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Abstract

Backward stochastic differential equations extend the martingale representation
theorem to the nonlinear setting. This can be seen as path-dependent counterpart
of the extension from the heat equation to fully nonlinear parabolic equations in the
Markov setting. This paper extends such a nonlinear representation to the context
where the random variable of interest is measurable with respect to the information
at a finite stopping time. We provide a complete wellposedness theory which covers
the semilinear case (backward SDE), the semilinear case with obstacle (reflected
backward SDE), and the fully nonlinear case (second order backward SDE).
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1 Introduction

Let (Q,F,{F:}i>0,P) be a filtered probability space, supporting a d-dimensional
Brownian motion W. The martingale representation theorem states that any integrable
Fr-measurable random variable &, for some [F-stopping time 7, can be represented as
§=E[¢]+ (Z- W), + N, for some square integrable F-predictable process Z, and some
martingale N with Ny = 0 and [N, W] = 0. In particular when F is the (augmented)

canonical filtration of the Brownian motion, N = 0. This result can be seen as the

path-dependent counterpart of the heat equation. Indeed, a standard density argument
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Second order backward SDE with random terminal time

reduces to the case { = g(Wy,, ..., W;, ) for an arbitrary partition0 =ty < ... < t, =T of
[0, T], where the representation follows from a backward resolution of the heat equation
O + %Av = 0 on each time interval [t;_1,t;], ¢ = 1,...,n, and the Z process is identified
to the space gradient of the solution.

As a first extension of the martingale representation theorem, the seminal work of
Pardoux & Peng [31] introduced the theory of backward stochastic differential equations
in finite horizon. In words, this theory provides a representation of an Fr-measurable
random variable ¢ with appropriate integrability as ¢ = Y with

t
Yt:YO—/fs(Ys,Zs)ds+(Z-W)t+Nt, £>0,
0

where f is a given random field. In the Markov setting where £ = g(Wr) and f;(w,y,2) =
f(t,Wi(w),y,2), t > 0, it turns out that Y;(w) = v(t, W;(w)) for some deterministic
function v : Ry x R — R, which is easily seen to correspond to the semilinear heat
equation

1
Oy + iAv + f(,,v,Dv) =0,

by the fact that the Z process again identifies the space gradient of v.

It was extended further to the random horizon setting by [32], Darling & Pardoux
[10]. On one hand, these results provide a representation for an F,.-measurable random
variable ¢ with appropriate integrability as £ = Y, with

tAT
}/t/\T:YO_/ fs(YSaZS)dS+(Z'W)t/\T’ tZO?
0

where f is a given random field. On the other hand, they give probabilistic interpretation
to solutions of semilinear elliptic PDEs. As our interest in this paper is on the random
horizon setting, we refer the interested reader to the related works by El Karoui &
Huang [13], Briand & Hu [7], Briand & Carmona [5], Bender & Kohlmann [2], Royer [38],
Bahlali, Elouaflin & N’zi [1], Hu and Tessitore [20], Popier [33], Briand and Confortola
[6], Wang, Ran and Chen [43], Papapantoleon, Possamai and Saplaouras [30]. We also
mention the related works of Hamadene, Lepeltier & Wu [16], Chen & Wang [8] and Hu
and Schweizer [19], which study BSDEs with infinite horizon.

Our main interest in this paper is on the extension to the fully nonlinear second
order parabolic equations, as initiated in the finite horizon setting by Soner, Touzi &
Zhang [40], and further developed by Possamai, Tan & Zhou [34], see also the first
attempt by Cheridito, Soner, Touzi & Victoir [9], and the closely connected BSDEs in
a nonlinear expectation framework of Hu, Ji, Peng & Song [17, 18] (called GBSDESs).
This extension is performed on the canonical space of continuous paths with canonical
process denoted by X. The key idea is to reduce the fully nonlinear representation to a
semilinear representation which is required to hold simultaneously under an appropriate
family P of singular semimartingale measures on the canonical space. Namely, an Fr—
random variable ¢ with appropriate integrability is represented as £ = Y7, where

t
Yt:YU—/ FS(X/;,ZS,ES)dS-i-(Z'X)t—kUtIP, t>0, P—a.s. forall PcP.
0

Here, 52ds = d(X)s, and UY is a supermartingale with UY = 0, [UF, X] = 0, P-a.s. for
all P € P satisfying the minimality condition suppcp EF [UE] = 0. Loosely speaking, in
the Markov setting where Y;(w) = v(t, X;(w)) for some deterministic function v, the
last representation implies that v is a supersolution of a semilinear parabolic PDE
parameterized by the diffusion coefficient

1
-0 — §Tr [JJTDz’U] — F(t,z,v,Dv,0) >0,
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and the minimality condition induces the fully nonlinear parabolic PDE
1
—0yv — sup {QTr [O’O’TDQU} + F(t,x,v, Dv, 0)} =0.

Our main contribution is to extend the finite horizon fully nonlinear representation
of [40] and [34] to the context of a random horizon defined by a finite IF-stopping time.
In view of the formulation of second order backward SDEs as backward SDEs holding
simultaneously under a non-dominated family of singular measures, we review —and
in fact complement- the corresponding theory of backward SDEs, and we develop the
theory of reflected backward SDEs, which is missing in the literature, and which plays a
crucial role in the wellposedness of second order backward SDEs.

Finally, we emphasize that backward SDEs and their second order extension provide
a Sobolev-type of wellposedness as uniqueness holds within an appropriate integrability
class of the solution Y and the corresponding “space gradient” Z. Also, our extension
to the random horizon setting allows in particular to cover the elliptic fully nonlinear
second order PDEs with convex dependence on the Hessian component.

The paper is organized as follows. Section 2 sets the notations used throughout
the paper. Our main results are contained in Section 3, with proofs reported in the
remaining sections. Namely, Section 4 contains the proofs related to backward SDEs
and the corresponding reflected version, while Sections 5 and 6 focus on the uniqueness
and the existence, respectively, for the second order backward SDEs.

2 Preliminaries

2.1 Canonical space

Fix d € IN, and let Q = {w € C([0,00);R?) : wyp = O} be the space of continuous
paths starting from the origin equipped with the distance defined by |w — W[ =
> s02 " (supg<i<y lwr — wi|| A 1). Denote by X the canonical process. Let M; be the
collection of all probability measures on (Q,F), equipped with the topology of weak
convergence. Denote by F := (F;);>o the raw filtration generated by the canonical
process X. Denote by It := (F,");>¢ the right limit of (F;);>0. For each P € Mj,
we denote by FtF the augmented filtration of Ft under P. The filtration F™F is the
coarsest filtration satisfying the usual conditions. We denote by FV := (F/) nd

F+tU .= (fj_’U)

a
£>0
the (right-continuous) universal completed filtration defined by

s P
Fl= () F and F"7= () AV
PeM; PeM;

t>0

Clearly, F™V is right-continuous. Similarly, for P C M;, we introduce F” := (F])

and F+F .= (]:;“P)t>0, where

FP= (7 and F7=()F"
PeP PeP

t>0

For any family P C M/, we say that a property holds P-quasi-surely, abbreviated as
P-q.s., if it holds P-a.s. for all P € P.

Define P;,. the subset of M; such that, for each P € Pj,., X is P-local martingale
whose quadratic variation (X) is absolutely continuous in ¢ with respect to the Lebesgue
measure. Note that the d x d-matrix-valued processes (X) can be defined pathwisely,
and we may introduce the corresponding IF-progressively measurable density processes

a; == limsupn((X); — <X>t,%)’

n—oo
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so that

t
<X)t=/asds, >0, P-as. forallPe P,
0

For later use, we observe that, as a; € Si, the set of d x d nonnegative-definite symmetric
matrices, we may define a measurable! generalized inverse @, ! and a measurable
1

square root a; =: ;.

2.2 Spaces and norms
Letp>1and a € R.

(i) Single-measure integrability classes: for a probability measure P € M1, let 7 be an
F*P.-stopping time. We denote:

* L (PP) is the space of R-valued and F;" ‘F-measurable random variables ¢, such
that

1T, gy = EF[[e*¢["] < oo

» D% (P) is the space of R-valued, F+P-adapted processes Y with cadlag paths,
such that 2

Y5 ey = E [Ofg’m |€a(W)Yw|p] < oo.

« 0?2, _(P) is the space of R%valued, F*"-progressively measurable processes Z

such that
T at~ 2 %
1ZI% ) = EPK/ le*'5/ Z,| dt) } < 0.
’ 0

« IN; _(PP) is the space of R-valued, F+P.adapted martingales N such that

T 2
IVl e = BF| ([ otate) | < .

. ]IQT(IP) is the set of scalar FF-predictable processes K with cadlag nondecreasing

paths, s.t.
T p
| K [I7 ®) = IE)]P[(/ eatth) ] < 0.
ST 0

+ UZ _ (PP) is the set of cadlag IF-supermartingales U, with Doob-Meyer decomposition
U = N — K into the difference of a martingale and a predictable non-decreasing
process, such that

10Ny ey = 1INz ey + 1K ey < 00

1 Any matrix S € Si has a decomposition S = QgASQS for some orthogonal matrix Qg, and a diagonal
matrix Ag, with Borel-measurable maps S — Qg and S — Ag, as this decomposition can be obtained by
e.g. the Rayleigh quotient iteration. This implies the Borel measurability of the generalized inverse map
84 58+ 871 := QTAT!Q € 8, where A~! is the diagonal element defined by Al = A;lll{/\”;éo},
i=1,...,d

2If the stopping time 7 is finite, the norm is indeed HYH]’SP = FEP [sup0<t<7 leatY; |p] < oo.

7 (P)
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(ii) Integrability classes under dominated nonlinear expectation: Let us enlarge the
canonical space to Q := Q x Q and denote by (X,W) the coordinate process in (.
Denote by IF the filtration generated by (X, W). For each P € Pj,., we may construct
a probability measure P on Q such that Po X! = P, W is a P-Brownian motion and
dX,; = 6,dW;, P-a.s. From now on, we abuse the notation, and keep using P to represent
P on Q. Denote by Q7 (PP) the set of all probability measures Q* such that

t 1 t
:eXp(/ )\S.dWS—f/ )\S|2ds), t>0,
7. 0 2 Jo

for some ™ F-progressively measurable process A = (A)¢>0 uniformly bounded by L. By
Girsanov’s theorem, W» := W — fo Asds is a Q’\-Brownian motion on any finite horizon,
and thus X* := X — fo G:\dt is a Q*-martingale on any finite horizon. For P € Py, we
denote

MNP dQ
D =T

EP[):= sup EQ,
QeQrL(P)

and we introduce the subspace Lf,  (P) = (Nqco, p) L%, (Q) of random variable { such
that

sup [|€llgz @) = E" [|e*7¢P] < o0.
QeQr(P)

We define similarly the subspaces DF, _(P), H%, (), N2 _(P), and the subsets 77,  (P),
uz . (P).

(iii) Integrability classes under non-dominated nonlinear expectation: Let P C Pj,. be a
subset of probability measures, and denote

EP[] := sup EF[.
PeP

Let G := {G;}:>0 be a filtration with G; D F; for all t > 0, so that 7 is also a G-stopping
time. We define the subspace £, (P, G) as the collection of all G,-measurable R-valued
random variables &, such that

1€y = €7 [|e°7€["] < co.

We define similarly the subspaces D%, (P, G) and H%, (P, G) by replacing F* with G.

3 Main results
3.1 Random horizon backward SDE

For a probability measure P € P;,., an F-stopping time 7, which may be infinite, an
FF.measurable random variable &, and a generator F : Ry x QxR xR¥x$? — RU{oc},
Prog ®B(R) ® B(R?) ® B($¢)-measurable 3, we set

ft(w7y7z) = Ft(wayazvat(w))a (tawayaz) € R-‘r X QxR x Rd;

and we consider the following backward stochastic differential equation (BSDE): for ¢,
t'eR, <,

t' AT
A +/ (fS(YS, Z)ds — Zy - dX, — dNS>, P-as.,

tAT

(3.1)
Y;=¢ on {7 < oo}

3By Prog we denote the o-algebra generated by progressively measurable processes. Consequently, for

every fixed (y, z) € R x R?, the process (Ft (y, =, at))tZO is progressively measurable.
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Here, Y is a cadlag adapted scalar process, Z is a predictable R%-valued process, and
N a cadlag R-valued martingale with Ny = 0 orthogonal to X, i.e., [X, N] = 0. We recall
that dX, = o,dW,, PP-a.s.

By freezing the pair (y, z) to 0, we set f? := £;(0,0).

Assumption 3.1. The generator satisfies the following conditions.

(i) F Lipschitz: there is a constant L > 0, such that for all (y1,z1), (y2,22) € R x RY,
oesd,

|Ft(y1,2170) — Ft(y2722;0')’ < L(lyr — y2| + IUT(zl — 22)]), dt @ dPP-a.e.

(i) F Monotone: there is a constant ;. € R, such that for all z € RY, (y1,y2) € R?,
o€ 8,

(y1 — y2) (Fr(y1,2,0) — Fy(ya, 2,0)) < —plyr — yo|?,  dt @ dP-a.e.

Assumption 3.2. 7 is a stopping time, ¢ is F,-measurable, and

Y PPV
|‘£]1{T<OO}H,C?,,T(]P) < o0, and fp,q,r = S]P |:(/ !eptfto| dS) :| < o9,
0

for some p > —pu, ¢ > 1.

