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Abstract: We put forward a variable selection method for selecting ex-
planatory variables in a normality-assumed multivariate linear regression.
It is cumbersome to calculate variable selection criteria for all subsets of
explanatory variables when the number of explanatory variables is large.
Therefore, we propose a fast and consistent variable selection method based
on a generalized Cp criterion. The consistency of the method is provided by
a high-dimensional asymptotic framework such that the sample size and the
sum of the dimensions of response vectors and explanatory vectors divided
by the sample size tend to infinity and some positive constant which are
less than one, respectively. Through numerical simulations, it is shown that
the proposed method has a high probability of selecting the true subset of
explanatory variables and is fast under a moderate sample size even when
the number of dimensions is large.
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1. Introduction

Multivariate linear regression is a widely known method of inferential analysis.
It features in many theoretical and applied textbooks (see, e.g., [21, chap 9],
[24, chap 4]) and it is used by researchers in many fields. Let Y be an n × p
observation matrix of p response variables and X be an n×k observation matrix
of k non-stochastic explanatory variables, where n is the sample size, and p and
k are the numbers of response variables and explanatory variables, respectively.
Let N = n − p − k + 1, and we assume that rank(X) = k < n and (n, p, k)
satisfies N − 4 > 0 in proposing our method.

In actual empirical contexts, it is important to specify the factors affect-
ing response variables. In multivariate linear regression, this is regarded as the
problem of selecting a subset of explanatory variables. Suppose that j denotes
a subset of the full set ω = {1, . . . , k} containing kj elements, and Xj denotes
the n × kj matrix consisting of columns of X indexed by the elements of j,
where kA denotes the number of elements in a set A, i.e., kA = #(A). Next,
j expresses the subset of explanatory variables. For example, if j = {1, 2, 4},
then Xj consists of the first, second and fourth column vectors of X. Using the
notation j, the candidate model with kj explanatory variables is expressed as
follows:

Y ∼ Nn×p(XjΘj ,Σj ⊗ In), (1.1)

where Θj is a kj × p unknown matrix of regression coefficients and Σj is a
p×p unknown covariance matrix. In particular, the total number of explanatory
variables kω and the explanatory matrixXω in the full model ω express k andX,
respectively. Herein, we assume that the data are generated from the following
true model with kj∗ explanatory variables:

Y ∼ Nn×p(Xj∗Θ∗,Σ∗ ⊗ In),

where Θ∗ is a kj∗ × p true unknown matrix of regression coefficients and Σ∗ is
a p × p true unknown covariance matrix assuming that Σ∗ is positive definite.
Without loss of generality, we sort column vectors of X as X = (Xj∗ ,Xjc∗),
where set Ac denotes the compliment of set A. For expository purposes, we
represent kj∗ and Xj∗ as k∗ and X∗, respectively.
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To systematize and optimize the configuration of models, variable selection
criteria have been widely used. The Cp criterion was proposed by [13, 14]. In
this paper, we focus on a generalized variable selection criterion based on the Cp

criterion, termed the Generalized Cp (GCp) criterion. The GCp criterion for a
linear regression with a single response was proposed by [1], and the counterpart
for a multivariate linear regression with multiple responses was proposed by [15].
The GCp criterion can express a wide variety of variable selection criteria, e.g.,
the Cp criterion for multivariate contexts proposed by [20], and the modified Cp

(MCp) criterion proposed by [3].
The best subset chosen by a variable selection criterion is usually defined as

the subset of explanatory variables which minimizes the value of that criterion
among all candidate subsets. The basic approach to identifying the best subset
involves searching over all candidate subsets. We call this method the “full search
method”. To elaborate, assuming a full search method is used, variable selection
criteria for 2k − 1 subsets need to be calculated. Recently, increasing attention
has been paid to investigating statistical methods for high-dimensional data,
in which the dimension of response vectors p or the number of explanatory
variables k is large. However, in high-dimensional data contexts, particularly
where k is large, it may be impossible to apply the full search method because
the total number of subsets of explanatory variables exponentially increases
when k becomes large. For example, if k = 40 and the time taken to calculate a
variable selection criterion for a subset is 0.01 seconds, then the time required
to implement the full search method will be (240 − 1)× 0.01 seconds, i.e., about
35 years. Thus, for practical reasons, we need another search method when k
is large. A practicable selection method was proposed by [17, 31] when k is
large. This method is based on the behavior of variable selection criteria for the
subset where a variable is removed from the full set ω. In that selection method,
the best subset ĵ is determined as follows. For each explanatory variable, if the
criterion for the subset where a variable is removed from ω is greater than the
criterion for the full set ω, then the removed variable is regarded as the element
of the best subset. Since this method is needed to calculate variable selection
criteria for only k subsets and ω for searching the best subset ĵ, we expect that
the method is faster than the full search method, and it is practical for high-
dimensional data contexts. We call this method the “ZKB selection method”
and consider it using a class of the GCp criterion, where “ZKB” is formed from
the initial letters of the authors in [31].

An important property of a variable selection criterion is its consistency.
Consistency is achieved where the probability of selecting the true subset j∗
converges to 1, i.e., P (ĵ = j∗) → 1. However, since we do not know the true
subset j∗, we often hope to specify j∗ by variable selection. Then, we should use
a variable selection criterion that maximizes the probability of selecting the true
subset. It is expected that a consistent variable selection criterion has a high-
probability of selecting the true subset j∗ because in general the probability
of selecting the true subset is approximated by the asymptotic probability. To
this end, let LS, LR, LE and LTE be the large-sample (LS), large-response
vector (LR), large-explanatory vector (LE) and large-true explanatory vector
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(LTE) asymptotic frameworks such that only n, p, k and k∗ tend to infinity,
respectively. Further, they are denoted by LS: n → ∞, LR: p → ∞, LE: k → ∞
and LTE: k∗ → ∞. LS was used by [16, 17, 19, 31] under the ZKB selection
method. However, it is not appropriate to use LS for high-dimensional data
because approximate accuracy using LS deteriorates as p or k become large.
Hence, criteria used by [16, 17, 19, 31] may not have consistency under the ZKB
selection method when p or k tend to infinity. In the context for the consistency
of variable selection criteria under the full search method, [4, 27, 28] used the
following asymptotic frameworks as (p+ k)/n → c ∈ [0, 1):

[4]: LS and LR,
[27]: LS or (LS and LR),
[28]: (LS and LR) or (LS and LR and LE) or (LS and LR and LTE) as k/n → 0.

Since as described above [4, 27, 28] used asymptotic frameworks such that not
only n but also p, k or k∗ tend to ∞, the probabilities of selecting the true subset
will be high for high-dimensional data suited to the used asymptotic frameworks.
However, the probabilities may become low for high-dimensional data not suited
to the used asymptotic frameworks. Moreover, it is hard for us to judge whether
p, k and k∗ are large or not, and so we do not know which asymptotic framework
is suitable to given data. Hence, to ensure the consistency, it is more desirable
to use an asymptotic framework regardless of sizes of p, k and k∗.

In this paper, we consider the consistency of the GCp criterion under the ZKB
selection method and propose the new consistent ZKB selection method even
in high-dimensional contexts. Moreover, we also propose the selection method
which can perform group selections. To achieve this, we use the following high-
dimensional (HD) asymptotic framework:

HD : n → ∞,
p+ k

n
→ c ∈ [0, 1).

Importantly, the HD asymptotic framework can be rewritten as

HD: LS or (LS and LR) or (LS and LE) or (LS and LTE) or (LS and LR and
LE) or (LS and LR and LTE) as (p+ k)/n → c ∈ [0, 1).

This means that n always tends to infinity, but p, k and k∗ may tend to infinity
as (p + k)/n → c ∈ [0, 1). Hence, it is expected that our proposed method will
have a high probability of selecting the true subset where n is large regardless
of the sizes of p, k and k∗. Moreover, even when k is large under N − 4 > 0,
our proposed method will be very fast although the full search methods used
in like [4, 27, 28] cannot be calculable. In resent years, regularization methods
are often used for estimating the regression coefficients. The lasso is famous as
one of methods estimating the regression coefficients and selecting explanatory
variables simultaneously. In multivariate linear regression, it is possible to select
explanatory variables by the group lasso proposed by [29], and several papers
(e.g., [11, 18, 26, 30]) proposed regularization methods by extending the group
lasso for multivariate linear regression case. Moreover, a generalized adaptive
elastic-net was proposed and the consistency properties of the method were
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obtained by [26]. The consistency properties were provided by using asymptotic
frameworks such that log k/ log n → ν ∈ [0, 1) or log k = o(n1−2κ) for some
κ ∈ (0, 1/2). However, the properties are not ensured as p tends to infinity. Our
method is consistent even when p tends to infinity as long as N → ∞. Further,
our method is faster than an adaptive group lasso even when p or k are large.

