in Section 3 and Section 4.1.

2.3. Model 3: Matrix completion

The third noise model is related to the problem of recovering a true distance
matrix from a noisy and partially observed subset of its entries, see e.g., Javan-
mard and Montanari (2013); Chatterjee (2015). Restricting our attention to the
Euclidean distance, we propose the following matrix completion model:

e With probability ¢ we observe A;; = Aj; = D;; = Dj;. Here A;; is the
ij-th entry of A.

e With probability 1 — g, both A;; and Aj; is missing (in which case we can
set Aij = 0)
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The above model can be rewritten in the form A = D + E where E;; is
a Bernoulli random variable which takes value —D;; with probability 1 — ¢
and takes value 0 with probability ¢. It is easy to see that E[A] = ¢ - D and
E[A?%] =q- D%

For each of the above noise models, we apply CMDS to the n x n matrix A
to get the resulting configuration matrix X, and use the following notations for
this procedure:

1. Let B=—1(I - 117 /n)A(I - 117 /n).

2. Let S € R¥? be the diagonal matrix of d largest eigenvalues of B and
Ug € R™*4 he the matrix whose orthogonal columns are the corresponding
eigenvectors.

3. The matrix X = UBS]lé/2 € R™*? is the “embedding of A” into RY, i.e.,

the ith row of the n x d matrix X yield the coordinates of the point X;
such that D;; ~ || X; — X;]|.

A natural question arises regarding how the added noise affects the embedding
configuration. That is, what is the relationship between the embedding X from
D as in Section 1 and the embedding X from A? We emphasize that the goal is
to recover the {X;} and thus it is generally not the case that || X; — X]|| ~ Ay
but rather that | X; — X;|| ~ D;.

Finally we remark that the assumption that the missing entries of A are set
to 0 is an arbitrary choice that is made for ease of exposition. This choice is
firstly quite common in the literature, see e.g., Chatterjee (2015, Section 2.3) and
Javanmard and Montanari (2013), and secondly, the limit results in Section 3
still hold when we set the missing entries to any other fized but finite value C.
Indeed, suppose we set the missing entries to some fixed value C' > 0. Then
E[A] = gD+ (1 —q)C x 117 and E[A?%] = ¢D? + (1 — ¢)C? x 117 where 117 is
the n x m matrix of all ones. The double centering of A? satisfies

E[-0.5x (I — 117 /n)A*(I =117 /n)] = —g(l — 117 /n)D*(I — 117 /n)

which does not depend on C, i.e., the choice of C does not matter in the sub-
sequent theoretical analysis. Finally, even if we set the missing entries to NA,
most matrix completion algorithm will first initialize/replace these NA’s with
some arbitrary value.

2.4. Related works

The problem of recovering an Euclidean distance matrix from noisy or imperfect
observations of pairwise dissimilarity scores arises naturally in many different
contexts. For example, in Zhang et al. (2016), the authors considered the model
A? = D? + FE and studied the behaviour of the estimator
T T
D? .= argmin{HA2 — M||% — A\, trace (I - 1L)M(I - i)}
MED&LZ) n n
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for D?. Here D2 is the set of n x n squared Euclidean distance matrix and \,, is
a tuning parameter. In particular, Corollary 6 in Zhang et al. (2016) states that
if the noise perturbation F satisfy the assumptions in Section 2.1 then, with
probability approaching to one, we have

1D? — D?||% < 36n0°(r + 1) (1)

where 0® = E[E}}] is the variance of the noise and r is the rank of D?. In this

paper we obtain, as a corollary of our results, a more refined bound for D?2-D%in
terms of the uniform error max;; |Di2j fﬁ?j (see Remark 3 below). Furthermore,
our central limit theorem on the configuration matrix is also a more refined
limiting result, albeit of a slightly different flavor, when compared to Eq. (1).
More specifically, for the noise model of Zhang et al. (2016), our Theorem 3.1
indicates that the marginal distribution of the i-th row of the CMDS embedding
is, up to some orthogonal transformation, normally distributed around the true
but unknown latent positions, and that statistical inference using the rows of
the CMDS embedding can proceed as if they were independent multivariate
normal random vectors centered around the true but unknown latent positions.

The problem of completing a distance matrix with missing entries is also a
popular problem in the engineering and social sciences; see, for example, Alfakih
et al. (1999); Bakonyi and Johnson (1995); Singer (2008); Spence and Domoney
(1974) and distance matrix completion is closely related to multidimensional
scaling (Borg and Groenen, 2005; Chatterjee, 2015; Javanmard and Montanari,
2013; Oh et al., 2010). Especially noteworthy is Theorem 2.5 of Chatterjee (2015)
which gives an upper bound for the mean squared error for recovering a general,
not necessarily Euclidean, distance matrix M. More specifically, let (K, d) be a
compact metric space and 1,22, ..., T, be n arbitrary points in K. Let M be
the nxn matrix whose ij-th entry is d(z;, x;). Let € > 0 be such that ¢ > n=1"¢.
Recall that ¢ is the proportion of observed entries of M. For a given § > 0, let
N(9) be the covering number of K using balls of radius § with respect to the
metric d. Then there exists an estimator M obtained by truncating the singular
value decomposition of M such that

MSE(M) < Cér;% min{“— ']\\;25/4)/”, 1} + C(e)e ™

where ¢ and C are constants depending on the truncation of the singular values
of M and C(e) is a constant depending only on e. When M is a Euclidean
distance matrix the above bound yields

Cn_1/3

T
This result can be improved, e.g., Theorem 1 in Taghizadeh et al. (2015) states
that, with high probability, MSE(M) = O((nq)~!). Theorem 3.3 in the current

paper implies the same bound and furthermore, also yields more refined limit
results for the rows of the embedding configuration X as well as bounds for the

MSE(M) <
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maximum entry-wise different for the recovered Euclidean distance matrix (see
Remark 3).

Finally, we remark that the Euclidean distance matrix completion problem
can also be formulated as a problem of minimizing the nuclear norm of a matrix
M subject to the constraint that the non-missing entries of A and the corre-
sponding entries of M are equal. More specifically, let S be the set of non-missing
entries in A. Then one can consider solving

min || M|, subject to A;; = M;; for all 4,5 € S.

Here || - ||« denote the nuclear norm. This is a convex optimization problem
and, under certain regularity conditions on the coherence of the true distance
matrix D, the solution is unique and, with high probability, equal to D, provided
that the number of non-missing entries is of order 2(ndvlogn) where v is the
coherence of the matrix D (see Theorem 1 in Tasissa and Lai (2018) for a more
detailed statement). While these type of results are certainly powerful, they
nevertheless depends the coherence of the matrix D which could be as large as
©(n) in the worst case. Our results for the distance matrix completion setting do
not depend on the coherence of D, and thus do not guarantee that the recovered
distances are ezxactly equal to D.

3. Main results

Recall that a random variable ( is sub-Gaussian if there exists a constant K >
+2
0 such that P[|¢] > t] < 2e” %% for all ¢ > 0. The Orlicz 12 norm of ¢ is

defined by ||¢||y, = inf{t > 0 : Eexp(g—j) < 2}. A random vector Y in R” is
called sub-Gaussian if the one-dimensional marginals <Y,v> are sub-Gaussian
for all v € R™; the corresponding Orlicz 12 norm of Y is defined as ||[Y||y, =

sup [(Y )l
yesn—1

3.1. Main theorems

We now present central limit theorems for the CMDS embedding X for the
three noise models in Section 2. Recall that, given a n x n dissimilarity matrix
A, CMDS outputs a n X d matrix X with d < n such that the rows of X repre-
sent the embedding coordinates in R? of the rows of A. Intuitively speaking, the
following theorems established that the rows of X, after some suitable orthog-
onal transformation, is approximately normally distributed around the rows of
the true X. The covariance matrices of the rows of X will depend on the noise
model and the true distribution of the points in the underlying space and are
substantially different between the three noise models considered. In particular,
the covariance matrix for the noise model A? = D? + E in Theorem 3.1 depends
only on the variance o2 of the noise E;;. This is in contrast with the covariance
matrices of the model A = |D + E| in Theorem 3.2 and the model E[A] = ¢D



Central limit theorems for classical multidimensional scaling 2369

in Theorem 3.3, both of which depend also on the underlying true distances
D;;. The machinery involved in proving these results are by and large the same
and we refer the reader to the Appendix for detailed proofs. Finally, for ease of
exposition, we denote by (A); the i-th row of a matrix, and for vectors a € R?
and f € R%, a < 8 denote that each entry of « is less than the corresponding
entry of 3.