Remark 3.3. In the context of a bounded stopping time 7 < 7', the monotonicity assump-
tion can be deduced from the Lipschitz assumption by the following standard argument.
Set }NQ := eY; and apply Itd6’s formula. It is straightforward that the wellposedness of
the backward SDE (3.1) is equivalent to a similar wellposedness problem with terminal
data ¢ := ¢*"¢ and nonlinearity

ﬁ't(gj, Z,0) = —\j + eMF, (ef)‘tgj, e Mz, O’).

Clearly, F inherits the Lipschitz property of F, and satisfies the monotonicity condition
for sufficiently large A. Finally, f is in the same integrability class as & for bounded 7. We
emphasize that the above mentioned technique applies throughout this paper, and thus
when pulling back to the context of finite horizon, the monotonicity assumption could be
removed.

However, if one applies the previous argument in the case as 7 is not bounded, then f
would fit different integrability condition from . Therefore, the monotonicity condition
is necessary.

Theorem 3.4 (Existence and uniqueness). Under Assumptions 3.1 and 3.2, the backward
SDE (3.1) has a unique* solution (Y, Z, N) € D? (P)xH? _(P)x NP _(IP), forallp € (1,q)
and n € [—p, p), with

—P
V12 oy + 1202 o+ INIR oy < Const(IE ray 2y o) + (Frgr)”).  (3:2)

Except for the estimate (3.2), whose proof is reported in Section 4.5, the wellposed-
ness part of the last result is a special case of Theorem 3.9 below, with obstacle S = —o0.

Remark 3.5. The norm, with which we propose the integrability condition on the
coefficients (Assumption 3.2) and the solution space in Theorem 3.4, is novel. It is mainly
motivated by the following reasons.

4The solution is unique modulo the norms of the corresponding spaces.
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e In the initial investigation on the random horizon backward SDE by Peng [32] and
Darling & Pardoux [10], it requires a similar integrability condition as Assumption
3.2 with p := p+ L?/2 instead of p and EF instead of £¥. The following Example 3.6
illustrates the relevance of our assumption in the simple case of a linear generator.
In the works generalizing the result in [10], see e.g. [7, 38], to our knowledge,
it is always assumed that i > 0, i.e., the generator is strictly monotone, and the
coefficients ¢, f° are bounded, which is a special case of our Assumption 3.2. For
w =0, i.e., the generator f is monotone, Royer [38] provided the existence and
uniqueness under assumptions that the generator f depending only on z is bounded
and ¢ is bounded. This result was later generalized by Hu & Tessitore [20], Briand
& Confortola [6] and Papapantoleon et al. [30] to a more general setting. Our
Theorem 3.4 generalizes these previous results by allowing for p < 0, thanks to the
new norms under which we set up the wellposedness result.

¢ The backward SDE can be viewed as a nonlinear representation of a random
variable by an It6 process with a particular generator function. For the sake
of applications, we would like that the representation is a ‘one-to-one mapping’
between the random variable space and the solution space of backward SDE. Here,
on the one hand, according to Theorem 3.4, given {1, .} € UQ>179>_H L£i ., we
may find the solution in ., ,._, Dj -(P) x H3 () x N _(P). On the other hand,
given Yy € R, (Z,U) € Usy o, 1 (P) x N _(P), we may construct an It6
process (by solving an ODE) such that Y 1.} € U L4 _. This builds up

q>1,p>—p ~p,T"
the desired one-to-one correspondence.

Again, we remind that, unlike in [37], the application of the new norm in Assumption 3.2
is not to pursue a weaker integrability condition for the wellposedness of backward SDE.

Example 3.6. Let P := Py, be the Wiener measure on (2, so that X is a IPy-Brownian
motion. Let 7 := H;, where H,, := inf{t > 0 : X; > 2}, £ := | X1a-|, and fi(w,y,2) :=
—uy + Lz for some constants 0 < u < 1 < L. Notice that f© = 0, and ¢ € E%J(IPO) by
direct verification:

3 1
e[l < sup P [DIR] < sup EPO[(DRF)Y]TER[g)']? < oo
QeQL(Po) QeQr(Po)
We next show that Darling & Pardoux’s condition is not satisfied. To see this, observe
that the event set A := {w € Q : supy,<; X; < 1, X1 € [3, 3] } satisfies P[A] > 0, and
therefore

Y

EPo [62L27|§|2] > EEPO [eQLQT]lA:I EEPU {]IAE]PO [€2L2H17x1 ‘Xlﬂ

Y

EE]P“ []IAE]PO [62L2H1/4” = 0.

We also have the following comparison and stability results, which are direct conse-
quences of Theorem 3.10 below, obtained by setting the obstacle to —oo therein, together
with the estimate (3.2) in Theorem 3.4.

Theorem 3.7. Let (f,&), (f',&') be two sets of parameters satisfying the conditions
of Theorem 3.4 with some stopping time 7, and the corresponding solutions (Y, Z, N),
(Y, Z' N").
(i) Stability. Denoting 6§ == £ —-¢',0Y =Y -Y',6Z :=Z 7', 6U := U — U’ and
0f=f—f,wehaveforalll <p<p <qgand—pu<n<n <p:

/ p
Y

T p P
W1y < Coro{ 1061l +° ([l zfar) |
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and
P T p
521y o HIN I ey < Comr{16¥ oy r6° [ ([ lemancri,zofar) |

(ii) Comparison. Assume ¢ < ¢, P-a.s. on {7 < oo}, and f(y,z) < f'(y,z) for all

(y,2) € R x R4, dt @ P-a.e. Then, Y, < Y], P-a.s. for all finite stopping time 19 < T,
P-a.s.

Remark 3.8. Following [15] we say that (Y, Z) is a supersolution (resp. subsolution) of
the BSDE with parameters (f, ) if the martingale N in (3.1) is replaced by a supermartin-
gale (resp. submartingale). A direct examination of the proof of the last comparison
result reveals that the conclusion is unchanged if (Y, Z) is a subsolution of BSDE(f,¢),
and (Y’, Z’) is a supersolution of BSDE(f/,¢’).

3.2 Random horizon reflected backward SDE

We now consider an obstacle defined by (S;):>0, and we search for a representation
similar to (3.1) with the additional requirement that Y > S. This is achieved at the price
of pushing up the solution Y by substracting a supermartingale U with minimal action.
We then consider the following reflected backward stochastic differential equation
(RBSDE): fort¢, t' e Ry, t <,

t' AT

Yinr = Yiar +/

tAT

tAT
E" {/ LA (Yoo — ST_))dUT] =0, forall t>0,
0

(fS(YS,ZS)ds 7. dX, — dUS), Y >S5, P-as.,

(3.3)

Y;=¢ on {7 <o}

where Uy, is a cadlag IP-supermartingale, for all ¢ > 0, starting from Uy = 0, orthogonal to
X, i.e. [X,U] = 0. The last minimality requirement is the so-called Skorokhod condition.>

Theorem 3.9 (Existence and uniqueness). Let Assumptions 3.1 and 3.2 hold true, and let
S be a cadlag F**-adapted process with ||S*||ps (p) < cc. Then, the reflected backward
SDE (3.3) has a unique solution (Y, Z,U) € D} (P) x Hp (P) x U} (), forallp € (1,q)
and n € [—u, p).

The existence part of this result is proved in Section 4.4. The uniqueness is a
consequence of claim (i) of the following stability and comparison results.

Theorem 3.10. Let (f,£,5) and (f',£',5’) be two sets of parameters satisfying the
conditions of Theorem 3.9, with corresponding solutions (Y, Z,U) and (Y', Z',U").

(i) Comparison. Assume £ < &', P-a.s. on {r < o}, f(y,2) < f'(y,2) for all (y,z) €
R x R?, and S < §', dt @ P-a.e. Then, Y, <Y/, P-a.s., for all finite stopping time
7 <7, P-a.s.

(ii) Stability. Let S = S’, and denote 6¢ := £ — ¢, 0Y =Y =Y/, 6Z = 7 — 7/,
0U :=U—-U"andéf = f— f'. Then, foralll <p<p <qgand —pu<n<n <p,

5This condition coincides the standard Skorokhod condition in the literature. Indeed, by using the corre-
sponding Doob-Meyer decomposition U = N — K into a martingale N and a nondecreasing process K, and
recalling that Y’ > S, it follows that 0 = EF [ [7"* (1A (Y- — S,—))dU,] = EX [~ [T (1A (Ve —S,—))dE, ]
is equivalent to fOT(YT, — Sr—)dK, = 0, P-a.s. by the arbitrariness of ¢t > 0.
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we have:

16Y 1Izp oy + 10215z oy + 10U IRz oy

< Cp,p’ﬁm’{Aﬁ + Af

+(ad+a7)((

P 2

P P P P
)+ Tooe) 000 oy + 1Y 1)) }

where

/o P

T , p P
Bei= 36t ntllly ) and Api=e¥|(( [ e lanon zojas) |
', 0
Moreover, §U := fdAT e dsU, satisfies

T7||P
1601 < ot (197 1, o + 192155, o)+ As)-

The proof of (ii) is reported in Section 4.3, while (i) is proved at the end of Section
4.4.

Notice that the stability result is incomplete as the differences 0Y, §Z and éU are
controlled by the norms of Y and Y’'. However, in contrast with the estimate (3.2) in
the backward SDE context, we have unfortunately failed to derive a similar control
of (Y,Z,U) by the ingredients &, f and S in the present context of random horizon
reflected backward SDE due to the presence of the orthogonal martingale N in the
general filtration, see also [4].

3.3 Random horizon second order backward SDE

Following Soner, Touzi & Zhang [40], we introduce second order backward SDE as
a family of backward SDEs defined on the supports of a convenient family of singular
probability measures. For this reason, we introduce the subset of Pj,.:

Po = {1? € Proe : f2(w) < 00, for Leb®P-a.e. (f,w) € Ry x Q} (3.4)

where we recall that f?(w) = F;(w,0,0,5,(w)). Note that in the context of stochastic
control, which is the major application of second order backward SDE, the set Py defined
above is the set of all admissible controls of volatility. We also define for all finite stopping
times 79:

Pe(ro) :={P' € Py: P'=PonF,}, and Pj(r):= ] Pe(m0+h).
h>0

We remark that the definition of Py (7o) differs slightly from the one in [40, 41], in which
the authors studied second order backward SDEs under the extra uniform continuity
condition.

For a finite IF-stopping time 7, the second order backward SDE (2BSDE, hereafter) is
defined by

Yin, = €+ / (F(Y Z,,6)ds — Zy - dXs — dUs), Po-q.s. (3.5)
tAT
for some supermartingale U together with a convenient minimality condition.
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Definition 3.11. Letp > 1 andn € R. A process (Y, Z) € D _(Po, 7o) xHP _(Po, ET0)
is said to be a solution of the 2BSDE (3.5), if for all P € Py, the process

tAT
UE =Y — Yo +/ (F(Y Zy,5)ds — Z - dXS), t>0, P-as.
0

is a cadlag IP-local supermartingale starting from U(])P = 0, orthogonal to X, i.e. [X, U]P] =
0, IP-a.s. and satisfying the minimality condition

]P ’ ’ ’
UF., = esssup EY[U} |FRY], P-as. forall 0<s<t.
P’eP (sAT)

Remark 3.12. Notice that the last definition relaxes slightly (3.5) by allowing for a
dependence of U on the underlying probability measure. This dependence is due to the
fact that the stochastic integral Z « X := fo Zs-dX, is defined IP-a.s. under all IP € Py,
and should rather be denoted by (Z « X)¥ in order to emphasize the P-dependence.

By Theorem 2.2 in Nutz [27], the family {(Z « X)F}pep, can be aggregated as a
medial limit (Z » X) under the acceptance of Zermelo-Fraenkel set theory with axiom of
choice together with the continuum hypothesis into our framework. In this case, (Z * X)
can be chosen as an F-7°-adapted process, and the family {U¥ }pcp, can be aggregated
into the resulting medial limit U, i.e., U = UF, P-a.s. forall P € P,.

The following assumption requires the additional notations:
(W) = 6B W), JUW) = Frs(w ®06,0,0,8,()), 7 =7t —t,
which involve the paths concatenation operator
(W@ W) = Lpecnws + Tgesy (W +wiy),
and
Plt,w) = {1P € Proc: [0 (w') < 00, for Leb® P-a.e. (s,w') € Ry x Q}
so that Py = P(0,0).
Assumption 3.13. We assume that
(i) T is a stopping time with

Hm E7[1;5,] =0,

n—oo
¢ is Fr-measurable, and there are constants p > —u, and ¢ > 1 such that

1

T 3 q
ngcg,f(%) < oo, and ngq_j .— gPo K/O |eﬂtft0|2dt) 2} < 0.

(i) Furthermore, the following dynamic version of (i) holds for all (t,w) € [0, 7]:

Ftw

t,w d Fo’t’w o gP(t,w) ps £0,t,w 2d : é
1€ HLZ’ (Pltw)) <O an pa T ; |er f&0 s < 0.

