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Abstract

This paper concerns the Vertex Reinforced Jump Process (VRJP) and its representa-
tions as a Markov process in random environment. In [21], it was shown that the
VRJP on finite graphs, under a certain time rescaling, has the distribution of a mixture
of Markov jump processes. This representation was extended to infinite graphs in
[23], by introducing a random potential 5. In this paper, we show that all possible
representations of the VRJP as a mixture of Markov processes can be expressed in
a similar form as in [23], using the random field 5 and harmonic functions for an
associated operator Hg. This allows to show that the VRJP on Z% (with certain initial
conditions) has a unique representation, by proving that an associated Martin bound-
ary is trivial. Moreover, on infinite trees, we construct a family of representations,
that are all different when the VRJP is transient and the tree is d-regular (with d > 3).
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1 Introduction

This paper concerns the Vertex Reinforced Jump Process (or VRJP) on infinite graphs
and its representations as a Markov process in a random environment. In particular, we
are interested in knowing if the VRJP admits several different representations, and what
form they can take.

Let G = (V, E) be a non-directed locally finite graph, i.e. each vertex i € V has finite
degree. Fori,j € V, we write i ~ j if i and j are neighbors, i.e. if {i, j} € E. We endow
G with positive conductances (W.).cr, and denote W; ; = 1(; e W, ;3. The VRJP on
G, with respect to W, is the self-interacting random process (Y;).cr, on V defined as
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follows: the process starts at some vertex ¢y € V' at time 0, and conditionally on the past
at time s, jumps to a neighbor j of 1 = Y at rate

Wiijj(S), where Lj(S) =1 +/ ]l{y“:j}du.
0

In other words, as the local time fos 14y, —s)du spent by the process at ¢ increases, the
vertex i becomes more attractive. This process was introduced in [8].

In [21], Sabot and Tarres introduced a time change for the VR]JP, by defining the
increasing function D(s) = >, (Li(s)? — 1), and taking (Z;);>0 = (Yp-1(1))t>0. On
finite graphs, this time-changed VR]JP Z started at a vertex iy is then a mixture of
Markov processes, in the following sense: there exists a random field (u;,(7)):cv, whose
distribution is explicit, such that the law of Z is the same as that of a Markov process in
a random environment given by jump rates

1 . .
§Wi7jeu’70 (7)) —uig (4)

from ¢ to j. The idea behind this time change is that the VRJP (Y;)s>( jumps faster and
faster as the vertices become more attractive, and that the time change D is such that
(Zt)1>0 has more stationary jumping times, which is necessary for it to be a mixture of
Markov processes.

They also showed that the VR]JP was related to another self-interacting process,
the Edge Reinforced Random Walk (or ERRW), introduced in [6] by Coppersmith and
Diaconis. On finite graphs, thanks to a de Finetti type theorem for Markov chains (see
[10]), it can be seen as a mixture of Markov chains. This interpretation of the ERRW as a
mixture of random walks was studied in [16], [17], [13], [14], [3]. The link between VR]JP
and ERRW proven in [21] gives an explicit representation of the ERRW as a mixture of
random walks on finite graphs.

Finally, the explicit distribution of the random field (u;,(i));cv is related to a statistical
mechanics model: the supersymmetric hyperbolic sigma model. It was studied by
Disertori, Spencer and Zirnbauer in [11] and [12], in which they showed localization and
delocalization theorems for the field u;,. This provided results on the recurrence and
transience of the VRJP and ERRW on lattices Z<.

In [20], Sabot, Tarres and Zeng showed that the distributions of fields u;, can be
coupled for iy € V, using a potential 8 = (5;);cy on V, and a random Schrédinger
operator associated with 5. Let us denote by Hg = 28 — W the random Schrédinger
operator, i.e. the |V| x |V| symmetrical matrix such that (Hg); ; = 26;1;—; — W, ; for
i,j € V. Moreover, we define by G = (Hg)~! the associated Green function. Then u;,
can be defined by

puin () — Glioy1)
G(io, i0)
forig,2 € V.

This representation using the 3 field allows a generalization to infinite graphs: in
[23], Sabot and Zeng used a similar potential 5 on infinite graphs to show that the VRJP
is still a mixture of Markov processes. If we still denote by Hz = 23 — W the operator
associated with 3, we can define the Green function G = (Hs)™! in a certain sense.
Moreover, there exists 1, a Hg-harmonic function on V (i.e. Hgy = 0), obtained as
the limit of a martingale. Then if we define G(i,5) = G(i,7) + %Q/J(Z)w(j) where 7 is
a random Gamma variable independent from §, the time-changed VRJP (Z;) is still a
mixture of Markov processes, with jump rates from ¢ to j given by

EWi,j G(’L"Ov ])
2 G(ig,1)
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The term % corresponds to a boundary term. Indeed, to show the result for infinite

graphs, the VRJP is first studied on finite subgraphs, endowed with a wired boundary
condition. This representation also gave results for the ERRW on infinite graphs. In [18],
Poudevigne used a coupling of potentials 5 on graphs with different weights W to show
monotonicity results, which gave the existence of a phase transition between recurrence
and transience of the VRJP.

In the case of infinite trees, there is another representation of (Z;) as a mixture of
Markov processes. This representation is obtained by using free boundary conditions on
restrictions of the tree, since the representation of the VRJP on finite trees has a simpler
expression. The particular structure of the tree already gave results for the ERRW (see
[16]) and the VR]P (see [9], [4]). We show that in some cases, the representation of the
VRJP obtained this way on the tree differs from the one defined in [23]. This raises the
question of the classification of all possible representations of the VRJP as a mixture of
Markov processes. This issue is related to the behavior of the VRJP at infinity, which
was also studied by Merkl, Rolles and Tarrées in [15], using the point of view of random
interlacements.

In this paper, we give several partial answers to the question of the classification of
representations of the VRJP. We first show that any such representation can be expressed
in the same form as before, using a S field, i.e. the random jump rates are given by

Ly, Glin )
2 G(ig,1)

where G (i, i) = G(ig, 1) + h(i), with h a random Hg-harmonic function.

In the case where the graph is the lattice Z?, this allows us to show that for certain
initial conductances W, there is only one representation of the VRJP as a mixture of
Markov processes. This is true for strong reinforcement (i.e. small W), since the VRJP
is recurrent, but also for weak reinforcement (i.e. large W). In this last case, we use
a local limit theorem for random walks in random environment to show that the only
Hg-harmonic functions are constants, by proving that the associated Martin boundary is
trivial.

In the case where the graph is an infinite tree, we already know of two different
representations of the VRJP. Using new boundary conditions, we construct a family of
representations, that are all different if the tree is regular enough.

2 Statement of the results

2.1 Previous results

Let G = (V, E) be a finite connected non-directed graph, endowed with conductances
(We)eer. We describe (W.).cp with a matrix (W; ;); jev, where

Wi ;= ’ :
0 otherwise.

In [21], Sabot and Tarrés proved that the time-changed VRJP on G with respect to W
could be represented as a mixture of Markov processes, i.e. as a random walk in random
environment. With Zeng, they showed in [20] that this environment could be related to a
random Schrédinger operator Hg, constructed from a random potential 5 = (5;);cv, in
the following way.

For 3 € RV, we will denote by Hs = 23 — W the |V| x |V| symmetrical matrix such
that (Hp); ; = 28i1,—; — W, for i, j € V. Let us define the set D} = {3 € RY, Hs > 0},
where Hg > 0 means that the matrix Hy is positive definite. Note that if 8 € D}/, then
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Bi > 0 for all ¢« € V. The following proposition describes the probability distribution of
the random potential that will be used to represent the VRJP.

Proposition 2.1 (Theorem 1 in [20], Lemma 4 in [23]).

(i) Let G = (V, E) be a finite connected graph, endowed with conductances W, and let
n € RY. We define by v, the measure on (D}, B(D}/')) such that

VI
2 2 1 - . d 5
w1 (df) = <7r> o AL H )+, (Ha) ") (.1 LLiev 4B

\/ det(HB) .

Then U‘x;v "' is a probability distribution. Its Laplace transform is

1
B LN (13) — o Srev mVITR 1) =5, Wiy (/A (14 A7) 1)

& 1% =e J ,
[ ) I
for A € RY. When 1 = 0, we will write )Y = vy,"".

(ii) Let us denote by dg the graph distance in G. Under y“ﬁ/’"(dﬁ), if V1,Vo C V are such
that dg(V1,V2) > 2, then (53;)icv; and (53;);ev, are independent. We will say that the
potential with distribution 1/“7 is 1-dependent.

Let C, (R4, V) be the space of right-continuous functions from R, to V. This will be
the space of trajectories of the random processes we will study in this paper. These
processes will be described by probability distributions on C,.(R, V). Let us denote by
(Z;) the canonical process in C,. (R4, V'), where Z;(w) = w(t) for w € C,.(R4, V). Moreover
for ig € V, let PVR/P(0) denote the distribution of the time-changed VRJP on (G, W),
in the exchangeable time scale described in the introduction. The following theorem
describes how to represent this process as a mixture of Markov processes, using a
random environment that can be constructed from the 3 field under 17 (dj3).

Theorem 2.2 (Theorem 2 in [21], Theorem 3 in [20]). Let G = (V, E) be a finite graph,
endowed with conductances W. We fix a vertex ioc € V. For 3 € DYV, we denote by
G = (Hp)~! the Green function associated with 3, and by P2+ the distribution of the
Markov jump process started at x € V, with jump rate from i to j given by %WH g((z‘;z))
Then for all iy € V, the time-changed VRJP on (G, W), started at i¢, is a mixture of

these Markov jump processes under the distribution y“ﬁv(dﬂ). In other words,

pYVRIPWio)[] — /]Pﬁ)’io [ (dB).

An interesting property of the distribution u“ﬁv is its behavior with respect to re-
striction. For 8 € R and V;,Va C V, let us denote By, = (Bi)icv,, and Wy, v, =
(Wi j)ievi jeva-

Proposition 2.3 (Lemma 4 in [23]). Letus fix U C V, and set7); = > _

i.e. i = Wy pelye. Then under vy} (dS), By is distributed according to v

jeue Wi,j fori e U,
Wu,u,n
o .

Hence under 1Y (d3), the distribution of 5;; depends only on the weights of edges
inside U, and coming out of U. This is useful to define the S field on infinite graphs.

Let now G = (V, E) be an infinite connected non-directed graph, that is locally finite,
i.e. each vertex v € V has finite degree. We endow G with conductances W. To study the
associated VRJP, we want to define an analogue of the S field on G. In [23], Sabot and
Zeng did this by using a wired boundary condition, defined as follows.

Let (V,,)nen be an increasing sequence of finite connected subsets of V, such that

Uvnzv.

nelN
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For n € IN, we introduce a new vertex J,,, and define a new graph g = (V("), E(”)),
where

Ve =V, U{s,}
and E™ = {{i,j} € B,i,j € V, } U{{i,0,},i € V;y and 3j ¢ Vi ~ j}.

The graph G(™ is called the restriction of G to V,, with wired boundary condition. We
endow this graph with the conductances W (™ defined by WZ(;’) =W, ifi,j €V,, and
) _
Wign = 2Zjmisigva Wis-

Foralln € ]N let (ﬁi("))iev(n) be a random potential on the graph G distributed
according to Vv( ) . Then from Proposition 2.3, we know that the restriction B‘(Z ’) is dis-

tributed according to 3/( " , where W = Wy, 1, and (™ : W(n?{é y = Wy, velve.

In fact, for a fixed n € IN and any n’ > n, the restrictions B‘(}:) have the same distri-
bution Z/‘I;V ™ . By Kolmogorov extension theorem, this allows the construction of a
distribution v} for infinite V.

For 5 € RV, let us still denote by H 3 = 2 — W the Schrodinger operator associated

with (8;)iev, Le. forall f e RV and i € V, (Hgf)i = 2Bifi — Y. ;; Wi j ;. We also define
the set D}Y = {8 € RY, (Hg)y,y > 0 for all finite subset U of V'}, where (Hg)y,y > 0
means that the symmetrical matrix (Hg)y,v is positive definite.
Proposition 2.4 (Proposition 1 in [23]). Let G = (V, F) be an infinite locally finite graph,
endowed with conductances W . There exists a unique probability distribution v{¥ on D}/
such that under 1YY (df3), for all finite subset U C V, By ~ V[V]VU'U’" where n = Wy yelye.
Its Laplace transform is

~OB) LW (dB) = ¢ Tims Wor (VIFRIYTEY) e

for A € RY with finite support.

The wired boundary condition is not only useful to define V\‘}V on infinite graphs, but
also to link this distribution to representations of the VRJP, by applying Theorem 2.2
to the graph G(™. Indeed from Proposition 2.4, for any n € N, under v}/ (d3) we have
By, ~ V‘V,V “, (n). Hence, from Proposition 2.3, we can extend 3y, into a potential
B ~ I/W( " such that 6(") By, . We denote H( ") = 28(n) _ 7 (M) and G = (Hé"))*1
From Theorem 2.2, we know that G(™ gives a representatlon of the VRJP on G(™).

Definition 2.5.

(i) For g € DY, let us define G™ : V x V — Ry by (G™)y, v, = ((Hp)v,.v,)” ", and
G (i,5) =0ifi ¢ V, orj ¢ V,,.
(ii) For B € DY, let (™ € RY" be defined by

{(Hm/)(”))vn =0
=1
Note that ¢£/7:L) = (Gg}l{ von™.

It is possible, using a decomposition of the Green function as a sum over paths (see
[23], or Proposition 3.4), to write

G (i, 5) = G (i, 4) + ™ ()G (3n, 0,)0 ™ (7)
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for i,j € V,,. Under v}/ (d), G (6,,d,) is independent of By, , and 1/2G™(4,,45,) is
always distributed according to a Gamma(1/2,1) distribution (see Proposition 3.1 (ii)).
The following theorem describes how taking n — oo in this previous expression gives a
representation of the VRJP on infinite graphs.

Theorem 2.6 (Theorem 1 in [23]).

(i) Under 14Y (dp), fori,j € V, the increasing sequence G(”)(i,j) converges almost
surely to a finite random variable G (i, j).

(ii) Let F, be the o-field generated by Sy, . Then under v}V (dB), for alli € V, 1™ (i)
is a nonnegative (F,)-martingale which converges almost surely to an integrable
random variable i (i). Moreover, ¢ is Hg-harmonic on 'V, i.e. Hgy(i) = 28,9(i) —
Zj~i Wz,]"/}(]) =0forieV.

(iii) From now on, we will denote v/ (df3, d~y) = VW(dﬂ)@M%eﬂd% where the density
ﬂ“%e*“’dy is that of a Gamma(1/2, 1) distribution.

Let now iy € V be fixed. For 3 € DY and v > 0, we define
o fre T o
G(i,j) = G(i, j) + ﬂw(l)lﬁ(J)v

and denote by P?7-% the distribution of the Markov jump process started at z € V,

where the jump rate from i to j is $W; ; g%zzz))

Then the time-changed VRJP on (G, W), started at iy, is a mixture of these Markov
jump processes under v\ (dj, d), i.e.

IPVRJP(io)[,] - /Pi’”’io[ﬂuy(d@d’ﬂ-

(iv) For V“’/V—almost all 5 and all iy € V, we have:

- The Markov process with law P27 is recurrent if and only if 1(i) = 0 for all
ieV.