Theorem 3.1 (Central Limit Theorem for CMDS of A% = D? + E). Let Z,
Zg,...,an'zw'd'F for some sub-Gaussian distribution F on R?. Let D be the
Euclidean distance matriz generated by the Zy’s, i.e. Dy; = ||Z; — Zj||, and
suppose that max; Zj D%j > log4 n. Let A? = D? + E where the noise matriz
E satisfy the conditions in Section 2.1, i.e, (i) E[E] = 0, (it) E is hollow and
symmetric, (iii) the entries E;j are independent for i < j with Var[E;;] = o2,
and (i) each E;; follows a sub-Gaussian distribution. Note that the E;; need
not be identically distributed. Denote by X®) the n x d matriz representing the
CMDS embedding of A into R%. Then there exists a sequence of dx d orthogonal
matrices {W ™M} | such that for any o € R? and any fized row index i, we
have

lim P{y/n[(XMW™); - (Z; - 2)] < a} = &(, )

n—oo
where Z =n~1Y", Z), and ®(«, ) denotes the CDF of a multivariate Gaussian
with mean 0 and covariance matriz 3, evaluated at o. Here 3 = =1 where

=
= = Cov(Z;) € RI%4,

Remark 1. We can relax the common variance requirement (iii) in Theo-
rem 3.1. Let Var(E;;) = U?j and suppose that, for each fixed ¢, the collection
{(D}; — A3)(Z; — =)}, satisfy the multivariate Lindeberg-Feller condition.
Define, for each fixed i, X; = %ZJ 07;Cov(Zy). We then obtain the following
variant of Theorem 3.1:

lim n'/28 2 [(XWW™)Y, — (Z; — Z)] — N(0, I).

n—oo

Theorem 3.2 (Central Limit Theorem for CMDS of A = |D + E|). Let Z1,
Zg,...,ZnZ'Z\'Jd'F for some sub-Gaussian distribution F on R®. Let D be the
Euclidean distance matriz generated by the Zy’s, i.e. Dy = ||Z; — Z;|| and
suppose that max; Ej D?j > 10g4 n. Let A = |D+ E| and suppose that the noise
matriz E satisfy, in addition to the conditions in Theorem 3.1, the condition (v)
E[EE’J] =~ and E[Efj} = ¢. Denote by X the n x d matriz representing the
CMDS embedding of A into R%. Then there exists a sequence of dx d orthogonal
matrices {W (™12 | such that for any o € R and any fized row index i,

lim B{/A((XOW), — (2, — 2)] < a} = 3, 5(:)) dF ()
nreo supp(F)

where Z is the mean of Zy’s and ®(a,Y) denotes the CDF of a multivariate
Gaussian with mean 0 and covariance matriz X, evaluated at . Here ¥(z) =



2370 G. Li et al.

[1]

“15(2)27! where 2 := Cov(Z;) € R™ and, with p, = E[Z;] € R,

£(2) 1= Bz, [ (02 = Zell? 421z = 2l + 16~ o) (B~ 1) (i~ 1) ] (2)

18 a covariance matrix depending on z.

Theorem 3.3 (Central Limit Theorem for CMDS of A = D with missing

entries). Let Zy,Zs,. .., an'f'vd'F for some sub-Gaussian distribution F' on RY.
Let D be the Euclidean distance matriz generated by the Z;’s, i.e. D;; = |1Z; —
Z;||. Suppose that with probability q, € [0,1] we observe the distance D;; and
with probability 1 — gy, it is missing, i.e., A = D + E where E;; = (—D;;) X
Bernoulli(1 — ¢,,). Denote by X™) the n x d CMDS embedding of A into R?.
Then there exists a sequence of d x d orthogonal matrices {W (™}, such that
if ngn = w(log4 n), then for any o € R? and any fized row index i,

Jm PRI OW), =2 <o) = [ at,s)ir)

where Z is the mean of Z;’s and ®(a,Y) denotes the CDF of a multivariate
Gaussian with mean 0 and covariance matric ¥, evaluated at . Here ¥(z) =
E18(z)27, E:= Cov(Z;) € R¥™*4 and with u, = E[Z;] € R,

1

B(e) = 51— GBIz = Zul*(Z — ) (Zi — 1) 3)

i a covariance matriz depending on z.

Remark 2. As we alluded to earlier, the covariance matrix in Theorem 3.1
depends on the (common) variance of the noise E;; and the covariance matrix
of the latent positions Z. In contrasts, the covariance matrix in Theorem 3.2
depends on the third and fourth moment of the noise E;; as well as ||z — Z;|| and
2= Zk||*. We note that, in the case when the Ej; are symmetric, v = E[E}] =0
and the covariance matrix in Eq. (2) simplifies to

5(2) = Bz (0712~ ZelP + 56— 0%) (Ze — 1) (Ze — 1) ].

In general, as the covariance matrix in Theorem 3.2 depends on ||z — Zj||, any
point z that is considered an “outlier” will be associated with a covariance
matrix Y(z) that is substantially larger (in the positive semidefinite ordering),
then points z that are “close” to the center u,. The rows of the embedding
X associated with the outliers will thus be much more noisy than the non-
outliers points. This phenomenon is even more pronounced in the noisy distance
completion setting of Theorem 3.3; indeed, the covariance matrix in Theorem 3.3
now depends on ||z — Z||*.

Theorem 3.1 through Theorem 3.3 indicate that for all three noise models,
the marginal distribution of the i-th row of the CMDS embedding X is, up
to some orthogonal transformation W (") normally distributed around the true
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but unknown latent position Z;. The proofs of these theorems also imply, by the
Cramer-Wold device, that for any finite collection of indices S = {iy,ia,...,ix},
the random vectors

(VXMW ™), — (Z; — Z)]}ies

are jointly independent. For example, in the setting of Theorem 3.1,

lim P{() Val(X"W™), — (2, - 2)] < ai} = [ (0, )

n—oo
€S €S

These results suggest that we can perform statistical inference using the rows
of X, as if they were independent multivariate normal random vectors centered
around the true but unknown latent positions Z;. Note that as long as the
inference procedure is invariant with respect to orthogonal transformation, the
fact that W (™ is unknown is immaterial; some examples include K-means and
hierarchical clustering using Euclidean distances, classification using k-NN or
linear discriminant analysis or support vector machines with radial basis kernels.

Remark 3. Our presentation emphasizes the central limit theorem mainly be-
cause it is a succinct limit result. Nevertheless the proof techniques used to
establish Theorem 3.1 through Theorem 3.3 also yield uniform or global error
bounds for ||(X ™MW ™), — (Z; — Z)||. More specifically, for a fixed index i, the
central limit theorems (as presented) are consequences of the Lindeberg-Feller
central limit theorem applied to a sum of independent mean 0 random vari-
ables (see Lemam A.3 and Eq. (15) in the appendix). However, if instead of
the Lindeberg-Feller central limit theorem we apply a concentration inequality
a la Hoeffding/Bernstein inequality then, in the setting of Theorem 3.1 and
Theorem 3.2, for any index i, |[(X(MW ™), — (Z; — Z)|| < Cn~'/2 with high
probability. A union bound over the n rows of X (™ then implies

5 = logn
sup [[(XW™), — (2, - 2)| < 4/ 222, (4)
i€[n] n
_ 5 (n n = logn
nt Y NEX W) (2 - 2] < 0y = (5)

Eq. (4) furthermore implies that the pairwise distances between the rows of
(X)), is a good approximation to D element-wise, i.e., letting D(X) be the
n X n matrix whose ij-th element is [|(X); — (X™);||, we have

1D(X) = Dl = mae| (£ = (X)]| = 12 - 2

= [IEOWE); — (XOWD) |~ 12 - 2) ~ (2 - Z)|

< 2max (XMWY, — (Z, - Z)|| < O\/@.
‘ n
(6)
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We note that when the Z; belongs to a compact subset of R, Eq. (6) also
implies a uniform error bound for D? — D? of the same order (recall here that
D? denote the matrix whose entries are the elementwise squares of D). This
result is a considerable refinement of the Frobenius norm error bound from
Zhang et al. (2016) (which we reproduced earlier in Eq. (1)). Analogous results
can also be derived for the setting in Theorem 3.3.