Ft,w

Theorem 3.14. Under Assumptions 3.1 and 3.13 (i), the 2BSDE (3.5) has at most one
solution (Y, Z) € Db _(Po,F+ ™) x HE _(Po, ™), forall p € (1,q) and 1) € [—p, p), with

—0
1Y 1 oy + 1218 oy < Conaino (16112 ooy + (Fpgir)”): (3.6)
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Under the additional Assumption 3.13 (iz), such a solution (Y, Z) for the 2BSDE (3.5)
exists.
If Py is saturated®, then UF is a P-a.s. non-increasing process for all P € P,.
Similar to Soner, Touzi & Zhang [40], the following comparison result for second
order backward SDEs is a by-product of our construction; the proof is provided in
Proposition 5.2.
Proposition 3.15. Let (Y, Z) and (Y’', Z') be solutions of 2BSDEs with parameters (F,£)
and (F,¢"), respectively, which satisfy Assumptions 3.1 and 3.13. Suppose further that
¢ < ¢ and Fy(y,z,0¢) < F/(y,z0¢) for all (y,z) € R x R, dt ® Py-q.s. Then, we have
Y <Y/, dt ® Py-q.s. on [0, 7].

4 Wellposedness of random horizon reflected BSDEs

Throughout this section, we fix a probability measure P € P;,., and we omit the
dependence on P in all of our notations. We also observe that Qy, := Q(P) is stable
under concatenation.

For all Q* € Q;, it follows from Girsanov’s Theorem that

« W*:=W — [ Ads is a Q*-Brownian motion, X* := X — [-7,\ds is a Q*-local
martingale, and we may rewrite the RBSDE as

dY, = —fMNYy, Zy)dt + Z; - dX) + dUy,  where  f)(y,z) == fi(y,2) — 5, 2 M

satisfies the Assumption 3.1 with Lipschitz coefficient 2L.

+ U remains a Q*-supermartingale, with the same Doob-Meyer decomposition as
under P.

4.1 Auxiliary inequalities
We first state a Doob-type inequality. For simplicity, we write £[-] := E¥[].

Lemma 4.1. Let (M;)o<:<, be a uniformly integrable martingale under some @ € Q9r.
Then,

Qs

5{ sup Mﬂ <L _(g[|M,)7)7, forall 0<p<gq.
0<t<rt q—Dp

Proof. Let x > 0 and T := 7 An Ainf{t > 0, | M| > z}, with the convention inf {) = co.
From the definition of concatenation and the optional sampling theorem, we obtain for
allQ € Qr.:

EC(|Mry | < BO[EQ[|M. 11| 1]

1) = B9 [EQ M, | Fiy

— ]EQ@T_,’;‘@“MT‘Q} < 5[|Mr|q} = ¢,

as Q ®rn Q € Q. Then, denoting M, := Supg<;<, | M|, we see that

2IQ[M, > z] <2iQ[T, < 7] = 1i_>m 21QIT) < 7]
< lim EQ[|Mp»
n— oo x

)

q}SC

Mirp<ny] < lim EY[| Mz,

6We say that the family P is saturated if, for all P € Py, we have Q € Py for every probability measure
Q ~ P on (2, F) such that X is Q-local martingale. The assertion follows by the same argument as in [34,
Theorem 5.1].
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and we deduce that

E®[M?] —EQ[ / ﬂ{Mm}pw“dx} = / QM. > a] pa~'dx
0 0

< / [1A (cz™9)]pa?P~tde = et
0 q—p

The required inequality follows from the arbitrariness of Q € 9j.. O
The following result is well-known, we report its proof for completeness as we could
not find a reference for it. We shall denote sgn(z) := 1,50y — I{z<0y, forall x € R.

Proposition 4.2. For any semimartingale X, we have
t
| X¢| — | Xo| > / sgn(X;_)dX,, t>0.
0

Proof. Consider a decreasing sequence of C?, symmetric convex functions ¢,, on R, such
that ¢, (7) = |z| on (— 25, %)¢, and ¢/, (z) increases to 1 for z > 0 and ¢/,(x) decreases to

nZng
—1for z <0, i.e., ¢}, (x) converges to sgn(x). By It6’s formula and convexity of ¢,,, we
obtain that

onlX0) = nlXe) = [ X)X+ 5 [ oIl

+ 3 {Apn(Xs) - ¢ (X )AX).

0<s<t

By convexity of ¢, this implies that ¢, (X;) — ¢, (Xo) > fot ¢ (Xs-)dXs. The required
inequality follows by sending n — oo in the above inequality and by applying the
dominated convergence theorem for stochastic integrals (see, e.g., [35, Section IV,
Theorem 32]). O

4.2 A priori estimates

Proposition 4.3. Under the conditions of Theorem 3.9, let (Y, Z,U) € D _ x H}; _ xUf |
be a solution of RBSDE (3.3). For eachp € (1,q) and —iu < a < 8 < p, there exists a
constant C,, 1, . such that

—P
121+ W05y < Coras((Fipe)” + 1V 1, ).
Proof. Let U = N — K be the Doob-Meyer decomposition of the supermartingale U.
1. We first prove that
A p
12155 + 1INy v < Co(12 X + VIl gy +IEIE, qn): 4.1)
and
~ by P
Cp<||Z||€IgyT(QA) + ”UH%QT(QM) = HZ * X7+ UH]N{;,T(QA)
< (1215 n + WUy ) @2
We only prove (4.1), the second claim follows by similar arguments.

As [X*,N] =G« [W* N] =0, we obtain that

N 5
1Z15, . or) + INIRs (@) < E® K/O e2as(d[Z-XAL+d[N]S)) }

= |2+ X* + NH;QT(QA)'
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We continue by estimating the right hand side term:

1Z « X* + Nl[gs o)

= Kzzm”V“W+UL+AlemQﬂ
crl ([ ot ][ )
ol ([l fen))

=2 (1230 4 U g+ KT )

where we used the estimate
2

Tezasd[K]S: Y (AR’ S| Y e (AK,) | < Te“SdKS 2,
0 0

0<s<T 0<s<T
since K is non-decreasing.
2. Denote U*:=Z « X  + U =0"Z+« W* 4 U. By Itd’s formula, for t' € R,
0 < Y02 _ 2a(t’ /\T)}/;//\T
t' AT 9
+ / ew( — 202 dt + 2V, (fNYy, Zy)dt — dUY) — |67 7| dt — d[U]t).
0

It follows from Assumption 3.1 and Young’s inequality that

~ 2
20f (v, 2) < —2uy® + 20yl £ + ALY| |5, 2| < —2py® + | 217 + Cyl* + \ 2|7,

with ¢ := 1+ 8L?. Then, as a+ p > 0,
t' AT 1 9
/ e (L]67 zidt + du),)
0 2
t'AT

t'AT
< eQa(t /\T)Y;gAT +/ ezat(’ﬁ)f —|—€Yt2)dt— 2/ ezo‘tY}_dUtA
0 0

t'AT t'AT
e 2 l o' (tAT o
< A 62 t|fto| dt + (1 + m) sup 62 (A )5/5\7_ — 2/ 82 t)/t_dUt)\,

0<t<oo 0

for an arbitrary o/ € («, p). Let ¢ — oo. It follows that

121 _qn + 1012

(@)
A T t 012 % A (43)
gqmw¢@w[(/ywﬁ\ﬁ)}+5f&,@ﬂ+E),
;
where

A T g

B = EQ {/ 2y, dU }

0

[NI§S)

< 6,, (IEQA [ sup

0<t<r

/ €Y, (Zy + dX} + dNy)
0

| ]
cafee]( [ o) oo | o asf ]
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by the BDG inequality. Since K is non-decreasing, we applying Young’s inequality with
an arbitrary € > 0 to deduce

’ p T ’ 4
E)\ < C;EQ/\ sup |ea (S/\T)}/TS/\T|2{(/ 62(20(—04 )Sd[Z . X/\ +N]5>
0<s<00 0
»

() )]
0

C/ 2 e T , g
<! g) |Y|§>g,,<QA>+2EQA[( / e“”*‘f*”d[z-XuN]s) ]

T p
e[ )
2 0

E 1" p
RCORS Q(CP + DHKHHS(MI,T(Q*)

+ gCZI)/EQk |:(/T e2(2a—o/)sd[U)\] S) 2:| ,
0

where the last inequality follows from (4.1). Plugging this estimate into (4.3), and using
(4.2) together with the fact that 2« — o’ < a, we obtain

Y12,
«

e

9 NE, - (Q)
— Y n 2 % (Cl)2
<CpoCpoaa L (EQ K/o{easf‘ﬂ ds> :|+ <1+ ;’ >||Y||§)Z,T(QA) (4.4)

€
* SR, o)
3. We shall prove in Step 4 below that for 6 < §’ < p:

p
K A T 'e 012 2
HKH%’T(QA) <CLs6.L <|Y%§%(QA) + HZH%QJ(QA) + E® |:(/0 |e5 f£| ds) }) (4.5)

Plugging this inequality with ¢ := 2o — o/ and ¢’ := « in (4.4), and using the left hand
side inequality of (4.2), we see that we may choose € > 0 conveniently such that

2
A T s 2
||Z||§1z,7(w>§sza,amL<||Y||§>g,T<Q*)HEQ K/O e’ If(?lzdS) D (4.6)

for some constant CZ , 1, > 0. Plugging this inequality into (4.5) with (4,0") := (a, )

Do,
induces the estimate

p
A i Ot’S 2 2
1K ke, @) < Czﬁ,{a,acL<|Yﬁ‘;,T<Q*> +EY [(/0 e[ £ ds) D (4.7)

for some constant Céfa,a/7 ;- Combining with (4.4), and recalling that 2o — &/ < ¢, in turn,

this implies an estimate for ||U* Hﬁ\ﬂ;

@Y which can be plugged into (4.1) to provide:

A i O/S 2 %
||N||§1’\IZ,T(QA)<Cgaya,,L<||Y|%i,T(Qk)+]EQ [(/0 205 1) ds) D .8)

Since the constants in (4.6), (4.7) and (4.8) do not depend on Q € Qj, the proof of this
proposition is completed by taking supremum over the family of measures Q € Q.
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4. We now prove (4.5). By It6’s formula, we have
tAT tAT
Yy + / e (f2(Ys, Zs) — 0Ys)ds = Yo + / e (Zy - dX 2 + dU,).
0 0

As (Z,N) e H (Q*) x N} _(Q*) and K is nondecreasing, the process

tAT
O+ [ (£, ) - 8Y.)ds,
0
is a supermartingale under Q*. By [4, Lemma A.1] and Assumption 3.1, we obtain that

T p UNT
B K/ eth‘“) } = CPEQX[ sup (" Yynr + / e (£ (Ys, Z4) 5Ys)ds)p]
0 0

0<u<oco

T p
< Cp’é’LEQA |: sup ‘eé(u/\T)Yu/\TV) + (/ e5é‘f50’ds)
0

0<u<oo

T p T p
+ (/ 665|sts> + (/ 6653:Zs|d5> } (4.9)
0 0

Finally, for ¢’ € (4, p), we observe that

T P - v
</ eésm“) < sw |¢f (SA”YWI]”( / e 6>st>
0 0<s<00 0

]. !
Se T (410

and by the Cauchy-Schwarz inequality

T 5 p T , 9 % T , g
(/ e S|fg‘d8> < </ |€6 ng’ dS) (/ 6—2(5 —5)sd8>
0 0 0 ’

1 T §'s p0|2 %
<— ’e fs| ds | . (4.11)
(26" — 25)5 0 )
Similarly, we have
T p 1 T , 2 %
(/ e5S|aIZS|ds> < (/ le? 5] Z,| ds) . (4.12)
0 ) (26" —26)= 0 )
The required inequality (4.5) follows from (4.9), (4.10), (4.11) and (4.12). O

4.3 Stability of reflected backward SDEs

Proof of Theorem 3.10 (ii). Clearly, the process (0Y, 67, 6U) satisfies the following equa-
tion
t'AT
61/t/\‘r = 5}/;5’/\7' +/ gs(éyvsv (SZS)CZS - 6Zs ! dXs - d(SUs» t < t/a (413)

tAT

where gs((SYS,(SZs) = fs(Ysy Zs) - fs()/s - 6Y5; Zs - 5Zs)

1. In this step, we prove that, for some constant C,, ,/,

0<t<o0
(4.14)

’

, T, p
§Cp’p/5[epm’55]l{f<oc}|p +(/0 €”S|5fs(Yst)|dS) }

P
I
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It follows from Proposition 4.2 that

ol (t'AT) 10y pr| — el (4AT) 0Y s |

t'AT
> e (n/|8Yy| — sen(5Ys)gs(8Ys, 5Z5))ds
[ e lavi - sentovajandovi.sz.) @.15)

AT

t'AT
+ / e (sgn(6Y3)8Z, - dXs + sgn(8Ys_ )doUs).
t

AT

As f and f’ satisfy Assumption 3.1, we obtain that
sgn(0Ys)gs (0Ys,0Z) < [6fs(Ys, Zs)| + L|5] 6Z,| — pl6Ys).

Considering the Doob-Meyer decomposition U = N — K and U’ = N’ — K’, and denoting
0N and dK the corresponding differences, it follows from the Skorokhod condition that

0Y,_doK, = (Y;/_ - YS—)(dK; - sz)
= (Ygl— - Se—)ng - (Yg/— - Ss—)sz - ()/s— - Se—)dK; + (Ys— - Ss—)sz
=—(Y! =S, )dK, — (Y,_ — S,_)dK' <0, (4.16)
so that

sgn(dY,_)

sgn(0Ys— )doKs = 15y, _ 0} %

0Y,_déK, <0.