- The Markov process with law P2V js transient if and only if (i) > 0 for all
1eV.

Note that for iy € V fixed, in this representation of the VRJP started at i, the S field

cannot be expressed as a function of the random jump rates %% that define the

environment. However, we can define the B field rooted at iy, where f3; is the rate of the
exponential holding time at ¢ for the associated Markov process.

Proposition 2.7. Foralli €V, § € D‘V,V and v > 0, we define
= Wi j Gio, j) 1

P = — = =D — 1 i=iot o~ N\

h Z 2 G(ig,1) p { O}2G(Z()7ZO)

gri

Then under v (dB,dy), 1/2G(ig,io) has distribution Gamma(1/2,1) and is independent
from (3. Moreover the Laplace transform of 3 is

W o Wi - i 1
/e NBLW (4B, dy) = e~ Dims Wia VIRV TEA -1) H —

i£ig

for \ € RY with finite support.
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2.2 A common form for all representations

We still consider G = (V, E) to be an infinite connected graph, locally finite and
endowed with conductances (W; ;) jev. Thanks to Theorem 2.6, we already know
that the time-changed VRJP with distribution PY#/P(i0) can be written as a mixture of
Markov jump processes, using the distribution Y. We will refer to this as the standard
representation. We are now interested in other possible random environments, that
would represent the VRJP in the same sense, and whether they can be expressed in a
form similar to the standard representation.

We will denote by jVE the set of jump rates on G, i.e. the set of (ri’j)mev S IRXXV
such that r; ; =01if {i,j} ¢ E.

Definition 2.8. Let R(dr) be a probability distribution on Ji¥. Foriy € V fixed, we will
say that R(dr) is the distribution of a random environment representing the time-changed
VRJP started at i if

PVRIPG0)[] = /Pgo[-}R(dr),

where forr € .7"}5 , P" is the distribution of the Markov jump process with jump rate from
i to j given by r; ;. We will also say that R(dr) defines a representation of PV /P (o),

The following result tells us that in fact, any representation of the VRJP can be
expressed in a similar form as the standard representation, using a 5 field as well as
Hg-harmonic functions.

Foric Vandre J, we definer; = 3, i .

Theorem 2.9. Let iy € V be fixed, and let R(dr) be the distribution of a random envi-
ronment representing the time-changed VRJP with law PV /P () We write R(dr, dy) =
]1{ >0} —

R(dr)® —e Ty

Forr € J¥ and v > 0, we define 8 € (Ry)" by 8; = r; + L;—;,}y fori € V. Then
under R(dr,d), 5 ~ 1/“7, and there exists a random Hg-harmonic function h : V — Ry,
such that for alli ~ j,

S Wi ; G(io, j)
“ 2 G(ig,i)’

where G (ig, i) = G(ig, i)+ h(i) fori € V, and G is the function of 3 defined in Theorem 2.6.

In order to try and classify all representations of the VRJP, we now need to identify
Hg-harmonic functions, and to determine which ones can appear in the expression of a
representation, as in Theorem 2.9. Two interesting cases arise, depending on (G, W):
when the VRJP is almost surely recurrent, or almost surely transient.

In the first case, we can use the law of large numbers to show that the representation
of the VRJP as a mixture of Markov processes is unique.

Proposition 2.10. If (G, W) is such that the VRJP is almost surely recurrent, then the
representation of the time-changed VR]JP started at iy as a mixture of Markov processes is
unique, i.e. if R(dr) and R’ (dr) define representations of PV %/P(0)  then R(dr) = R'(dr).

Note that in this case, according to Theorem 2.6 (iv), under y“ﬁv(dﬂ), we have a.s.
¥(7) =0 forall ¢ € V, and the jump rates in the standard representation are given by
WQJ g((f;f)) . Therefore, the Hg-harmonic function associated with the unique representa-
tion (by Theorem 2.9) is h = 0.

In the second case, i.e. when the VRJP is almost surely transient, we can introduce a

random conductance model, associated with .
Proposition 2.11. If (G, W) is such that the VRJP is almost surely transient, then under
Y (dB):

(i) We have a.s. (i) > 0 for all i € V, where 4 is defined in Theorem 2.6.
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(ii) We define the random conductances c;{}j = W, ;¥ (i)¥(j) for alli,j € V. Then the
associated reversible random walk is a.s. transient.

(iii) Let A¥ be the discrete Laplacian associated with the random conductances C;{)j’
Then a function ¢ : V — R is AY-harmonic if and only if i + (i)p(i) is H[}-

harmonic.

Remark 2.12. The introduction of the operator A¥ allows a more convenient expression
of representations in the transient case. Indeed, if R(dr) defines a representation of
PV RJP(0) Theorem 2.9 allows us to construct a j3 field distributed according to v}/,
and to express the jump rates r; ; using 3 and a Hg-harmonic function h. According to
Proposition 2.11 (iii), we have h = 1, where @ is a AY-harmonic function, i.e. harmonic
for a transient random walk. As a result, ¢ can be expressed using the Martin boundary
associated with A¥, as described below.

The notion of Martin boundary is a useful tool to represent harmonic functions with
respect to a transient random walk on a graph G = (V, F). Indeed, V admits a boundary
M so that V U M is compact for a certain topology, and there is a kernel K : V' x M so
that any positive harmonic function » can be written as

h(z) = /M K(z,0)p" (da)

for € V, where p" is a positive measure on (M, B(M)). M is called the Martin
boundary of V' with respect to the random walk, and K is the Martin kernel, which is
defined using the Green kernel associated with the random walk. For more details on
Martin boundaries, see Section 3.3.

In order to study representations of the VRJP in the transient case, we want to
describe A¥-harmonic functions, according to Remark 2.12. We will therefore need to
identify the Martin boundary MY associated with AY¥. This will be possible when G is
7%, or an infinite tree.

2.3 Main results
2.3.1 Representations of the VRJP on Z¢

Let us consider the case where G is the lattice Z¢, i.e. G = (V, E) with
V=27%and E = E; := {{z,y}, |z —y| = 1}

where |z| is the Euclidean norm of . Let us endow G with constant initial conductances
W. Since this model is invariant by isometries of Z%, we will only consider the VRJP
started at 0.

We can identify several situations in which the representation is unique. For d = 2, or
if W is small enough, the VRJP is almost surely recurrent (see [19], and Corollary 1 in
[21]), so that the representation of PVZ/F(9) is unique according to Proposition 2.10. For
d > 3 and W large enough, the VRJP is almost surely transient (see Corollary 3 in [21]),
hence we can introduce the operator A¥ defined in Proposition 2.11. Since (G, W) is
vertex transitive, from Proposition 3 of [23], under 1/“7 (dp), v is stationary and ergodic.
This allows us to apply a local limit theorem for random walks in random conductances
(from [1]), and show that the Martin boundary MY associated with A¥ is almost surely
trivial for W large enough. These cases are regrouped in the following result.

Theorem 2.13. Let G be the Z? lattice, endowed with constant edge weights, i.e.
W;; =W > 0 for all i ~ j. We consider representations of PV7/F(©) as a mixture of
Markov processes.

Then:
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e Ifd € {1,2}, there is a unique representation of PV /7 (0)

e Ifd > 3, there are constants 0 < W < W such that for0 < W < W or for W > W,
there is a unique representation of PVE/F(0),

2.3.2 A family of representations on infinite trees

Let us now consider the case where the graph is an infinite tree 7 = (7, E), that we
assume to be locally finite, and endow with conductances W. In [5], Chen and Zeng
described a representation of the time-changed VRJP with a different expression than the
standard representation. Indeed, if (7}, ),en is an increasing and exhausting sequence
of finite connected subsets of T, the subgraphs 7™ = (Vo, Ep) of G are finite trees
(where E,, = {{i,j} € E,i,j € V;,}). These are called restrictions of G with free boundary
conditions.

Moreover, on finite trees, Theorem 2.2 gives a representation of the VRJP where jump
rates are independent. Therefore, a representation of the VRJP on 7 can be obtained
from representations on 7", using independent jump rates.

Theorem 2.14 (Theorem 3 in [5]). Let ¢ be an arbitrary root for T. For all i € T\{¢},
we denote by i the parent of i. Let also (A;);er\ ({4} be independent random variables
where A; is an inverse Gaussian random variable with parameter (W ,, 1), i.e.

W- . 2
IP[AZ S dS] = 1s>0 ek e_Wii 25 ds.
- S

Then the process with law PVE/P(®) on T is a mixture of Markov jump processes, in

. . - .. . . <. W,
which the jump rate from 1t to i is %W;lAl and the jump rate from ¢ to 1 is % +, for all
i e T\{s¢}.

In some cases, this representation is different from the standard representation.

Proposition 2.15. Let 7 = (T, E) be an infinite d-regular tree with d > 3, i.e. such
that each vertex in T has exactly d neighbors. We endow T with constant conductances
W. Then for W large enough, the distribution of the random environment described in
Theorem 2.14 is different from the distribution of the standard representation.

We now know two ways of constructing representations of the VRJP on 7, that are
associated with different boundary conditions on restrictions to finite graphs, and can
have distinct distributions. This leads us to introduce new boundary conditions in order
to construct a family of different representations of the VRJP, following the same method
as for the standard representation.

Let us start by giving a few notations on trees. For all z,y € T, we denote by d(z, y)
the graph distance between x and y, and by [z, y] the unique shortest path between x
and y:

[z, y] = (:L’ = [z, y]o, [z, yl1, -, [mvy]d(x,y)—lay = [mvy]d(%y)) :

Note that any path o from x to y necessarily crosses all vertices [z, yx for 0 < k < d(z,y).

Let us fix an arbitrary root ¢ in 7. Then, for all z € T, we denote by |z| = d(¢, z) the
depth of the vertex x € T. If x # ¢, we also denote by & = [¢,x];—1 the parent of .
Finally, for any = € T, we define the set of 2’s children S(z) = {y € T,z = §}, and the set
of its descendants T, = {y € T, 3k > 0, [¢, y]r = x}.

For x,y € T, we denote by = A y the “closest common ancestor” of x and y, i.e.
x ANy = [p,x]n, , where N, , = max{k > 0,[p,z]x = [¢,y]x}. Note that we also have
x Ay = [x,y]k,, Where kg is such that |[z, y]r,| = min{|[z, y]x|,0 < k < d(z,y)}.

For n € IN, we denote by D(™) = {2 € T, |z| = n} the tree’s nth generation. Let us then
define T = (J,.p.c,, D®), as well as E™ = {{i,j} € E,i,j € T™}. The restriction of
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the tree to the first n generations, with free boundary conditions, is the graph (T(”), E(”)),
that we endow with the induced conductances W™ = WT@,)’T(M. Forz € Tandn > |z

we also denote 7" = T, N T(™ the set of descendants of  in T,

Finally, we define the set 2 of ends of 7, i.e. the set of infinite self-avoiding paths (or
rays) in 7 starting at ¢. For « € T, we denote by (2, the subset of () corresponding to the
branch T, i.e. the set of rays in T that cross z. Note that the Martin boundary associated
with a transient walk on a tree is always €2, which depends only on the geometry of the
tree. This will be convenient to express A¥-harmonic functions, where AY is the random
Laplace operator introduced in Proposition 2.11.

With these definitions out of the way, let us present new boundary conditions on trees,
and the associated representations for the VRJP.

In the construction of the standard representation, the wired boundary condition
was defined by adding a single boundary point § to a finite graph, where § could be
interpreted as a point at infinity for the graph. We will now introduce a variant of this
boundary condition, by adding multiple boundary points, each being a point at infinity
for a different branch of the tree.

Let us first fix a generation m > 0, and to each vertex =z € D(™), we associate a
boundary point §,, that will be the point at infinity for T,,. We denote by B,, = {0,z €
D(m)} the boundary set associated to this generation. For all n > m, let us then define
the graph

’

Gl — (Tr(n”), E,(,’;)) , where T\™) = 7" U B,,

and E™ = ™ y U {{y,éw},y €T, N D(”)} .
zeD(m)

(511 5:62 61’3

i
7(n) ’

This graph is the restriction of 7 to 7" with a variant of the wired boundary
condition. Note that we get the standard wired boundary condition by taking m = 0. We
endow G with the conductances W,™, defined for e € E(™ by

(W) - Wi =w,  ifee E™
e > jes Wiy ife={i,d,}, where i € T, N D).
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As with the wired boundary condition, these weights are defined so that for n > m, the
weights coming out of 7" are given by Wre (remyeLipemye = n(™. This will allow for
the compatibility of ﬂ,(,? ) fields defined on g,(# ) for n > m. Note that these weights do not
depend on m, i.e. do not depend on the choice of the boundary condition.

For 3 € DY, we still define Hs = 28 — W and take V,, = T for all n € N in
Definition 2.5. We then get G(*) = ((Hg)pw pew)~ " and (™ = Gy, which converge
u“j‘/ -a.s. to G and 1) respectively, according to Theorem 2.6.

Moreover, for all n > m, under vy (df3), we can extend (. into a potential ﬂ,(,ff )~
(n) -
ui?f’;) on G (see Lemma 6.1). Let us then denote by alm — (265,?) — W&"))‘1 the

associated Green function. From Theorem 2.2, we know how to represent the time-

changed VRJP on Qm using G%L ). In order to obtain a result on the infinite tree 7, we

will see that ng) converges when n — oo, by writing it as a sum over paths in gf,? ).

Some new terms, defined below, appear in this expression.
Definition 2.16. Forn > m > 0, let y\%) € RT"*5n be defined by

(Hgxin' (-6.))z00 =0,
X (z 52)

Xm (Z 5)

1 ifi € T\T™,
0 ifi € T\(T, UT™),

for z € D\"™). Note that (ng)(-,(sw))T(n) = (é(n))T(n)’T(n)WT(n)7(T(n))c]l

Remark 2.17. Forn > m, XS,?) is Bpm)-measurable, and for = € D(™) and Yy € T(n),

Z X(n) Z (") (y,0:) = G (y,')WT(n)’(T(n))c]l(T(n))c
bEBm, xzeD(m)

=G (y, )™ =ypM(y).

TAT(™

The decomposition of Gglf ) as a sum over paths in 97(7? ) gives the following expression
(see Lemma 6.2): fori,j € T,

G, 5) =G5+ D X0 (6,6:)G (0, 0ar )X (G, 62

z,x’€D(m)

Once again, we will study the limit of this expression when n — oo, to obtain a represen-
tation of the VRJP on (7, W). However under v} (df3), contrary to 4™, X(")( ) is not
a martingale when m # 0. Moreover, the term (Gglf)) B,.,B,, 15 not independent of By
for m # 0. Therefore, we cannot use the same argument as in the proof of Theorem 2.6.
However, we will still be able to show the almost sure convergence of XS,? ), using the
structure of the tree and the associated Martin boundary, and deduce the convergence
in distribution of (Ggff )) B..B., conditionally on 3.