The remainder of the paper is organized as follows. In section 2, we present
the necessary notation and assumptions to ensure consistency of our method. In
section 3, we put forward the proposed method, explicate its consistency, and
present a fast algorithm. We also propose an extended ZKB selection method. In
section 4, we conduct numerical experiments for verification purposes. Technical
details are relegated to the Appendix.

2. Preliminaries

First, we present the GCp criterion. Let Sj be the unbiased estimator of Σj in
model (1.1), which is defined by

Sj =
1

n− kj
Y ′(In − Pj)Y ,

where Pj is the projection matrix to the subspace spanned by the columns
of Xj , i.e., Pj = Xj(X

′
jXj)

−1X ′
j . Then, the GCp criterion in model (1.1) is

defined by

GCp(j) = (n− kj)tr(SjS
−1
ω ) + αpkj , (2.1)

where α is a positive constant. The first and second terms in (2.1) express the
residual sum of squares with the weighted matrix S−1

ω and α times the strength
of the penalty for the number of elements of Θj in model (1.1), respectively.

Next, we present notation and assumptions to ensure consistency of our
method. For a subset j ⊂ ω, let a p × p non-centrality matrix and parame-
ter be denoted by

Δj = Σ
−1/2
∗ Θ′

∗X
′
∗(In − Pωj )X∗Θ∗Σ

−1/2
∗ , δj = tr(Δj). (2.2)

where ωj = jc and jc denotes as ω\j. It should be emphasized that Δj = Op,p

and δj = 0 hold if and only if j ⊂ jc∗, where Op,p is a p × p matrix of zeros.
To ensure the consistency of our method, the following three assumptions are
prepared:

Assumption A1. The true subset j∗ is included in the full set ω, i.e., j∗ ⊂ ω.

Assumption A2. There exists c1 > 0 such that

min
�∈j∗

n−1x′
{�}(In − Pω{�})x{�} ≥ c1,

where x{�} is the �-th column vectors of X.
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Assumption A3. There exist 1/2 < cA ≤ 1 and c2 > 0 such that

n1−cA min
�∈j∗

θ′
{�}Σ

−1
∗ θ{�} ≥ c2, (2.3)

where θ{�} is the �-th column vectors of Θ′
∗.

Assumption A1 is needed to consider consistency because the probability of
selecting the true subset becomes 0 if it does not hold. Assumption A2 means
that the minimum value among the sample variances of residuals resulting from
the linear regression of x{�} with the remaining Xω{�} for � ∈ j∗ is always
positive and does not converge to 0. We often see an assumption for explana-
tory variables such that the inequality n−1λmin(X

′X) ≥ c1, where λmin(A)
is the minimum eigenvalue of a square matrix A. Assumption A2 is weaker
than this assumption because the inequality min�∈j∗ x

′
{�}(In − Pω{�})x{�} ≥

λmin(X
′X) holds. Assumption A3 is a weak assumption for the true regression

coefficients and the true covariance matrix. If cA < 1, Assumption A3 allows
min�∈j∗ θ

′
{�}Σ

−1
∗ θ{�} to converge to 0. Moreover, for all � = 1, . . . , k∗, the fol-

lowing inequality holds (the proof is given in Appendix A.1):

θ′
{�}Σ

−1
∗ θ{�} ≥ max

a=1,...,p

θ2∗�a
σ2
∗a

, (2.4)

where θ∗�a is the (�, a)-th element of Θ∗ and σ2
∗a is the a-th diagonal element

of Σ∗. From (2.4), Assumption A3 can be rewritten as the assumption which
does not rely on the correlations of response variables by replacing θ′

{�}Σ
−1
∗ θ{�}

with maxa=1,...,p θ
2
∗�a/σ

2
∗a in (2.3). If Assumptions A1–A3 are supported, the

following inequality holds (the proof is given in Appendix A.1):

n−cAδmin ≥ c1c2, (2.5)

where δmin = min�∈j∗ δ{�}. The above equation restricts the divergence order of
the non-centrality parameter δ{�}. If k is fixed and cA = 1, (2.5) is as per what
was put forward in [27].

Finally, we identify the upper bound of the rank of the non-centrality matrix
Δj , which is used to ensure consistency. For a subset j ⊂ ω (j 
= ω), let mj and
dj be the number of elements of j and the rank of Δj as follows:

mj = #(j), dj = rank(Δj). (2.6)

In accordance with [28], it follows from Assumption A1 that the rank ofX ′
∗(Pω−

Pωj )X∗ is calculated as

rank(X ′
∗(Pω − Pωj )X∗) =

{
0 (j ⊂ jc∗)
mj (j ⊂ j∗)

.

It is straightforward that rank(Θ∗Σ
−1
∗ Θ′

∗) ≤ min{p, k∗}. Since mj ≤ k∗ holds
when j ⊂ j∗, the following inequality can be derived:

dj ≤ min{rank(X ′
∗(Pω − Pωj )X∗), rank(Θ∗Σ

−1
∗ Θ′

∗)}

≤
{

0 (j ⊂ jc∗)
min{mj , p} (j ⊂ j∗)

. (2.7)
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3. Main results

3.1. Proposed selection method

We define a class of the GCp criterion, denoted as the high-dimensionality-
adjusted consistent generalized Cp (HCGCp) criterion:

Definition 3.1. The HCGCp criterion is defined by the GCp criterion (2.1)
satisfying

α =
n− k

N − 2
+ β, β > 0 s.t.

√
p

k1/2r
β → ∞,

p

ncA
β → 0, (3.1)

as n → ∞, (p + k)/n → c ∈ [0, 1), for some r ∈ N, where cA is defined in
Assumption A3.

We now introduce the ZKB selection method using a variable selection crite-
rion (SC). The best subset chosen by the ZKB selection method using an SC is
written as

{� ∈ ω | SC(ω{�}) > SC(ω)},

where ω{�} expresses {�}c or ω\{�}. The ZKB selection method is based on the
idea that the value of the SC for the subset where a true variable is removed
from ω will be greater than that for ω asymptotically. We define the following
best subset chosen by the ZKB selection method using the HCGCp criterion:

Definition 3.2. The best subset chosen by the ZKB selection method using the
HCGCp criterion is defined by

ĵ = {� ∈ ω | HCGCp(ω{�}) > HCGCp(ω)}. (3.2)

Next, to use this method in actual empirical contexts we have to decide the
value of α because the HCGCp criterion is expressed as the class of criteria.
Hence, we show the following value of α:

α̃ =
n− k

N − 2
+ β̃, β̃ =

(n− k)
√
N + p− 4

(N − 2)
√
N − 4

· k
1/4 logn
√
p

. (3.3)

This α̃ is based on [27]. It is straightforward to observe that β̃ is satisfied with
(
√
p/k1/2r)β̃ → ∞ and (p/ncA)β̃ → 0 as n → ∞, (p + k)/n → c ∈ [0, 1) for

r ≥ 3 and 3/4 < cA ≤ 1. Therefore, the GCp criterion with α = α̃ is included in
the class of the HCGCp criterion with 3/4 < cA ≤ 1. In practice, regardless of

whether there is the constant value {(n−k)
√
N + p− 4}/{(N−2)

√
N − 4} in β̃,

the criterion belongs to the class of the HCGCp criterion. However, the constant
value plays a role in terms of stabilizing the behavior of p−1/2{HCGCp(ω{�})−
HCGCp(ω)} for � ∈ jc∗.
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Since the ZKB selection method using the GCp criterion only necessitates cal-
culating the differences GCp(ω{�})−GCp(ω) for � = 1, . . . , k, it can be expected
that the calculation time associated with this method will be shorter than that
for the full search method. However, it is important that GCp(ω{�}) consists of
the projection matrix Pω{�} = Xω{�}(X