Then, denoting

CARYA

As =L Sgn(éys)m

L6762, 120y and be 2=X—/ FAsds,
0

it follows from inequality (4.15) and —u < 7’ that
t'AT

e"/(t/\T)|5Yt/\'r| < en’q—‘(g}/;,/\7_| —|—/ en'8|(5fs(Ys;Zs)|ds

tAT

t'AT .
- / eﬂ'S(sgn(ays)azs -dx> +sgn(5Y3_)d5Ns>.
t

AT

As 0Ze€Hp (P) and 6N € NP _(P), we deduce from the BDG inequality that the last two

terms are Q*-uniformly integrable martingales. Then, with 7,, := n A 7 and n > t:

D5, | < Tim BY [ ¥, |+ [ sty 20l ds
n— o0 t

AT

+,P
‘Ft/\‘r :| .

For any 1" € (7', p),

|0Y||pr, < oo, so that sup,,cy e"'™§Y, < oo, Q*-a.s., which
e

implies
lim e” ™[0, = lim e” ™ |6V, 1, coy| + lim €™ |0Y;, Tir ooy
n—oo n—oo n—oo
< nh—>Holo el 6Y7'n]l{‘r<oo}’ + nh—{go en'—n )T"’e" TW,(;YTnﬂ{T:OO}

= lim en,7"|(5Y7—n]l{T<oo}| = e"/T|5YT]l{T<OO}|.

n—oo

From the dominated convergence theorem and monotone convergence theorem and the
fact that ¢ 'Y, and e 'Y/ are uniformly integrable.

e NDI§Y ;0 | < ER (€7 7661 ey ] + / "6 fo(Ya, Zo)ds
0

+,P
‘Ft/\T :l .
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By Lemma 4.1, we deduce that for any p’ € (p, q):

<

/ T P’
E| sup |e7’/t(5YmT|p] < pf/p pé’[(e”/7|5§]l{7<oc} —|—/ e"lS(SfS(YS,ZSMds) } ,
- 0

0<t<o0o

which induces the required inequality (4.14).
2. Let —pu < n < n'. By [td’s formula, we have for ¢ € R,

eQn(t’/\T) (5}/,‘//\7)2 _ (6YO)2

t'AT t'AT
= 277/ 62"5(5Y9)2d5 - 2/ 62’755Ysgs(§Ys, 0Z4)ds
0 0

t'AT t'AT
+2 / e258Y,_ 67 - dX. + 2 / e2"158Y,_dd N,
0 0

t'AT AT
—9 / 2155Y,_dS K, + / e21s (\ajézs\%zs +d[6U}S) .
0 0
Again Assumption 3.1 implies that
6Y595(0Ys,0Zs) < [0Ys|[0fs(Ys, Zs)| + L|5Y9‘|325ZS| - /L|5Y€|27

and therefore, together with (4.16) and the fact that » + u > 0, we obtain that
t'AT 9
/ e* (|5, 62| ds + d[sU],)
0
, t'AT
< 21N (§Yppr )2 — 2 / e*"1°0Y,_(6Zs - dX s + dONy)
0

t'AT
v 2/ e214(6Y,| (18 f5(Ys, Zo)| + L[] 24])ds.
0
Then,

/ e (15762, ds + d[sU),)
0

< sup eQn(tm(ath)uQ/ e21°18Y,| (16 f5(Ys, Zs)| + 2L|G,] 6Z,|)ds
0

0<t<oo

+2 sup
0<u<r

3

/ e*6Y, 07, - dX ) + / e*138Y,_doN,

0 0

where A = (A;)o<s<- is an arbitrary process uniformly bounded by L. By Young’s
inequality and the fact that n < n’, we have

2/ 62"S|5Y§||6fS(Y§,ZS)|ds§2( sup eﬂ<SAT>|5YW|)/ (8 £ (Ys, Zs)|ds
0 0

0<s<00

T 2
< sup e2"<8“>|5yw|2+< / e"8|6fs<ys,zs)|ds) 7
0

0<s<0
and
-
2/ e*1%16Y,|[5) 6 Z|ds
0
P 2 T T 2
< f/ e“"%|0Ys| ds+5/ e |6 62| ds
€Jo 0
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IN

1 , L T
( sup €27 (S/\T)|(5Y;/\T\2) / e 20 =msgg 4 E/ 62”5|03T(5Zs|2d3
0 0

€ \0<s<o

1 / T R
<——— sup 021 (SAT)‘5Y9AT|2 + 5/ 62n5|0'sT5Zs‘2ds,
2e(n" = M) o<s<oo 0

for an arbitrary € > 0. Therefore, by choosing an € > 0 conveniently, we obtain

15215, (@) + 16U 1x5 @)

T p
< Cor (1691, oy =5 [ ([ eorcnzfas) ) w1

for some constant C), ,, ,» > 0. By the BDG inequality, Young’s inequality and the Cauchy-
Schwarz inequality, we obtain

+C ,W,/IEQA [ sup

0<u<r

/ " (6Y,0Zs - X + 6Ys_dSN)
0

b
U 2
/ e®58Y,_(0Zs - dX) + doN,)

EQ [ sup
0

0<u<r

[ A T T |

< d,EY { / e%sm_(azs-nger&NS)] }
LLJo -

= d,E?’ (/ 0 |5Y,_[2(|5] 62, ds + d[5N], ))]
L 0

- T ya T ya
gd;,EQ* </ e4ns|5Ys|2}825Z8]2d5>4 + (/ 64’75|6Y_2d[5]\7}3>4]
L 0 0
d e
= o H(W”D%T oy T Ty ”‘SZHJH’%T(QA

P
+d; ||5YH1Dp o (N5 on

S RgH

NG, - Q*))

for some ¢’ > 0, where we used d[0N]s; < 2(d[N]s + d[N']s). Plugging this estimate into
(4.17), and by the arbitrariness of A\, we obtain

1621+ 1603 < Comar 1Y 1, +€[( / £ (Y Z2)ds) ]
HovliE, IV, + 1815, )}

Together with (4.14) from Step 1, and Proposition 4.3, this induces the first estimate in
Theorem 3.10 (ii).

3. It remains to verify the announced estimate on fot e**ddUs. Given the dynamics of JY
in (4.13), it follows from a direct application of It6’s formula and the use of Assumption

3.1 that:
/ e**doU,
0

<2 sup N5V .| +(|a|+L)/ 60‘5|(5Y5|d8+2L/ |0TSZ |ds
0

0<s<0

sup
0<u<Tt

+/ e**|0 fs(Ys, Zs)|ds + sup
0

0<u<rt

/ €67y - dX?2|.

0
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By the BDG inequality and the Cauchy-Schwarz inequality, we obtain for § € («, p):

u X D
/ e dsTU, ]
0

<G, <EQA { sup |ea(s/\T)5Y—S/\T|P:|

0<s<0

EQ [ sup

0<u<r

oo p
+ (o + L)p</ e_(ﬁ_o‘)sds) EQ" { sup epﬁ(SAT)(SYS/\T|p]
0

0<s<0

+(2L)p(/ e—2<ﬁ—a>sds> EQ*K/ e?ﬁsya;razsfds) }
0 0
R T p N T 2 %
+EQ |:</ easl(sfs(YﬁZS”dS) :|+dpEQ |:</ 62a8|32525| ds> :|)
0 0

T p
< s (0¥, oy + 1670, oy + B [( [ elorarzalas) )

for some constant C o 3.1 -

4.4 Wellposedness of reflected backward SDEs

We start from the so-called Snell envelope defined by the dynamic optimal stopping
problem”:

Yinr = esssupEY [g]l{ezf} + Solipry ftﬁﬂ, with € := e P ¢l o0y, Spi=e S,

967})7—

where 7; . denotes the set of all F™F-stopping times 6 with t A 7 < 6 < 7. Following
the proof of [14, Proposition 5.1] and the theory of optimal stopping, see e.g., [12], we
deduce that there exists an X-integrable process z, such that:

=N T T
Z//\t/\‘r = g - 23 ~dXs — / daw
- tAT tAT

Z/J\t > Sta t > Oa IP_a'S'a

TAL
E]P |:/ (1 N (Zj\t, — St))dﬂt} = O, forall ¢ > 0,
0
where @ is local supermartingale, starting from %, = 0, orthogonal to X, i.e., [X,u] = 0.

In other words, (¥, Z,4) is a solution of the RBSDE with generator f = 0 and obstacle S.
Then, it follows by It6’s formula that the triple (y, z, u), defined by

t
ot o uto L 5 1~
yp = ey, oz = ez, w .—/ e*dug, t>0,
0

is a solution of the following RBSDE, for¢, ¢’ € Ry, t </,

t' AT t'AT t' AT
Yinr = Y'ar — /~L/ Ysds — / zs - dXs — dus,
t t

AT AT tAT
yr > S, t>0, P-as. and y, =& on {r < oo},

tAT
EP {/ (1A (yee — St_))dut} =0, forall ¢t>0,
0

where u is local supermartingale, starting from o = 0, orthogonal to X, i.e., [X,u] = 0.

"Indeed, from HSH|DZ,T(1P) < 00, we have limy_y00 Star <0, P-a.s. on {7 = co}.
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Lemma 4.4. For alla € [—p, p) and p € (1,q), we have
ol + 25 . < Cravan(l€hir<octlty + 11571 )"
Proof. By the definition of 7, we have

EF [e’”ﬁll{moo}‘ftﬁﬂ < fins < esssup EP [e*mgmh@o} T e*ﬂesg‘ftj’f].

Then, for a € [—p, p),

-E" {ew\f|]1{f<oo}|ft7’ﬂ < —elotmUATI P {6_”T|E|1{T<m}’f$ﬂ

< e(OHF'LL)(26/\7-)@}/\7' = ea(tAT)yt/\T
< esssup EF [e‘”|£\]1{7<oo} + e“eS;‘fQ;’ﬂ
0€T:,+

<E [ew|§|]l{f<oo}+ sup e*CNTSH
0<s<00

+,1P
]:t/\‘r :| )
and therefore

ea(tAT)|yt/\r| < E” {eaT|€|]1{‘r<oo} + sup ea(SAT)S;_/\T
0<s<00

+,IP
]:t/\T :| .
By Lemma 4.1, this implies that

5[ sup |6Q(SAT)yS/\T‘p:|
0<s<00

< Cp5|: sup EF {|e°“rf]l{_,_<oo}1’ + sup (ea(UAT)SzT/\T)p‘f:’IP”

0<s<r 0<u<oco
P
< Cowr (€1 <o [0 + 1157 . )

for all 1 < p < p’. By our assumption on £ and S*, we see that we need to restrict to
p’ < q in order to ensure that the last bound is finite. Moreover, by Proposition 4.3, we
have for some o' > «,

. z /
& {(/ er‘t‘ajzt‘de ] < Cp,a,af,Lg[ sup lea (tm)yt/\r|p]
0 0<t<o0

< Cppaa,n€ [|ea Tfll{'r<oo}|p + sup (e” (MT)S;FAT)P
0<t<o0

P
/| p’

By our assumption on ¢ and ST, we see that we need to restrict « to the interval [—pu, p)
in order to ensure that the last bound is finite. O

Now, we construct a sequence of approximating solutions to the RBSDE, using the
finite horizon RBSDE result in [4] and on the optimal stopping problem above.
Let 7, := 7 An, and (Y™, Z",U™) be the solution to the following RBSDE

Y2 =y + fs(Y], Z0)ds — / (Z7 - dX,+dU?),
tATH tATH
Y;’r/l\'rn > St/\nm t Z 07 IP-a.s.,

tATH
EP[/ (LA (Y —St))dUt”] =0, forall t>0.
0
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We extend the definition of Y™ for ¢t A 7 > 7,, by
YtrﬁT = Ytnr, Z:L/\T = ZtAT U;\T = UtaT,
so that (Y™, Z™ U™) is a solution of the RBSDE with parameters (f",¢,5): fort, ¢ € Ry,
t'AT t' AT
Vo =Yoot [ grpzds- [ (zeax v auy),
t

tAT AT

Y">S, P-as. and Y =¢ on {7 < x0}, (4.18)

tAT
E [/o (1A - St))dUt"} =0, forall t>0,

where

ftn(ya Z) = fs(?»/y Z)]l{sgn} - uy]l{s>n}v t >0, (yu Z) €R x Rd'
The following result justifies the existence statement in Theorem 3.9.

Proposition 4.5. For all n € [—u,p) and p € (1,q), the sequence {(Y",Z",U™)}nen
converges in D} . x Hb _ x UP . to some (Y, Z,U), which is a solution of the random
horizon RBSDE with the parameters (f,¢&,S).