Let us give a few more details on the Martin boundary: we expect XS,?)(-,(SJC) to
converge to a Hg-harmonic function on T, for all x € D™ and 1/“7 -almost all 5. When
1 > 0, we can introduce the operator A¥ in order to study H g-harmonic functions (see
Proposition 2.11), thanks to the associated Martin boundary MY . Since the graph is a
tree, the Martin boundary is equal to the set €2 of ends of 7, which is deterministic. Note
that the boundary condition used to define gf# ) corresponds to identifying €2, to a single
point d,, for all z € D™ We will see that the limit of x'’ (-, 5,) can be expressed with
the family of harmonic measures (ﬂ?)ieT defined, on the Martin boundary MY¥ = (, as
the exit measure of the transient walk associated with A¥ started at 7 (for more details,
see Section 3.3). For 3 € DTW such that ¢ = 0, we adopt the convention that u? is the
null measure on 2 forall z € T
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The following theorem states the almost sure convergence of Xﬁf{’ ), and the existence

of a family of representations constructed as previously described.
Theorem 2.18.

(n)

(i) For allm > 0, fory € T and x € D™, we have v}¥ -almost surely xm’ (y,0.) —
Y(y)ul Q). Forally € T, we define the measure x(y,-) = ¢(y)ul(-) on €.

(ii) Let m > 0 be fixed. For v}¥ -almost all 3, we define the |B,,| x | B,,| matrix C, by
0 ifv =1,

(Cm)éz,éw/ - {X(mAw/,QI)X(mAw/,QI/)

G(zAz! ,zAz')

otherwise.

From now on, let us write: vy (df,dpm) = yﬁ(dﬂ)ug: (dpm).

For v¥ -almost all B and for p,, € Dg:;, we define G, = (2pm — Cy) ', as well as
Jm : Q% = Ry a locally constant function, such that for z,2’ € D™ and w € Q,,
T € Qu, we have §,,(w,7) = Gp(0s,0,/). Finally, for v -almost all 3 and for
pm € DS, fori, j € T, we define

Gon(i21) = Cli)+ | (i) ) (,7),

and denote by P2-°m+io the distribution of the Markov jump process started atx € V,

where the jump rate from i to j is %Wm g%égi;

Then the process with law PV /P(0) js a mixture of these Markov jump processes,
under the mixing measure Vq‘/a‘ij (dB,dpm), i.e.

IPVRJP(io)[_} — /]Piﬁ(;pm’w['] Yv“YB,,,L(dﬂ7dpm)'

(iii) The distribution under v}y (dS,dpn) of the jump rates (3W; ; gr’;%‘;z;)w] con-
verges weakly to the distribution of jump rates in the representation described in

Theorem 2.14.

Let us now consider the case where 7T is a d-regular tree, with d > 3, endowed
with constant conductances, i.e. W, = W > 0 for all e € E. Then (7,W) is vertex
transitive, and from Proposition 3 of [23], we know that under v}V (df), v is stationary
and ergodic. Therefore, depending on d and W, we either have P[Vi € T, ¢ (i) = 0] = 1,
or P[Vi € T,4(i) > 0] = 1.

In the first case, from Theorem 2.6 (iv), this means that the VR]JP is a.s. recurrent,
and therefore admits a unique representation (see Proposition 2.10). Note that in
Theorem 2.18, we have a.s. G, = G for all m € IN, so that all the corresponding
representations are indeed equal. The following proposition describes the second case,
i.e. when the VRJP is a.s. transient. According to a result from [9], this is true for large
enough initial weights .

Proposition 2.19. Let T be a d-regular tree, with d > 3, endowed with constant con-

ductances W large enough so that the VRJP on (T,W) is a.s. transient. Then the
representations of the VRJP given in Theorem 2.18 are different for distinct values of m,

i.e. if m # m/, the distributions of jump rates (%W 4G"‘(i°’j)> ~under v}¥y (dB,dpn)
le y m

b G (iO 7i)

and (%Ww%)m; under V%/Bm, (dB,dpy) are different for all ig € T
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2.4 Open questions

A first question concerns the case of Z? with constant conductances W': is it possible
to show that the Martin boundary associated with AY is a.s. trivial for any W such that
the VRJP is transient? In this case, it would prove the uniqueness of the representation
of the VRJP on Z¢ for any constant initial conductances W.

Another question concerns a possible classification of all representations on trees
using partitions of the Martin boundary. We have constructed a family of representations
from different boundary conditions on the tree, corresponding to some finite partitions
of the Martin boundary (2, more precisely the partition Q = (J, . pm) Q2 for m € N. It
should be possible to define more representations using the same method, with boundary
conditions associated with other finite partitions of 2, where each set in the partition
can be written as a finite union of sets €2,. To generalize this, we can ask if it is
possible to determine which partitions give us a valid representation, and whether all
representations can be written in this form, or as a limit of such representations, as in
Theorem 2.18 (iii).

2.5 Organization of the paper

Section 3 exposes some useful technical results concerning the g field, as well as
basic definitions and properties of the Martin boundary. In Section 4, we prove how
all representations of the VRJP have a common form, i.e. Theorem 2.9. We use these
results in Section 5 to study the case of the graph Z¢, and show Theorem 2.13 using a
local limit theorem in random environment. In Section 6, we construct a family of new
representations of the VRJP on infinite trees (Theorem 2.18). Section 7 presents several
properties of this family, in particular that the representations are all different in the
case of a regular tree (Proposition 2.19).

3 Technical prerequisite

3.1 The random potential § on finite graphs

Let G = (V, E) be a finite connected non-directed graph, endowed with conductances

(We)ecr- Let us give some useful properties on the distribution V‘I;V .

Proposition 3.1 (Proposition 2, Theorem 3 in [20]). For § € D“’,V, let G = (Hg)~! be the
Green function associated with 5. We define F' : V x V — R by

Then under V“;V(dﬁ), for all ip € V, we have the following properties:

() (F(i,i0))iev is (Bi)iev\{i,} -measurable.
(ii) If we denote v = m then v is a Gamma random variable with parameter
(1/2,1). Moreover, «y is independent of (3;)i+,, and therefore independent of

(F(i,i0))icv -

This proposition explains the presence of 7 in the expression on G in Theorem 2.6.
Moreover, it allows us to prove Proposition 2.7, describing the distribution of the S field.

Proof of Proposition 2.7. Let G = (V, E) be an infinite connected non-directed graph,
and (V,,)nen an increasing exhausting sequence of finite connected subsets of V. For
neN,let g = (f/(”), E(”)) be the restriction of G to V,, with wired boundary condition,
endowed with conductances W ("), defined as in section 2.1. Moreover, for n € IN, we
still define G and ¥ as in Definition 2.5.
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The proof of Theorem 2.6 (iii) uses the fact that under ug’ (dB,dv), there exists a
coupling of random fields (3("),cw, such that for all n € N: (™) ~ 1/“;‘/(:;); ‘(Z) = Bv,;
and G = (28" — W)=, where fori,j € V("),

G™ (i, j) = ™ (i, j) + %W(z‘)w(“) ).

We can then apply Proposition 3.1 to (™) at iy: since G = (28" — W ("))~ we have
M _ g g L
bi i+ Li=io) 2G ™) (ig, i)
for all i € V("), where .
3 = 3 Wi, G(")(iod).
b2 G (io,d)
According to Proposition 3.1, 1/2G ™ (i, %) is a random Gamma(1/2, 1) variable, which
is independent of (3

(n)

CEEDY

J~io

)ic (i} Moreover, for i # i, B = g™ and

W™ qm (i, § W
2 07.7) _ ,j (n)(;: :
= IV o

Jr~io

so that 3(") is (ﬁf"))i6‘7<n>\{io}-measurable, and therefore independent of G (i, io).
Taking the limit when n — oo, we deduce that 1/2G(ig, i) is a random Gamma(1/2,1)

variable, independent from the 3 field, where for i € V,

o W GGd) 1
P2 G T e Sy

jri

Since the Laplace transform of a Gamma(1/2, 1) variable is, for ¢t > 0,

ety ]]‘{’Y>O} e Vd~ = 1
T VIFt

and given the Laplace transform of 1/3’ in Proposition 2.4, we now know that the Laplace
transform of 3 is, for A € RY with finite support,

5 1 1
E[e~ M) = e~ Ling Wi g (VIFliy/1+1;-1) H ) 0
V14 A, boiny V141,

On finite graphs, the distribution 1/“7 , and more generally I/‘I;V " forn € RY, behaves
well with respect to restriction, as shown in the next proposition, which is a generalization
of Proposition 2.3.

Proposition 3.2 (Lemma 4 in [23]). Let us fix U C V and n € (Ry)Y. Then, under
vy"(dB), we have:

(i) By is distributed according to VEVU'U’ﬁ, where
i =nu+ Wuyuelye.
(ii) Conditionally on By, By- is distributed according to VEVT] where

W = Wye ve + Woe v (Hg)vw) ™" Wupe and 1 = nue + Woe v (Hg)vw) ™ o

Proposition 2.3 is a direct consequence of (1), in the case where n = 0. Moreover,
(ii) is useful to extend a potential By ~ z/g/ v where /) = Wy pelye into a potential

By ~ v{¥, using the distribution of 3. conditionally on £ .
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3.2 Green function and sums over paths

Let us still consider a finite connected non-directed graph G = (V, E) endowed with
conductances W. For 3 € DY, it will be useful to express the Green function G = Hﬁ_1
as a sum over paths in G. We first introduce some notations for sets of paths.

Definition 3.3.

(i) Fori,j € V, we denote by PV the set of paths o fromi to j in 'V, i.e. the set of finite
sequences o = (0y, ...0;) in V where g =i, 0y = j and o ~ ogy1 for0 < k <1 -—1.
We denote by |o| = [ the length of the path o.

(i) ForU Cc V,i € U and j ¢ U, we denote byP the set of paths o € PZVJ such that
o €U for0 <k <|o|—1.

(iii) For U C V and i,j € V, we denote by PXU,;‘ the set of paths o € Plvj such that
o € U for some k € [0,]|c]].

(iv) Fori,j € V ando € P,

i s We define the following notations:

lo| -1 o] lo] -1

H W onirs (28)0 Hm,k and (26); H 2B, -

We get the following expressions, in terms of sums over paths, for G and related
quantities.

Proposition 3.4 (Proposition 6 in [20]). Let 5 € D‘V,V. Then:

(i) Fori,j eV,

. . WU
Gid)= 2. g

GGPXJ
In particular, for U C V we denote GV = ((Hg)y,v)~", then fori,j € U, we obtain
A 1%
GY(i,j) = o,
)= 2, g,

aeP}fj

(ii) Fori,j €V,

(iii) ForU C V andi,j € U¢,

W, W, W,
g — g G ; 0'_
oe; (26); Z1,zzz:€U ae%;“ (2ﬁ); (21 Z2) ZL:/C (25)0

\U,j i,z TEPj 2,

In particular, if U = {z}, this becomes

Wo _ oo | | |
067; @), ~ T2 2)F0,2) = F0,2)0(z,5).
i {z}J

Remark 3.5. If G = (V| E) is now an infinite graph, let (V,,),en be an increasing se-
quence of finite connected subsets of V such that V = U,nV,,. For § € D‘V/V and n >0,
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we define G(™) = GV» = ((Hp)v, v,)~" as in Definition 2.5. Then from Proposition 3.4 (i),

we get
A W,
G, ) = D <
6.9) .. (20)o
06771-1;'

forn > 0 and i,j € V,. From Theorem 2.6 (i), under v}/ (d3) the increasing sequence
(G™(i,7))nen converges almost surely to G(i, 7). Hence, we get

Are Wo
UEPXj 7
forei,5 € V.
) ;5 - GUV64) AT € () ;o
Let us also define F\" (i, ) GG and F(i,7) G639 for all 4,j € V and

n > max(|i|, |7]). Then, from Proposition 3.4 (ii) we have

FO@5) = (;;;_;;;;F(i,j) > (;;3’_,

0652/)?’\{'7}

where the convergence is true V‘V,V -almost surely.

3.3 Martin boundary and harmonic functions

Let us give more details about the theory of Martin boundaries. The following results
can be found in Chapter IV of [24].

Let G = (V, E) be an infinite graph, we consider an irreducible random walk (X, )neN
on G, whose transition matrix is P, where P; ; = 0if {i,j} ¢ F (i.e. we assume that (X,,)
is a nearest-neighbor random walk). Moreover, we assume that (X,,) is transient.

Let us denote by P, the distribution of the random walk started at z € V, and by ¢
the associated Green function, i.e.

g(x,y) = Z P, [X, =yl

nelN
We also denote
9(z,y)
9(y,y)
For all y € V, g(-,y) is harmonic at any = € V\{y}, i.e. for all  # y, we have g(z,y) =
> oz Pr.29(2,y). This is still true for f(-,y). The Martin Kernel, defined below using f,
as well as the Martin boundary, will allow us to represent all positive harmonic functions
for the random walk.

f(a:,y) :]Pw[an € IN>Xn :y] =

Definition 3.6. Let us fix a reference point ¢ € V.

(i) The Martin kernel is the function K : V2 — R defined by

~ flzy)  g(x,y)
Kle.y) = f(oy)  gloy)

(ii) The Martin compactification is the smallest compactification V of V', with respect
to the discrete topology, so that K (-,-) extends continuously to V x V. It is unique
up to a homeomorphism. The Martin boundary is defined as M = V\V.

For the proof that this compactification exists, see Chapter IV in [24].

In the following, we still denote by K (-, -) the extension of the Martin kernel to V' x V.
For all o € M, the function K(-,a) : V — R4 is harmonic with respect to the random
walk. Conversely, the following representation theorem states that all positive harmonic
functions can be expressed using the Martin kernel.
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Theorem 3.7. Let us denote by H™ the set of positive harmonic functions on V. Then
for all h € H™, there is a Borel measure ;i on M such that forallz € V,

h(z) = /M K(z,0)p"(do).

Remark 3.8. If, for all z € V' and for all sequences (y,),>1 going to infinity, we have
K(z,y,) — 1, then the Martin boundary is trivial, i.e. reduced to a single point. Accord-
ing to Theorem 3.7, in this case, all positive harmonic functions are constant.

Since (X,,) is transient, we almost surely have X,, — oo, in the following sense: for
all finite subset U C V, {n € N, X,, € U} is almost surely finite. Thanks to the Martin
boundary, we can now describe this convergence more precisely.

Theorem 3.9. For all z € V, (X,) converges P,-a.s. to a M-valued random variable
X. The distribution of X, under IP,, denoted by p., verifies

o (B) = /B K (2, 0)pg(dor)

forallBC MandxzeV.

The space (M, B(M), (uy)zev) is called Poisson boundary. Moreover, we call har-
monic measures, or exiting measures, the family (u,)zcv .

In the case where 7 = (T, FE) is an infinite tree, the Martin compactification will
coincide with another, which does not depend on the random walk defined by P, but
simply on the geometry of the tree 7.

Definition 3.10. Let us fix an arbitrary root ¢ for T.

(i) We call infinite ray in T an infinite self-avoiding path starting at ¢, i.e. a sequence
w = (wk)ken of distinct vertices in T, such that wy, ~ wi4+1 for k € N and wy = ¢.
The set of infinite rays, also called the set of ends of T, is denoted by ().

(i) Ifw,€ € ), we denote N, ¢ = max{k € N,wp = & }. We can also define, ifx € T,
Ny = max{k < |z|,wy = [¢,z]r}. We then set Ok = {¢ ¢ Q Nye > kU {zx €
T,Nyz > k}.

(iii) We define the end topology on T'U(Y, which is discrete on T, and such that (O ).cn
is a basis of neighborhoods at w € ().