4. Empirical results
4.1. Three point-mass simulated data

As a simple illustration of our central limit theorem, we embed noisy Euclidean
distances obtained from n points into R2. We consider three points z1, z2, 3 €
R? for which the inter-point distances are 3,4 and 5 (these three points form
a right triangle) and generate n; = m,n points equal to zx, k = 1,2,3, where
7 =[0.2,0.3,0.5]T. We first consider the noise model A? = D? + E where the
noise entries E;; are i.i.d. Uniform(—4,+4) for ¢ < j with E;; = E;;. For this
setting, Theorem 3.1 indicates that the CMDS embedding of the dissimilarity
matrix A into R? result in a mixture of three multivariate Gaussians with differ-
ent means but the same covariance matrix .. Figure 1 compares the embedding
of one realization of A with n = 50 against the embedding of one realization of
A with n = 200. Theoretically, for sufficiently large n, the rows of the embed-
ding configuration X is centered around the three point masses located at the
centroids

Hred = (_23 _1); Hblue = (27 _1); Hgreen = (_27 2)' (7)

Note that these centroids are only unique up to translation and/or orthogonal
transformations. The empirical covariance matrices for n = 50 and n = 200

° o
o
o o ?
s &° 314
o
E

: s
.k gé? < # |

(a) n=50 (b) n=200

Fic 1. Simulation results for the noise model A2 = D? 4+ E where A is the dissmilarity matriz
on n = 50 and n = 200 points as described in Section 4.1. For this noise model, n = 200
is already large enough for the CMDS embedding X to exhibits the pattern of a mixture of
multivariate Gaussians as specified in Theorem 3.1
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points and the theoretical covariance matrix are given below; the empirical co-
variance matrices are estimated using 1000 Monte Carlo replicates, i.e., for each
n and each Monte Carlo replicate we generate a noisy dissimilarity matrix A,
compute the embedding X and the sample covariance matrices for each centroid,
and then average these estimates over the 1000 replicates to get the empirical
covariance matrices presented below.

. [045 0.42 . [0.55 0.51
Zn = {0.42 0.99] for n =50; = [0.51 1.17] for n = 200;
0.54 0.48
>= {0.48 1.23] ' ®)

We next consider the noise model A = | D+ E| where the noise entries E are once
again of the form EijZ'flJ]l‘Uniform(fél7 +4) for ¢ < j and E;; = Ej;. Theorem 3.2
indicates that the CMDS embedding of A into R? still results in a mixture of
three multivariate Gaussians but the Gaussian components now have different
means (given in Eq. (7)) and possibly different covariance matrices. Figure 2
compares the embedding of one realization of A with n = 100 against the
embedding of one realization of A with n = 500. Table 1 then presents the
empirical covariance matrices for the three mixture components as n changes;
these empirical covariance matrices converge to the true theoretical covariance
matrices given in Theorem 3.2.

(a) n=100 (b) n=500

F1a 2. Simulation results for the noise model A = |D + E| where A is the dissmilarity matriz
on n = 100 and n = 500 points as described in Section 4.1. The blue ellipses are the 95%
level curves of the empirical covariance matriz, and the blue dots are the empirical centers
for three classes. The black dots are the true positions of x1, x2 and x3, and the black ellipses
are the 95% level curve for the theoretical covariance matrices as given in Theorem 3.2. For
this noise model n = 500 is large enough for the CMDS embedding X to exhibits the pattern
of a mizture of three multivariate Gaussians as specified in Theorem 3.2

Remark 4. We note that while the noise E is identical for the two model
A? = D? + F and A = |D + E| in the previous examples, its effects on the
embedding configurations are quite different. In particular, for the model A% =
D? 4+ E, the Gaussian mixture components all have the same covariance matrix;
these components have different covariance matrices in the model A = |D + E|.
Furthermore, as evidenced by the magnitude of the entries of the covariance



TABLE 1. Empirical estimates of the covariance matrices 2(1), 5@ and @ and the corresponding standard errors (in parenthesis) for the noise
model A = |D + E|. The estimates, for each value of n, are obtained from 500 Monte Carlo replicates. As n increases the empirical averages will
converge to the true theoretical covariance matrices given in the last column. The empirical estimates £ and the theoretical covariance matrices
differ between the three blocks/latent positions. This is in contrasts to the model A? = D? + E where the covariance matriz is independent of the

latent positions (see Eq. (8)).

n = 500 n = 1000 n = 2000 Theoretical

S0 17.71(2.45)  10.14(2.82) 15.44(1.55)  6.26(1.57) 14.29(1.01)  4.35(1) 13.15  2.37
10.14(2.82) 36.03(4.95) 6.26(1.57)  29.35(2.94) 4.35(1) 26.3(1.79) 2.37  23.04

) 41.41(4.64) 34.81(4.86) 37.41(3.11)  28.29(2.81) 35.87(2.08)  25.27(1.74) 34.15 22.37
34.81(4.86) 54.08(6.41) 28.29(2.81)  42.65(3.35) 25.27(1.74)  37.13(2) 22.37 31.93

$(3) 30.96(2.57)  40.39(3.78) 30.05(1.72)  39.23(2.63) 29.59(1.21)  38.45(2.03) 29.16  37.93
40.39(3.78)  105.22(7.93) 39.23(2.63) 103.85(5.74) 38.5(2.03) 102.61(4.31) 37.93 102.06
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matrices, the variability of the embedding configuration X is generally larger in
the model A = |D + E| when compared to the model A% = D? + E.

We recall that the statement of Theorem 3.2 assumes that the variance of the
noise terms E;; are the same. A practically relevant and conceptually illustrative
example comes from relaxing this assumption; now the consistency result from
Theorem 3.2 no longer holds. To illustrate this point we modify our noise model

so that Eijl'kd'Uniform(—Dij,Dij) for ¢ < 7 and Eij = Eji, i.e., the noise
now depend on the entries of D. Figure 3 shows, for this non-constant variance
setting, the embedding of one realization of A for different values of n. These
embedding of A into R? still appears as a mixture of class-conditional Gaussians;
however, we have introduced bias into the embedding configuration in that the
empirical centroids differ quite a bit from the theoretical centroids even for
sufficiently large values of n.

- ‘ - .Q O
¥ <
T T T T T T T T T T T T T T
6 4 2 0 2 4 6 6 4 2 0 2 4 6
X X
(a) n=>50 (b) n=100
o o @ o A @
<4 + 4
T T T T T T T T T T T T T T
6 4 2 0 2 4 6 6 4 2 0 2 4 6
X X
(¢) n=500 (d) n=1000

Fic 3. Simulation of CMDS with heteroscedastic noise E. The black dots are the true positions
for the three points. The blue dots are the empirical means and the blue ellipses are the 95%
level curve of the empirical covariance matriz. NB: there is asymptotic bias.

4.2. Shape clustering

As a second illustration of the effect of noise on CMDS we examine a more
involved clustering experiment in the (non-Euclidean) shape space of closed



2376 G. Li et al.

curves. We consider here boundary curves obtained from silhouettes of the Kimia
shape database Sharvit et al. (1998); we restrict attention to three predefined
classes of objects (bottle, bone, and wrench) and take from each class three
different examples of shapes all given by planar closed polygonal curves repre-
senting the objects’ outline. Figure 4 shows one instance for each of the bottle,
bone, and wrench class. A database of noisy curves is then created as follows:
for each of the nine template shapes, we generate 100 noisy realizations in which
vertices of the curve are moved along the curve’s normal vectors with random
distances drawn from independent Gaussian distributions at each vertex. This
results in a total of 900 noisy versions of the initial curves. See Figure 5 for some
examples of these noisy curves.

(a) Bottle (b) Bone (c) Wrench

Fic 4. Ezamples from the Kimia Dataset.

038 Ly 08l
0.7 By $ o7t
06 ,F 08
ry 05
04
03
02
01

0 0102 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 0 01 02 03 04 05 06 07 08 09 1

(a) Bottle (b) Bone (c) Wrench

F1G 5. Noisy versions of examples from the Kimia Dataset.

We then compute the pairwise distance matrix between all the curves (in-
cluding the noiseless templates) based on a shape distance which was introduced
in Glaunes et al. (2008) and later extended in the work of Kaltenmark et al.
(2017). This type of metric is based on the representation of shapes in a particu-
lar distribution space called currents; see Kaltenmark et al. (2017) for details. In
our context, this metric offers several advantages: (i) the distance is completely
geometrical in the sense that it is independent of the sampling of the curves and
does not rely on predefined pointwise correspondences between vertices; (ii) it
has an intrinsic smoothing effect that provides robustness to noise to a certain
degree; (iii) it can be computed in closed form with minimal computational time
which is critical given the large number of pairwise distances to evaluate. We can
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thus view the resulting distance matrix as a perturbation of the ideal distances
between the 9 template curves, i.e., we assume that we are given a dissimilarity
matrix A arising from the noise model A = |D + E| where D is some true but
unknown distance matrix and the noise F arises due to the noisy realizations of
the templates and the smoothing effect inherent in the metric Kaltenmark et al.
(2017). Note that we leave aside the issue of checking the technical assumptions
on the matrix £ which may be quite involved for this noise model and distance.