Proof. 1. We first show that {(Y", Z",U")},en is a Cauchy sequence in D)) _ xH} _ xUP

7,7
which induces the convergence of (Y, Z",U") towards some (Y, Z,U) in D) _ x HP _ x

ur .
n,T
By the stability result of Theorem 3.10 (ii), we have the following estimate for the
differences (0Y,0Z,6U) := (Y =Y™, Z" - Z™,U" —=U™), n > m,
16V 1By + 1162115+ 16T
<c{a;+az(2(fn )+ vm2 allk
<o{ay+ 87 (20, IV Ig,, +1Y"IE )}

where, by the Lipschitz property of f in Assumption 3.1,

P’ ™ 4
A7 :5[(/ e’75|5fs(Ysm,Z§”)|dS> ]

m

Tn , P’ Tn , P’
<Cp/’n/,L<€{</ e"s|fg‘ds> }—1—5[(/ e"sys|ds> }

/

Tn P
—1—5[(/ 6”5’3225|d8> })
By the Cauchy-Schwartz inequality, we have

Tn P —2(p—n")m %/ T %/
e (L) [ = (G5=) e[ ([ o)

e—2(p—n")m z _p p
<|——— .
() (oer)

(4.19)

Similarly, for n < ' < 7" < p, we obtain that
/ (' —n'ym \ %
Tn , p —2(n""=n")m o
£ / 5T zlds) | < () oz,
Ton 2(n" =) Mo
e—2(n"—n")m
<C|——+
B < 2(n" = ') )
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and

Tn s P o—(p—n")ym\ P’ y
< ("
([ ) ) (Y

e—(p—n")m\ P’ ' /
<o) (letoamllly, + 1575, ).

The last three estimates show that Ay — 0 as m,n — oo, so that the required Cauchy

property would follow from (4.19) once we establish that ||Y™ ||Dp is bounded uniformly

in . To see this, notice that ||[Y"||,, < |ly|pr +[Y" - y|n|b,, , where ||y[|,, s
finite by Lemma 4.4, and thus it reduces our task to controlling HYI”,— Y|l pr - Todo this,
n',T

we use (4.14) to obtain

/ D
Y

n p P
g|: sup epn’s‘}/sn - ys|p:| < CP,P'S |:(/ e"ls|fs(ysv Zs) - /’Lysd‘g) :|
0

0<s<Tt

P
7

T p’ T p’ T ' .
< Coprgea ([ eI12las) o+ ( [Tertmas) + ([ e aTatas) |
0 0 0

and we argue as above to verify that the last bound is finite, using the integrability
condition on fY in Assumption 3.1, together with Lemma 4.4.

2. We next prove that the limit process U is a cadlag supermartingale with [U, X| = 0.
Theorem 3.10 (ii) also implies that

gl sup |Upn, —Un|"| — 0, where U" := / e"dU?”.
0<t<oo 0
Then, there exists a limit process U € D (P). As U" is a cadlag Q-uniformly inte-
grable supermartingale for all Q € Qr, we may deduce that its limit U is also a cadlag
Q-uniformly integrable supermartingale for all Q € Qj,.. Define U; := fg e 5dU,, t > 0.
Clearly, U € D%T(IP). As the integrand e~"° is positive, the process U is a supermartin-
gale. By Kunita-Watanabe inequality for semimartingales, we obtain

/62"5|d[U,X]s|S/ ez”sld[U—U”’X}sH/ ™|, X]|
0 0 0

< ( /0 " ey — U”]S)é< /O ' eQ"Sd[X]S) ~

Theorem 3.10 (ii) also states that the right-hand side converges a.s. to 0, at least along a
subsequence, which implies that [U, X] = 0.

3. Clearly, Y > S, PP-a.s. In this step, we prove that the limit supermartingale U satisfies
the Skorokhod condition. To do this, denote ¢ := 1A (Y™ = 5), o := 1A (Y — 5), and let
us show that the convergence of (Y”,U") to (Y,U) implies that

TAL TAL
ap = E[/ cp;"de} — E{/ ngdUr} — 0 asn — oo, forall t>0.
0 0
Fore > 0,let 75 =0,

Ti€+1 ;= inf {7’ > TZ'E : “Pr - 507’5| 2 5}’
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and
(pg = Z gOTz'EIl[TiEJzil)’ so that |(p — ()0€| <e.
>0

We first decompose

E[/OTM(@” - sO)rde]

an <

N ’E[ /0 "o ) - U»}
N ’E[/(:Mgpi_d(U"U)r} .

Since ¢° is piecewise constant, bounded by 1, and U" — U in D} _,

we get

TAL
lim E{/ s_dUY — US)} =0.
n— oo 0

For the second term, we have
TNt
o< [e] [t — et iy - 0|
0

<

TAL TAL
B [ (e - iae - v [+[B] [T e - wiau - k)
0 0
=clE [K—,—/\t + K:'/\J .
By (4.7) and | f™°| < |f°| we obtain that

TAL %
E[K:M]<O(||Y”|Dg,T+E[( [ e 2ds) ])
0
TAL 1
< c(nywpg,, Yo +E[( / 62’“|f.?|2d8> ]) < oo,
0

Hence, we may control the second term by choosing ¢ arbitrarily small. For the first

term, we have
TNt
—[e| [ e - pran]

TNt
0 < ‘E[ JAs ws_)dU‘?}
0
<B[(,sw pr-vian)rs]<e] s oy a] B,

0<s<TAt 0<s<TAt

D=

Again we may show that E[(K?,,)?] is bounded by a constant, independent of n € IN. As
Y™ =Y in D} _, we have

sup Y7 —YiP —0, as.
0<s<TAtL

By dominated convergence, we have
lim E{ sup Y = Y|P /\1} =0.
n—00 0<s<TAt

Hence, we have

TAL
lim E{/ (o — @S_)dU;L} =0.
0

n—oo

All together, we have

TAL TAL
lim E{/ wo_dU} —/ @s_dUs} =0,

and the assertion follows.
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4. We finally verify that (Y, Z,U) satisfies the differential part of the RBSDE. The
following verification is reported for the convenience of the reader, and reproduces
exactly the line of argument in [10, Section 5.2, Step 3]. Forany a« € R and ¢t > 0, we
have by It6’s formula and (4.18) that, for¢, ¢’ € Ry, t < ¢/,

, t' AT
tA t'A
ea( T)Y;SCL\T = ea( 7—)th’/\'r +/
tAT
t'AT

e {(f0V, 22) = aX)ds — (72 - dX, + dU?) |

= ea(t/AT)Yt’/\r T /

tAT

e { (Y7 20) = a¥{)ds — (2 - dX, +dUT) |

t'AT
[ ez s
t

NTn

We choose a < 7. Then, it is easily seen that e*(!A7)Y2  — @A)y, forall t > 0, and
so that e®"Y" — e*7¢, on {7 < oo0}. Moreover,

t'AT t'AT
/ e dUT —» / e**dU,, in L.
tAT tAT

By the BDG inequality, it also follows that

t'AT AT
/ e Zr - dXs — e**Z;-dX,, in ILP, forall ¢t > 0.
t

AT tAT

Moreover, we have

t' AT t'AT
[ emvras— [ evids, i foran e,
tAT AT

due to the following estimate

([ )]

T p
< ]E[ sup ep”(SAT)D/S’}\T — ysATp</ 6—(n—a)sd8> }
0

0<s<0

1
< IE{ sup eP"AT |y YS/\TP} — 0, asn— oo.
(77 - a)p 0<s<o0

From a similar argument, we also have
t'AT
/ e (fo(Y, Z) + pY")ds — 0, in ILP,
tATh
and by Lipschitz continuity of f we see that
t'AT
/ e | f (Y, Z1) — fs(Ys, Zs)|ds — 0, in LP, forall t > 0.
tAT

Therefore, we have proved that

t'AT
iy, = e [ (102 ais - (2 ax, vt
tAT
thus completing the proof by It6’s formula. O
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We now prove the comparison result. In particular, this justifies the uniqueness
statement in Theorem 3.9.
Proof of Theorem 3.10 (i). Denote by {(Y",Z",U") }nelN and {(Y'",Z2"", U’")}ne]N the
approximating sequence of (Y,Z,U) and (Y’,Z’,U’), using the triples (y,z,u) and
(y',#',u’), respectively, as in the last proof. Since { < ¢ and S < §’, we have y,, <y, .
By standard comparison argument of BSDEs, see e.g. [39, Proposition 3.2], this in turns
implies that Y < Y™ for all stopping time 79 < 7. The required result follows by
sending n — oo. O

4.5 Special case: backward SDE

Proof of Theorem 3.4. By setting S = —oo, the existence and uniqueness results follow

from Theorem 3.9. In particular, the Skorokhod condition implies in the present setting

that U = N is a P-martingale orthogonal to X. It remains to verify the estimates (3.2).
Let n > —pu, and observe that Assumption 3.1 implies that

sen(y)fs(y, 2) < —plyl + L5 2| + [ f)] < nlyl + L[5 2] + [ f]].
Then, by It6’s formula, together with Proposition 4.2, we have

en(n/\7—)|Yn/\T| _ en(tAT)D/t/\Tl

nAT
> [ er{ulviids - sgn(v ) (£(Ve, Z)ds - 2. dX, - aN.) )
t

AT

nAT
> / e”s{ — L|5] Z.|ds — | £0|ds + sen(Ya) Z, - d X + sgn(Ys,)st}.
tAT
Introduce T
~ 04 Zs
)\5 = LSgn(}fs)mﬂ{‘azzgl;éo},

and recall that N remains a martingale under (QX by the orthogonality [X, N] = 0. Then,
taking conditional expectation under Q*, we obtain

~ nAT
"] < lim B [e"“’”)ww + / ™| f2]ds
n—oo 0

+,P
]:t/\T:l

S PRy P
0

+,P
]:t/\'r :| ’

by the uniform integrability of the process {€"*Y;}s>¢. By Lemma 4.1, this provides

P
7

p/ . T s P’
by < e[( \511{T<oo}|+/ e |f£\ds) ]
TP —p 0

< prp/,nm/{||§]1{T<00}H25j . + (??7/,%7)]0}’ (4.20)

Y]

forall p’ € (p,q) and —pp < n < 7’ < p with some constant Cp, ;v ,, ,». Next we can follow
the lines of the proof of Proposition 4.3 to show that

P P —0 P
HZH’HZ”,T(]P) + HNHN:",T(]P) < CP1L7"]77I” (HY”%%T(]P) + (f'r],p,'r) )7
for " < 7. Combined with (4.20), this induces the required estimate. O
Proof of Theorem 3.7. The comparison and stability result follow from Theorem 3.10

and Theorem 3.4 respectively. O
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For later use, we need a version of the stability result allowing for different horizons.
This requires to extend the generator and the solution of the BSDE beyond the terminal
time by:

fove(y,2) =0, Yor=& Zpr=0, Npr=0, forall t>0.

Proposition 4.6. For finite stopping times T and 7/, suppose (f,&,7) and (f', &', ') safisfy
Assumptions 3.1 with the same parameters L and p. Let

Y=Y Y, §Z=2-2', SN=N-N', 6f=f—f, dc=¢—¢.
Then, for all stopping time 1o < 7 A7/, and alln € [—pu,p), 1 <p < p’ < ¢, we have
V7T’

e el [ erlan ozl

70

‘e’m oY, | < egs sQup E®
edr

IHP] :

Proof. By Proposition 4.2 and the Lipschitz and monotonicity conditions of Assumption
3.1,
v’

|7 8Yz, | < [e7E — e ¢l + / ¢"|8f,(Ys, Zs)|ds + € sgn(8Y,)0Z, - (dX, - Fshsds)

70

TVT
- / € sgn(dYs— )ddNg,

0

with
~T
> 0407
As 1= LSgH((SY;)m]l{\ajézspéo}-
Taking conditional expectation under QX € 9y induces the required inequality. O

5 Second order backward SDE: representation and uniqueness

We shall use the additional notation:

EFT] = ess]Psup ess]Psup EQ[-|F"], forall t>0, PcPy.
PrePf (t) REQL(P')

Remark 5.1. It follows from Assumption 3.13 and Doob’s inequality that for any ¢’ < ¢
sup  sup EQ[ sup EF’+ [(6p7|f)q/]]

PePo Qe (P) 0<t<r

’

+ sup sup IEQ{ sup EF"FK/ |epsf3f2ds> ” < 0.
0

PePo QeQ L (P) o<t<r

We also note that EF o+ []1{7271}] is a P-supermartingale. Then, by Doob’s martingale
inequality, we have

EY [5F’+[1{72n}]} < CEP [Uirom] — 0,

so that
P | 1 P+ _
EF | Jim &7 [Leam] | <0
by dominated convergence theorem, and therefore

lim & [1;5,] =0, P-as.

n—roo

EJP 25 (2020), paper 99. http://www.imstat.org/ejp/
Page 26/43


https://doi.org/10.1214/20-EJP498
http://www.imstat.org/ejp/

Second order backward SDE with random terminal time

Similarly to Soner, Touzi & Zhang [40], the uniqueness follows from the representation
of the Y component of the 2BDSE (3.5) by means of the family of backward SDEs. For all
P € Py, we denote by V¥ [€0, 7o) the Y-component of the solution of the backward SDE:

yiiT:&nL/

tATO

70 7o

F, (VY 2 .5,)ds — / (Z¥ - dX,+dNY), t>0, P-as., (5.1)
tATo
where ¢ is an F,,-measurable random variable for some stopping time 75 < 7. Under
our conditions on (F, ), the wellposedness of these BSDEs for {, € L} | (IP) follows from
Theorem 3.4. Remark that in the sequel we always consider the version of V¥ such that
VP . € F;\.. by the result of Lemma 6.3.

The following statement provides a representation for the 2BSDE, and justifies the

comparison (and uniqueness) result of Proposition 3.15.