′
ω{�}

Xω{�})
−1X ′

ω{�}
and the calculation

time of an inverse matrix costs about the cube of the size of the matrix. Hence,
it is not advisable to calculate (X ′

ω{�}
Xω{�})

−1 for each � when k is large. To

overcome this problem, we offer an efficient calculation of GCp(ω{�})−GCp(ω).
Let r� and z� be the (�, �)-th element of (X ′X)−1 and the �-th column vector
of X(X ′X)−1, respectively. Then, using r� and z�, we can express Pω − Pω{�}

as follows (the proof of (3.4) is given in Appendix A.2):

Pω − Pω{�} =
1

r�
z�z

′
�. (3.4)

Using the above equation, GCp(ω{�})−GCp(ω) can be expressed as

GCp(ω{�})−GCp(ω) =
1

r�
z′
�Y S−1

ω Y ′z� − pα. (3.5)

Note that (3.5) does not need to calculate (X ′
ω{�}

Xω{�})
−1 if only (X ′X)−1

can be calculated. Moreover, the calculation cost of the product of each Y ′z�
relies on n. Hence, we also present an efficient calculation of z′

�Y S−1
ω Y ′z� when

p is small. Let t� be the �-th column vector of S
−1/2
ω Y ′X(X ′X)−1. Then, the

following equation can be derived:

z′
�Y S−1

ω Y ′z� = t′�t�. (3.6)

Since t� is a p-dimensional vector, the calculation cost of t′�t� does not rely on
n. Therefore, we propose to use (3.5) (and also use (3.6) when p is small) to
perform the ZKB selection method using the GCp criterion.

Note that the proposed selection method is calculable when N − 4 > 0.
When k > n, we can formally combine the proposed selection method and
screening methods by [8, 10, 12], which can apply to screening explanatory
variables for a multivariate linear regression with multiple responses. However,
we should pay attention to use their methods because the screening properties
are ensured when p or k∗ are fixed although the consistency of the proposed
selection method is ensured even when p and k∗ may diverge. On the other
hand, a multivariate linear regression can be regarded as a perfunctory linear
regression on a single response from the explanatory matrix (Ip⊗X). However,
notice that in generally we cannot directly apply several screening methods
(e.g., [2]) for a linear regression with a single response to our variable selection
problem. This is because our selection problem can be regarded as a group
selection problem for explanatory variables corresponding to the p-dimensional
regression coefficient vectors.
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3.2. Consistency of proposed selection method

We ensure the consistency of the ZKB selection method using the HCGCp

criterion (3.2). To do so, we present a lemma about sufficient conditions for
consistency (the proof is given in Appendix A.3). Importantly, Lemma 3.1 does
not rely on a specific asymptotic framework, indeed any such framework could
be applied here.

Lemma 3.1. Suppose that Assumption A1 and the following equations hold:

∑
�/∈j∗

P (HCGCp(ω{�}) > HCGCp(ω)) → 0, (3.7)

∑
�∈j∗

P (HCGCp(ω{�}) < HCGCp(ω)) → 0. (3.8)

Then, the ZKB selection method using the HCGCp criterion (3.2) is consistent,

that is P (ĵ = j∗) → 1 holds.

By showing that the sufficient conditions (3.7) and (3.8) in Lemma 3.1 hold,
the consistency of the ZKB selection method using the HCGCp criterion (3.2)
can be obtained as follows (the proof is given in Appendix A.4):

Theorem 3.1. Suppose that Assumptions A1–A3 hold. Then, the ZKB selection
method using the HCGCp criterion (3.2) is consistent as n → ∞, (p+ k)/n →
c ∈ [0, 1).

From Theorem 3.1, the ZKB selection method using the HCGCp criterion
with α = α̃ given by (3.3) is also consistent under Assumptions A1, A2 and
Assumption A3 with 3/4 < cA ≤ 1.

3.3. Extension of the ZKB selection method

In the previous subsections, we proposed the ZKB selection method using the
HCGCp criterion (3.2). However, when the full model ω includes several ex-
planatory variables such as multinomial variables, it will be not appropriate
to use the ZKB selection method because whether such explanatory variables
should be chosen or not should be decided simultaneously. To overcome this
problem, we extend the ZKB selection method. Let J be a family of sets of
some explanatory variables denoted by J = {j1, . . . , jq}, where q is the number
of these sets. Since we suppose dummy variables or non-dummy variables as
explanatory variables, we assume that mja is finite, ja is satisfied with ja ⊂ j∗
or ja ⊂ jc∗ and ja ∩ jb = ∅ (a 
= b) for ja, jb ∈ J , where mja is defined
by (2.6). Then, it is clear that ∪q

a=1ja = ω holds. For example, if k = 7
and the sets of explanatory variables are {1}, {2}, {3, 5} and {4, 6, 7} then
J = {{1}, {2}, {3, 5}, {4, 6, 7}}, q = 4, and the subsets {3, 5} and {4, 6, 7} ex-
press the subsets of binomial and trinomial dummy variables, respectively. Using
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this notation, we consider the following best subset chosen by the extended ZKB
(EZKB) selection method using an SC:

{j ∈ J | SC(ωj) > SC(ω)}.
We observe that the EZKB selection method is equivalent to the ZKB selection
method (3.2) when mj = 1 (∀j ∈ J ) or q = k. The EZKB selection method
can accommodate the selection of grouped explanatory variables. We define the
following best subset chosen by the EZKB selection method using the HCGCp

criterion:

Definition 3.3. The best subset chosen by the EZKB selection method using
the HCGCp criterion is defined by

ĵJ = {j ∈ J | HCGCp(ωj) > HCGCp(ω)}. (3.9)

Next, we ensure the consistency of the EZKB selection method using the
HCGCp criterion (3.9). Let J+ = {j ∈ J | j ⊂ j∗} and J− = {j ∈ J | j ⊂ jc∗}.
Then, as with Lemma 3.1, we present the following lemma about sufficient
conditions for consistency (the proof is given in Appendix A.5).

Lemma 3.2. Suppose that Assumption A1 and the following equations hold:∑
j∈J+

P (HCGCp(ωj) < HCGCp(ω)) → 0,

∑
j∈J−

P (HCGCp(ωj) > HCGCp(ω)) → 0.

Then, the EZKB selection method using the HCGCp criterion (3.9) is consis-
tent.

Using Lemma 3.2, the consistency of the EZKB selection method using the
HCGCp criterion (3.9) can be obtained as follows (the proof is given in Ap-
pendix A.6):

Theorem 3.2. Suppose that Assumptions A1–A3 hold. Then, the EZKB selec-
tion method using the HCGCp criterion (3.9) is consistent as n → ∞, (p +
k)/n → c ∈ [0, 1).

From Theorem 3.2, we can observe that the EZKB selection method using
the HCGCp criterion is also consistent as with the ZKB selection method (3.2).
Hence, as an example of the consistent EZKB selection method under 3/4 <
cA ≤ 1 in Assumption A3, we can use the method using the HCGCp criterion
with α = α̃ in (3.3).

Finally, we provide an efficient calculation of GCp(ωj) − GCp(ω). Let Rj

and Zj be the mj ×mj and n×mj matrices consisting of the row and column
elements of (X ′X)−1 and the column vectors of X(X ′X)−1 indexed by the
elements of j, respectively. For example, if j = {2, 5}, then Rj and Zj are
expressed as

Rj =

(
x̃22 x̃25

x̃52 x̃55

)
, Zj = (z̃2, z̃5),
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where x̃ab is the (a, b)-element of (X ′X)−1 and z̃a is the a-th column vector of
X(X ′X)−1. Then, using Rj and Zj , GCp(ωj)−GCp(ω) can be expressed as

GCp(ωj)−GCp(ω) = tr(R−1
j Z ′

jY S−1
ω Y ′Zj)−mjpα. (3.10)

The proof of the above equation is omitted because it essentially mimics (3.4).
Although (3.10) requires the calculation of the inverse matrix of Rj , it will not
be computationally onerous because the size is finite.