We proceed to perform CMDS on this distance matrix. A scree plot investi-
gation shows that an appropriate embedding dimension here is d = 3 (the top
three eigenvalues are 2.20, 0.68, 0.06 with the fourth <« 0.01). The resulting
embedding configuration is shown in Figure 6. This configuration exhibits nine
fairly well-separated clusters which are roughly centered around the position
of each of the noiseless template curves. Those, in turn, form 3 ‘super-clusters’
consistent with the classes. The ellipsoidal shape of each cluster furthermore
suggests that the configuration approximately follows a mixture of multivariate
Gaussians. For a somewhat more quantitative assessment of this approximation
we perform, for each clusters, a goodness-of-fit test for multivariate normality.
We used three different test procedures; one is based on multivariate skewness
and kurtosis (Mardia, 1970) and the other two are based on the weighted Lo
distance between the empirical and theoretical characteristic functions (Henze
and Zirkler, 1990; Szekely and Rizzo, 2013). We fail to reject, for all three test
procedures and all nine clusters, the null hypothesis that the points in the clus-
ter are multivariate normal. For all three test procedures, the reported p-values
for the nine clusters ranges from 0.07 to 0.95; these reported p-values had not
been corrected for multiple comparisons. While these preliminary shape clus-
tering results are obtained with a specific and simple distance on the space of
curves, future work will investigate whether similar properties hold with differ-
ent, more elaborate metrics and/or geometric noise models. The central limit
theorems derived here could then constitute a useful theoretical tool to evaluate
the discriminating power of shape clustering methods based on CMDS.
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FIG 6. Pairs plot of CMDS into R3 for the noisy curves. Colors correspond to the different
classes (blue for bottle, red for bone, and orange for wrench). The position of the nine template
curves in the configuration are highlighted with large black dots.
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F1G 7. Histogram plot of the reconstruction error for the big cities distances matriz with ¢ =
20% observed entries (left plot) and ¢ = 50% observed entries (right plot). The accompanying
Table 2 indicates that the reconstruction error is uniformly small for most of the missing
entries.

4.3. Distance matriz completion

Our last example on the effect of noise on CMDS concerns the problem of
recovering the missing entries in a partially observed distance matrix D. We use
a dataset on the locations (longitude and latitude coordinates) of the 4000 most
populous cities in the world; this dataset is part of the mdsr package (Baumer
et al., 2019) in R. We first construct a Euclidean distance matrix D between the
cities using the latitude and longitude coordinates. We then keep a subsample of
qx100% of the upper triangular entries of D; the remaining (1—¢) x 100% upper
triangular entries are set to NA to denote missing entries. Note that the lower
triangular entries of D are kept, or denote missing, in exact correspondence
with the upper triangular entries of D. Let A, denote the matrix obtained from
D after this subsampling process. We then replace the NA’s with the average
of the non-missing entries of A. We then do CMDS of A, into R?, yielding a
configuration X as a 4000 x 2 matrix. We estimate the original distance matrix
D by computing the pairwise Euclidean distances between the rows of ¢~/ 2X.
The resulting estimates and their errors for two values of ¢ = 0.2 and ¢ = 0.5
are given in Figure 7 and Table 2, i.e., the plots in Figure 7 are histogram
plots for {|Di; — Dij|: (i,5) € Sy} where S, denote the indices of the missing
entries in A, while Table 2 displays the quantiles of {|f)ij — Dyl (i,7) € Sq}.
Figure 7 and Table 2 indicate that the entry-wise absolute error \f)” — Djj|
are generally small but with a somewhat heavy-tailed and right-skewness; these
phenomena corroborate with the theory in Theorem 3.3. Indeed, the covariance
matrix in Theorem 3.3 depends on ||z — Zg||* and thus outlier points and/or
outlier distances will, in general, have large residuals.



TABLE 2. Reconstruction error for the big cities distances matriz with ¢ = 20% (first row) and ¢ = 50% (second row) observed entries. The columns
are the quantiles level of the reconstruction error versus the true distances, e.g., if we observe 50% of the true D;; then the reconstruction error for
the remaining entries have median absolute error of 3.43. The median value for the unobserved Euclidean distances is 83.2.

a=001 _ a=025 _a=05 a=075_ _ a=09 a=095 a=0975 _ a=0.99 a=1

|Dij — Dijl, ¢ =0.2 0.14 3.83 8.54 16.63 29.18 39.97 52.23 68.58 1113.41

|Dij — Dyjl, a=0.5 0.61 1.57 3.43 6.253 9.961 13.118 15.843 18.313 106.352
Dy 3.8 43.6 83.2 127.1 184.4 207.5 219.8 227.9 340.7

BuL)Dos (DUOISUIUWLPLYNUL [DIISSD]D LOf SULILOIY] JLULY] JDLJUD,)
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5. Discussion

The authors of Athreya et al. (2016) and Levin et al. (2017) prove that adja-
cency spectral embedding of random dot product graphs result in central limit
theorems for the estimated latent positions. In this work we extend these results
to the previously unexplored area of perturbation analysis for CMDS, thereby
addressing a gap in the literature as acknowledged in e.g., Fan et al. (2018) and
Peterfreund and Gavish (2018). Notably, the three noise models we proposed in
Section 2 each give rise to a central limit theorem; that is, for Euclidean distance
matrix, the rows of the configuration matrix given by CMDS under noise will
center around the corresponding rows of the true configuration matrix. Further-
more our simulations on the synthetic data together with experiments on the
shape clustering data and the distance matrix recovery all demonstrated the
validity of our results. We have avoided any discussion of the model selection
problem of choosing a suitable embedding dimension d. Instead, we assume d is
known — except in Section 4.2. There are many methods for choosing (spectral)
embedding dimensions, see Zhu and Ghodsi (2006); Jackson (1991); Chatterjee
(2015).

Another natural, and important, practical question is how to estimate the
parameter o in the noise model of interests. We note, however, that consistent
estimation of ¢ is not necessary for our embedding method and the correspond-
ing theoretical results. Indeed, the classical multidimensional scaling algorithm
does not require estimation of ¢, but rather the dimension d of the original data
points (see the description of classical multidimensional scaling in Section 1).
Under all of our noise model, ||E|| < oy/n and provided that we choose d such
that \g > n'/2%¢ for any € > 0, then our theoretical limit results apply. For con-
creteness, we can choose € = 1/3 and thus as long as we choose the embedding
dimension d satisfying \;(B) > n??, then d — d almost surely and our central
limit theorem applies.

Throughout this paper, we assume that d is fixed as n — oo. Therefore,
given a central limit theorem for the embedding into d dimension, one can
derive a central limit theorem for the embedding into d’ < d dimension in a
straightforward manner. More specifically, given a dissimilarity matrix A and
positive integers d’ < d, the classical multidimensional scaling of A into RY is
equivalent to the classical multidimensional scaling of A into R? and keeping
the first d’ < d columns (see the description of classical multidimensional scaling

in Section 1). Thus, our limit results can be rephrased to say that, letting )A(T(Ld,)
denote the classical multidimensional scaling of A into R? for d’ < d, that there

exists a sequence of d’ x d’ orthogonal matrix W) and a sequence of d x d’
matrices with orthonormal columns 7,, such that

VI((XOWD); = T2, — Z0)s)

converges to a mixture of multivariate normal. For a given n, T, corresponds to
the principal component projection of the n x d matrix [Z; | Zo | ..., Z,]" into



Central limit theorems for classical multidimensional scaling 2381

: : .
T < 4
@ @
T T T T T T T T T T T T T T
-6 -4 -2 0 2 4 6 6 -4 2 0 2 4 6
X X
(a) n=50 (b) n=100
o - ® 5 4 ®
T < A
@ @
T T T T T T T T T T T T T T
-6 -4 2 0 2 4 6 6 -4 2 0 2 4 6
X X
(c) n=>500 (d) n=1000

Fic 8. Simulation of MDS using raw stress criterion for n = 50, 100, 500 and 1000 points.
The black dots are the true positions of x1, x2 and x3, the blue dots are the empirical mean
of the simulation and the blue ellipses are the 95% level curve of the empirical covariance
matriz.