Proposition 5.2. Let Assumptions 3.1 and Assumption 3.13 hold true, and let (Y, Z) €
DP (Po, ET70) x HE _(Py,F7) be a solution of the 2BSDE (3.5), for some p € (1,q) and
1 € [~u, p). Then,

P ’
Vijar = esssup Yy o [Yigar,ta AT (5.2)
IP/E'P];(tl/\T)

esssup VE [&,7], P-as. forall PePy, 0<t, <ty (5.3)
IP/E'P;»(tl/\T)

In particular, the 2BSDE has at most one solution in D? _(Po, F™70) x HF _(Po, F™0),
satisfying the estimate (3.6), and the comparison result of Proposition 3.15 holds true.

Proof. The uniqueness of Y is an immediate consequence of (5.3), and implies the
uniqueness of Z, a;dt ® Py-q.s. by the fact that

. t
(Y,X)t:</ ZS-dXS,X> :/ asZ.ds, P-as.
0 t 0

This representation also implies the comparison result as an immediate consequence of
the corresponding comparison result of the BSDEs V¥ [¢, 7].

1. We first prove (5.2). Fix some arbitrary IP € Py and P’ € P]}F(tl A 7). By Definition
3.11 of the solution of the 2BSDE (3.5), we see that Y is a supersolution of the BSDE on
[t1 AT, taAT] under P’ with terminal condition Y;, A, at time ¢t2A7. By the comparison result
of Theorem 3.7 (ii), see also Remerk 3.8, this implies that Y;, o, > yElM [Yigar ta AT],
P'-as. As Vf "is F,"\,-measurable and V;, is F;" To.measurable, the inequality also
holds P-a.s., by definition of Py (¢1) and the fact that measures extend uniquely to the
completed o-algebras. Then, by arbitrariness of I/,

P ’
Yiar > esssup Vi oo [Yioar,ta AT], P-as. forall P e P,.
P'ePS (t1AT)

We next prove the reverse inequality. Denote §Y := Y — JF [Yiorr,ta A7), 62 =
Z — 2% [Yiar t2 A 7| and 0U == UY — NP [Yi,ar.t2 A 7]. Recall that U™ is a P'-
supermartingale with decomposition U?" = N®' — K*'. For a € [—pu,7), it follows
by It6’s formula, together with the Lipschitz property of F' in Assumption 3.1 that there
exist two bounded processes a® and b¥’, uniformly bounded by the Lipschitz constant L
of F, such that

to AT

to AT
ea(tl/\r)(;ytlm — / e (a]f 5Y, + b]f . 8J§Zs)ds _ / R (32525 - dW, + d§US)7
tiNT tiNT
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which implies that

, to AT , ,
ea(t1/\7’)6}/tl/\T = —]EIP |:/ F];? €asd6U;P
t

1INAT

, to AT , ,
f,fw] =E" [ / Y evsdK?
t

INT

2 8 /
)du+/ bE -qu)
t1NT

As ¥’ bF" are uniformly bounded by L, it follows from the Doob maximal inequality that

+
‘Ftl/\T:| ?

with

/7 S !’ 1 !
P exp</ G
¢ 2

1INT

p+1

’ AN
EP [( sup FE ) f;fm]
I AT<s<toAT
/ to AT 1 , 1 ta AT ,
et o e (- [ G P B [0 ) 7
aar 2(p—1) p—1Jinr

< Cp < 00,
where C,, is a constant independent of P’. Then, it follows from Hélder’s inequality that

—|alt
€ I |15}/t1/\7’

2 == taAT 2l T
P’ A + i P’ as P’ + v
=P [(t A iugt A K ) Feunr B t ek, Fuune
INTSSSU2 AT 1/\7—
1
p+1 1 to AT sy
p—1 P,p,o\ P+ P’ as P’ +
<cp ()R e dK? | Fit
t1NT
1
p+1 _1 to AT ey
p—1 P,p,a Pt (aty)V(ate) P’ P’ | -+
<cp(cpre) " eenveng dx® | Fr ol
tiNT

P , toAT AP
C’E’p’o‘ = esssup EF K/ eadelP) ‘fttAr]'
t

P'ePS (t1AT) IAT

As it follows from the minimality condition in Definition 3.11 that

P

P _ : P’ [ P’ -+

Kinr = essinf E (Ko pe| Fit ar ]
PP (t1AT)

and Cﬁ’p’a < 00 (see (6.18)), we obtain that

P /
P
Yiinr — esssup VA <0, P-as.
P'ePS (t1AT)

thus providing the required equality.

2. Given (5.2), we now show (5.3) by proving that

lim ess]Psup |5y,5’;"| =0, P-as. where §Y* " :=YP[¢ 7] = Y [Yonr,n AT
MO prept (tar)

By the stability result of Proposition 4.6, we have
|e77(t/\7')6yf’/\/;_n‘

< ess]Péup EQ }GUTE — en(n/\T)Yn/\7—| + / e’ |Fs‘ (ylP’ [Ea 7_]7 Zipl [53 7_]’ a—s) ’dS
QeQr(P) nAT

]-'+} .
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Notice that
’6177—5 - en(nAT)Yn/\‘r = ]l{'r>n} |e717'é‘ - en(n/\T)Yn/\‘r < 2]1{T>n}em— sup |Y:s|
- - 0<s<T
Then, it follows from Hélder’s inequality that for some p’ > p,

P -
Fire] € 255’?[ sup e”'"SIYsl”'] e ] T —0,

P, p
gt/\:'r “67775 - e'r](n/\‘r)Yn/\T| e
<s<t

as n — oo, due to the fact that Y € D2 (P;) and &;f [1{,>,}] — 0 by Remark 5.1. This
leads to

: tA P’
lim sup |e"( T>5yW”|
n—roo

, . , , (5.4)
< limsup esssup EQ[/ e IF (V6 7, 27 €. 7),55) |ds
n—oo QeQr (P) nAT

f+] |
We next write YF' := VF'[¢, 7], ZF' .= ZF'[¢, 7], and estimate that

/ | Fy (VY 2Y 5, |ds

A

g/T 6”3’f£|ds+L/T e”s|yf'|ds+L/ e"s|5;rZ;P/’d5
nAT nAT n

A AT

—2(n'=mn \ 2 T 3 T . H
<(e> [(/ ezvs\foy%@ +L(/ 25|57 2P |2ds) ]
/ S S S

2(n" —n) 0 0

—(n'=m)n , ,
+L<el> sup e"5|y}f
= 0<s<T

By the integrability condition on f° in Assumption 3.1, and the fact that (JJIP', ZIP') €
Dy, (P') x My, (P') by the wellposedness result of backward SDEs in Theorem 3.4,
this implies that P-a.s. &7 [( [, e™|F(VF', 2F,5,)|ds)"] — 0, and therefore
|entAT)gYE | — 0, by (5.4).

3. We finally verify the estimate (3.6). By the representation (5.3) proved in the previous
step, and following the proof of Proposition 6.8, we may show that

T p
57’0{ sup ep"tw} <Cp£7’°[ sup & [\e’”&!“ ( / e”ﬂf?\ds) H
0 0

0<t<r <t<rt

. —=0
By Remark 5.1 we obtain that ”YHPD&(PU) < C’p(||£||’£gy7(730) + (F,,-)"). As, for each

P € Py, (Y,Z,U") is a solution of the RBSDE (6.17), the required estimate for the Z
component follows from Proposition 4.3. O

6 Second order backward SDE: existence

In view of the representation (5.3) in Proposition 5.2, we follow the methodology of
Soner, Touzi & Zhang [40, 41] by defining the dynamic version of this representation
(which requires the additional notations of the next section), and proving that the
induced process defines a solution of the 2BSDE. In order to bypass the strong regularity
conditions of [40, 41], we adapt the approach of Possamai, Tan & Zhou [34] to ensure
measurability of the process of interest.

EJP 25 (2020), paper 99. http://www.imstat.org/ejp/
Page 29/43


https://doi.org/10.1214/20-EJP498
http://www.imstat.org/ejp/

Second order backward SDE with random terminal time

6.1 Shifted space

We recall the concatenation map of two paths w,w’ at the junction time ¢ defined by
(W@ w')s = wslion(s) + (Wi +we_ )00y (5), 820,
and we define the (¢, w)-shifted random variable
W) = ¢w®w'), forall w' €.

By a standard monotone class argument, we see that % is F,-measurable whenever &
is F;. s-measurable. In particular, for an IF-stopping time 7, t < 7, then 75¢ := 70% — ¢ is
still an F-stopping time. Similarly, for any [F-progressively measurable process Y, the
shifted process
YIW) =Y s(w @ '), s3>0,

is also IF-progressively measurable. The above notations can naturally be extended to
(1,w)— shifting for any finite IF-stopping time 7.

Lemma 6.1. The mapping (w,t,w’) € Q@ x Ry x Q — w ®; ' € Q is continuous. In
particular, if § is F-measurable function, then £ (+) is Foo @ B([0, 00)) ® Foo -measurable.

Proof. We directly estimate that
w0’ ~ @27 loo < lw=Bllow + o’ =& oo + 51D (Iwss = wlloo + |y =/lloc) . O
s<[t—t|

For every probability measure P on (2 and IF-stopping time 7, there exists a family
of regular conditional probability distribution (for short r.c.p.d.) (P]),cq, see Theorem
1.3.4 in [42]. & The r.c.p.d. P/, induces naturally a probability measure P™* on (), F)
such that

P™Y(A) =P (w®, A), AcF, wherew®, A:={we,w :w e A}

It is clear that EF<[¢] = EF 7" [¢7+], for every F-measurable random variable &.

6.2 Backward SDEs on the shifted spaces

For all P € P(¢,w), we introduce a family of random horizon BSDEs
6

Yool — gtw / Fbhe(bel ztwlP G ar — Z209F L ax, —dNPP . s >0, P-as.
sAO
(6.1)

By Theorem 3.4, this BSDE admits a unique solution. Define the value function

Viw):= sup YP[e,r], with Y“P[e 1] :=EF [y“”f’} (6.2)
PeP(t,w)

In this section, we will prove the following measurability result, which is important
for the discussion of the dynamic programming.

Proposition 6.2. Under Assumptions 3.1, the mapping
(t7 w? ]P) }_) Yt}w’IP [57 7-]
is B([0,00)) ® Fr ® B(M;)-measurable.

We will first review in Section 6.2.1 the finite horizon argument of [34], and we next
adapt it to our random horizon setting in Section 6.2.2.

8By definition, an r.c.p.d. satisfies:

* For every w € Q, P, is a probability measure on (2, F);
- For every A € F, the mapping w — P7(A) is Fr measurable
* The famlly (]Pl% q is a version of ]P|; ie. E [5\]—}]@)) [J P— a s. forall ¢ € L1 (P);
» Foreveryw € ﬁ)w Qv) = 1, where Q¥ := {w’ wl'= wg, (w)}.
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6.2.1 Measurability - finite horizon

Let 7 =T, where T is a finite deterministic time. For the convenience of the reader we
repeat the argument in [34] in order to prove the finite horizon version of Proposition
6.2. For each P € P,,., we consider the following shifted BSDE

T—t
Vol =gt / Fle (Yol zbeP G Ydr — 289F X, — dNPF, P-as., (6.3)

for s € [0,T —t].

Lemma 6.3. Let 7 = T be a deterministic time. Then, there exists a version of Yt%F
such that the mapping (t,w, s,w’,P) € [0,00) x Q x [0,00) X Q X Ppye = Yo F(w') € R is
B([0,00)) X Foo X B([0,00)) x Fuo x B(M;)-measurable.

Proof. We shall exploit the construction of the solution of the BSDE (6.3) by the Picard
iteration, thus proving that for each step of the iteration, the induced process Y™«F
satisfies the required measurability.

1. We start from the first step of the Picard iteration. Take the initial value Y%**F =0
and 2%twP = (. Define forallt < T

T—t
—=1,t,w,P w w w, tw ~
Yot =EP [ﬁ’* + / FLe@ter, 2009F 5 )dr fﬂ
T—t
_ E]P |:£t,w +/ Pv;&,m(‘y?(‘J,t,o.:,]P7 ZE,t,w,P’67_)dr ];~S+:|
0
- / Fbeo Yot z0twl G g se0,T —t. (6.4)
0

L. —1,t,w,P tw ~Ltw, P
We extend the definition so that )/, =&Yon{s>T—t}N{t <T}and Y, =

&(wra.) for t > T. By Lemma 6.1, the mapping £7(-) : 2 x [0,T] x @ — Ris Foo ®
B([0,00)) ® Foo-measurable. Similarly, the mapping

(t,w, 7,0, P) s B (wf, YOHP (o)) ZO6 (1) 5 (o)

is B([0,00)) ® Foo @ B([0,00)) ® Foo ® B(Pioc)-measurable, and by the Fubini theorem,
T—t
(t,w,w', P) — ﬂ{th}/ Fb (o, VOB (), Zg’t’”’lp(w'),&}(w’))dr
0

is B ([O, oo)) ®Foo @ F oo @B(Pyo.)-measurable. It follows from Lemma 3.1 in [25] that there

—1.twlP = P
exists a version, still noted by yl’“” , such that the mapping (¢, w,w’,P) — yi’t’“” (W)

is B([0,00)) ® Foo ® F~ @ B(Pioc)-measurable for each s.