Recall also that for x,y € T, we define N, , in a similar way to Definition 3.10(ii), as
the depth of the closest common ancestor to x and y: N, , = max{k > 0, [¢, z]x = [¢, Y]x }-
The following proposition introduces the end compactification, which will coincide
with the Martin compactification on the tree, as stated in Theorem 3.12.
Proposition 3.11. The end topology on T U €2 does not depend on the choice of ¢, and
is induced by the following metric:

0 ifr=y
d(z,y) =
(.9) {er otherwise,

forxz,y € TUS). Moreover T U (2 is compact, and called the end compactification.
Theorem 3.12.

(i) Let (X,) be a nearest-neighbor random walk on T, that we assume to be transient.
Then the Martin compactification coincides with the end compactification, and we
can identify M to (), and set T =T U ).
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(ii) The Martin kernel on T X T is locally constant, with
K(z,w) = K(z,r Aw), wherex Aw = wn,,
forz e T, we.

We also have an expression of harmonic measures u, on the tree. For x € T, we
denote by , the set of ends for the subtree T,, i.e. Q, = {w € Q,3k € N,w, = z}.
Moreover, we denote by U, = T, \{z}. Then:

Proposition 3.13. Forxz # ¢ andi € T,

f(z, %)
(l‘)( )

Remark 3.14. From Carathéodory’s extension theorem, this entirely describes the
expression of ;4. From Theorem 3.9, we can then describe all harmonic measures using

f.

Nz(Qm) = ]l{iEUI}U- - f(Zvl))) + f(l,l’)

4 Distributions of arbitrary representations

This section contains the proofs of the results from Section 2.2, stating that any
representation of the time-changed VRJP can be expressed in a similar way to the
standard representation.

4.1 A common expression for jump rates: proof of Theorem 2.9

Let G = (V, E) be a locally finite connected graph, endowed with conductances
(Wi j)ijev such that W; ; = W;; > 0if {i, j} € E, and W, ; = 0 otherwise. We still denote
by PV17F(%0) the law of the VRJP on (G, W), in the exchangeable time scale, started at
19 V.

Let us first show that the distribution of the ,3 field (see Proposition 2.7) appears in all
representations of the VRJP. Recall that for all r € J{¥ and i € V, we define r; = > i Tig

Proposition 4.1. Let ig € V be fixed, and let R(dr) be the distribution of a random
environment representing PV /() in the sense of Definition 2.8.

Then under R(dr), (r;);cv has the same distribution as the field B rooted at iy, i.e. its
Laplace transform is

Ar) =2y Wii (VI /14X, -1) I |
/e R(d?’) - itio \/17 + A
for A\ € RY with finite support.

Proof. Let ip € V be fixed, let R(dr) be the distribution of a random environment
representing PV 7/ P(0) j e,

PVRIPG0)[] — /IPQO[-}R(dT%

where IP” is the distribution of the Markov jump process with jump rate from ¢ to ;5 given
by Tij- ~

Let us prove that under R(dr), (r;);cv has the same distribution as the £ field from
the standard representation.

Lemma 4.2. There exists a random field (u;);cy € RY such that R-almost surely, Tij =

Wi awi—u, .
—5Let T fori ~ j.
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Remark 4.3. Since the random field (u;);cv is defined up to an additive constant, we
can set u;, = 0 a.s. without loss of generality.
Proof of Lemma 4.2. For r € J{¥, let us define t;; = %ﬂ“m’ for all i ~ j. Then to
prove this lemma, it is enough to show that for any cycle o= (00, ..., 0n), we have R-a.s.
to 1= 2;3 tow,0ne1 = 1. Since G is connected, we only need to prove this for cycles o
such that og = p.

Recall that we denote by (Z;);>0 the canonical process on C,(R4, V). Let PM/¥ be
the distribution of the Markov jump process with jump rates %WW-. Then, according
to Theorem 3 from [22], for all T > 0 the law of (Z;);<7 under PV//F(®0) is absolutely

continuous with respect to its law under P}//”, and its Radon-Nikodym derivative is

e~ Zi'\aj Whj(\/l"'lim_l) 1
S ST NiEan

iio

where W; =5, W, ;, and l; = fOT 1y7,—idt is the local time at 7.
Let o be a cycle such that og = 0|5 = 79, and let us denote by o" the nth concatenation

of 0. Moreover, for T > 0, we define (Z)r as the discrete path taken by the trajectory
(Zt)i<7. Then we have, forn > 1 and T > 0,

~ =2 im Wi (VI+LA/14]-1) 1
]PVRJP(io) 7 R ) :/]1 g € ]PMJP dz).
[( )T (<) ] {(Z)r=0"} e_zz‘ev 1wl o m 10 ( Z)
17#10

However, since the random environment (7; ;);~; gives a representation of the VRJP as a
mixture of Markov processes, we also have

PV RIP(io) [(Z)T _ Jn] - /IPZT0 [(Z)T = gn]R(dr)
_ 1 o|—1 "
e Pievrili (HL:‘O ra;c,Uk+1) MJP
= 1 Z)r=o" nIP (dZ) R(d?")
{®&r } - 1.1, lo]—1 1 *o
e” iev 2 Wils (Hk-:o §W‘7k*‘”€+1)

— iy rili
[ i€V n MJP
_ / L) | g () RUNPY P (d2)

Let us fix € > 0, and define the event A, . = {t, > 1 +¢}. Then we get
PVRIPGI[(Z)p = 0"] > / 1{(z)p=on} / La, e Ziev"ili(1 4 )" R(dr)PM " (dz).

Let M > 0 be such that under R(dr), P[A, . N Bu] > P[Asc]/2, where By = {Vi €
V,r; < M}. Note that T'= ), I;, so that

IPVRJP(iO)[(Z)T :0’”} > /]l{(E)T:an}/]lAO_YEﬂB]weiMT(l+E)nR(dT)P£\()4JP(dZ)
—-MT

e
2

> 5 (L+ &) PlA, P [(Z)r = 0],

On the other hand, we also have

= Y Wi s (VIH /141 —1)
PYRIPE(Z)r = o"] 2/1{(2)T:an}€ - 1W\lﬁ L_prirg,
e Yiev 3Wils i m
< e]\/[ TIP%IJP [(Z)T _ o_n],
EJP 25 (2020), paper 108. https://www.imstat.org/ejp
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where M’ = max{iW,,,0 < k < |o|}. Since PM/P[(Z)r = 0"] > 0 for all T > 0 and

n € N, we get

efMT

(1+¢e)"P[A, ] <eMT,

Taking n — oo for fixed T > 0 shows that P[A, .| = 0. As a result, we have almost surely
te <1

For e > 0, we now set A . = {t, < 1 — ¢}. Using the same notations as before, and
the fact that a.s. t, <1, we get

PV EIP(io) [(Z)T = 0”] < /ﬂ{(g)T:Un} /eM,T (]IAZTYEC + ]lA;m(l - s)") R(dr)l?%'jp(dz)
< MT(PlAL ]+ PA, (1 — &)™) PMIP[(2)r = ™.

On the other hand, on the event {(Z)r = ¢"}, we have [; < T for all i € {o},0 < k < |o|}
and /; = 0 for all other i € V. As a result, for such trajectories,

o~ Ting Wi (VIFL/141-1) 1 N o= M'T
e~ Ziev sWili i Vit~ (1+7) EE

where M" =3, ., 4 Wi, so that,

-M"T

PYRIPG) () = o] > ¢ ——PMP[(Z)p =0o"].
(1+T) =
As before, this yields
M'T 1 oc ’ e_M”T
T (PA, T+ PIAL N1 —€)") > ———F
(1+7T) =
for all T > 0 and n € IN. Taking first n — oo, then 7' — 0, we get that under R(dr),
]P[A;’Ec} = 1. Therefore, we can conclude that R-almost surely, ¢, = 1. O

In order to identify the distribution of (r;);cy under R(dr), we obtain their Laplace
transform as the density of cyclic trajectories of (Z;):>o under PV#/F(0) with respect to
P}M7P Indeed, given a cyclic trajectory (z:);>o in G, started at iy, we denote by o the
associated cyclic path in G, and (I;);cv the local times, so that 7' = ZieV l;,and [; >0
if and only if ¢ € {04,0 < k < |o|}. Then the Radon-Nikodym derivative at (z;);>¢ of
PV EIP (o) with respect to PM7F is almost surely

e~ Zi,Nj Wl](mm_l) 1
e Yiev 3Wili 2+ V1 +li’
i#ig

but also
e~ Diev rili

e Zq‘,ev %Wll7
since t, = 1 R-almost surely. Therefore, for all finite connected subset U of V, and
almost all (;);ev € (R%)Y x {0}V\Y, we have

R(dr)

=i Wi i (VIHLiy/141;-1) 1 :/ ~YievriliR(dr) = Ele~ Ziev Tili].
¢ U7=-/- (dr) = Ele ]

Since these are continuous functions of (I;);cv, this equality is true for all (I;);cv € ]RK
with finite support. As a result, under R(dr), (r;)icy has the same Laplace transform as
the field B associated with the standard representation of the VR]JP started at iy (see
Proposition 2.7), and therefore the same distribution. O
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Theorem 2.9 results easily from Proposition 4.1, since adding an independent Gamma
variable to the previous B field yields a potential with distribution VV This provides the
expression of the jump rates using the associated Green function Ganda H g-harmonic
function.

Proof of Theorem 2.9. Let iy € V be fixed, and R(dr) be the distribution of a random
environment representing PY#/P(i0)  Thanks to Proposition 4.1, we know the distribu-
tion of (r;);cy under R(dr). Note that the distribution of a Gamma(1/2,1) variable is
1620} 0=74y, and that its Laplace transform is given by

VY
/ —ty — >0y {“/>0} —'yd 1
\/1+t

for ¢t > 0. From now on, we denote R(dr, dy) = R(dr) ® 1”\/%"} e~ Vdr, which is a distribu-

tion on J¥ x R.
For r € J and v > 0, we now define (53;);cv by 8; = r; + Lgi—iyy for i € V. Then
under R(dr,dv), the Laplace transform of 3 is, for A € ]RK with finite support,

1 1
—(\,8) {(r>0} — _/ —Siev it / —Aigy >0}
e R(dr e dy= [ e ZievNTiR(dr) [ e Mo e Tdy
/ (dr) = (dr)

VY
_ — ey Wi (VTTTiy /T -1) H
w/l + Ay o \/1 +1;

i.e. (B is distributed according to I/‘I}V (see Proposition 2.4). We can then define R(dr, dv)-
as. G:VxV =Ry and ¢ : V — R, thanks to Theorem 2.6. Moreover, by analogy with
the standard representation, let G(ip,-) : V — R4 be defined by:
1
G - . - Uj
(40,1%) 276 ,
where (u;);cv was introduced in Lemma 4.2. This way, under R(dr,dv), foralli # j €V
the jump rate r; ; can be written as
N Wi G(iOaj)'
i 2 Glig,i)

Let us set (i) = G(ig,i) — G(io,7) for alli € V. Then Hzh = 0. Indeed, for i # i, we
have

28:G i, i) — Y _ Wi ;Gio, j) = 2r;iGlio, i) — Y _ 2r; ;G(io,i) =0,

Jri Jri
and for ¢ = g,
_ Tty Tio,j
251'0 Z0,10 g Wzo gG 10,7) = ~ Z T =1,

Jjr~vio Jr~io
therefore fori € V, HgG (io, i) = lfi—jpy = HsGig, 7).
Let us finally show that A(i) > 0 for all i € V. We define 7';0’ = inf{k > 1, Zp = 0},
where (Zk)ke]N is the discrete version of (Z;);>o. Then for all i # i,

Pilrt <ool= > Pi[(Zo,. Zo)) = (00, 0)a))]
oePY o)
lo|—-1 lol =1
_ Z H Toy, Tokoktr _ Z H o'k,o'k+1 ZO, O'kJrl)
0Py i) k=0 o€y o) k=0 200, Glio, on)

_ G(io, o) Z Wo _ G(ig,i0) G(io,1)
Glioi) £, @)z Clioni) Glioyio)’

i,ig
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from Proposition 3.4. Therefore, we have G(ig, ) < Gio, iO)G(zo, ). Moreover, thanks to
the Markov property we have

Tig,j G(io, o) G(ZOv /)

]PT < OO ]P = _ ]P’l" < =
T Z =J] [T oo Z ri, G(io,J )G(Zo,lo)

i~vio jmio
_ Z Wio.i é(im J) _ 1 S W, G(Zo])

ot 2(Bio =) Glio, o) 2B, — zo,zo) oo (i0,10)

284, — 10’20)

e,

therefore we have G(ig,io) > é(io,io), as well as G(ig, i) > G(io, i)forallie V.
As a result, G(ig, -) can be written, for all i € V, as

Glio, i) = G(io, ) + h(i),

where h : V — R is a non-negative Hg-harmonic function. O

4.2 The recurrent and transient cases: proofs of Propositions 2.10 and 2.11

We now consider two particular cases for the weighted graph (G, W). The first one is
when the VRJP on (G, W) is a.s. transient, in which case the representation is unique, as
proved below.

Proof of Proposition 2.10. We assume that (G, W) is such that the VRJP is almost surely
recurrent.

Let (7;;)i~; be fixed jump rates on V, such that the associated Markov chain is
recurrent. We denote by PP} its distribution when started at iy. Note that under P; , the
time spent at a vertex ¢ before jumping is an exponential variable with parameter r;, and
the probability to then jump to a specific neighbor j is i

Let us then define the following functions of the traJectory (Z:): fori e Vandn > 1,
we define 5t§”) as the time spent by (Z;) at the vertex ¢ during its nth visit to 4, and v(")
the neighbor of ¢ towards which the process jumps after its nth visit to i. Under P; ,
since the process is recurrent, these random variables are well-defined for all - € V' and
n > 1. Moreover, the sequences (5t§”))n21 and (Ui(n))n21 are independent, so thanks to
the law of large numbers, we have almost surely

n
&t; == lim ZZ:I 6t’(k _1 and p; ; := lim M = @,
n—oo n T n— 00 n T
foralli,j e V.
Let now R(dr) be the distribution of a random environment representing the VRJP
n (G, W), ie. PYRIPG[] = [Pr[]R(dr). Since the VRJP is a.s. recurrent, then
under R(dr), P} is a.s. the distribution of a recurrent Markov chain. Moreover, under

PYRJIP(0) | §t. and p;,; are a.s. well-defined for all 7,5 € V, and (%J ) _is distributed

according to R. Since these functions of the trajectory do not depend on the chosen
representation, the distribution R is uniquely determined. O

The second interesting case is when the VRJP is a.s. transient. In this case we
introduce a random conductance model associated with v, which defines a transient
random walk. We can then relate Hg-harmonic functions to harmonic functions for this
walk. This will be useful to study the Hg-harmonic function appearing in the expression
of any representation, according to Theorem 2.9.
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Proof of Proposition 2.11. Let (G, W) be such that the VRJP is almost surely transient.
Since, according to Theorem 2.6 (iii), we have PVA/PG0)[] = [ P27,V (4B, dv), then
under V‘V/V (dB, dv), the Markov process with distribution IPf0 7% g a.s. transient. From
Theorem 2.6 (iv), this means that under v}’ (dj3), we have a.s. (i) > 0 forall i € V,
which proves (i).