RY . We emphasize that T, is not necessarily unique (indeed, the eigenvalues of
the covariance matrix for Z,, are not necessarily distinct).

We further note that the dependency on d in our limit results is implicit
in the covariance matrices. Naively speaking, we can say that the estimation
accuracy is inversely proportional to d. This is most visible in the statement
of Eq. (1) (which is also a corollary of our results), since as d increases r also
increases, note that r < d + 2. A more precise description is that the accuracy
of our limit results depends on the covariance matrix 3, which is a d X d matrix.
Since the squared norm of a mean 0 multivariate Gaussian is the trace of its
covariance matrix, we see that as d increases, the trace of ¥ generally increases
but the rate at which it increases need not depends on d. Indeed, the trace of
>} depends purely on the distribution F' of the underlying data points; in the
case where the data points are sampled from a multivariate normal with mean
0 and identity matrix in R, then as d increases, the trace of ¥ also increases
linearly.

Finally we note that CMDS is just one of a wide variety of multidimensional
scaling techniques. Minimizing the raw stress criterion is another commonly
used MDS technique (de Leeuw and Heiser, 1982), i.e., given a n X n observed
dissimilarity matrix A and an embedding dimension d, one seeks to minimize
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the objective function

or=0.(X) = Z(Aij — || X — Xj||)2-

i<j

The minimization of o,(X) is with respect to all configurations X € R"*¢
and usually proceeds via an iterative algorithm which updates the configuration
matrix X until a stopping criterion is met. Keeping the simulation settings as in
Section 4.1, the resulting configuration is shown in Figure 8. This suggests that
the CLT may hold for raw stress just as well as for CMDS. However, this claim
is at best a conjecture at present as perturbation analysis of stress minimization
algorithms is significantly more involved.

References

A. Y. Alfakih, A. Khandani, and H. Wolkowicz. Solving Euclidean distance
matrix completion problems via semidefinite programming. Computational
Optimization and Applications, 12(1):13-30, Jan 1999. ISSN 1573-2894. URL
https://doi.org/10.1023/A:1008655427845.

A. Athreya, C. E. Priebe, M. Tang, V. Lyzinski, D. J. Marchette, and D. L.
Sussman. A limit theorem for scaled eigenvectors of random dot product
graphs. Sankhya A, 78(1):1-18, Feb 2016. ISSN 0976-8378. URL https://doi.
org/10.1007/s13171-015-0071-x. MR3494576

M. Bakonyi and C. Johnson. The Euclidian distance matrix completion prob-
lem. STAM Journal on Matriz Analysis and Applications, 16(2):646—-654, 1995.
URL https://doi.org/10.1137/S0895479893249757.

Ben Baumer, Nicholas Horton, and Daniel Kaplan. mdsr: Complement to
‘Modern Data Science with R’, 2019. URL https://CRAN.R-project.org/
package=mdsr. R package version 0.1.7.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality
reduction and data representation. Neural Comput., 15(6):1373-1396, June
2003. ISSN 0899-7667. URL http://dx.doi.org/10.1162/089976603321780317.

I. Borg and P. J. F. Groenen. Modern Multidimensional Scaling: Theory and
Applications. Springer, New York, 2005. MR2158691

J. D. Carroll and J.-J. Chang. Analysis of individual differences in multidimen-
sional scaling via an n-way generalization of “Eckart-Young” decomposition.
Psychometrika, 35(3):283-319, Sep. 1970. ISSN 1860-0980. URL https://doi.
org/10.1007/BF02310791.

S. Chatterjee. Matrix estimation by universal singular value thresholding. The
Annals of Statistics, 43(1):177-214, 2015. MR3285604

L. Chen and A. Buja. Local multidimensional scaling for nonlinear dimension re-
duction, graph drawing, and proximity analysis. Journal of the American Sta-
tistical Association, 104(485):209-219, 2009. URL https://doi.org/10.1198/
jasa.2009.0111. MR2504374

Ronald R. Coifman and Stéphane Lafon. Diffusion maps. Applied and Com-
putational Harmonic Analysis, 21(1):5-30, 2006. ISSN 1063-5203. URL


https://doi.org/10.1023/A:1008655427845
https://doi.org/10.1007/s13171-015-0071-x
https://doi.org/10.1007/s13171-015-0071-x
http://www.ams.org/mathscinet-getitem?mr=3494576
https://doi.org/10.1137/S0895479893249757
https://CRAN.R-project.org/package=mdsr
https://CRAN.R-project.org/package=mdsr
http://dx.doi.org/10.1162/089976603321780317
http://www.ams.org/mathscinet-getitem?mr=2158691
https://doi.org/10.1007/BF02310791
https://doi.org/10.1007/BF02310791
http://www.ams.org/mathscinet-getitem?mr=3285604
https://doi.org/10.1198/jasa.2009.0111
https://doi.org/10.1198/jasa.2009.0111
http://www.ams.org/mathscinet-getitem?mr=2504374

Central limit theorems for classical multidimensional scaling 2383

http://www.sciencedirect.com/science/article/pii/S1063520306000546. Spe-
cial Issue: Diffusion Maps and Wavelets. MR2238665

M. A. A. Cox and T. F. Cox. Multidimensional Scaling, pages 315—-347. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008. ISBN 978-3-540-33037-0. URL
https://doi.org/10.1007/978-3-540-33037-0_14.

T. F. Cox and M. A. A. Cox. Multidimensional scaling. CRC Press, 2010.

A. Criminisi and J. Shotton. Manifold forests. In A. Criminisi and J. Shotton,
editors, Decision Forests for Computer Vision and Medical Image Analysis,
chapter 7, pages 79-94. Springer, London, 2013.

C. Davis and M. Kahan, W. The rotation of eigenvectors by a perturbation III.
SIAM Journal of Numerical Analysis, 7:1-46, 1970. MR0264450

J. de Leeuw and W. Heiser. Theory of multidimensional scaling. In P. R. Kr-
ishnaiah and L. Kanal, editors, Handbook of Statistics II, pages 285-316.
North Holland Publishing Company, Amsterdam, The Netherlands, 1982.
MRO716709

Jianging Fan, Qiang Sun, Wen-Xin Zhou, and Ziwei Zhu. Principal Compo-
nent Analysis for Big Data, pages 1-13. American Cancer Society, 2018.
ISBN 9781118445112. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/
9781118445112.stat08122.

J. Glaunes, A. Qiu, M. I. Miller, and L. Younes. Large deformation dif-
feomorphic metric curve mapping. International Journal of Computer Vi-
sion, 80(3):317-336, 2008. ISSN 0920-5691. URL http://dx.doi.org/10.1007/
s11263-008-0141-9.

J. Ham, D. D. Lee, S. Mika, and B. Schélkopf. A kernel view of the dimensional-
ity reduction of manifolds. In Proceedings of the 21st International Conference
on Machine Learning, 2004.

N. Henze and B. Zirkler. A class of invariant consistent tests for multivariate
normality. Communications in Statistics: Theory and Methods, 19:3595-3617,
1990. MR 1089501

J. E. Jackson. A User’s Guide to Principal Components. Wiley & Sons, New
York, 1991.

A. Javanmard and A. Montanari. Localization from incomplete noisy distance
measurements. Foundations of Computational Mathematics, 13(3):297-345,
Jun 2013. ISSN 1615-3383. URL https://doi.org/10.1007/s10208-012-9129-5.

Natalia Jaworska and Angelina Chupetlovska-Anastasova. A review of multi-
dimensional scaling (mds) and its utility in various psychological domains.
Tutorials in quantitative methods for psychology, 5(1):1-10, 2009.

I. Kaltenmark, B. Charlier, and N. Charon. A general framework for curve and
surface comparison and registration with oriented varifolds. Computer Vision
and Pattern Recognition (CVPR), 2017.

K. Levin, A. Athreya, M. Tang, V. Lyzinski, and C. E. Priebe. A central limit
theorem for an omnibus embedding of multiple random dot product graphs. In
2017 IEEFE International Conference on Data Mining Workshops (ICDMW),
pages 964-967, 2017.