. 1tw,P . . . T
2. The function Y, we just constructed is not necessarily PP-a.s. cadlag in s. We next
. . ~1,t,w,P L
construct a version Y1H@F (ie., YLiw P =3 , IP-a.s. for all s) which is measurable

and P-a.s. cadlag in s. Let ¢ := i27"(T — t), and set for s > 0:

gm

1,t,w,P : 1,m.t,w,P Lm,t,w,P . 5 1tw, P t,

Yool = limsup Y with YImior =% Y i e (8) + €L rog,00)(5).
1=1

m—o0

Clearly, (t,w,s,w’,P) — YEmt@ P is B([0,0)) @ Foe @ B([0,0)) @ Fox @ B(Proc)-
measurable, and so is (t,w, s,w’,P) +— Y24«F(w'). Since the filtration F+F satisfies
the usual conditions and the conditional expectation in (6.4) is an FtP -martingale, one
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can prove by a standard argument (see e.g. [23, Proposition I 3.14]) that yhtw.P ig g
P-a.s. cadlag version of yl’t’“’]}’.

3. Recall the inverse of a nonnegative-definite matrix in Footnote 1. Define

ZbtbeP =g Mimsupn ((YVF, X) — (VP X) (621 /mpvo) » (6.5)
n—oo
where the limsup is componentwise. Clearly, the mapping (t,w, s,w’, P) — ZLH@ P ()
is B([0,00)) ® Foo @ B([0,00)) ® Foo @ B(Pioc)-measurable. Since Y11« is cadlag, by
the uniqueness of the martingale representation (see e.g. [21, Lemma III 4.24]), there
exists an F1-martingale N'''»“F orthogonal to X under P, such that for t < T and
se 0, T -1,

T—t
Yool =gy / FLootel z0teP G ydr— zbte P gx, —dNH P Pas. (6.6)
S

4. By replacing (Y0:0«FP Z0tw.P) in Steps 1-3 by (Y« F, Zmt«F) for an arbitrary
n > 1, we may define (Yynttiw P zntliwlP Amtltw.l) guch that the mappings

(t,w, S,MI,IP> — (yn—&-l,t,w,]P(w/)’Zn—i—l,t,w,]l’(w/))

are B([0,0)) ® Foo ® B([0,0)) @ Foo ® B(Pioc)-measurable. By the contracting feature
of the Picard iteration, see e.g. El Karoui, Peng & Quenez [15], we have

Hyn,t,w,]? o yt,w,]PH]D%_ — 0, as n — oQ.

ta(P)

As before, we extend the definition so that V¥ := ¢« on {s > T —t} N {t < T} and
VL@ P = ¢(wpa.) for t > T. Then it follows from [25, Lemma 3.2] that there exists an
increasing sequence {nf }yen C IN such that P — nt is measurable for each k and

lim  sup Si’t’“f — y;,WP’ =0, P-as.

k—o0 g<s<T—t
Besides, there exist 24" € H7._, , and N*“'F € IN7._, | as limits of the Picard sequence
under each (t,w,P) € [0,T] x Q x Pj,.. We conclude that (Y« F ztewP NtwP) js g
solution to the BSDE (6.3), and that (¢,w,s,w’,P) — YiF(w') is B([0,00)) @ Feo @
B([O, oo)) ® Foo @ B(Pjoc)-measurable. As Pj,. C B(M;), the assertion follows. O

Remark 6.4. In the finite horizon case, Proposition 6.2 is a direct corollary of Lemma
6.3.

6.2.2 Measurability - random horizon

Let us return to our construction of the solution of the random horizon BSDE by means of
a sequence of finite horizon BSDEs on [0, 73,], n > 1, where 7,, := nA7. Forall (t,w) € [0, 7]
and P € Py,., consider the approximating sequence (Ymtw:.F zntw P Amtw.F) defined
by:

n—t
y;z,t,w,]? —_ é-n,t,w +/ f;ﬁ,w (y;rz,t,w,]P’ Z‘;n,t}w,]P)dS o Zg’t’w’]PdXs o dN:L’t’w’IP7 (67)
s

s <n—t, Pt-as., where 7@®X (= (7rw®X _ )t

n,wQ X _ Fn,w®tx n,w®q w L w —~
gn,t,w = E]P [e ® f W X:|7 and f;’ (y,z) = F;’ (y72,0-5)]l{s§(7—t,w_t)+}
satisfy Assumption 3.1. Then (Y™« F, zmtwP NmbeF) is well-defined in D? (P) x
HP (P) x NP _(P) forall p € (1,¢) and n € [~p, p).
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Proof of Proposition 6.2. As (y™twF zmtwP Amtwl) s defined by the finite horizon
BSDE, we may apply the results of previous subsection, thus obtaining a version of
ymte-P such that (t,w,s,w’,P) — Y0P (W) is B([0,00)) ® Foo @ B([0,00)) ® Foo @
B(Pioc)-measurable. This in turn implies that the mapping (¢,w,P) — vt
EP [V "] is B([0,00)) ® Fuoo @ B(Pyoc)-measurable.

By Proposition 4.5 (with S = —o0), it follows that lim,,_, vt Y4« P[¢ 7]. Then,
the mapping (t,w,P) — Y*“P[¢ 7] is B([0,00)) @ Foo ® B(Pioc)-measurable. As Py, C
B(My), the mapping (¢, w,P) — Y*P[¢ 7] is B([0,00)) ® Foo ® B(M;)-measurable. O

6.3 Dynamic programming principle

The goal of this section is to prove that the dynamic value process V satisfies the
dynamic programming principle. We first focus on the underlying BSDEs for which
the dynamic programming principle reduces to the following tower property, where we
denote by Y[&y, 7o) the Y component of the solution of the BSDE with the terminal time
7o and value &j.

Lemma 6.5. Let Assumptions 3.1 and 3.2 hold true. Then, for all stopping time 7o < T,
and P € Py

(i) EF VP |7 ] (w) = Y0P ¢ 7], for P-a.e. w € Q.
(i) VE,, 6.7 = Vi, [VEE 7], 70] = Vi, [EF [VE €. 7]| Fr ], 0], forall t > 0.

The proof is omitted as (i) is a direct consequence of the uniqueness of the solution
to BSDE, and (ii) is similar to [34, Lemma 2.7]. In order to apply the classic mea-
surable selection results, we need the following properties of the probability families
{P(t,w)}Htw)efon-

Lemma 6.6. The graph [P] := {(t,w,P) : P € P(t,w)}, is Borel-measurable in R, x Q x
M. Moreover for all (t,w) € [0,7] and all stopping time 7y valued in [t,7], denoting

—t t
7o¥ =1y —t, we have:

(i) P(t,w) = P(t,w.n), and for all P € P(t,w), the re.p.d. P € P(ry,w @ w'), for
P-a.e. w € Q.

(ii) For any F:..-measurable kernel v : €} — M, with v(w') € P(ry,w ®¢ w') for P-a.e.

w' €9, themapP’ .= P gzt ¥ defined by

P'(4) = / / (14)°° (W (dw' ;W P(dw'), A€ F,
is a probability measure in P(t,w).
Proof. This follows from [29, Theorem 4.3]. O

Theorem 6.7 (Dynamic programming for V). Let Assumption 3.1 hold true. The mapping
wr— Vo (w) is ]-"TU0 -measurable. Moreover, for (t,w) € [0, 7], and an F-stopping time 7

witht AT < 79 < 7, we have, denoting 7‘-’5’“ = 7-5’“ —t, forallp € (1,q9), n € [—u,p),
EPtw) Ue’ﬁg'm (VTO)t’“‘p} < oo, and sup EM Ue"T‘)(VTO)‘p} < o0, (6.8)
To<T
and
Vilw)= sup Y"F[V;, 7], (6.9)
PeP(t,w)
V, = esssup EF’ [y}" (Vi 70] ‘ft}, P-as., forall P e P,. (6.10)
IP’G'P]p(t)
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Proof. Without loss of generality, we assume in the proof that (¢,w) = (0, 0).

1. It follows from Proposition 6.2 that (¢,w,P) — Y**F[¢ 7] is B([0,00)) @ Foo @ B(M;)-
measurable, and from Lemma 6.6 that [P] is analytic. By [3, Poposition 7.471, we know
that the mapping
(tw) = Vi(w) == sup Y'F[E 7]
PeP(t,w)
is upper semi-analytic and thus universally measurable, i.e., B([O, oo)) ® FY-measurable.

Finally, note that V;(w) = Vi(wia.). So, it follows from Galmarino’s test that V,, is

U
Fr a--measurable.

2. We next pove (6.8). By the measurable selection theorem (see, e.g., [3, Proposition
7.50]), for each & > 0, there exists an F' -measurable kernel v° : w — 1°(w) € P(7(w),w),
such that for all w € Q)

enTo(w)VTO (w) < 7o (W) yy 700,05 (w) [€,7] +e. (6.11)
By Lemma 6.5, we have

YT @, 7] = BPEnov [YhE”

]-'To}(w), P-a.s., forall P e P,.
Therefore, for Q € Qr(IP), we have

EC[|emV;, [7] < EQ HEmTD Ve {emoy};@mvs

] o]

]+
Ter)

_ P®.,v° P P@rov®
= Gy (BF & [DQF| ey

< Cp( sup  EY He”“’yﬁ@r””
Q' €QrL(PR®-yve)

Then, by the estimate (3.2), we obtain

g —0
PePu 0con (P) ESflerva '] < Cp’q<”§‘|i%,r<7ﬂo> + (Fp,q,r)p) + Cpe?,

which induces the required estimate by sending ¢ — 0.

3. To prove (6.9), we start by observing that, by the tower property in Lemma 6.5, we
have

Vo= sup EF[3F[6,7]] = sup EF |3 [V (¢, 7], ]|
PePy PePy

Peho B {y‘])P []E]P (VL& T Fro)s TOH '

Note that, for all P € Py, we have by Lemma 6.5 that for P-a.e. w,

Vi (w) = Sup Y Pg, ] = Sup EP { Gt [&T]] > EP {yf; [E,T]’fro} (w).

By the comparison result of Theorem 3.7 (ii) for the BSDE (6.3), we deduce that

Vo < sup E¥ [V§ [Vay, 10]] = sup YOOF [V, 7] . (6.12)

PePo PEPy
To prove the reverse inequality, we use again the measurable selection theorem to
deduce the existence of an F -measurable kernel v° : w — 1°(w) € P(7p(w),w) such that
(6.11) holds true for n € [—pu, p). Define the concatenated probability P := P ®,, v* and
note that P| Frg = P F.,- Then, by the stability result of Theorem 3.7 (i) and Lemma 6.5,
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we have
Vo > EP V516, 71] = EP [ [EF" [y (6 7l] o)
— EP [yna {EVE()D}TO W ()[5’ H H
By (6.11), the right hand side is larger than EF [V} [V, , 70]] — Ce for some C > 0

independent of ¢. Therefore, V, > Y%OF [V, 7] — C¢, and we obtain by sending ¢ — 0
that

Vo > sup YOOF [V, 0],
PePy

4. We finally prove (6.10). Due to the previous step, we know
Vi(w) > Yo' [V, m], forall P’ e P(t,w).

I:Iow fix a probability measure P € Py. It follows from Lemma 6.6 (i) that for all
P € Pp(t) C Py we have P4 € P(t,w). So Vi(w) > Y>P"“ [V, 79]. By Lemma 6.5, this
provides

V, > EP {yF[VTO,To]‘ft}, P-as.,
and therefore

Vi > esssup]E]P {yt [V, T0) ’]-'t} P-a.s.
]PGP[( )

To prove the reverse inequality, we apply the measurable selection theorem on the
optimization problem (6.9), to find an F-measurable kernel v° : w ~ v5(w) € P(t,w)
such that Vi(w) < Y4 *@[V,  710] +¢. By Lemma 6.6, P° := P ®; v° € P, and thus
IP¢ € Pp(t). Together with Lemma 6.5, this provides

V, <EY” [))f Vi T0 ‘]-'t} +e <ess sup EP [yf Vo, T0) ]-'t}
PePp(t)
The required inequality now follows by sending ¢ — 0. O

6.4 A cadlag version of the value function
By [34, Lemma 3.2], the right limit

VT = 1l V.

v (W) i (w)

exists Py-q.s. and the process V* is cadlag Po-q.s. with V! € P _(Q) for all Q ¢
Upep, Qr(P), n € [=p1,p), p € (1,9), and all stopping times 75 < 7.

Proposition 6.8 (Dynamic programming for V). Under Assumption 3.1, V* € Dg)T(Po)
for anyn € [—u, p), p € (1,q), and for all T+ -stopping times 0 < 79 <7, <7, and P € Py,
we have

V= ess]Psup y}j Vi r

.|,  Pas.
P’eP (7o)

Proof. 1. For an F*-stopping time 7 < 7, we introduce the approximating sequence of
stopping times 7" := w and we now verify that

Vime Ll .(Po) and lim EF[[e" VI — " Vi

n—oo

Pl =0, forall P e P,.
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Indeed, for all P € Py, and Q € 9 (P):

EQ[(E”FV;) ] = lim IEQHe”T n p] < sup EP"He”T’

n— 0o T <T

Ve p} =: 1, < 00,

by (6.8) in Theorem 6.7, implying that £7° [|e""V;"|”] < v,. Then 6, = |e"V;" — "™ Vzn
satisfies for an arbitrary m > 1:

EP O8] < %[00 rmmy] + EX [ L prcny] < 203 € [Lirmmy] 7 + Cn (B [38]),
which implies the required convergence.