4. Numerical studies

We present numerical results to explore the validity of our claim based on Monte
Carlo simulations with 1, 000 iterations executed in MATLAB 9.3.0 on a Pana-
sonic CF-SV7UFKVS with an Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz
2.11 GHz and 16 GB of RAM. The probabilities of selecting the true subset
and the CPU times are presented for the ZKB selection methods using the
HCGCp criterion with α = α̃ given in (3.3) and the three GCp criteria with
α = 2, 2 log logn and logn (named GC1

p , GC2
p and GC3

p). The calculations were
performed using (3.5) (and (3.6) if p < 100 and k ≥ p). The explanatory ma-
trix X, the true coefficient matrix Θ∗ and the true covariance matrix Σ∗ were
determined as follows:

X ∼ Nn×k(On,k,Ψ⊗ In), Θ∗ ∼ Nk∗×p(Ok∗,p, Ip ⊗ Ik∗),

Σ∗ = ξ1{(1− ξ2)Ip + ξ21p1
′
p},

where Ψ is the k× k autoregressive matrix with the correlation ψ, i.e., (Ψ)ab =
ψ|a−b|, and 1p is a p-dimensional vector of ones. Further, we set ψ = 0.5, ξ1 = 0.4
and ξ2 = 0.8. Although Theorems 3.1 and 3.2 were obtained by assuming that Y
is distributed according to the multivariate normal distribution under the true
model, we also examine the probabilities under the non-normality in this simula-
tion. Let E = (ε1, . . . , εn)

′ be a n×p random matrix, where ε1, . . . , εn are inde-
pendent and identically distributed according to the multivariate t-distribution
with 10 degrees of freedom, mean 0p and covariance matrix (5/4)Σ∗. Then, we
constructed the following two true models:

• Multivariate normal distribution: Y ∼ Nn×p(X(Θ′
∗,O

′
k−k∗,p

)′,Σ∗ ⊗ In).

• Multivariate t-distribution: Y = X(Θ′
∗,O

′
k−k∗,p

)′ + (4/5)1/2E .

For comparison, we also calculated the probabilities of selecting the true
subset and the CPU times using the adaptive group lasso (AGL) proposed by
[25]. The estimator of Θ by the AGL is written as

Θ̂τ = argmin
Θ

f(Θ|τ),

f(Θ|τ) = tr{(Y −XΘ)(Y −XΘ)′}+ 2τ

k∑
a=1

wa||θa||,
(4.1)
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where τ is a turning parameter, wa is the weight for the norm ||θa|| = (θ′
aθa)

1/2,
and θa is the a-th column vector of Θ′. Each column vector of Y and X in (4.1)
is centralized and standardized. To optimize (4.1), we used a coordinate descent
algorithm based on [6]. The algorithm is given as follows. Let 100 candidates
of τ be τt = exp{t log (τmax + 1)/(100 − 1)} − 1 (t ∈ {0, 1, 2, . . . , 99}), where
τmax = maxa=1,...,k w

−1
a ||Y ′x{a}||. Initialize Θ̂τ0 = Θ̂aft

τ0 = (θ̂
(0)
1 , . . . , θ̂

(0)
k )′ =

(X ′X)−1X ′Y . For t = 1, . . . , 99,

1. Update Θ̂bef
τt ← Θ̂aft

τt−1
and (θ̂

(t)
1 , . . . , θ̂

(t)
k )′ ← Θ̂aft

τt−1
. For each a = 1, . . . , k,

(1) Calculate ca = Y ′x{a} −
∑k

i �=a x
′
{a}x{i}θ̂

(t)
i .

(2) If τtwa≤||ca||, then update θ̂
(t)
a ←{(||ca||−τtwa)/(x

′
{a}x{a}||ca||)}ca,

otherwise θ̂
(t)
a ← 0p.

2. Update Θ̂aft
τt ← (θ̂

(t)
1 , . . . , θ̂

(t)
k )′. If

∣∣∣∣∣1− f(Θ̂aft
τt |τt)

f(Θ̂bef
τt |τt)

∣∣∣∣∣ < εAGL,

then define Θ̂τt = Θ̂aft
τt , otherwise go back to step 1.

In our setting, we used εAGL = 0.01, and wa was given by ||θ̂LSE
a ||−1, where θ̂LSE

a

is the least square estimator (LSE) of θa, i.e., (θ̂
LSE
1 , . . . , θ̂LSE

k )′=(X ′X)−1X ′Y .
To choose the best turning parameter, we used three criteria as follows:

τ̂(αi) = arg min
τ0,...,τ99

IC(τt|αi),

IC(τt|αi) = p−1tr{(Y −XΘ̂τt)
′(Y −XΘ̂τt)S

−1
ω }+ |At|αi (i = 1, 2, 3),

where |At| is the number of non-zero row vectors of Θ̂τt , and α1 = 2, α2 =
2 log logn and α3 = logn. We name the AGL using IC(τt|αi) (i = 1, 2, 3) as
AGL1, AGL2 and AGL3, respectively. Table 1 shows the probabilities of se-
lecting the true subset by the ZKB selection methods using the HCGCp, GCi

p

(i = 1, 2, 3) denoted by HCGCp, GCi
p (i = 1, 2, 3) and AGLi (i = 1, 2, 3)

when Y is distributed according to the multivariate normal distribution under
the true model. From Table 1, we observe that the selection method using the
HCGCp criterion always exhibits high probabilities of selecting the true subset
for all combinations of n, p, k and k∗ in Table 1. Although the probabilities by
the method using the GC3

p criterion also achieve 100%, the performance by the
method using the HCGCp criterion is better than those when the GC3

p criterion
is used when the sample size is moderate. On the other hand, the probabilities
by AGL1 are low as the sample size increases in many cases. The probabilities
by AGL2 reach 100% only when the sample size is large and the dimensions
are small. The probabilities by AGL3 seem to increase slowly in some cases,
but are low when k∗ is large. Table 2 shows the probabilities when Y is dis-
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Table 1

True subset selection probabilities (%) when Y is distributed according to the multivariate
normal distribution under the true model

n p k k∗ HCGCp GC1
p GC2

p GC3
p AGL1 AGL2 AGL3

200 10 10 5 100.0 80.4 99.8 100.0 40.6 69.4 81.7
500 10 10 5 100.0 85.0 100.0 100.0 60.7 69.0 95.2

1000 10 10 5 100.0 85.5 100.0 100.0 74.4 76.9 97.7
2000 10 10 5 100.0 85.2 100.0 100.0 87.0 99.5 99.5
3000 10 10 5 100.0 83.9 100.0 100.0 11.0 100.0 100.0
200 160 10 5 99.9 0.0 0.0 0.3 0.0 0.0 0.3
500 400 10 5 100.0 0.0 0.0 37.4 0.0 0.0 30.5

1000 800 10 5 100.0 0.0 0.0 96.1 0.0 0.0 62.9
2000 1600 10 5 100.0 0.0 0.0 100.0 0.0 0.0 85.7
3000 2400 10 5 100.0 0.0 0.0 100.0 0.0 0.0 92.1
200 10 160 5 100.0 0.0 16.5 88.3 0.2 1.5 4.3
500 10 400 5 100.0 0.0 70.4 100.0 1.0 5.9 15.5

1000 10 800 5 100.0 0.0 90.5 100.0 15.7 26.0 36.6
2000 10 1600 5 100.0 0.0 93.7 100.0 44.0 84.1 86.7
3000 10 2400 5 100.0 0.0 95.4 100.0 24.1 24.3 35.1
200 10 160 80 100.0 0.2 34.0 93.5 0.0 0.0 0.1
500 10 400 200 100.0 0.1 83.1 99.9 0.0 0.0 3.1

1000 10 800 400 100.0 0.0 93.2 100.0 0.0 0.0 0.0
2000 10 1600 800 100.0 0.0 97.1 100.0 0.0 0.0 0.0
3000 10 2400 1200 100.0 0.0 97.5 100.0 0.0 0.0 0.0
200 80 80 5 100.0 0.0 0.0 31.5 0.0 0.0 2.5
500 200 200 5 100.0 0.0 0.0 99.4 0.0 5.3 19.4

1000 400 400 5 100.0 0.0 0.3 100.0 0.0 20.7 40.8
2000 800 800 5 100.0 0.0 78.2 100.0 0.0 41.3 66.1
3000 1200 1200 5 100.0 0.0 99.6 100.0 0.0 51.4 78.9
200 80 80 40 100.0 0.0 0.0 52.7 0.0 0.0 0.2
500 200 200 100 100.0 0.0 0.0 99.7 0.0 0.0 0.0