J. A. T. Machado and M. E. Mata. Analysis of world economic variables using
multidimensional scaling. PLOS ONE, 10(3):1-17, 03 2015. URL https://doi.


http://www.sciencedirect.com/science/article/pii/S1063520306000546
http://www.ams.org/mathscinet-getitem?mr=2238665
https://doi.org/10.1007/978-3-540-33037-0_14
http://www.ams.org/mathscinet-getitem?mr=0264450
http://www.ams.org/mathscinet-getitem?mr=0716709
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118445112.stat08122
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118445112.stat08122
http://dx.doi.org/10.1007/s11263-008-0141-9
http://dx.doi.org/10.1007/s11263-008-0141-9
http://www.ams.org/mathscinet-getitem?mr=1089501
https://doi.org/10.1007/s10208-012-9129-5
https://doi.org/10.1371/journal.pone.0121277

2384 G. Li et al.

org/10.1371/journal.pone.0121277.

K. V. Mardia. Measures of multivariate skewness and kurtosis with applications.
Biometrika, 57:519-530, 1970. MR0397994

S. Oh, A. Montanari, and A. Karbasi. Sensor network localization from local
connectivity: Performance analysis for the mds-map algorithm. In 2010 IEEE
Information Theory Workshop on Information Theory (ITW 2010, Cairo),
pages 1-5, Jan 2010. MR2973771

E. Pekalska and R. P. W. Duin. The Dissimilarity Representation for Pattern
Recognition: Foundations and Applications. World Scientific Publishing Com-
pany Inc, Singapore, 2005.

E. Peterfreund and M. Gavish. Multidimensional Scaling of Noisy High Dimen-
sional Data, January 2018. arXiv:1801.10229.

S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear
embedding. Science, 290:2323-2326, 2000.

R. Sibson. Studies in the robustness of multidimensional scaling: Perturbation
analysis of classical scaling. Journal of the Royal Statistical Society, 41:217—
229, 1979. MR0547248

B. Schélkopf, A. Smola, and K.-R. Miiller. Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10(5):1299-1319, 1998. URL
https://doi.org/10.1162/089976698300017467.

D. Sharvit, J. Chan, H. Tek, and B. B. Kimia. Symmetry-based indexing of im-
age databases. Journal of Visual Communication and Image Representations,
9:366-380, 1998.

A. Singer. A remark on global positioning from local distances. Proceedings of
the National Academy of Sciences, 105(28):9507-9511, 2008. ISSN 0027-8424.
URL http://www.pnas.org/content/105/28,/9507. MR2430205

I. Spence and D. W. Domoney. Single subject incomplete designs for non-
metric multidimensional scaling. Psychometrika, 39(4):469-490, Dec 1974.
ISSN 1860-0980. . URL https://doi.org/10.1007/BF02291669.

G. J. Szekely and M. L. Rizzo. Energy statistics: A class of statistics based on
distances. Journal of Statistical Planning and Inference, 143:1249-1272, 2013.
MR3055745

Mohammad J. Taghizadeh, Reza Parhizkar, Philip N. Garner, Hervé Bourlard,
and Afsaneh Asaei. Ad hoc microphone array calibration: FEuclidean dis-
tance matrix completion algorithm and theoretical guarantees. Signal Pro-
cessing, 107:123-140, 2015. ISSN 0165-1684. URL http://www.sciencedirect.
com/science/article/pii/S0165168414003508. Special Issue on ad hoc micro-
phone arrays and wireless acoustic sensor networks Special Issue on Fractional
Signal Processing and Applications.

A. Tasissa and R. Lai. Exact reconstruction of Euclidean distance geometry
problem using low-rank matrix completion. CoRR, abs/1804.04310, 2018.
MR3951386

J. B. Tenenbaum, V. D. Silva, and J. C. Langford. A global geometric
framework for nonlinear dimensionality reduction. Science, 290(5500):2319—
2323, 2000. ISSN 0036-8075. URL http://science.sciencemag.org/content /
290/5500/2319.


https://doi.org/10.1371/journal.pone.0121277
http://www.ams.org/mathscinet-getitem?mr=0397994
http://www.ams.org/mathscinet-getitem?mr=2973771
https://arxiv.org/abs/arXiv:1801.10229
http://www.ams.org/mathscinet-getitem?mr=0547248
https://doi.org/10.1162/089976698300017467
http://www.pnas.org/content/105/28/9507
http://www.ams.org/mathscinet-getitem?mr=2430205
https://doi.org/10.1007/BF02291669
http://www.ams.org/mathscinet-getitem?mr=3055745
http://www.sciencedirect.com/science/article/pii/S0165168414003508
http://www.sciencedirect.com/science/article/pii/S0165168414003508
http://www.ams.org/mathscinet-getitem?mr=3951386
http://science.sciencemag.org/content/290/5500/2319
http://science.sciencemag.org/content/290/5500/2319

Central limit theorems for classical multidimensional scaling 2385

W. S. Torgerson. Multidimensional scaling: I. theory and method. Psychome-
trika, 17:401-419, 1952. MR0054219

J. A. Tropp. User-friendly tail bounds for sums of random matrices. Foundations
of Computational Mathematics, 12(4):389-434, Aug 2012. ISSN 1615-3383.
URL https://doi.org/10.1007/s10208-011-9099-z. MR2946459

R. Vershynin. High-Dimensional Probability: An Introduction with Applications
in Data Science. Cambridge Series in Statistical and Probabilistic Mathemat-
ics. Cambridge University Press, 2018. MR3837109

J. T. Vogelstein, Y. Park, T. Ohyama, R. A. Kerr, J. W. Truman, C. E. Priebe,
and M. Zlatic. Discovery of brainwide neural-behavioral maps via multi-
scale unsupervised structure learning. Science, 344(6182):386-392, 2014. ISSN
0036-8075. URL http://science.sciencemag.org/content,/344,/6182/386.

Y. Yu, T. Wang, and R. J. Samworth. A useful variant of the Davis-Kahan
theorem for statisticians. Biometrika, 102:351-323, 2015. MR3371006

L. Zhang, G. Wahba, and M. Yuan. Distance shrinkage and Euclidean embed-
ding via regularized kernel estimation. Journal of the Royal Statistical So-
ciety: Series B (Statistical Methodology), 78(4):849-867, 2016. URL https://
rss.onlinelibrary.wiley.com/doi/abs/10.1111 /rssb.12138. MR3534353

M. Zhu and A. Ghodsi. Automatic dimensionality selection from the scree plot
via the use of profile likelihood. Computational Statistics and Data Analysis,
51(2):918-930, 2006. MR 2297497

Appendix: Proofs of stated results

We now present detailed arguments for the proof of Theorem 3.2. We note that
the machinery involved in proving Theorem 3.1 and Theorem 3.3 are by and
large the same as that used in proving Theorem 3.2 and will thus be omitted.
Given a matrix A, we denote by ||A|| and ||A||F the spectral and Frobenius
norm of A, respectively. We will utilize the following observation repeatedly in
our presentation.

Observation A.1. Let A and B be matrices of appropriate dimensions. Then
|AB|r =BT AT |[r < min{||Al| x [|B]|#, [|B]| x [|A]#}-

We remind our readers of the following notations that are used in the sub-

sequent presentation. Let P = (I — 117 /n). Recall that B = —%PDQP and
B = —3PA?P are the double centering of D? and A?, respectively. If D? is
a (squared) Euclidean distance matrix whose elements are D, = ||Z; — Z;]?,

then B=PZZ"P and PZ = UBngWn for some orthogonal matrix Wn Now
let W* be the orthogonal matrix satisfying W* = argminy, ||U4Up — W||. Our
main goal is to investigate the quantity X-U 35}3/ *W*. The following lemma
provides a decomposition for X-U BS}B/ 2IW* into a sum of several matrices.
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Lemma A.2. Let W* be the orthogonal matriz satisfying W* =
argminy, |[U5Up — W/||, then

X — UpSY*W* = (B - B)UpSz"*W* (9)

—(B=B)Up(S5"*w* —w*s/?) (10)

— UpUg (B - ByUsW*S, ' (11)

+(I = UsUS)(B — B)(Ug — UsW™*)S,'/* (12)

(13)

(14)

+Up(UZUs —W*)SY?

+Us(W*SY? — S*w).

13
14

Proof. We have

X —UpSH*W* =UgS* —UpW*SY? + Up(W*SY* — 5/*W)

_ 1/2 T 1/2 T 1/2 * ol/2
=UpS* —UpULUSSY? + UpURUESY* — UpW*SY
+Us(W*SY? — Si{*w™)
= (I - UpUL)BURS "2 + Up(US U, — W*)S /2
+Us(W*SY? — Sy*w™)
= (I - UpUL)(B = B)US."? + Up(UF U5 — W*)SY?
+Up(W*SY? = S*w).