Let us now consider the random conductance model with conductances ij =

W; ;4 (4)¢(j). We denote by =3 i 154 ; the corresponding invariant measure, where

=) > Wi ¥ (j) = 2B;1)(i)? since v is Hg-harmonic. Let P¥ be the distribution
of the associated random walk, whose transition probability from ¢ to j is

pv = G _ Wisb()
R4 261 (7)

fori,j € V. Moreover, let us denote by ¢¥ the Green kernel associated with P¥, defined
fori,j € Vasg¥(i,j) =3 pen P Y[Xy = j], where (X;)ren denotes the canonical process
on VN, Then we have

lo|—1
= Z Z ]P;I)[(Xo, Xk: = 0' Z H O’;,Uk+1w O'k+1)
kEINO'EPXjJﬂ:k UEPV Pt ng )
16 Wo  _%G) s A s
- = 208G ),
Y (i) o—;v (28)s V(i) B;G (i, j)

()

where under v} (dj3), (z Jj) is a.s. finite for all 4, j € V, from Theorem 2.6 (i). As a result,
we have almost surely g¥(i,j) < oo, therefore the random walk P¥ is transient almost
surely, proving (ii).

Let AV = (p;/fj — 1;—j})ijev be the discrete Laplacian associated with P¥. We will
say that a function ¢ : V — R is A¥-harmonic if (A¥p)(i) = (ij p;/jj«p(j)) — (i) =0
for all i € V. Therefore, a function ¢ is A¥-harmonic if and only if for any i € V,

2B:0(i)p(i) — > _ Wi ;9(3)
J~i
i.e. if and only if ¢ is Hg-harmonic, which concludes the proof of (iii). O

5 Representations of the VRJP on Z%: proof of Theorem 2.13

Let us now consider the case where G = (V, E) is the Z? lattice, endowed with
constant edge weights, i.e. W; ; = W > 0 foralli ~ j. Forx € R¢, we will denote by |z
its Euclidean norm. We fix 7o = 0.

The aim of this section is to prove Theorem 2.13, concerning the uniqueness of the
representation on (Z<, W). Let us first distinguish two regimes for the weighted graph:
when the VRJP is a.s. recurrent and when it is a.s. transient.

5.1 Recurrence and transience of the VRJP on Z¢

For d = 2, the VRJP on (G, W) is a.s. recurrent for all W > 0, according to Theorem 2
in [19]. Therefore, the representation of PV /() as a mixture of Markov jump processes
is unique (see Proposition 2.10). If d > 3, Corollary 1 in [21] tells us that for small enough
W, the VRJP is a.s. recurrent, in which case the representation of PV %77 () is once again
unique. Let us now show that for large enough W, even though the VRJP is almost surely
transient, the representation is still unique.
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From Corollary 3 in [21], we know that for W large enough, the VR]P is a.s. transient.
From now on, we consider such W. Then thanks to Proposition 2.11, under »{Y (d3) we
have a.s. 1(i) > 0 for all i € V. Moreover, we can define the Markov operator A¥ and, for
h:V — Ry, his Hg-harmonic if and only if /v is A¥-harmonic. In light of Remark 2.12,
in order to show that the representation of the VRJP is unique, we need to show that the
only positive A¥-harmonic functions are constants, i.e. that the Martin boundary M
associated with A? is almost surely trivial. To do this, we will need a local limit theorem
in random environment, found in [1].

5.2 Local limit theorem for random walk in random conductances

Let us consider a random conductances model on G = (Z4, E;), with d > 2. Let P
be a distribution on the set of conductances (R} )", such that under P(dw), we have
as. 0 < w;; <ooforalli~ j. Forw € (R%), let P be the distribution of the
continuous-time constant speed random walk associated with w. This is the Markov jump
process with jump rate from i to j given by 2.4, where 7% = Y. . w; ;. This way under

)
T

ji
P“, the holding time of (Z,);>¢ at each point is an exponential variable of parameter 1,
which justifies the term “constant speed”. Finally, we denote by ¢“ the heat kernel, i.e.
the transition density of the walk with respect to 7*: for z,y € Z? and t > 0,
PY Zt =Y
() = L=
7T'y

The following theorem from [1] is a local limit theorem for ¢“, under ergodicity and
integrability assumptions.

Theorem 5.1 (Theorem 1.11 in [1]). Let us assume that P(dw) is stationary and ergodic
with respect to translations of Z%, and that there exist p, q € (1, 0] satisfying 1/p+1/q <
2/d such that E[w; ;] < oo and Elw, ] < oo for all i ~ j.

Then for 0 < T} < Ty and K > 0, we have P-a.s.

lim sup sup |ndqw(th,O7 |nz|) — akt(x)‘ =0,
N0 3| <K te[Th,T2)

where |nz| = (|nz1], ..., |nzq]), a = 1/E[r§] and k; is the Gaussian heat kernel with
some deterministic covariance matrix ¥2, i.e.
1 _zt?) 7l

Jemide)

Remark 5.2. If the distribution P(dw) is also invariant with respect to all permutations
of coordinates in Z%, then the law of the limiting Brownian motion must be as well.
Therefore its deterministic covariance matrix has the form 2 = ¢21,;, where ¢2 > 0.

kt(x) =

This also provides a local limit theorem for the Green kernel ¢, defined for w €
(R7)%¢ and z,y € Z¢ by

o0
9% (z,y) = / q“(t, z, y)dt.
0
This result was also mentioned in [1], we give here the details for the proof of a slightly
stronger result’, that insures the uniform convergence for z in an annulus.
Theorem 5.3 (Variant of Theorem 1.14 in [1]). For d > 3, under the assumptions of

Theorem 5.1, we have P-a.s.

lim sup [n?"?¢¥(0, |nz]) — agpm (0, 2)| =0,

N0 1<z <2

11 would like to thank Sebastian Andres for his help regarding the details of this proof.
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where gg) is the Green kernel associated with the Brownian motion with covariance
matrix ¥?, i.e.

r(d/2 —1)

ty12y—1,\1—d/2
274/2 det(32)1/2 (&t (2%) )=

%Mm@:/ () dt =
0

Proof. This result is obtained by integrating in Theorem 5.1. Moreover, we will need the
following bounds on ¢“, which are true almost surely.

Firstly, Theorem 1.6 in [2] gives a short-range bound, which also applies to k;: IP-a.s.
there are constants C, ¢y, ce > 0 such that for ¢t > Cn|x

’

2
_ca(nlz])
t

¢“(t,0, |nz]) < e t=%2e ,

and forall t > 0,
c \1\2
k() < et~ 2e= .
Now, for a long-range bound: according to the proof of Theorem 10 from [7], for any

A>0,and any t > 0, z € Z% and n € IN, we have

1

t
¢° (1,0, |na]) < ————exp (dg(O, [nz)) ( =A+ (cosh(A) = 1)————— )
/776%7‘[’7”J < dg (0, Lnxj))

where dg denotes the graph distance on Z<. Therefore, for |z| > 1 and t < 2Cn, and for
n large enough so that dg(0, |[nz|) > n/2, we have

t 2Cn
< =4C.
dg(0, [nxz]) = n/2
As a result, there exists \g > 0 small enough so that for such z, n and ¢,

-
dg (Oa \_nxj )

Hence there are constants ¢z > 0 and Ny € IN such that for |x| > 1, n > Ny and ¢t < 2Cn,
we have

—Xo + (cosh(Ag) — 1) < —Xo +4C(cosh(Ag) — 1) < 0.

1
q*(t,0, [nz|) < . ———

,/ﬂgﬂfmj

Note that the integrability assumption implies that E[p§] < oo, where pi’ = 3", ,

1
Wil
Therefore, for |z| < 2,

1 w w 1 .
o <Pl < Z py,aswellasﬁg Z e,
Lnz) ly|<2n ly|<2n

and thanks to the ergodic theorem, there exist P-a.s. constants ¢4 > 0 and N; > Ny,
such that for n > Ny,

S 02 < ea(2n) o).
ly|<2n

This finally yields the following bound: for 1 < |z| < 2, n > N; and t > 2Cn, we have
P-a.s.

qw(t7 07 I_nxj) S csnde—()g’r”w‘.
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Using these bounds, we can now show that for n > N; and 1 < |z| < 2, we have P-a.s.

n"2g*(0, [nz]) — agpar (0, 2)| =

nd/ q“ (n?t,0, an])dt—a/ kt(x)dt‘
0 0

2C/n T Th
< nd/ ¢ (n?t,0, |nx|)dt + nd/ ¢ (n?t,0, |nx))dt + a/ ke(z)dt
0 2C/n 0
T> o) %)
+ / In%g®” (n?t,0, [nx|) — ak(z)|dt + nd/ ¢” (n?t,0, |nx))dt + a ke(z)dt
T Ty T

T1 o0
< C'n2d—1g=csn (1+ a)/ Cltfd/2efcz/tdt +(1+ a)/ Cltfd/2efcz/tdt
0 To

+(Ty —Ty) sup  sup |n%g*(n’t,0, |nz]) — ak(x)].
|2|<2 te[Ty,Ts)

Let ¢ > 0. Since t — ¢t~ %/2?e~2/t is integrable on (0, c0), we can fix T}, 7> > 0 indepen-
dently of x such that

T1 o0
/ clt*d/Qe*Q/tdtJr/ et~ ltgy « S
0 Ty 2(1+a)

Then

sup [n?"%¢*(0, [nz]) — agpa (0, )]
1<|z|<2
<(Ty—Ty) sup sup |n%q”(nt,0, [nz|) — aky(x)| + C'n>lemem 4 2,
|z|<2t€[T1,T>] 2

so that from Theorem 5.1, there exists NV > N; independent of x such that forn > N,

sup \nd_zg“((), |nx]) — agpam (0, )| < e,
1<e/<2

which is true PP-almost surely. O

Remark 5.4. Let us fix conductances w € (R* )2, We denote by (Z,)necn the discrete
version of (Z;);>o. Then, for z,y € Z<,

*° pe(Z, = 1 o
g“’(:z:,y) :/0 e [ ! y] dt = fE;J |:/0 ]l{Zt—y}dt:|

Ty Ty
S S
=SB ) Lz | =5 D Pz =y,
7Ty n=0 7Ty n=0
where 3°°° | P¥[Z, = -] is the Green kernel associated with (Z,),cn under P¢. Indeed,

since under P the holding time of Z at each point is an exponential variable of parameter
1, the expected time spent by (Z;):>0 at y is exactly the expected number of visits of y by

(Zn)nelN'

5.3 Martin boundary associated with AY

We return to the VRJP on 7%, d > 3, with constant initial conductances W large
enough so that the VRJP is almost surely transient. From Proposition 2.11, under
Y (dB), we then have a.s. (i) > 0 for all i € V. Moreover, the random conductance
model associated with conductances cgjj = W, ;9 (i)1(j) defines almost surely a transient
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random walk. We still denote by A¥ the discrete Laplacian, and define wf =3 i cjj =
283:1(i)?, as well as g¥ the corresponding Green kernel:

- () os A
9% (@,y) =Y PY[X) = y] = —=£28,G(i, ).
2 (i)
We want to identify the Martin boundary MY associated with A¥, by studying the
behavior at infinity of the Martin kernel K%, defined by

KY (z,y) = gw (z,y)

9¥(0,y)
for all 2,y € Z%. In order to do this, we will use Theorem 5.3.

Proposition 5.5. There exists W > 0 such that for W > W, under v}V (df3), the Martin
boundary MY is almost surely trivial.

Proof. Note that under 1} (d3), the distribution of the random conductances c;b_j

stationary and ergodic with respect to all isometries of Z?, thanks to Proposition 3 of
[23]. Moreover, for W large enough, the integrability assumption of Theorem 5.3 will be
verified.

Lemma 5.6. Consider the graph G = (V = Z%, E = E,), with d > 3, with constant initial
conductances W. Then for all p > 1, there exists W, > 0 such that for W > W, the VRJP
on (G, W) is transient a.s., and for all i ~ j, under v}¥ (d3) we have

E[(()¢(4))"] < oo and E[(y(i)y (7)) *] < oo

Proof. The proof is the same as for Lemma 7(i) in [23], which states the above result
in the case p = 1. It uses a delocalization theorem for the supersymmetric hyperbolic
sigma model, from [12]. Let us give an outline of the proof.

For n € N, define V,, = [—n,n]?, and let G(™) be the restriction of V to V,, with wired

boundary conditions, i.e. (™ = (V,,U{4,}, E™) (see section 2.1 for more details). Recall
that for i € V,,, ¥ (i) was defined in Theorem 2.6 as the limit of /(") (i) = %
G™ is the Green function associated with a 3(™) potential on the graph (G, W(”)).

(n) .
Then w(”)(i) = ¢%. (), where ug:) has the same distribution as in the supersymmetric

is

where

hyperbolic sigma model on (G, W (™), rooted at 4,,.

This model was studied in [11] and [12] by Disertori, Spencer and Zirnbauer. In
particular, Theorem 1 of [12] is a delocalization result for the model, and states that
the fluctuations of u(()") (rooted at 0) are uniformly bounded in n: for any m > 0, for all
W >m8, foralln € Nand z,y € V,,

E {coshm (uén)(a:) - uén)(y))] <2

In the proof of Lemma 7 (i) in [23], Sabot and Zeng showed that this is still true when
rooting the model at §,,, and that this implies the existence of W; > 0 such that for
W > Wy, we have

E[y()(j)] < oo and E[(¥(i)9(5)) '] < oo

Since the delocalization result is true for arbitrarily large m, the same proof can be
adapted to show Lemma 5.6. O

We define W = W,,,. From now on, we assume that W > W, so that thanks to
Lemma 5.6, under 1y (dj3), for all i ~ j we have

E[(cfjj)dﬂ] < oo and E[(c%)_(dﬂ)] < o0.
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Therefore, according to Theorem 5.3 and Remarks 5.2 and 5.4, there exists o2 > 0 such
that 1V -almost surely,

sup [n?=(w) ) 71g%(0, [nz)) — agpar(0, )] —— 0,
1<|z|<2 nreo

where a = 1/E[r{] and gpy/ is the Green kernel associated with a Brownian motion with
covariance matrix ¢21,, i.e.

F(d/2 — 1) |Z|27d.

g9Mm(0,2) = 9x1/250

Using this result, we have v} -almost surely: g (0, yn) ~n—oo amy. g5 (0, yn), for any
sequence (y,)n>1 such that |y,| — co. Indeed, for such a sequence (y,,), let us define
my = ||yn|] and z, = yn/m,,. Then, since 1 < |z,| < 2 for all n > 1, we have

M —1| = (qumnzﬂ)_lgw((lmnzn) _1
aﬂ;l/}ngBM(Oa yn) m%_dangM (07 Zn)

md=2(x! )" 1g% (0, [mpzn]) — agea (0, )

|_mn sz
agpm (0, zn)

SUP1<|z|<2 |mg_2(ﬂ—1[z}mnzj )_lgw (07 LngJ) - agBM(Oﬂ Z)' 0

ainfi<|;j<2 98Mm(0, 2) n—00

v}y -almost surely.
Moreover, for x € Z? fixed, let 1/ be the translated function defined by % (y) =
¥(y — ). Then ¢ and ¢ have the same distribution under v}/ (d3), therefore we have

Y -a.s., for all (y,)n>1 such that |y,| — oo,

P

9" (z,yn) = gww (0,yn — T) ~nosoo aﬁ;fngBM(Qyn —z),

since |y, — z| — oo and wffL_I = my . Let us denote by A, the v}/ -almost sure event

where this is true. Since Z? is denumerable, (), ;4 A, is still v{¥ -almost sure. Therefore,
we have 1}/ -a.s. that for all z € Z4, for all (y,,),>1 such that |y,| — oo,

aﬂ-;/)ngBM(Ou Yn — LL') o |yn - $|2_d

= 1.
aﬂ;ﬁngBM(Ovyn) |y”|2_d nTreo

KV (:L‘7 yn) ~n—oo0

As a result, from Remark 3.8, the Martin boundary associated with A is 1/“7 -a.s. trivial.
O

Let R(dr) be the distribution of an environment representing PV 2/ on 7? en-
dowed with constant initial conductances W > W.