1000 400 400 200 100.0 0.0 3.7 100.0 0.0 0.0 1.3
2000 800 800 400 100.0 0.0 89.9 100.0 0.0 0.0 68.4
3000 1200 1200 600 100.0 0.0 100.0 100.0 0.0 0.0 96.0

tributed according to the multivariate t-distribution under the true model. We
observe that the results in Table 2 are about the same as those in Table 1.
Hence, it is expected that our results may hold even under the non-normality.
The proofs of Theorems 3.1 and 3.2 in this paper are needed to calculate the
moments of GCp(ω{�}) − GCp(ω) and GCp(ωj) − GCp(ω), and we calculated
them by assuming that Y is distributed according to the multivariate normal
distribution under the true model. However, our results will be shown even un-
der non-normality if another approach to the evaluation of the moments exists
although we need to calculate the moments consisting of the inverse matrix S−1

ω .
Table 3 shows the CPU times by the ZKB selection method using the HCGCp

criterion denoted by HCGCp and AGL3 when Y is distributed according to
the multivariate normal distribution under the true model, and the former is
faster than the latter. The difference is particularly clear when the dimensions
are large. In sum, the ZKB selection method using the HCGCp criterion with
α = α̃ exhibits the highest probabilities of selecting the true subset and is faster
than the AGLs.



A fast and consistent variable selection method 1399

Table 2

True subset selection probabilities (%) when Y is distributed according to the multivariate
t-distribution under the true model

n p k k∗ HCGCp GC1
p GC2

p GC3
p AGL1 AGL2 AGL3

200 10 10 5 100.0 80.6 99.5 100.0 51.0 67.8 81.8
500 10 10 5 100.0 85.2 99.9 100.0 76.5 92.2 96.9

1000 10 10 5 100.0 86.9 100.0 100.0 78.9 95.6 97.9
2000 10 10 5 100.0 87.4 100.0 100.0 83.3 99.5 99.5
3000 10 10 5 100.0 84.0 99.9 100.0 0.0 99.8 100.0
200 160 10 5 99.8 0.0 0.0 0.2 0.0 0.0 0.2
500 400 10 5 100.0 0.0 0.0 33.8 0.0 0.0 23.8

1000 800 10 5 100.0 0.0 0.0 96.2 0.0 0.0 65.7
2000 1600 10 5 100.0 0.0 0.0 100.0 0.0 0.0 81.9
3000 2400 10 5 100.0 0.0 0.0 100.0 0.0 0.0 89.8
200 10 160 5 100.0 0.0 19.7 87.9 0.2 0.8 3.9
500 10 400 5 100.0 0.0 72.7 100.0 3.0 9.5 20.2

1000 10 800 5 100.0 0.0 88.4 100.0 4.8 22.2 49.5
2000 10 1600 5 100.0 0.0 94.9 100.0 12.4 50.2 66.9
3000 10 2400 5 100.0 0.0 96.0 100.0 33.3 36.0 65.4
200 10 160 80 100.0 0.3 33.1 93.1 0.0 0.0 0.0
500 10 400 200 100.0 0.0 84.7 100.0 0.0 0.0 0.0

1000 10 800 400 100.0 0.0 93.0 100.0 0.0 0.0 0.0
2000 10 1600 800 100.0 0.0 96.9 100.0 0.0 0.0 0.0
3000 10 2400 1200 100.0 0.0 97.8 100.0 0.0 0.0 0.0
200 80 80 5 100.0 0.0 0.0 34.4 0.0 0.2 3.4
500 200 200 5 100.0 0.0 0.0 99.6 0.0 4.8 21.9

1000 400 400 5 100.0 0.0 0.1 100.0 0.0 14.7 37.3
2000 800 800 5 100.0 0.0 79.0 100.0 0.0 43.6 66.7
3000 1200 1200 5 100.0 0.0 99.8 100.0 0.0 48.5 76.2
200 80 80 40 100.0 0.0 0.0 52.9 0.0 0.0 0.3
500 200 200 100 100.0 0.0 0.0 99.8 0.0 0.0 0.0

1000 400 400 200 100.0 0.0 4.4 100.0 0.0 0.0 2.2
2000 800 800 400 100.0 0.0 90.5 100.0 0.0 0.0 68.1
3000 1200 1200 600 100.0 0.0 100.0 100.0 0.0 0.0 94.0

Appendix A

A.1. Proof of equations (2.4) and (2.5)

First, we show (2.5). For an arbitrary � ∈ j∗, we have the following equation:

(In − Pω{�})x{�1}

{
= 0n (�1 
= �)

= 0n (�1 = �)

.

From the above equation, Δ{�} which is defined in (2.2) can be expressed as
follows:

Δ{�} = Σ
−1/2
∗

⎛
⎝∑

�∈j∗

θ{�}x
′
{�}

⎞
⎠ (In − Pω{�})

⎛
⎝∑

�∈j∗

x{�}θ
′
{�}

⎞
⎠Σ

−1/2
∗

= Σ
−1/2
∗ θ{�}x

′
{�}(In − Pω{�})x{�}θ

′
{�}Σ

−1/2
∗

= x′
{�}(In − Pω{�})x{�}Σ

−1/2
∗ θ{�}θ

′
{�}Σ

−1/2
∗ .
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Table 3

CPU times (s) when Y is distributed according to the multivariate normal distribution
under the true model

n p k k∗ HCGCp AGL3

200 10 10 5 0.0010 0.0091
500 10 10 5 0.0046 0.0108

1000 10 10 5 0.0124 0.0208
2000 10 10 5 0.0346 0.0428
3000 10 10 5 0.0606 0.0679
200 160 10 5 0.0036 0.0611
500 400 10 5 0.0438 0.8003

1000 800 10 5 0.2996 4.9315
2000 1600 10 5 2.1194 33.0587
3000 2400 10 5 6.6364 99.3778
200 10 160 5 0.0029 0.1048
500 10 400 5 0.0167 0.4377

1000 10 800 5 0.0734 1.3389
2000 10 1600 5 0.3844 4.7584
3000 10 2400 5 1.1095 11.4628
200 10 160 80 0.0024 0.0934
500 10 400 200 0.0146 0.4503

1000 10 800 400 0.0774 1.3550
2000 10 1600 800 0.4126 4.8661
3000 10 2400 1200 1.1370 11.8354
200 80 80 5 0.0045 0.1386
500 200 200 5 0.0327 1.5399

1000 400 400 5 0.5254 57.9087
2000 800 800 5 4.9127 492.7444
3000 1200 1200 5 15.5871 1724.8028
200 80 80 40 0.0059 0.1409
500 200 200 100 0.0312 1.5835

1000 400 400 200 0.5342 59.2730
2000 800 800 400 4.8972 516.9926
3000 1200 1200 600 15.7256 1730.3650

Hence, we have

δ{�} = tr(Δ{�}) = x′
{�}(In − Pω{�})x{�}θ

′
{�}Σ

−1
∗ θ{�}.

The above equation leads to the following inequality:

n−cAδmin ≥
{
n−1 min

�∈j∗
x′
{�}(In − Pω{�})x{�}

}{
n1−cA min

�∈j∗
θ′
{�}Σ

−1
∗ θ{�}

}
≥ c1c2.

Next, we show (2.4). Let λmax(A) be the maximum eigenvalue of the square
matrix A. Then, we have

θ′
{�}Σ

−1
∗ θ{�} = λmax(Σ

−1/2
∗ θ{�}θ

′
{�}Σ

−1/2
∗ ) = max

||e||=1
e′Σ

−1/2
∗ θ{�}θ

′
{�}Σ

−1/2
∗ e.

By using (e′aΣ∗ea)
−1/2Σ

1/2
∗ ea as e, we have

λmax(Σ
−1/2
∗ θ{�}θ

′
{�}Σ

−1/2
∗ ) ≥ max

a=1,...,p

(e′aθ{�})
2

σ2
∗a

,
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where ea is the p-dimensional vector such that the a-th element is one and the
other elements are zero. The above equation completes the proof of (2.4).

A.2. Proof of equation (3.4)

Without loss of generality, let X = (Xω{�} ,X{�}) for an � ∈ ω. Further, let R�,
r� and r� be satisfied with (

R� r�
r′� r�

)
= (X ′X)−1.