2. We now prove that V& > Y2'[V:f, 7], P-a.s. for all P’ € P} (1), where the right hand
is well defined by the 1ntegrab111ty of V'* obtained in step 1. Recall from Theorem 6.7
that

Vi = ess sup EF {yfél [VTT’vTﬂ’FTo’"]v P-a.s.
P’ €Pp (") 0

Since for each m € IN, Pp(78") C P (70) = Upo Pr(70 + 1), we have for any P’ € Py (7o)
and for m large enough that

V‘rg” > E]Pl |:y m [V‘r" » T1 ]

F. m}, P-a.s.,

where 73" and 7{* are defined from 7, and 7; as in the previous step. By the stability
result of BSDEs in Proposition 4.6, and the result of Step 1 of the present proof, we have

. P’ P’ +
nh_)ngo yTérL [VT'I” ) T{L] - yTé" [VTl ’ Tl] ‘ ]Lf;‘ m (P)
Sn&n;o 71%”[‘/71"77_1] y]P [ o T ]’ =0

£y o (BY)
Then,

Vip > Tim B [y o [Vi, 70 ‘f } EP [y [V T ‘f } P-as.,
and therefore

Vi = lim Vep > Tim BY VL[V 7]

m—o0 m—0o0

w] =B ]|

where the last equality is due to Y* [V, 7] € D2 _ (P').

7,71
3. We next prove the reverse inequality. By the comparison result together with the last
step of the present proof, we have

P P ’ ’ P ’
ess sup yf; [V, 7] > esssup yii D)J_Pl [€,7],71] = esssup yii €, 7]. (6.13)
P’eP; (7o) P’eP; (o) PPy (10)

So it remains to prove that

Vi< ess]Psup y;f_;’ €, 7] (6.14)
IPIG’P]; (T())

In the remainder of Step 3, we omit the parameter [¢, 7] without causing confusion. For
any n € [—pu, p), we obtain by the dominated convergence theorem together with the
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estimate (6.8) of Theorem 6.7 that

n n P / ’
nToy/t — 13 nT +1 13 nT, P P
¢V = lim B¢ Vg |F] = nh_{noolE[e ¢ esssup EY [V |Frr]

P'ePp (1)

7]

Frel

n—oo

. n P ’ 4
< lim ]E[em0 esssup EF [yﬂ}
P’ePS (o)

7]

. P ’ n ’
= lim esssup EF [e’”o y}.},
"0 prepit (7o)

7]

/7 / 0 ’ ’ ’
= lim esslpsup {e””’yfo +EF [/ e (f(VE,25) + Yy )ds
To

"0 prepit (7o)

f;] } (6.15)
By the Lipschitz property of F' in Assumption 3.1, we estimate that

o [ e (.07 2 <t s

70

n —0
75| < e (Ieleg. o + (Fra)).
which provides (6.14) in view of (6.15).

4. It remains to prove that VT inherits the integrability property of V. By Proposition
6.8,
P |V = ePnt — esssup P | VE ¢, ]|
PrePS (t)

esssup V¥ [¢, 7]
PrePS (t)

As in the proof of Theorem 3.4, we may find for each IP’ a measure Q]P/ € 9y, such that

VP [e, 7| < B [e’”lﬁ + [ " |10 ds fﬁ]
0

Then,

P P’ T p
e’ |V < C, esssup esssup E? [e’”’f|§|p + (/ e”s|f£|ds)
PreP; (t) ReQL(P) 0

f;}
and therefore,
T p
EPO[ sup ep”t|Vt+|p} < CPEPO[ sup & {ep”7|£|p+ (/ e”s‘fglds) H < 00,
o<t<r 0<t<r 0

which induces the required result by Remark 5.1. O

6.5 Proof of Theorem 3.14: existence
Proof. 1. We first prove the existence of a process Z and a family (UF)pep, such that for
allp € (1,9) and n € [y, p), (Z,UY) € HE (P, FTF) x Y2 (P, F™F), and U” is a cadlag
P-supermartingale, [U¥, X] = 0, and

Vi =e+ [

tAT

T T

Fy(V;H, ZE,5,)ds —/ (2¥ - dX,+dUY), t>0, P-as. (6.16)
tAT

FixIP € Py. Asforanyp < p <q V*t € Dg:T(PO), by Proposition 6.8, it follows from

Theorem 3.9 that there exists an unique solution (Y, Z",U") € Db _(P) x H? (P) x

Ur _(P) to the RBSDE:

VE =g [ nEzhas— [ (28 ax.vavd),
AT AT

P> v+ -
Y">V™T, P-as, (6.17)

tAT
EP [/ (LAY - VTJQ))dU,.] =0, forall t>0.
0
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Following the same argument as in [40], see also [34, Lemma 3.6], we now verify that
YP = V+, P-a.s. Indeed, assume to the contrary that 2¢ := Y¥ — V" > 0 (without loss of
generality), so that

Toi=inf {t>0: emyYF <emvit 4 e} >0, P-as.

Notice that 7. < 7, as the two processes are equal to £ at time 7. From the Skorokhod
condition, it follows that U¥ is a martingale on [0, 7.], thus reducing the RBSDE to a
BSDE on this time interval. Denoting as usual by V¥ [V", 7], we obtain by standard
BSDE techniques that, for some probability measure Q € Q. (P),

YE <YEViE ] + EQ[em (YE — V)] < W [Vih ] +e < Vit +e,

where the last inequality follows from the crucial dynamic programming principle of
Proposition 6.8. By the definition of ¢, the last inequality cannot happen.

Consequently YT = V*. In particular, V1 is a cadlag semimartingale which would sat-
isfy (6.16) once we prove that the family {ZF }pcp, may be aggregated. By Karandikar
[22], the quadratic covariation process (VT, X) may be defined on R, x . More-
over, (V* X) is Pyp-q.s. continuous and hence is F+Po_predictable, or equivalently
]FPO-predictable. Similar to the proof of [28, Theorem 2.4], we can define a universal FPo-
predictable process Z by Z;dt := a; *d(V*, X);, and by comparing to the corresponding
covariation under each P € Py, we see that Z = Z¥, P-a.s. for all P € P,. This completes
the proof of (6.16).

2. It remains to prove that the family of supermartingales {U"} cp, Satisfies the
minimality condition. Let 0 < s <t, P € Py, P’ € Pg (sA7), and denote by (yﬂ’/, Z]P/7/\/']P/)
the solution of the BSDE with parameters (F,¢). Define §Y := V+ — V¥, 67 .= Z — Z¥
and 6U := U® — N'F’. By It&’s formula, we have for o € [—p, p),

ea(S/\T)(SYg/\T

- / a(rAT) { (F.(V¥, Z,,5,) — F.(VF, 2Y'5,) — adY,)dr — 62, - dX, — déUr}
SAT

= / @ (rAT) { (a¥'oY, + 0 5762, dr — (562, - dW, + dsU,) }
SAT

for some bounded processes a¥ and b¥’, by Assumption 3.1. This provides that
tAT

FlP/:Tea(t/\-r) 5Y—t/\'r - FE//\TGQ(S/\T)(SYS/\T = /

SAT

Ff’ew{ (O, b +5,52,) - dW, + chUr},
where

’ r ’ 1 ’ r ’
'Y = exp </ (a]f: — f|bg }Z)du+/ ¥ ~qu>.
SAT 2 SAT

Recall that §Y > 0, and UY" is a P’-supermartingale with decomposition U?" = N¥' — K?’,
for some P’-martingale N F" and nondecreasing process K P’ Then, taking conditional

expectation EY, _[] := E¥'[.|F,], we obtain
’ t/\T ! ’ ’ ’ t/\T ’ ’ ’
eloltoy, ., > EE, / ITdKY | > EL,, |4F, / dKY |, with 4%, := inf TV,
SAT SAT SATr<tAT
EJP 25 (2020), paper 99. http://www.imstat.org/ejp/
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and we then obtain by the Cauchy-Schwarz and Hoélder’s inequality:

tAT tAT
OSE’EAT[ / —déUr] =1E‘£’AT[ / dKJF’}
SAT SAT
1

tAT 1 1

’ ’ ’ P, ’ I\ — 2

< ElL, [vfft / dKy ] () ZPEE’M[(WEJ ﬂ '
S

AT

n|=

< Ceslelt(CP )2 (§Y,0,)2,
where p € (1,¢), p"! +p ' =1, and
P’ , tAT , P
ij’tp ‘= esssup ]EfAT[(/ dKf) } (6.18)
P'ePl (sAT) SAT

Now, the minimality condition in Definition 3.11 follows immediately from Proposition
6.8, provided that CE’tP < 00, IP-a.s. which we now prove.

The family
, tAT ,
{EP H / dKF
SAT

is directed upward.® Then, it follows from [26, Proposition V-1-1] that the esssup in
(6.18) is attained as an increasing limit along some sequence {P, },cn C P]E,r(s AT). By
the monotone convergence theorem, we see that

tAT P
EP[C]F] = lim 1+ EF [E]SP;Q’T{< / dKf’”) ” < C||U]|

AN

p ’

ij}, P € Pg(tA T)}

P
Uz (Py) < %

by Proposition 4.3 together with the fact that ||V, Py <X due to the wellposedness
of the RBSDE. Hence, Cﬁf < 00, PP-a.s. O

7 Connection to a fully nonlinear elliptic path-dependent PDE

In this section, we present an example of pricing under volatility uncertainty from
the so-called robust finance. The canonical process X represents the price process a
financial asset. The objective is the hedging of the derivative security defined by the
payoff £(X) at some maturity Hy defined as the exiting time from some set Q.

In contrast with the standard approach, we assume that the volatility is uncertain.
The probability space (2, F) is endowed with a family of probability measures PVVM,

d(X
pUVM . {]P : X is a continuous P-martingale and % € [¢%,77], IP-a.s.} .

We assume that ¢ > 0. The superhedging problem under volatility uncertainty was
initially formulated by Denis and Martini [11] and Neufeld and Nutz [24]. Their super-
hedging result expresses the cost of robust superhedging as

up =P [emMeg(Xon.)] (7.1)

where r > 0 is the discount rate, ) is a bounded open convex subset of R¢ containing 0,
and

Ho :=inf{t > 0:w, ¢ Q}.

9This follows from the same argument as in [40, Theorem 4.3]. For P1,Py € 73]? (s A7), denote KkPi =
ELi[| [A0T dKE[P], and A == {kP1 > P2}, and define E € F +— P3(E) := P1(AN E) + P2(A° N E);
clearly, P3 € Pl (¢t A7), and k¥3 = xP1 v kF2.
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Since the family PYVVM is saturated, we consider the following saturated 2BSDE

Hq Hq Hq
Yirug = € — rY.ds — / Zs-dX, +/ dK,, PYVM.gs. (7.2)
t t

tAHgq ANHg AHg

Proposition 7.1. Let (Y, Z) be the solution of the 2BSDE (7.2) above. Then,

uy = sup EP[Yp).
PepUVM

Proof. By Proposition 5.2, the solution of the 2BSDE (7.2) can be represented as the
supremum of the solution of BSDEs

Yy = essﬂgup y(])P/, P-a.s. forall P € PUVM,
P’eP (0)

where for all P € PUVM is the solution of the following BSDE under PP
Ho He
Vo =¢— / rYYds — / zP.dx,, P-as.
0 0
By It6’s formula, we obtain that
Ho
e MYy, =Dy + / e 2P . dX,, P-as.
0

Taking conditional expectation implies
Vi =EP [em™Me¢| 7S], Peas,

therefore,

sup EF[Yp]= sup EF
PepUVM PepUVM

esssup EF’ [e"’HQf‘]—'J]] = ug,
P’eP;(0)

where the last equality follows from the fact, which is easy to show, that the family
{EY [e=rMleg 7], P € PE(0)}
is upward directed. O

Through the robust hedging problem, we obtain the connection between the random
horizon 2BSDE above and the elliptic path-dependent PDE below. Under the assumption
that £ : © — R is bounded uniformly continuous on the boundary 09, by [36, Proposition
7.2], the value function is also a viscosity solution to the following elliptic path-dependent
HJ]B-equation

1
ru— sup =720, u=0 onQ and u=¢ ondQ,
v€lo,7] 2

where
Qi ={weQ:weQ, Vt>0} and Q°:={we€ Q:w = w. for somet > 0}.
We refer the interested reader to [36] and the references therein for more details about

the theory of path-dependent PDE.

Remark 7.2. Here we connect the random horizon 2BSDE to the elliptic path-dependent
PDE via the value function of the stochastic control problem (7.1). In order to verify
that the value function is a viscosity solution to the path-dependent PDE, one need first
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prove it is uniformly continuous (according to the definition in [36]). This regularity
requirement is closely related to the generator and the boundary of the equation. In the
example above, we address the most simple case in which the generator is uniformly
elliptic and the boundary is convex. In such setting, one may prove the desired uniform
continuity, using an elementary argument of which the key ingredient is to verify the
uniform continuity of

v HG =inf{t >0: 2 +w; ¢ Q}

under a nonlinear expectation. For more details, see [36, Proposition 8.1].
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