For r € J{¥ and v > 0, we define 3 by 3; = r; + 1{i—0y7- According to Theorem 2.9,
under R(dr,dy) we then have 3 ~ v{V. We define G and ¢ as functions of 3, as in

Theorem 2.6, and we can write

Wi,j (Oaj)

" T T G(0,4)

Q

where G(0,4) = G(0,4) + h(i) for all i € Z?, with h a Hz-harmonic function. Since W is
large enough so that under 1}¥ (df3), 1(i) > 0 for all i € Z? almost surely, the operator
A" is well-defined, and h/v is A¥-harmonic. However, according to Proposition 5.5 the

Martin boundary associated with A is 1Y -a.s. trivial, therefore positive A¥-harmonic
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functions are almost surely constant. As a result, there is a nonnegative random variable
g such that for all i € Z%, we have R-a.s.

G(0,7) = G(0,i) + gy (4).

In particular, g = (G(0,0) — G(0,0))/4(0), so g can be written as a function of
(8, m), and therefore has a function of ((r;);cz¢,7). Since according to Proposi-
tion 4.1, under R(dr, dvy) the distribution of ((r;);czq,y) does not depend on the chosen
representation R, this shows that the distribution of the jump rates r; ; = W2” g%g;)) is
uniquely determined, i.e. that the representation is unique.

Remark 5.7. Note that we can identify the distribution of g using the standard rep-
resentation. This shows that under R(dr),dy, we have g = (0)/2', where 7' is a
Gamma(1/2,1) random variable independent from (/5;);cza-

6 Construction of new representations on trees

Let now 7 = (T, E) be an infinite tree, that is locally finite. We fix an arbitrary
root ¢, and endow the edges of 7 with positive weights (W.)c.cg. The aim of this
section is to prove points (i) and (ii) of Theorem 2.18, which introduces a family of new
representations for the VRJP on infinite trees.

We will proceed as in the construction of the standard representation, by considering
the VRJP and the associated /3 potential on finite restrictions of the tree, with the new
boundary conditions introduced in Section 2.3.2. Theorem 2.2 provides an expression
for the representation on these finite graphs gﬁ,? ), and we will show that the associated
jump rates converge to a representation on the infinite graph.

6.1 Representation of the VRJP on g,(,’; )

Fix m € IN, and recall the definition of GV to each vertex € D™, we associate a
boundary point §,, and define the boundary B,, = {0,z € D(m)}; then for all n > m, we
define

gy = (T4, BYY) , where T4) = T¢) U B,

and EQ) =E™ U | {{y,ém},y €T, N D<">} .
reD(m)

We endow this graph with edge weights VV&"), where
() = ™ —W, foree B
e | Xjesuy Wiy fore={i,d,}, whereie T, DM,

According to Theorem 2.2, the mixing measure for the VRJP on ( ﬁ,:,l), ~7(,:l)) can

57 (n)
be expressed using a potential 67(,? ), with distribution 1/;‘?’” . As with the standard

n)

representation, we will construct a coupling of such potenﬁals for all n € IN, using the

potential defined on the whole infinite tree with distribution V.

For 3 € DY, we still define Hs = 23 — W. For n € N, let us take V,, = T(™ in
Definition 2.5, so that we get G(") = GT" = ((Hg) e pen) "t and 9™ = G,
Lemma 6.1. Fixn > m. For 8 € DY, and ' € (R} )P, we define the |B,,| x | B,,,| matrix

Wi = (W) g, w0 G (WD) pe g,

as well as the potential B4 € (Ri)ﬂnﬁ) by ( 7(,?))T<n> = Brw), and ( ,(,?))Bm =p.
W

() n) . P .
Then under u%v(d[i’)ug/;j (dp'), the potential ﬂ,(n) is distributed according to Ve -
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(n
Proof. According to Proposition 3.2, we have ﬁfn ~ V;‘fzg if and only if: the restric-

W(”) ﬁ%l) m

tion (Bfn ) is distributed according to v , and conditionally on (ﬁ,(,? ))T(n>, the

T(”)
(n ))

0
restriction ( is distributed according to z/g/ -, with the following notations:

W(n) = (W( )T(n) T(n), 777(71) = (W( ))T("),Bm]le
and W™ = (W(“ )B B, + (W( g, o0 (HS ) pw 260) " W) pon .-

myPm

where we define H 26 ) as the Schrodinger operator associated with Bm .

Let us first simplify the e)Epressmns of these parameters. Given the definition of W,(n"),
note that we have Wy = (W,(,L”))Tm)’T(m = W), Moreover, for i € T("),

(7)) = Z(Wéﬁ))i,b =1L,cpm Z Wi =Wy ponLpmsn = .
beB JES ()

Fin(al)ly, (") has the same expression as in the statement of the lemma: indeed,
( n

m )B,,L,B,,,L =0 and

(H) g 10 = 2085 ) 70 — (W) 1w o0y = 2Bmy = W = (Hg) o oy

therefore we have

Wi = (W), 5, + (W(n))Bm,T(")((H[gn))T(m,T("))71(W7(r?))T("),Bm
=W, 20 G W) pon g,

()
Let us now show that under v}V’ (dﬂ)ygi:‘ (dp"), 85 has the right distribution. From
(n)

. QUL W
Proposition 2.4, under v)¥ (d3), we have ) ~ z/;‘fn) e, (ﬂm Vrny ~ VT(;;‘) e
- (n) / wim wim .
Moreover, conditionally on (8’ )rm), we have 5’ ~vp™ (ﬁm )B,, ~ Vg™ , which
concludes the proof. O

From now on, we consider 8 € DY and ' € (Ri)Bm, as well as the potential 57(,?)
defined as in Lemma 6.1 for n > m. Let us denote by G = (Hé"))*1 = (285 — Wiy

the Green function associated with @(ff ) on g‘” . Then, from Theorem 2.2, we know
that the law of the time-changed VRJP on (G, (n) W(" ), started at iy € T(™, is a mixture

of Markov jump processes under vy (dﬁ)uBi” (dB’), where the jump rate from i to j is
SOV G (.

In order to obtain a representation on the infinite tree 7, we will need to show that
the Green function (GS]{ )(i, J))i,jer converges in distribution when n — co. To show this
convergence, we give another expression of Gﬁf ), involving G and the function XSJZ )
introduced in Definition 2.16.

Lemma 6.2. Fori,j € T, let ng > m be such that i, j € T("). Then forn > nq,

G, J) =G5+ Y X EB)GET (B,0)x (5, V).

b,b’€Bm

Proof. We show this result by expressing Gg,if) as a sum over paths in 7. We will use
notations and results presented in Section 3.2.
For n > ng, by applying Proposition 3.4 (i) to 57(# ) in the graph Q,(ﬁ" ), we get

. (W),
ng ( ): (25(,”)) :

ePTT(’ZL)
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. T . .
This sum over paths can be decomposed as follows: a path o € P; 7 can either hit some
T . . . .
vertex in B,,, in which case ¢ € 73 ...j» Or never hit any vertex in B,,, in which case

() () T () ()
€ P!, . As a result, we have P "‘ =P!; UP; 5 , where P/, NPy, =0,s0

(W) (W)
G%)(l,]): Z m a+ Z m )o

cepT(™ (255'7) )o e (257(5) )or

T-(n (n) T (”)
_ Wi )o (Wn'")g G (b, 1) ( )o
> > 2 (= | 7™ > (n)
GPT(”) (26 )U b,b’eB,, —=1(n) (26771 )0 =7(n) (2ﬁ )
o UEPiyb O'EPJ b

T(") Wiy, W ; 77 (n) _
s 5, since (W) ey pemy =
" (280 ’

from Proposition 3.4. Note that for any o € P; @8

W 7 and (Bm )y = Bre) . As a result,

~T)(’Ln)0' Wo’ N(n)y- -
Z ( (n)) _ Z o5 =GM(i,5).

oerrie COR)e e

q

Moreover, note that for z € D("™) and y € T,

37 (n)

i) -
( ) — Z Z ( m )01 ( mn))z76m

5T<n) (2/@(”)) = 'pT(") (Qﬂ(n))

Z G(n)(y’z> Z Wz,z’

z€T,ND(") z'€S(z)

=G (y, IWren (romyely, | o = X3 (y, 62),

oc

from Definition 2.16. As a result, we have

G, 5) =G+ Y XG0, 6)x() (5,). O
b,b'EBm

We will show that the distribution of G{% under vy (dﬁ)uB (dﬁ ) converges when
n — co. From Theorem 2.6 (i), we already know that G(") (i, j) converges a.s. to G(i, j),
let us now study the respective limits of x';’ and (Gg,'{ )) Bon,Bon -

6.2 Convergence of XS{: ), proof of Theorem 2.18 (i)

Let us still consider a fixed generation m € IN. We will show that Xm (z 0, ) converges
a.s. for all z € D™ and i € T. Moreover, the limit has a simple expression in terms of
the harmonic measures associated with the random Markov operator A¥. We will first
describe the Martin boundary associated with A¥, and the harmonic measures (,ul?b)ieT.

First, let us fix 3 € DY, and consider the function v defined in Theorem 2.6. We either
have ¢(i) > 0 foralli € T, or ¢ = 0. In the first case, we can define the conductances
(cg,’j)iwj as in Proposition 2.11, as well as the corresponding Markov operator A¥. Recall
that a function h is A¥-harmonic if and only if 1)h is Hsz-harmonic. The associated random
walk is transient, since the associated Green function g = g¥ is given by

¥(Jj)
(i)
for i,7 € T. This allows us to apply results regarding the Martin boundary of a tree.

gw(%]): 2ﬂjé(7’a.7)7
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From Theorem 3.12, the Martin boundary MY associated with AY is the set  of
ends of 7. Note that it does not depend on 3. We also get the Martin kernel K = KV:
forx € Tand w € ,

f@arw) (@) F(z, 2 Aw)

K(m,w) :K(%l‘/\w) = f(d)»x/\w) = w(x)ﬁ‘((ﬁ,m/\w)’

where f(i,5) = %i; = :%))F(z,]) for i,j € T. Moreover, we denote by (uf)ieT the
associated family of harmonic measures on 2. From Proposition 3.13, we have, for
,xeT,

1- f(xa f)
1- f($7f)f(f7$) .

Note that we have only defined (1) cr for 8 € D} such that ¢ > 0. In the other
case, we adopt the convention that u;/’ is the null measure on 2 forall y € T'.

i () = Lgiew, (1= f(i, @) + f(i,z)

Let us now show that almost surely, for all z € D™ and i € T, ng) (i,6,) converges
to ¢(i)p) ().

Proof of Theorem 2.18 (i). From Theorem 2.6, we know that V‘T’V (dp)-almost surely, for
alli,j € T, G™ (i, 5) converges to G(i, j) and (™ (i) converges to v(i). Let 3 € DY be
such that these convergences hold. Let us show that for such 3, and for all z € D™ and
ieT, Xﬁ,’f ) (i,0,) converges to 1 (i) M;"(QI), and we will have shown that this convergence
holds v}¥ -almost surely.

If S is such that ¢ = 0, we know that foralli € T, z € D™, 0 < Xflf)(i, 6z) < ™ (3)
from Remark 2.17, so Xfﬁ)(i, 0z) — 0= z/;(z)uf’(ﬂx) We now assume that j is such

that ¢ (i) >0 foralli € T.
Let us fix i € T and « € D™, Recall that for n > max(|i|,m),

n)(; A(n) (s n Wo n
X0 = Y Gy = Y > @5 .

y€T,ND(™) yeTNDM \ fcpT(®)
“»LY

Let us decompose the paths o € PZ";”), in order to write ngf)(i, d.) as a function of F®)
and (). We will distinguish two cases.

The first case is when i ¢ U, = T,,\{z}. Then for all y € T,, N D(™), any path from i to
y in T(n) necessarily visits z, i.e. PiT’;n) = PzT{(;)}y Therefore, from Proposition 3.4 (iii),
G™ (i, y) = FM™ (i, 2)G™ (x,y), and

X (i,00) = F™ () Y Gy
y€TND(™)

Let us express G (z,y) in a more convenient way.

Lemma 6.3. Fory € T, N D™, we have

. 1 W,
G z,y) = _ _ o
(@y) 1— F®)(z,8)F™M) (T, x) Z

Proof. In order to decompose G (z, y), let us introduce c, (), defined as the number of
times the path o crosses the directed edge (z, %), i.e.

CZL’(U) = #{k € [[07 |U| - 1]]7 (UkHUkJrl) = (CL‘,fC_)}
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Then we have

Alm W,
@y =3 Y 28),
CEN __pr(m 7
cz(a)iC

Ifoe P;F’;n) is such that ¢, (o) = C > 1, then it has to visit & at least once. As a result, o

. . =T\ {5} . n
can be written as the concatenation of a path oy € P, 5 M with a path o] € 79;{ ; " such

that ¢, (01) = C — 1. Since & ¢ U,, the path ¢} has to visit , so it can be written as the

I\ f g n
concatenation of a path o, € ;x et with a path o3 € PIT(y " such that ce(o3) =C —1.
Therefore, for all C' > 1,
DR =l D DR > el X oar
-, h), A 2 @), . @B,
oePl) o ePL . ME opePr, M o3Pl
ey (0)=C o o co(03)=C—1
) . W,
= PO (2, 5)F"(5,2) ) .
(n) (26)o
JGPZ:U
co(0)=C—1

Moreover, note that the paths o € 73; L) such that ¢, (o) = 0 are those that stay in the
(n)
subtree Tg(;"), i.e. the set PIT; % . By induction, we get:
. . . c W
Gy =Y (F<"> (z, ) FM (F, x)) oo

CeN () (28)o
oc€PLY

Since G(™ (z,y) < oo, we have F(") (2, £)F(") (%, z) < 1, which gives the expected result.
O

From Lemma 6.3, we get

. 1 W,
(n)(; — ) o (n)
Xon (4, 05) = F (i, x) ~ — - E E ny"-
1— F®(z,2)F™) (%, ) yEToAD ™ e (28)0
o Fzy

In order to express this last sum, recall that

Y (z) = Z G(n)(%y)ng(ln)

yeD(n)

S1E ot Do |,
eD(™®) 7(n) (25)0 (n) (26)0 Y
Y Uepl‘»(f‘},y 0'673;“;!

where we have separated the paths that go from x to y by visiting #, and those that stay
T(n)

in T\, since PUCT’;") = PxT,({T;},y U P.% . From Proposition 3.4 (iii), we have

WG (n N\ A(n) /s
> Gp — U@ @),
UEPT(n) 7

z,{&},y
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()
Moreover, if y € D(W\T,, then P.%, is empty. As a result, we get

> > | nf = (@) = PO (2, )9 (),
(26)0
yeT.ND™ \ i

which finally gives

P (@) = FO) (@, 7)™ ()

() (i 5,) = B
0.8 = FO i)

In the second case, ie. if i € U,, then for y € T, N D), there are paths from
i to y in T that do not visit z. More precisely, we have the following partition:

n n (n) n
PT( = PZT{(;} y U PZU; where U( ) — =U,NT™, As a result, we have

(n)(Z (5 ) F‘(n)(l7x)’(/}(n) (1'2 — F(n) (xj f)¢(n) (f) + Wo nén)
1 — E)(z, 5)F0) (7, 7) yeTszDm) ZPU(R) (28),
ocUP; ¥

In the same way we did above, we can show that

> Z Vo | = g™ (i) — FO (i, 2)p™ (),

(28)
veT,DM \ ol 7

i,y

In conclusion, we have established the following:

. n)/: (n) /- n (n) /- (n) F(n) D™ (§
X (i,6,) = ]l{iEUw}(w( @) = FO (@ 2)p ™ () + FO G, )wlf )(n)(x zgfw(ﬁ))é I()x)

1—f (f)
f(")( 7) fm (& ,x))

_ w(n)(i) <]l{ieUx}(1 _ f(n)(i,x)) + f(n)(i,x)

where

L PG A ;
)= gt ") =2 g

for alli,j € T. As a result, we finally have

F (i, F(i,5) = f(i,4)

(

Let us also define, for all i € T, the measure x(i,:) = 1/1(1)@” Note that x(i,-)
is absolutely continuous with respect to x(¢, ), and its Radon-Nikodym derivative is
F(iinw)
F(¢inw)’
Y(i)p? (A) is Hgz-harmonic.