Then, using the general formula for the inverse of a block matrix (e.g., [7,
Theorem 8.5.11]), Pω and Pω{�} can be expressed as follows:

Pω = Xω{�}R�X
′
ω{�}

+Xω{�}r�X
′
{�} +X{�}r

′
�X

′
ω{�}

+ r�X{�}X
′
{�},

Pω{�} = Xω{�}R�X
′
ω{�}

+ r−1
� Xω{�}r�r

′
�X

′
ω{�}

.

From the above equations, we have

Pω − Pω{�} =
1

r�
X

(
r�
r�

)(
r�
r�

)′
X ′.

Note that X(r′�, r�)
′ is the k-th column vector of X(X ′X)−1. Therefore, (3.4)

can be derived.

A.3. Proof of Lemma 3.1

We can express P (ĵ = j∗) as follows:

P (ĵ = j∗) = P

(⎛⎝⋂
�∈j∗

{
HCGCp(ω{�})−HCGCp(ω) > 0

}⎞⎠
⋂⎛
⎝⋂

�/∈j∗

{
HCGCp(ω{�})−HCGCp(ω) ≤ 0

}⎞⎠).
Then, the following lower bound of P (ĵ = j∗) can be derived:

P (ĵ = j∗) ≥ 1−
∑
�∈j∗

P
(
HCGCp(ω{�})−HCGCp(ω) < 0

)
−
∑
�/∈j∗

P
(
HCGCp(ω{�})−HCGCp(ω) > 0

)
.

This completes the proof of Lemma 3.1.
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A.4. Proof of Theorem 3.1

We first describe two lemmas. The first lemma gives another expression of
GCp(ωj)−GCp(ω) for j ⊂ ω (j 
= ω) (the proof is given in Appendix A.7):

Lemma A.1. For j ⊂ ω (j 
= ω), suppose that δj,i (i = 1, . . . ,mj) are constants
satisfying tr(Δj) =

∑mj

i=1 δj,i and δj,i ≥ m−1
j λmax(Δj), where Δj and mj are

defined by (2.2) and (2.6), and λmax(Δj) is the maximum eigenvalue of Δj.
Let ui, uj,i and vi be random variables distributed according to ui ∼ χ2(p),
uj,i ∼ χ2(p; δj,i) and vi ∼ χ2(n − p − k + 1) (i = 1, . . . ,mj), where ui and uj,i

are independent of vi for each i. Then, under Assumption A1, we have

GCp(ωj)−GCp(ω) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(n− k)

mj∑
i=1

ui

vi
−mjpα (j ⊂ jc∗)

(n− k)

mj∑
i=1

uj,i

vi
−mjpα (j ⊂ j∗)

. (A.1)

The following lemma is needed to evaluate the divergence orders of the mo-
ments of GCp(ωj)−GCp(ω) (the proof is given in Appendix A.8).

Lemma A.2. Let δ be a positive constant. And let u1, u2 and v be random
variables distributed according to χ2(p), χ2(p; δ) and χ2(N), where u1 and u2

are independent of v, and N = n− p− k+1. Then, for N − 4r > 0 (r ∈ N), we
have

E

[(
u1

v
− p

N − 2

)2r
]
= O(prn−2r),

E

[(
u2

v
− p+ δ

N − 2

)2r
]
= O(max{(p+ δ)rn−2r, (p+ δ)2rn−3r}),

as n− p− k → ∞.

Applying the results of Lemma A.1 formj = 1 toHCGCp(ω{�})−HCGCp(ω),
we have

HCGCp(ω{�})−HCGCp(ω) =

⎧⎪⎨
⎪⎩

(n− k)
u

v
− pα (� /∈ j∗)

(n− k)
u�

v
− pα (� ∈ j∗)

, (A.2)

where u and u� are independent of v, and u ∼ χ2(p), u� ∼ χ2(p; δ{�}) and
v ∼ χ2(N). From (A.2), we have∑

�/∈j∗

P (HCGCp(ω{�}) > HCGCp(ω))

= (k − k∗)P

(
u

v
>

p

n− k
α

)
= (k − k∗)P

(
u

v
− p

N − 2
> ρ

)
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≤ (k − k∗)P

(∣∣∣∣uv − p

N − 2

∣∣∣∣ ≥ ρ

)
, (A.3)

where ρ = {p/(n − k)}β. Moreover, since (N − 2)ρδ−1
min = O(pβn−cA) = o(1)

from (2.5) and (3.1), when N is sufficiently large, we have

∑
�∈j∗

P (HCGCp(ω{�}) < HCGCp(ω))

=
∑
�∈j∗

P

(
u�

v
<

p

n− k
α

)
=
∑
�∈j∗

P

(
u�

v
−

p+ δ{�}
N − 2

< ρ+−
δ{�}
N − 2

)

≤
∑
�∈j∗

P

(∣∣∣∣u�

v
−

p+ δ{�}
N − 2

∣∣∣∣ ≥ δ{�}
N − 2

− ρ

)
. (A.4)

Applying Markov’s inequality to (A.3) and (A.4), the following upper bounds
can be derived:

(k − k∗)P

(∣∣∣∣uv − p

N − 2

∣∣∣∣ ≥ ρ

)
≤ (k − k∗)ρ

−2rE

[(
u

v
− p

N − 2

)2r
]
,

∑
�∈j∗

P

(∣∣∣∣u�

v
−

p+ δ{�}
N − 2

∣∣∣∣ ≥ δ{�}
N − 2

− ρ

)

≤
∑
�∈j∗

(
δ{�}
N − 2

− ρ

)−2r̃

E

[(
u�

v
−

p+ δ{�}
N − 2

)2r̃
]
,

where r is a natural number defined by (3.1) and r̃ are any natural numbers.
From the above equations and Lemma A.2, the following equation can be de-
rived:

∑
�/∈j∗

P (HCGCp(ω{�}) > HCGCp(ω)) = O(kp−rβ−2r) = o(1).

Moreover, for sufficiently large r̃, since k∗p
r̃n−2r̃cA = o(1), k∗n

−r̃cA = o(1),
k∗p

2r̃n−2r̃cA−r̃ = o(1) and k∗n
−r̃ = o(1), we have

∑
�∈j∗

P (HCGCp(ω{�}) < HCGCp(ω))

=
∑
�∈j∗

O
(
(p+ δ{�})

r̃δ−2r̃
{�} + (p+ δ{�})

2r̃δ−2r̃
{�} n−r̃

)

= O
(
k∗(p+ δmin)

r̃δ−2r̃
min + k∗(p+ δmin)

2r̃δ−2r̃
min n

−r̃
)
= o(1).

These equations and Lemma 3.1 complete the proof of Theorem 3.1.
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A.5. Proof of Lemma 3.2

We can express P (ĵJ = j∗) as follows:

P (ĵJ = j∗) = P

(⎛⎝ ⋂
j∈J+

{HCGCp(ωj)−HCGCp(ω) > 0}

⎞
⎠

⋂⎛
⎝ ⋂

j∈J−

{HCGCp(ωj)−HCGCp(ω) ≤ 0}

⎞
⎠).

Then, the following lower bound of P (ĵJ = j∗) can be derived:

P (ĵJ = j∗) ≥ 1−
∑
j∈J+

P (HCGCp(ωj)−HCGCp(ω) < 0)

−
∑
j∈J−

P (HCGCp(ωj)−HCGCp(ω) > 0) .

Therefore, Lemma 3.2 can be derived.

A.6. Proof of Theorem 3.2

We can apply the results of Lemma A.1 to this proof, i.e., we can express the
following distribution forms of HCGCp(ωj)−HCGCp(ω):

HCGCp(ωj)−HCGCp(ω) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(n− k)

mj∑
i=1

ui

vi
−mjpα (j ∈ J−)

(n− k)

mj∑
i=1

uj,i

vi
−mjpα (j ∈ J+)

, (A.5)

where ui and uj,i are independent of vi, and

ui ∼ χ2(p), uj,i ∼ χ2(p; δj,i), vi ∼ χ2(N) (i = 1, . . . ,mj).