Note that we used the facts UgsUp B = B and UBS};»/Q = BUBS];1/2 in the above

equalities. The last two terms of the above display is Eq. (13) and Eq. (14) in the

statement of the Lemma. We now consider the term (I-UgUj)(B—B)Up 851/2.
We have

(I - UpUR)(B - B)UsS,'?

= (I - UpUL)(B = B)(UsW* + Up — UgW*)S;"/?
= (B - BUsW*S.'? —UpUJ (B - ByUsW*S; '

+(I = UpUR)(B - B)(Up — UsW*)S '/

= (B - B)UpS5'*W* — (B - B)Us(S5'*W* —w*s.'?)
— UpUg (B — BYUsW*S,'/*

+(I - UpUL)(B — B)(Up — UpW*)S ;"2

The four terms in the above display correspond to the terms in Eq. (9) through
Eq. (12). O
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Note that from Lemma A.2, we have XW*TWn — UBS}B/QWH =
(B — B)UBS];UQW“ + remainder terms given in Eq. (10) through Eq. (14).
The essential term is (B — B)UBS;UZW,Z and we showed, in Lemma A.3 be-
low, that the rows of this matrix converge to multivariate normals. As for the
remainder terms, Lemma A.4 implies that the rows of the matrices in Eq. (10)
through Eq. (14), when scaled by +/n, converge to 0 in probability. Combin-
ing these results yield the proof of Theorem 3.2. Indeed, the term X w*Tw,
can be written as XW,, for some orthogonal matrix W,, = W*TWn that ap-
peared in the statements of Theorem 3.1 through Theorem 3.3 while the rows
of UBS}B/QW,L is, as we observed earlier, simply (Z; — Z).

Lemma A.3. Let Zy,75,...,Z, be the rows of Z and that Z1,...,7Z, g
for some sub-Gaussian distribution F'. Then there erists a sequence of d X d
orthogonal matrices Wy, such that for any fized index i, we have

VAW, [(B — B)UpS5"?); 5 N(0,5(2)

where ¥(z;) = E71%(2)27Y, E=E[Z,Z;, '] € R4, 1 = E[Z;] € RY. and

ot

= 1
S(21) =Ez, [(0®[2 — Zul|* + BB} |2 — Zi|l + ZE[E%} 2

)(Zk = 1) (Z — )]

eRdXd

s a covariance matriz depending on x;. Here, for ease of notation, we denote
by (A); or [A]; the i-th row of matriz A.

Proof. Recall that PZ = UgSy/*W,,, i.c., UpSy* = PZW, . We therefore have

VAW, (B = B)UsS," ),

=W, [(B - B)PZW, Sp™");

= /oW, S~ W,.[(B — B)PZ);
- 2

= VAW, Sp "MW, [P(Do B+ %)PZ] |
i .

117 117

= —/nW, Sp'W, :(I* T) (D oF+ ?) (I B T)Zl
— VAW S W (1~ %) (DoE+ E;)(Z -127)|.

. . 117 E? — 52117 _
= /W] S5, (I - —) (D o E + +)(Z - 1ZT)} .
L n i
The last equality in the above display holds since (I — %)%(Z— 1Z7) =0.
Now by the strong law of large numbers, we have
117 E? — 02117

—(DoEJrf)(Z—luTJrluT—lZT) —0
n
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as n — 00. We therefore have, for sufficiently large n, that

VAW, (B - B)UpS;");

= —/aW.] Sp~W, [(D o E+ Ez%m)(z - IZT)L +op(1)
— W S5 W, [ (Zn:[(D ont & ‘;HT)M(Z —17);])] +or ()

j=1

Ignoring the op(1) term (which converges to 0 as n — o0), the above display
simplifies to

VAW T [(B - B)UBS_W]-
E —o%117

= —nWTSBAW 7 g Dz] EZj + 9 )(Zj _IU)D] (15)

Condition on Z; = z;, (15) is then the sum of n — 1 independent mean 0 random
variables (since D;; = 0), each with the same covariance matrix (for j # )

2 2

E—o
——)(Z; — )]

%(z;) = Cov[(Eyllzi — Z; || + 5

Now by the law of total variance, since E[E;; | Z;] = 0 and E[Efj —0?| Z; = 0],
we have

(%) =E[1E[E-2-||zz- — Zil| + Eijllzi — Z,|(B2 - o?)

(B —o -
BBy -
£ o
=Egz, {(02”% — Zj|* +llzi — Z;| + 1 DIz - .
Finally, by the strong law of large numbers, we have

W' SpW, 1

(PZ)TPZ — Z:= Cov(Z;) € R4
n

almost surely. Hence (anT Sglwn)ﬁE_l almost surely. Slutsky’s theorem then
yields

VAW, (B = BYUpSE"?i — N(0,E7'S(x,)= )
in distribution as n — oo. O

We now look at the matrices in Eq. (10) through Eq. (14). The following
lemma show that any row of these matrices, when scaled by /n, will converge
to 0 in probability.
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Lemma A.4. We have, simultaneously

Val(B - BUs(W*S5'? — 552w 0, (16)
ValUsUS (B — B)UsW*S3 %) =5 0, (17)

ValI = UUg)(B = B)(Us — UsW*)S; /"] = 0, (18)
VilUs(URUs = WSl =0, (19)
ValUs(W*SY? — SPw™)); = 0. (20)

The rest of this Appendix is devoted toward proving Lemma A.4, for which
we need the following technical lemmas controlling the spectral norm of || B —B|
and ||[UZ Up—W*|| (recall that W* is the closest orthogonal matrix, in Frobenius

norm, to UgUB.) We start with a bound for the spectral norm of B — B.
Proposition A.5. ||B — B|| = O(y/nlogn) with high probability.
Proof. We have

1 1
5PD2P + 5P(D + E)*P|

1
= ||PDo EP + §PE2P|| (where o is the Hadamard product)

1B - B =~

<D0 B + 122 - B[ (since [P = 1)
= O(v/n) + O(y/nlogn).

Note that here we used E[D o E] = 0 and E[3 PE?P] = 0. Each entries of Do E
is of sub-Gaussian distribution with mean 0 and each entries of E? — E[E?] is of
sub-exponential distribution with mean 0. An application of Theorem 4.4.5 in
Vershynin (2018) and Matrix Bernstein for the sub-exponential case in Tropp
(2012) gives the desired result. O

Lemma A.6. Let Xq,...,X,,Y e for some sub-Gaussian distribution F,
where X; is the ith row of the configuration matriz X of B viewed as a column
vector. Let = = E[X1X{'] be of rank d, then \;(B) = Q(n) almost surely.

Proof. For any matrix H, the nonzero eigenvalues of H " H are the same as those
HHT,s0 X\(XXT) = X\(XTX). In what follows, we remind the reader that X
is a matrix whose rows are the transposes of the column vectors X;, and Y is a

d-dimensional vector that is independent from and has the same distribution as
n

that of the X;. We observe that (X T X —nE[YY T]);; = > (Xg Xy, —E[Y;Y;]) is
k=1

a sum of n independent mean-zero sub-Gaussian random variables. By a general

Hoeffding’s inequality for sub-gaussian random variables (Vershynin, 2018), for

all 4,7 € [d],

P(XTX — nE[YY));;| > ] < 26Xp{ —ct” }

| = = nM )
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where M = max 1(XkiXk; — E[Y;Y;])]|2, . Therefore,

2
”992

_ 2
P|(XTX —nE[YYT));;| > C\/nlogn] < 2n 7 .

A union bound over all 4, j € [d] implies that || X " X —nE[YY "]||2 < C%d?*nlogn
with probability at least 1—2n=26"/M* je | XTX —nE[YYT||r < Cdy/nlogn
with high probability for any C' > % By the Hoffman-Wielandt inequality,
N (XX T)—nX(E[YY T])| < Cdy/nlogn, and by reverse triangle inequality, we
obtain that

MN(XXT) > M(XXT) > [n\g(Z)| — Cdy/nlogn = Q(n)

holds almost surely. O

Proposition A.7. Let W1SWoT be the singular value decomposition of Up Ug,
then with high probability, |ULUz — Wi, || = O(n~tlogn).