0082) o 000 (Lpsew (1= £G62) + £ = L) = vt @), ©

w Moreover, for all A € B(Q), i — u?(A) is A¥-harmonic, so x(-, 4) : i

6.3 Convergence to a representation on 7: proof of Theorem 2.18 (ii)

(n) 0.1
To show that the distribution of jump rates 3 ( v ))- G _lio))

ST GGD (o i)
0o, it remains to be shown that (Gg,'f )) B,.,B,, converges in distribution. We show this
convergence conditionally on 3, thanks to the fact that the parameters of the distribution
are functions of ngf ) and G ("), and therefore converge almost surely.

converges when n —
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Lemma 6.4. For § € DY, let us define the |B,,| x |B,,| matrix C,, such that for z,z’ €
DM,

G(zAy,zNyY)

3 X (@AY Q) X (2AY, Q1) ifr#a
(Cm)s,.5, = ,
0 ifx =21

Moreover, for p,, € Dc:i, we define Gm = (2pm — C’ )’1
Then the distribution of(G( )B,,,B,, undervy (dﬁ)uBm (dﬁ ) converges weakly, when

n — oo, to the distribution of G,,, under vy (dﬂ)yB '(dpm), which we will also denote as
vy g, (dB, dpm).
T,Bum , APm

Proof. We can write (Ggff )) B,.,B,, as the inverse of a Schur complement. Indeed,

(G BB = (HSGE 5

ms

(g™ ) 7™ R -1
(Hy") BB — Wi ), o0 (Hg ) pe pe )™ (Wit )ren) ,,,

X -1 rr(n —
= (@88, — W) = ("),

where H () — =2 (")) B, — W (") We apply the following change of variables: for 3’ €
(n) .
D‘gg and b € B,,, let us define (p\), = (85, — 1 AN bp- Then H(") 2o — o),

where if b,V € B,,,

(CM Yy = (Wi il # Y
mow 0 ifb=1"v.

a0 5(n)
Under v/ (dﬂ)ug’:” (dp’), the vector p(") is then distributed according to I/g:: condition-

ally on 3. Let us show that the matrix C,(,? ) converges v, -almost surely, to prove that

p,(n) converges in distribution.

Letus fix 3 € DV, aswellas v # y € D™, and i ~ §,, j ~ §,. A path from i to j in
7(n)

T(™ necessarily crosses x Ay, since i € T), and j € T,,. Therefore, Psz() =P

ifzny},ir SO

(Coses, = Y We G (@ HWE)j8

in0g, 0y

> (Wis,. > (;/gja (W5,

in6z,§~0, (n)
v o€P; AxAy}.g

Y Wi)s il Wz Ay)(Wi)s, B (G A y)GT (@ Ay, z A y)

Y

ZN&L;]Néy
1 - R i )
= — 7(T:L) 5 z’G (CONININ 75:;) 5 ) iz A
GO Az Ny) <§3<W )oiG™ (6,2 A y) ]§N63y<w 13,56 (o A y)

i (@ Ay Ga)xin (@ Ay, 8y)
G (z Ay, z Ay)

)

and (C5M)s, 5. = 0. Since y'n) converges to y., v}V -almost surely, the matrix €\ also

converges to C,,

Under vy (dﬁ)uB (d,@ ), and conditionally on f, psff) is distributed according to

(n) y
ng , which ¥ -almost surely converges weakly to ug:: by Lévy’s theorem. Therefore,
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. ()
the distribution of (Ggﬁ))BWBm = (2o — )= under v%V(dﬂ)z/;Vr:‘ (dB") converges
weakly to the distribution of G, := (20, — Cy) ™! under v} (dB)vg™ (dpm). O

We now have all the ingredients needed to show that the representations on restric-
tions g}# ) converge, when n — oo, to a new representation on the infinite graph.

Proof of Theorem 2.18 (ii). Thanks to Lemma 6.2, for 0 <m <nand,j € T(") we have

GO (i) =G5+ Y xS b)GE (0,6 )XW (5.1),
b,b’€B,,

i (n) ~

where under V%V(dﬁ)ugi’: dp), G = (285 — W)~ provides a representation on
the VRJP on QT(,?), from Theorem 2.2 and Lemma 6.1. We have shown that when n — oo,
XEZZ ) converges almost surely, and (Gg:f )) B,.,B,, converges in distribution. As a result for

all i,j € T, the distribution of G,(Jf)(i, j) converges weakly to the distribution of G, (3, j)
under vy’ (df,dpy,), where

Gm(i,5) =G, )+ Y X0, )X )G (65, 6y).
x,x’€D(m)

The second term in G,,(i,j) can be rewritten as an integral on Q2. Indeed, let us
define g,, : 22 — R in the following way: for w, 7 € Q, if 2,y € D" are such that w € Q,

and 7 € Q,, we set g, (w, 7) = G (04, 0,). With these new notations, we can now write,
fori,j €T,

Gm(iaj) - G’(lv]) + Xm(i7 ')Gmt (Xm(ja ))
=Gl + | G da)x(dr)in 7).

For 8 € DY, pm € Dy, and all ig,i,j € T, we denote rf’j”’"“io = Wis 7%”%’121)) To

prove Theorem 2.18 (ii), we have to see that the process with distribution PV #/F (i) ig
a mixture of Markov processes IPZ"’"“Z'O under u:‘ﬁ‘,’Bm(d@dpm). The proof is the same
than that of Theorem 2.6 (iii) (see [23]). It consists in studying trajectories of the time-
changed VRJP, stopped when they leave a finite subgraph included in 7). They can
be considered as trajectories of the time-changed VRJP on gé,:? ), and represented using
Gg,? ) thanks to Theorem 2.2. Taking the limit in distribution when n — oo then gives the

result. Note that the proof needs an argument of uniform integrability on the family

(%(“”))) for all ¢,5 € T, which is given by Proposition 7 and Corollary 2 from
m \10,%) / n>m
[23]. - O

7 The family of representations of the VRJP on infinite trees

In this last section, we show some properties of the family of representations on
infinite trees, constructed in the previous section. The first one is Theorem 2.18 (iii),
and states that this family converges with the one described in Theorem 2.14. Then we
show that all these representations are distinct for a regular tree on which the VRJP is
transient.

7.1 Convergence to another representation: proof of Theorem 2.18 (iii)

Let us show that the representations of the VRJP built with G,,, converge in distribu-
tion when m — oo to the representation described in Theorem 2.14, with independent
jump rates. To show this, we use a tightness argument, based on the following lemma

regarding the distribution v/ .
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Lemma 7.1. Let G = (V, E) be a finite graph, endowed with conductances W. We
denote G = (Hp)~! for 3 € DY . Then for alln € RY, under vi¥ (df), (n, Gn) has the same

< >

distribution as , where « is a Gamma random variable with parameter (1/2,1).

Proof. let n € ]RK be fixed. We will compute the Laplace transform of (n, Gn): for
A€ Ry,

E[e—Mn,Gm] :/ —Am(Ha) '), W (43)
VB / e~ H VIR (Hy) VIR (VBN Y (43)

= 72 / wVPNI(dB) = emVERD),

since I/‘I;V VNI g o probability measure. Let us now compute, for v ~ Gamma(1/2,1), the
Laplace transform of %: for A € Ry,

1

2 _ 101
E |:€ 27:| — u>0 e 2u du = — ¢ 2(1;+2A1))dv
VT v>0 \/27‘(1)3
— (v 12
———e 2 v/ du,

_ oV /
v>0 V 27TU3

22 (1 2
by taking v = 1/2u. Since 1v>0ﬁ6 % ("= 75%) " du is the density of an Inverse Gaussian

distribution with parameter (1,1/4/2)), we finally get ]E[e—%] — ¢~V2A_ Therefore, for
all A >0,
E [e—mcm} _ VB _ g [e”} ’

which proves the result. O

Proof of Theorem 2.18 (iii). We will use Lemma 7.1 to prove that the sequence of random
jump rates (r(™)?),,cn is tight, then identify the only possible limit distribution for
each converging subsequence, which will provide both the weak convergence and the
expression of the limit distribution.

For m > 0 and 3 € DY, let us define, for i € T and m > 0, the vector ﬂz(-m) € RB» by
(5{™)(8,) = u¥ (92) for all = € D™, Then, for p,, € DG and i,j € T,

/ (i ) x (G dr )i (0, 7) = (i) / 115(d) 15 (A7) G (81 6.1)
02 Q ><Q ’

z,x’€D(m)

= V(@) (™, G iS™).
We denote, form > 0and i, j €T,

so that we have

fi;
@(u Z;“ ( ) ol — gl

Therefore, we can write (G, (i,7))ijer = ® ((G‘(i,j))i,jep (W())ierT, (aE?))i,jeT), where
® is a continuous function.

We will denote by 7}Y (d3, dp) the distribution of a coupling of u%’ B,, (dB, dpy,) for all
m > 0.
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Lemma 7.2. Let us set Z,, = ((G(i,j))i7jeT,(¢(i))ieT,(agfy))i7jeT> for m > 0, which
takes its values in R”~ x RT x RT". Then under v} (dB, dp), (Zm)m>o is tight.

Proof. For e > 0, let K. be a compact subset of R such that 0 € K. and

1

P { € KE} >1—¢
2y

when v ~ Gamma(1/2,1). Let us now fix m > 0. Recall that G,, = (2p,, — C,,) !, where

C’m is a f-measurable matyix of conductances on B,,, and conditionally on 3, p,, is

distributed according to z/g::. Therefore from Lemma 7.1, for ¢,j € T, conditionally

on j the random variable (7\™ + ﬂgm), Gm (ugm) + ﬂgf’”)

(1 (D +u7 (2))°
2y

ag?) has the same distribution as % and conditionally on {¢) = 0}, a

foralle > 0,

)) has the same distribution as

, where v ~ Gamma(1,1/2). This implies that conditionally on {¢» # 0},
(m)

i,j = 0. As aresult,

P[a(m) eKE} :P[wzo]Jr]P[zp;—éo]lPBeKE} >1—e.

x,x’

(m)

Let now (&;@m)> be an enumeration of (ai j > . Then for e > 0,
kEN 7 Jiger

P {wg eN,a™ e Kg_n_lg] >1-Y 2 le=1-¢,
keN

where K. = er]N K,5—n-1. is a compact subset of RN. Moreover, the 3-measurable

random variable ((G(i,j))i7je’1", (w(i))ieT) takes its values in R7”" x R7, where T is

countable. As a result, for all € > 0, there is a compact subset K. C R”” x R7 such that
P |((Gl0,))iser. (W(i))ier) € KL >1—e.
We can now conclude that for all € > 0,
P [((é(@j))i,je% (¥(8))ier, (az('?))i,jET> € K. x Ké/z} >1-¢
where f(E/g X K;/Q is compact, and does not depend on m. O

As a result, there is an extraction (my)ren such that (Z,,, )rew converges in distri-
bution under 7Y (d3, dp). Since G, = ®(Z,,,) where ® is continuous, (G, (i, 7)) jer
also converges in distribution under under 7% (d3, dp), as do the random jump rates
(r(m’“)’(z’)me;p. Let us show that the limit distribution of the environment does not depend

(2%
on the extraction, which will mean that ((rl(f;’)’d’

since it is tight.

)i,jer)menN converges in distribution,

i ()
Lemma 7.3. For m > 1 and for all n > m, under the distribution V%V(dﬁ)ugv: (dp'),

(™) (4
the random variables (G;’;>(¢’i)
Gom (¢7Z)

) are independent inverse Gaussian variables,
i€T™\{¢}

™) (4
where Z%Ej% has parameter (W- ;, 1) fori € T(™\{¢}.
(n) i . i
Proof. Let us fix 1 < m < n. Fori € T"™\{¢}, we denote g; = g;")iz% Since |i| < m,

any path in QT(,?) from ¢ to ¢ crosses { so from Proposition 3.4 (ii) and (iii),

G (i1) (Wi)o
9= — e = Wi, NN
GO (0.7 Z > 285,

~ 7(n)\ 5
J~ UEP}?T \ {2}
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For i € T(™\{¢}, let us denote by 7; the connected component of i in T\ )\{ }, ie.
T, = T(") U {d,,2 € D™ NT;}, endowed with the restriction of W( ") This way, we get

7r(n) -
9i =Wy, ZT m = Wi ((H(n))f“ T) 1 (3,4,

067371)}

so g; is (ﬁm )#,-measurable.

To prove that (9i)ieTomn (¢} are independent, it will be enough to see that for i €
T\ {¢}, g; is independent of gy om, and that for z € T(m=1), the restrictions (97, )ies(2)
are independent. '

-1 ~
Writing ((Hé"))TT) (i,1) as a Schur complement, we see that, if we set U; =

T\{i},
W, WZ,i

1,1

n n - gl
2( ’r(n))i - Zj,j’eS(i) Wi ;Wi 4 ((Hé ))gﬂgi) (4,3") Hg

gi =

(n)

From Proposition 3.2, conditionally on (8" )g,, the distribution of ( (n ))i is given by

0} 75 w2 (HS) T
\/7 HE >0 (ng }JrWTz,i(Hé‘ ") )6 ”d(ﬂm )“
)

so by a change of variables, the distribution of g; conditionally on ( ("))

Vis

- We .
i — et (gi—1)°
]lgi >0 271_93 e 2o 7 dgi7

%

i.e. g; ~ IG(Ws;, 1). Since this distribution does not depend on (Bﬁ? ))Ui' g; is independent
of (ﬁ,(,?))f] For all j € U™, T; c U, so g; is (B,(ﬁ))ﬁi-measurable. Therefore, g; is
independent of g;;m).