Here, δj,i (i = 1, . . . ,mj) are constants satisfying
∑mj

i=1 δj,i = tr(Δj) and δj,i ≥
m−1

j λmax(Δj), where Δj is given by (2.2). When j ∈ J+, let � be an element of
j, i.e., � ∈ j. Then, since In −Pω{�} and Pω{�} −Pωj are semi-positive definite,
the following equation can be derived:

tr(Δj) = δ{�} + tr{Σ−1/2
∗ Θ′

∗X
′
∗(Pω{�} − Pωj )X∗Θ∗Σ

−1/2
∗ } ≥ δ{�}.

In addition, let dj = rank(Δj) which is defined by (2.6). From (2.7), we observe
that dj is bounded. Since djλmax(Δj) ≥ tr(Δj) holds, the following inequality
is obtained:

δj,i ≥ m−1
j λmax(Δj) ≥ (mjdj)

−1tr(Δj) ≥ (mjdj)
−1δ{�}. (A.6)
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Now, we derive the divergence orders of
∑

j∈J−
P (HCGCp(ωj)>HCGCp(ω))

and
∑

j∈J+
P (HCGCp(ωj) < HCGCp(ω)). From (2.5), (3.1), (A.5) and (A.6),

when N is sufficiently large, we have∑
j∈J−

P (HCGCp(ωj) > HCGCp(ω))

=
∑
j∈J−

P

(
mj∑
i=1

ui

vi
>

mjp

n− k
α

)
≤
∑
j∈J−

mj∑
i=1

P

(
ui

vi
>

p

n− k
α

)

=
∑
j∈J−

mj∑
i=1

P

(
ui

vi
− p

N − 2
> ρ

)
≤
∑
j∈J−

mj∑
i=1

P

(∣∣∣∣ui

vi
− p

N − 2

∣∣∣∣ ≥ ρ

)
, (A.7)

∑
j∈J+

P (HCGCp(ωj) < HCGCp(ω))

=
∑
j∈J+

P

(
mj∑
i=1

uj,i

vi
<

mjp

n− k
α

)
≤
∑
j∈J+

mj∑
i=1

P

(
uj,i

vi
<

p

n− k
α

)

=
∑
j∈J+

mj∑
i=1

P

(
uj,i

vi
− p+ δj,i

N − 2
< ρ− δj,i

N − 2

)

≤
∑
j∈J+

mj∑
i=1

P

(∣∣∣∣uj,i

vi
− p+ δj,i

N − 2

∣∣∣∣ ≥ δj,i
N − 2

− ρ

)
, (A.8)

where ρ = {p/(n − k)}β. Then, by applying Markov’s inequality to (A.7) and
(A.8), their following upper bounds can be derived:

∑
j∈J−

mj∑
i=1

P

(∣∣∣∣ui

vi
− p

N − 2

∣∣∣∣ ≥ ρ

)
≤
∑
j∈J−

mjρ
−2rE

[(
u1

v1
− p

N − 2

)2r
]
,

∑
j∈J+

mj∑
i=1

P

(∣∣∣∣uj,i

vi
− p+ δj,i

N − 2

∣∣∣∣ ≥ δj,i
N − 2

)

≤
∑
j∈J+

mj∑
i=1

(
δj,i

N − 2
− ρ

)−2r̃

E

[(
uj,i

vi
− p+ δj,i

N − 2

)2r̃
]
,

where r̃ are any natural numbers. Hence, from the above equations and Lemma
A.2, the following equations can be derived:

∑
j∈J−

mjρ
−2rE

[(
u1

v1
− p

N − 2

)2r
]
= O(kp−rβ−2r) = o(1).

Note that mj is bounded and #(J+) ≤ k∗, and it follows from (A.6) that
δ−1
j,i ≤ mjdjδ

−1
{�}. Hence, for sufficiently large r̃, we have

∑
j∈J+

mj∑
i=1

(
δj,i

N − 2
− ρ

)−2r̃

E

[(
uj,i

vi
− p+ δj,i

N − 2

)2r̃
]
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=
∑
j∈J+

mj∑
i=1

O
(
(p+ δj,i)

r̃δ−2r̃
j,i + (p+ δj,i)

2r̃δ−2r̃
j,i n−r̃

)
= o(1).

Therefore, from Lemma 3.2, Theorem 3.2 can be shown.

A.7. Proof of Lemma A.1

First, we derive results for the case of j ⊂ jc∗. Denote the elements of j as
a1, . . . , amj satisfying as 
= at (s 
= t), i.e., j = {a1, . . . , amj}. Further, let
j−,0 = ωj and j−,i = j−,i−1∪{ai} (i = 1, . . . ,mj). Then, it holds that j−,mj = ω,
and we can express GCp(ωj)−GCp(ω) as follows:

GCp(ωj)−GCp(ω)

=

mj∑
i=1

{GCp(j−,i−1)−GCp(j−,i)}

= (n− k)

mj∑
i=1

tr[Y ′(Pj−,i − Pj−,i−1)Y {Y ′(In − Pω)Y }−1]−mjpα. (A.9)

Let

Wj,i = Σ
−1/2
∗ Y ′(Pj−,i − Pj−,i−1)Y Σ

−1/2
∗ , W = Σ

−1/2
∗ Y ′(In − Pω)Y Σ

−1/2
∗ .

Note that Pj−,i −Pj−,i−1 and In −Pω are symmetric idempotent matrices, and
it holds that (Pj−,i − Pj−,i−1)(In − Pω) = On,n and (Pj−,i − Pj−,i−1)X∗ =
(In − Pω)X∗ = On,k∗ . Then, from a property of the Wishart distribution and
Cochran’s Theorem (e.g., [5, chap 2, Theorem 2.4.2]), we can state that Wj,i

and W are independent, and Wj,i ∼ Wp(1, Ip) and W ∼ Wp(n− k, Ip). Thus,
(A.9) is expressed as

GCp(ωj)−GCp(ω) = (n− k)

mj∑
i=1

tr(Wj,iW
−1)−mjpα. (A.10)

From a property of the Wishart distribution, Wj,i can be expressed as Wj,i =
ziz

′
i, where zi is independent of W , and zi ∼ Np(0p, Ip). Then, we express

z′
iW

−1zi as

z′
iW

−1zi =
z′
izi

{(z′
izi)

−1/2z′
iW

−1zi(z′
izi)

−1/2}−1
.

Let ui = z′
izi and vi = {(z′

izi)
−1/2z′

iW
−1zi(z

′
izi)

−1/2}−1. Then, from a prop-
erty of the Wishart distribution, we can state that ui and vi are independent,
and ui ∼ χ2(p) and vi ∼ χ2(n−p−k+1). Therefore, tr(Wj,iW

−1) is expressed
as

tr(Wj,iW
−1) =

ui

vi
.
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From the above equation and (A.10), we can derive (A.1) for the case of j ⊂ jc∗.
Next, we derive results for the case of j ⊂ j∗. Then, GCp(ωj) − GCp(ω) is

expressed as

GCp(ωj)−GCp(ω) = (n− k)tr[Y ′(Pω − Pωj )Y {Y ′(In − Pω)Y }−1]−mjpα.
(A.11)

Let Wj = Σ
−1/2
∗ Y ′(Pω − Pωj )Y Σ

−1/2
∗ . Note that Pω − Pωj is symmetric and

idempotent, and it holds that (Pω − Pωj )(In − Pω) = On,n. Then, from a
property of the non-central Wishart distribution and Cochran’s Theorem, we
can state that Wj and W are independent, and Wj ∼ Wp(mj , Ip;Δj) and
W ∼ Wp(n− k, Ip). Thus, (A.11) is expressed as

GCp(ωj)−GCp(ω) = (n− k)tr(WjW
−1)−mjpα. (A.12)

Let the spectral decomposition of Δj be Δj = QjΛjQ
′
j , where Qj is the p× p

orthogonal matrix and Λj is the p × p diagonal matrix whose a-th diagonal
element is an eigenvalue λj,a, i.e., Λj = diag(λj,1, . . . , λj,p) (λj,1 ≥ · · · ≥ λj,p).
Let Bj,1 = Q′

jWjQj and Bj,2 = Q′
jWQj . Then, from a property of the non-

central Wishart distribution, we can state that Bj,1 and Bj,2 are independent
and Bj,1 ∼ Wp(mj , Ip;Λj) and Bj,2 ∼ Wp(n − k, Ip). Let dj = rank(Δj) be
defined in (2.6). It is obvious that λj,dj+1 = · · · = λj,p = 0. Since it holds that
dj ≤ mj from (2.7), let Γj be as follows:

Γj =

(
Λ

1/2
j,0 Odj ,p−dj

Omj−dj ,dj Omj−dj ,p−dj

)
, Λj,0 = diag(λj,1, . . . , λj,dj ).