Proof. Let 01,09, ...,04 be the singular values of UL U 5 (the diagonal entries of
Y). Then o; = cos(#;) where 6;’s are the principal angles between the subspace
spanned by Up and Ug. The Davis-Kahan sin(©) theorem (Davis and Kahan,
1970) gives

C|B-B| ( logn)
)\d(B) N n
for sufficiently large n. Note that we have used Proposition A.5 and Lemma A.6

to bound ||B — B| and A4(B) in the above expression, respectively. We thus
have

|UU] — UsUZ|| = max|sin(8,)] <

UgUz = WiWs T |[p = ||= —I||p =

d
< Z(l - 0%)

d
= "sin(6:)? < dllUUL — UsUL|I? = O
=1

logn)' 0
n

Recall that a random vector X is sub-exponential if P[|X| > ¢] < 2e~% for
some constant K and for all ¢ > 0. Associated with a sub-exponential random
variable there is a Orlicz norm defined as | X||,, = inf{t > 0: ]Eexp(@) < 2}.
Furthermore, a random variable X is sub-Gaussian if and only if X? is sub-
exponential, and [ X?||y, = [|X||7,. We now have the following lemma which
allows us to juxtapose the ordering in the matrix product W*Sp and SpW*
(and similarly W*S*g % and 5113/ 2VV*.) This juxtaposition is essential in showing
Eq. (16) and Eq. (20) in Lemma A 4.
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Lemma A.8. Let W* = WIWQT. Then with high probability,
IW*Sg —SsW*||lp = OQlogn); and [|W*SY/? -S> W*||p = O(n"% logn).

Proof. Let R = Up — UBU];'—UB. Note R is the residual after projecting Up
orthogonally onto the column space of Upg, and thus ||Uz — UBU;UBHF <
mmi/n |Us — UgW||F where the minimization is over all orthogonal matrices W.

By a variant of the Davis-Kahan sin © theorem (Yu et al., 2015), we have

CVd|B - B||

in ||[UpW —Ug|lr <
mwl/n” B BHF— )\d(B) J

and hence ||R||r < (9(3/10%). Now consider

UpUg)Sp+UgUgSp
W* —UgUg)Ss+ UL BU,
W*—ULUg)
W*—ULUg)

Sy +UL(B—B)Ugs+ULBU

W*Ss = (W*
= (
= (
- S-+UL(B—B)R+UL(B—BURULUA+ SgULUA
= ( 5+ Ug( JR+Ug( JUpUpUg +SpUgUp.

Note here we use the fact UgSy = EUB. Now write
SpURUz = Sp(UgUgs — W*) + SpW*.
We then have
WS, — SpW* = (W~ ULUp)S + UL (B~ B)R+ UR(B ~ BYUsUUj
+Sp(UgUs —W*).
Let ¢ = |[W*Sz — SpW*||r. Then

¢ <||US(B=B)R|r +||U5(B - B)UsUzUgl|r
<NUEUz = W)e(ISsll +11Ssl) + IUL (B = B)R|
+ Uz (B - B)UsULUg| ¢
< [WaWy| = UzUg|lr(O(n) + O(n)) + [[UZ (B — B)R|r
+||UL (B - B)Usl|r
< O(n~")(O(n) + O(n)) + O(logn) + |Ug (B — B)Us||r
= O(logn) + Uz (B — B)Us|

Now consider the term U} (B—B)Up € R, If we denote U; be the ith column
of Up, then for each i, jth entry, we have

R . 1
(U (B —B)Up)i; =U;' (B— B)U; = §V¢T(A2 - D*)V;,



2392 G. Li et al.

where V' = PUpg. Furthermore, we have
V,'(A* = D*)V; =Y Vie(Aw® — Di®) Vi (21)
k,l

We recall that the X’s are sub-Gaussian. Eq. (21) is thus sum of mean zero sub-
exponential random variables and hence, by Bernstein’s inequality (Vershynin,
2018), we have

Pl Z(Akl2 — Di®*)VieViu| > 1]

< 2e { Cmin( t2 ! )}
Xpy — ’ ’
< 2exp M2y Vi Via® T M maxy i (Vi Vir)

where M := maxy ||Akl2 — Dkl2H¢1. Since )", Vip2 < 1 for all i, the entries of
the d x d matrix U (B — B)Up € R**¢ are uniformly bounded by O(logn), and
IUE (B = B)Ug||r = O(logn). (22)

This gives |[W*Sz — SgW*||r = O(logn), with high probability.
Finally, cons1der WS si/? 51/2W*HF The ¢, jth entry of V[/*Sl/2 51/2W*

is

A A (B) = Xi(B)
W (2B — N Y2(B = W*, ”
zJ(J ( ) 1 ( )) /(B)+>\1/2(B)
A (B) = Ni(B)

<W*,i———>=0(n" 2logn

T QVn) ( )
as desired. Note that we had used the first part of this lemma to derive the
bound for the last inequality above. O

We now proceed to prove Lemma A 4.
Proof of Lemma A.4. We now show Eq. (16). We have
Vall(B - BUs(W*S Y% — S5 2w p
< Vall(B — B)Us|| ||W*S;/2 =85 W
<Vall(B = B)| < [|[W=S;"? = 51w

= VnO(y/nlogn)O(n~% logn) = CW,

which converges to 0 as n — oco.

Let us now consider Eq. (17). Recall that PZ = U BS}B/ W for some orthogo-
nal matrix W, and since the Z,’s are sub-Gaussian, || Z;| is bounded by some con-

[ d

stant C' with high probability, i.e., || Z;]| = /> ajUBijQ < C with high prob-
j=1

ability, where o;’s are the diagonal entries of 5113/2. Note that o; = Q(n) > C'n
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for all i and some constant C’. We thus obtain 1/2?:1 UBij2 < %, ie.,
max; [|[(Up)ille, < C—V\lﬁn’g" with high probability. Hence,

max |[UsUf (B — B)UsW*S " ?)ille,
< max||(Us)ille, x |U (B ~ BYUs| x 1557

Cy/logn 1. Clog®?n
< X2 0( )< —2= =
<=7 O(logn)O(n~2)

which also converges to 0 as n — oo (note that we used Eq. (22) in bounding
the last inequality).

To show Eq. (18), we must bound || [(I—UBUE)(E—B)(UB—UBW*)SJ;/ZL» l|.
Define

— 3

n

G1=(I—UsUL) (B~ B)I - UsUL)UES,'>,
Gy = (I — UsUL)(B — BYUp(UFU5 — W*)S5'2.

Note that (I — UgUR)(B — B)(Up — UgW*)S5*/? = Gy + Ga. We now only
need to bound the i-th row of G; and G5. We have

A « 1
|Gallr < (I = UsUg )(B — B)Us| x |UsUg = W*||r x ||S572 ||
A « 1

<|I(I = UpUg)I x | B = B|| x [UgUp = W*|[p x [|S5~2|

= O(l)(’)(\/nlogn)(’)(n_l)(’)(n_%) = (’)(M).

n

Thus ||v/nG2||F converges to 0 as n — co. We now consider the rows of G;.
Note that UgUB = I and hence

(GOl = [ = UsUL)(B — BY(I — UgUL)US 52l
= [ = UpUZ)(B — B)(I — UpUR)UgU US|
= U521 x 1 = UpUR)(B - B)I - UpU)UULL;|

< i”
=n
Let us define H; = (IfUBUE)(EfB)(IfUBU;)UBUg. Since the Z; arei.i.d.,
the rows of H; are exchangeable and hence, for any fixed index i, nE||(H);[|? =
E[||H1||%]. Markov’s inequality then implies

(I —UUL)(B— B)(I —UgUL)U5ULL|I.

n — (B — _ TN TP
P[|v/n(Hy)i| > 1] < E|[({ —UgUg)(B i)(f UBUB)UBUBLH

_E(I( - UpUL)(B = B)I - UpUg)UsUL %)
_ .
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Furthermore,
I(I = UpUg)(B = B)I = UpUg)UgUg|lr < ||1B = B|| x [Ug = UpUg Ul

We now recall the following two observations

e The optimization problem minpegaxa ||Ug — UpT||p° is solved by T =
ULUS.
e By theorem 2 of Yu et al. (2015), there exists W € R4*? orthogonal, such
that
|Ug —UsW|p < CIlUZUL —UsUg | -
Combining the two facts above, we conclude that [|Uz — UBUEUE,HF2 < £
with high probability, as in Lemma A.8, hence

(1 = UsU3)(B = BT = UsU5)UU e < O/nTogn) = = O(logm).

with high probability. Therefore,

d

logn
2

P(|[vn(Hy)ill > t) <

Letting ¢t = ni, we get lim, oo Cn~Y/2||/n(H,);| = 0. Finally, Eq. (19)
and Eq. (20) follow from Lemma A.7 and Lemma A.8 and the bound
max; ||(Ug)ille, < C(logn)/?n=1/2. O
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