Moreover, for x € T(m=1), the sets (Ti)ies(:c) are all at distance 2 from one another
in g<"). Since (™ is 1-dependent, the restrictions (ﬂ%))ies(gﬁ) are independent. For

je T;, we have T cT;, so g; is ﬁ( )_measurable. Therefore the restrictions (gT )ieS(x)
are independent, which concludes the proof. O

We can now use Lemma 7.3, to show that any converging subsequence of (G,,)men
has the same limit in distribution, which corresponds to the representation from Theo-
rem 2.14.

For m > 1, the distribution of G\ under vy (dﬁ)yB (dﬁ ) converges weakly to the

distribution of G,, under vy’ (dfB,dpn). If we denote g§ ™ = g’"gi”; for i € T\ {¢},
W

and take the limit in Lemma 7.3, we get that under vy 5 (dB, dpm), (gz(m))ieﬂm)\{(b} are in-

dependent, and gim) ~ IG(Wx ;1) for i € T(™\{¢}. Recall that the random environment
associated with G,, is given by the following jump rates:

rf’.pm’d’:mli(;m((b i) andrﬁp’”q&*wv“ Gn(0:1)
2 Gum(9,1) 2 Gm(e,i)’
foralli € T\{¢}, and r[ /™% = 0if i £ j.
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Let now (my)rew be an extraction such that under 7Y (d3,dp), (r f]p'"’“(b)z jer con-

()¢)

verges in distribution to a limit environment (r i,jeT- Then, we have r( )¢ _ =0 for

i & j. Moreover, let us set g(oo) — éjo) ® for i € T\{¢}. Note that for all m €N, if k

is such that m;, > m, we have 7™ ¢ T("*) so for all i € T(™)\{¢},

/3 Pmy, 7‘15 W;,z g(mﬂ and T‘,:B;pmk o W;’L
7, i 2 7 050 2g(mk)

Taking & — oo, we get that (ggm’“))ieT(w\w} converges in distribution to (ggoc))jeT(m)\{qb},
which implies that (gi(OO))ieT“")\{qﬁ} are independent. Since this is true for all m > 0,
(g§°°‘>)i€T\{¢} are independent. Moreover, for all i € T\{¢}, gf"o) ~ IG(Ws,,1) and

W- . W- .
z(iO) ¢ = 217191(00) and Tz(io) ¢ = (Z;) '

The random environment given by these jump rates is in fact the one described in
Theorem 2.14, hence its distribution does not depend on the extraction (my)ren. Since
the sequence of jump rates ((r; B, p ¢)Z jeT)m>1 is tight, this implies that under 7Y (dg, dp),
it converges in distribution to the random environment given in Theorem 2.14. O

7.2 Distinct representations on a regular tree: proofs of Propositions 2.15 and
2.19

Let us start by proving that on regular trees where the VRJP is transient, the standard
representation and the one given in Theorem 2.14 are different.

Proof of Proposition 2.15. Let T = (T, E) be a d-regular tree, where d > 3. It was shown
in [9] that there exists a W > 0 such that for W > W, the VRJP on 7 endowed with
constant conductances W is almost surely transient. Note that the VR]P is defined in a
slightly different manner in [9], but it can be related to the definition used here, thanks
to a time rescaling described in Appendix B of [20]. From now on, we take W > W.

We consider jump rates (r; ;)i~; on the tree 7. Let ¢ be an arbitrary root for 7, and
let (ik)kZO il = k.
Let us define S,, = 2:1 %rikﬂ,ik. We will compare the distribution of S,, under two
distribution of jump rates.

Let R;na(dr) be the distribution of jump rates in the representation described in
Theorem 2.14. Under R;,q(dr), we know that S, has the distribution of [, A4;,,
where A;, are independent inverse Gaussian variables with parameter (W, 1). Note that
E[A;] = 1, so by Jensen’s inequality, E[log(4;)] < 0. By the law of large numbers, we
then have a.s. that >_,_, log(4;) —— —o0, so that S, % 0.

Let now R:(dr) be the distribution of jump rates in the standard representation of
the VRJP started at ¢ = ig. Under R (dr), Theorem 2.6 tells us that S,, has the same
distribution as

H Glig,ix) _ Glig,in) _ Glio in) + 550(i0)(in)
G(ig,ix—1)  Glio,io) G (ig, io)

under 1YY (dB,dv), where according to Proposition 2.11, (i) > 0 a.s. foralli € T.
Moreover, since the distribution of ¢ under v}/ (dj) is stationary for the group of trans-
formations of 7 (see Proposition 3 in [23]), ¥(i,,) has the same distribution as ¥ (ig) for
all n € IN, and cannot tend to 0 a.s. when n — oo. Therefore, neither can S,, under
Rst(dr), which proves that Ry and R;,q are different. O
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We will now prove Proposition 2.19, i.e. that on a d-regular tree with d > 3, for
constant W large enough so that the VRJP is transient, the representations in the
family given by Theorem 2.18 are all different. In order to do this, we will compare the
distribution of the random harmonic measures for each representation.

The following Proposition gives an expression for the harmonic measure of sets {2,
for x € T. We will see how this expression behaves differently whether or not |z| > m.

Proposition 7.4. Let m € IN be fixed. We also fix 8 € D and p,, € DC We denote

by ug’p’“*¢ the exiting measure of the transient Markov process IPf;”’m 0 defined in
Theorem 2.18. Then forxz € T,

foQI X(¢7 dw)gm(wa 7)X(¢, dT)
f(ﬂ X(¢, dw) Gm (w, T)x (¢, dT)

Proof. We denote 1 = uﬁ P et g be the Green function associated with the discrete

/}Lrgvl’mv(ﬁ(gw) —

Markov chain associated with P?:#=%, j.e. with jump rates rﬂ pmsd — W2 = gm((¢ Z; Let
us denote, fori,j € T, f(i,j) = géj j;. Then from Proposition 3.13, we get the following

expression for x # ¢: (
1— f(z, %)
1- f(a:,f)f(f,x)

M(Qm) = f(qb?x)

Fori,j € T, we have

lol=1  Bpmd , W
DA — IPB Prm¢ Tok,041 o m(¢7]) 'o
9(,5) = > =2 =5 =060 2 o
kelN oePl, k=0 Tk ocePt,

where Bi =3 i rf j” =% are the rates of the corresponding holding times. Note that

Bi = B; — Yi—srse—5 5 2Gm(¢.¢>) for i« € T. In particular, if a path o never crosses ¢, then

(28)6 = (28)o- B
Let us denote G(i,j) = ZaepT (2/3) and F(i,5) = G(id) then

G(5,4)
2 d = = F
9(i,j) = (qﬁ, ) G(i,§)2B;, and f(i, ) = Con(01) G7.g) ~ Conl1) (i, 7)
The expression for the measure becomes
(0, _ Gnlo:2) Glo.) (17 G2GHF(r )
W) = Gon(6,0) Gl a) \ 1= F(w, 8)F (&, 2)

Gm(d,0) \ G(z,z)— F(x,5)G(%,2) |

Let us compute the following terms: firstly,
G(x,z) — F(x,5)G(%,2) = Gz, ) — F(x,%)G(%, %) F(x, T)
_ Z Wo’ o Z Wa _ Z Wo’
(28)s (28)0 (28)0

oePL, "E’Pf,{f},z cePlz,

Indeed, paths from x to z that do not cross & have to stay in the connected component
of z in T\{#}, which is T, i.e. PL, \PT = PL=. Moreover, ¢ ¢ T,, so for o € P.:

- z,{T},x T
(26)s = (28)s. As a result,

G(z,z) — F(x,5)G(E,x) = Z Wo _ GTe (x, ).
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Secondly,
Gon(6,) = Gin(9, D) F (2, %) = G(¢,2) — G(o, ) F (2, 7)

+ [ X0 g, (o dr) = Fla D)x(@.dr)).
Q
Note that if o € fi\i{i}, then o), € T, for k < |o| — 1, so (28); = (28);. Therefore,
F(x, %) = F(x, ). Moreover, since P;‘:m = P(f{f} »» We have

F(z,xAT)
F(p,onT)

Recall also that the density of x(z, -) with respect to x(¢,-) is 7 +— . As a result,

Gon () = Gon,5)F(.3) = | (6. )i w.7) (o) = Fla, )5 ))

_ Vi (w0 (. dr) [ EETAT) g FEEAT)
= [ Xm0, ><F(¢MT) P, )F(MM))

For r ¢ Q,, x AT =& A7 and paths from z to & A 7 cross . Therefore,

Flz,z A7) P f)ﬁ(f,f/\r) Pz, A7) — F(x,8)F(5,5 A T) .
F(¢,x AT) R EAT) F(¢p,ENT) o
Forte€Q,, xAT=zxzand T AT =T, SO
zf(x,xAT) 7ﬁ(x,f)]?(f,fAT) _ G(mx B F(z,x)c?(f’ )
F(p,xAT) F(p,tnT) G, G(¢, %)
_ é(xax) - Z:—‘(:L'?f)é(f?f)ﬁ‘(fax) — éTz(maz)
G(¢,x) G(¢,z)
As a result, we have
_ By G () ]
Gonl6,2) = Conl6, DF (0,) = "2 /1 X0 e 7)),
For x # ¢, we finally get
__ G )
) = G /Q o X6 )i, X6, )
~ G(¢,9) )
- o / X6 70,

since F(z,¢) = F(x,$). Moreover, by summing over # € S(¢), we have the same
expression for p(Qy) = p(Q2):

1=p(Q)= 22(;5) /Qz X(¢, dw)Gm (w, 7)x (¢, dT).

As aresult, forallz € T,

Q) = foQm X(¢, dw) gm (w, T)X (6, dT)
e sz X(@, dw)Gm (W, T)x (¢, dT) .
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Proof of Proposition 2.19. Let T be a d-regular tree, with d > 3, endowed with constant
conductances W such that P[Vi € T, (i) > 0] = 1. Note that (7, W) is vertex transitive,
so it is enough to show the proposition for iy = ¢. The following lemma is a consequence
of the symmetries of (7, W), and guarantees that almost surely, the exiting measure
gives weight to the whole boundary (2.

Lemma 7.5. Almost surely under vy (df3), for all z # ¢, x(¢, ) > 0.

Proof. For all z # ¢, we define x, = ¢(z) — ?(z, £)1(£). Then we have y(¢,Q) =
(o, I)W and P[x(¢, Q) > 0] = P[x, > 0].
Note that
(n) 20 (1 )™ (5) — Wo |,
yETmﬁD(") O'E'PT’J(:’”’) 7

x,y

is fr,-measurable. Therefore, taking the limit when n — oo shows that x, is also
Br,-measurable. As a result, given a fixed m < 1, the random variables (Xx)xe p(m) are
independent, since V“;V is 1-dependent, and have the same distribution, since V‘V,V is
invariant under the group of automorphisms of 7.
— n 923;
Moreover, we have 1(¢) = 3> c pom) (¢, y) TFw i EGy SO
P[y(9) = 0] = P[¥y € D™, %, = 0] = P[g, = 0] P

for any = € D). Since P[¢)(¢) = 0] = 0, we get P[Y, = 0] = 0 for all z € D™ and all
m > 1, which implies that almost surely, for all z # ¢, x(¢, ;) > 0. O

Let us fix m > m/, and denote pu("™) = ug”’m’d’ and p(m) = ug"’m“‘b. Let z € D™ be
fixed, note that = # ¢. We define the following events:

() x(¢, ) : n(Q) (e, Q)
© T (@) 6.0 P T (@) T a0

Let us first show that the event A&m) is r#Pm-?.measurable. Note that the exiting
measure ;™ is measurable with respect to the corresponding environment 7-2:#m:¢.

Moreover, for i # ¢, 8; = Bz =3 pPpm:® ig pBpm:¢_measurable. Therefore, we just

J~vi g
have to show that ’;EZ%;% is 7\ {4)-measurable. Since x(¢, ;) = G’(d), x) Zyes(x) Wy Xy

we have

X(¢7 QI) é(éa $) ZyES(;v) WT,y}Zy A~ -
= = — F ,
6. 0) GO B S Wroke )

>ces@ WaaXe

which is 8y, -measurable and therefore 37\ (4)-measurable. We can conclude that A&m) is

!
rB.rm:?_measurable, and in the same way, ASJ” ) is rB:#m'¢_measurable. We are now going

to show that under v, B, (dB,dpy) we have ]P[Afﬁm/)] = 1, while under v} 5 (df, dp,,) we
have P[A{"™] = 0. This will prove that the distributions of r#=-¢ under vy g, (dB,dpm)

and r7#m"-? under v}z  (df,dpy,) are different.

Since |z| = m > m/, we have |#| > m/, so there exists z € D) such that ¥ € T,
ie. Q3 C Q.. Then forall 7 € Qz, [, X(¢, dw)dm: (W, 7) =D pcp , Xm' (¢, 0)Grm (b,0;). As a
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result,

N(m’)(Qx) _ fQL (ZbEBm/ Xm/ (¢7 b)ém/(bv 52)) X(¢a dT) X(¢, Qﬁ)
Q) [ (Laen, X (6.6)Gor (6,82)) x(0,dr) - X(0:%)

so P[A™)] = 1 under vi'p (dB,dpm).
We will finally show that 1!, -almost surely, ]P[Ag,m) |8] = 0. Since |z| = m, we have

1™ () = Xon (6, 02) Z G (82,0)Xm (0, b),

beB,,

and ,u(m)(Q ): Z Xm ¢ 5 Z G Xm(¢’ )

yeS(T) beEB,,

Let us denote, fory € D™, u, = > veB,, G (8, b)Xm (¢, b). Then

A {,ﬂm)(gf) X((;s,gf)} > ( ) ¢ = {u € ker(fs)},

yeS(%)

. 6,9 . . - .
where fz : (Vy)yepem = X esx) %vy — v, is a linear form conditionally on /3, which
has almost surely rank 1 according to Lemma 7.5, so that ker(fz) is a hyperplane of
RIP™I. Let us show that conditionally on §, the distribution of (uy),cpm) is absolutely
continuous with respect to the Lebesgue measure on RI?""|, and therefore P[A{™)|3] =

Plu € ker(f3)|5] = 0. §
Rpcall that G,,, = (2pm — C’m)*l, where conditionally on 3, p,, is distributed according

to ug:, which is absolutely continuous with respect to the Lebesgue measure on R!Zm| =
R/, Let us define

]R|D(m)| _ R‘D(7n)‘
Pm (uy)yeD(vn) = GmXm(®, ") '

For all p,,, such that 2p,, — C,, > 0, ® is differentiable, and its differential is
dpmq)(v) = _QGmdiag(U)éme(Qba ) = _QGmdiag(U)ua

which is invertible, with (d,, ®) ' (w) = ( (G w)y Note that this is well-

)

Zuy  Jyepom’
defined since u, > 0 for all y € D(™), thanks to Lemma 7.5. As a result, ® is a local
diffeomorphism. Therefore, the distribution of u = ®(p,,), conditionally on 5, admits
a density with respect to the Lebesgue measure on RI?"I. We deduce that almost
surely, P[A™)| 5] = P[u € ker(f5)|8] = 0, and therefore P[A{™] = 0, which concludes the
proof. O
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