By using Γj , we can express Bj,1 as Bj,1 = (Ej + Γj)
′(Ej + Γj), where Ej ∼

Nmj×p(Omj ,p, Ip ⊗ Imj ) and Ej is independent of Bj,2. Let H = (h1, . . . ,hmj )

be a mj × mj orthogonal matrix satisfying h1 = m
−1/2
j 1mj , and we express

HΓj as HΓj = (η1, . . . ,ηmj )
′. Then, we have

(η1, . . . ,ηmj )
′ = H

(
Λ

1/2
j,0 Odj ,p−dj

Omj−dj ,dj Omj−dj ,p−dj

)

= (
√
λj,1h1, . . . ,

√
λj,djhdj ,Omj ,p−dj ).

Now, we put δj,i = ||ηi||2 (i = 1, . . . ,mj). Then, from the above equation, it
is straightforward that δj,i ≥ m−1

j λj,1 (i = 1, . . . ,mj) and tr(Δj) =
∑mj

i=1 δj,i.
Let (zj,1, . . . , zj,mj )

′ = HEj . Since zj,1, . . . , zj,mj ∼ Np(0p, Ip), Bj,1 can be
expressed as

Bj,1 = (Ej + Γj)
′H ′H(Ej + Γj) = (HEj +HΓj)

′(HEj +HΓj)

=

mj∑
i=1

(zj,i + ηi)(zj,i + ηi)
′.
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Then, we can express (zj,i + ηi)
′B−1

j,2 (zj,i + ηi) as

(zj,i + ηi)
′B−1

j,2 (zj,i + ηi)

=
||zj,i + ηi||2

{||zj,i + ηi||−1(zj,i + ηi)′B
−1
j,2 (zj,i + ηi)||zj,i + ηi||−1}−1

.

Let uj,i = ||zj,i + ηi||2 and vi = {||zj,i + ηi||−1(zj,i + ηi)
′B−1

j,2 (zj,i + ηi)||zj,i +
ηi||−1}−1. Then, from a property of the Wishart distribution, we can state that
uj,i and vi are independent, and uj,i ∼ χ2(p; δj,i) and vi ∼ χ2(n − p − k + 1).
Therefore, tr(WjW

−1) is expressed as

tr(WjW
−1) = tr(Q′

jWjQjQ
′
jW

−1Qj) = tr(Bj,1B
−1
j,2 )

=

mj∑
i=1

(zj,i + ηi)
′B−1

j,2 (zj,i + ηi) =

mj∑
i=1

uj,i

vi
.

From the above equation and (A.12), we can derive (A.1) for the case of
j ⊂ j∗.

A.8. Proof of Lemma A.2

We first describe a lemma concerning the central moments of chi-square and
non-central chi-square random variables; this is required for proving Lemma
A.2 (the proof is given in Appendix A.9).

Lemma A.3. Let X1 ∼ χ2(t) and X2 ∼ χ2(t;ψ), where ψ is a positive constant.
Then, we have

E[(X1 − t)h] =

⎧⎨
⎩

1 (h = 0)
0 (h = 1)
O(t�h/2�) (h ≥ 2)

, (A.13)

E[{X2 − (t+ ψ)}h] =

⎧⎨
⎩

1 (h = 0)
0 (h = 1)
O((t+ ψ)�h/2�) (h ≥ 2)

. (A.14)

Moreover, when t− 2h > 0, we have

E

[(
1

X1
− 1

t− 2

)h
]
=

⎧⎨
⎩

1 (h = 0)
0 (h = 1)
O(t−2h+�h/2�) (h ≥ 2)

, (A.15)

where �h� is the floor function defined by �h� = max{m ∈ Z | m ≤ h}.

Let ξ = 1/(N − 2) and ξδ = p+ δ. Then, we have

u1

v
− p

N − 2
= (u1 − p)(v−1 − ξ) + p(v−1 − ξ) + ξ(u1 − p),
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u2

v
− p+ δ

N − 2
= (u2 − ξδ)(v

−1 − ξ) + ξδ(v
−1 − ξ) + ξ(u2 − ξδ).

Hence, from the multinomial theorem, we have

E

[(
u1

v
− p

N − 2

)2r
]
=

∑
a+b+c=2r
0≤a,b,c≤2r

(2r)!

a!b!c!
pbξcE[(u1 − p)a+c]E[(v−1 − ξ)a+b],

(A.16)

E

[(
u2

v
− p+ δ

N − 2

)2r
]
=

∑
a+b+c=2r
0≤a,b,c≤2r

(2r)!

a!b!c!
ξbδξ

cE[(u2 − ξδ)
a+c]E[(v−1 − ξ)a+b].

(A.17)

From (A.13) and (A.15), the divergence order in (A.16) is maximized when
a = b = 0, c = 2r because of pn−1 = O(1). Moreover, from (A.14) and (A.15),
the divergence order in (A.17) is maximized when either a = b = 0, c = 2r or
a = c = 0, b = 2r. Therefore, we can derive the divergence orders as follows:

E

[(
u1

v
− p

N − 2

)2r
]
= O(prn−2r),

E

[(
u2

v
− p+ δ

N − 2

)2r
]
= O(max{(p+ δ)rn−2r, (p+ δ)2rn−3r}).

A.9. Proof of Lemma A.3

We elaborate only on the case of h ≥ 2 because it is straightforward when
h = 0, 1. First, we derive (A.13) and (A.14). Let h1, . . . , hd be natural numbers

satisfying
∑d

i=1 hi = h and 2 ≤ h1, . . . , hd. From [22], we can state that h-th
central moments can be expressed as the linear combination of the products of
h1, . . . , hd-th cumulants. From [9, 23], h-th cumulants of X1− t and X2−(t+ψ)
can, respectively, be expressed as follows:

κh,1 = 2h−1(h− 1)!t, κh,2 = 2h−1(h− 1)!(t+ hψ).

Then, we observe that the maximum order term of each h-th central moment is

κ
h/2
2,i if h is even and κ

(h−1)/2−1
2,i κ3,i if h is odd (i = 1, 2). This completes (A.13)

and (A.14).
Next, we derive (A.15). From the multinomial theorem, we have

E

[(
1

X1
− 1

t− 2

)h
]

=
h∑

i=0

h!

i!(h− i)!

(
− 1

t− 2

)h−i

E

[(
1

X1

)i
]
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=

(
− 1

t− 2

)h

+

h∑
i=1

h!

i!(h− i)!

(
− 1

t− 2

)h−i i∏
d=1

1

t− 2d

=

(
− 1

t− 2

)h

·
h∏

d=1

1

t− 2d

[
{−(t− 2)}h+

h−1∑
i=0

h!

i!(h− i)!
{−(t− 2)}i

h−i∏
d=1

{t− 2h+ 2(d− 1)}
]
.

Let T ∼ χ2(t− 2h), then it is known that

E[Th−i] =

{
1 (i = h)∏h−i

d=1{t− 2h+ 2(d− 1)} (i ≤ h− 1)
.

Hence, by letting s = {−(t− 2)}−h
∏h

d=1(t− 2d)−1, we have

E

[(
1

X1
− 1

t− 2

)h
]

=

(
− 1

t− 2

)h h∏
d=1

1

t− 2d

{
h∑

i=0

h!

i!(h− i)!
{−(t− 2)}iE[Th−i]

}

= sE[{T − (t− 2)}h]

= s

h∑
i=0

h!

i!(h− i)!
{−2(h− 1)}iE[{T − (t− 2h)}h−i]. (A.18)

Note that s = O(t−2h) and it follows from (A.13) that

E[{T − (t− 2h)}h−i] =

⎧⎨
⎩

1 (i = h)
0 (i = h− 1)
O(t�(h−i)/2�) (i ≤ h− 2)

. (A.19)

The equations (A.18) and (A.19) complete (A.15).

A.10. R file related to this article

The R file “hcgcp.R” to perform the EZKB selection method using the HCGCp

criterion can be found online at https://github.com/roda6288/hcgcp function.
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