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Abstract

We introduce a class of kinetic and anisotropic random motions (xσt , v
σ
t )t≥0 on the unit

tangent bundle T 1M of a general Riemannian manifold (M, g), where σ is a positive
parameter quantifying the amount of noise affecting the dynamics. As the latter goes
to infinity, we then show that the time rescaled process (xσσ2t)t≥0 converges in law to
an explicit anisotropic Brownian motion on M. Our approach is essentially based on
the strong mixing properties of the underlying velocity process and on rough paths
techniques, allowing us to reduce the general case to its Euclidean analogue. Using
these methods, we are able to recover a range of classical results.
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1 Introduction

We consider a class of anisotropic and kinetic random motions on the unit tangent
space of a general Riemannian manifold (M, g) of dimension d ≥ 2. In the simplest
case when the base manifold is the Euclidean space Rd, the typical process we have in
mind can be described as follows: let σ > 0 be a positive parameter and let (Bt)t≥0 be
a Brownian motion in Rd with (non identity) covariance matrix Σ = A∗A. We construct
an anisotropic diffusion process (vt)t≥0 = (vσt )t≥0 on the Euclidean sphere Sd−1 ⊂ Rd by
solving the Stratonovich differential equation

dvt = σΠv⊥t
◦ dBt, (1.1)
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Homogenisation for anisotropic kinetic random motions

where Πv⊥t
denotes the projection on the orthogonal of vt. We then integrate the velocity

process (vt)t≥0 to obtain a process (xt)t≥0 = (xσt )t≥0 with values in Rd

xt := x0 +

∫ t

0

vsds. (1.2)

The process (xt, vt)t≥0 is thus a diffusion process with values in the unit tangent space
T 1Rd = Rd × Sd−1. The first projection (xt)t≥0 is a C1 curve in Rd, which inherits the
anisotropy of the velocity process (vt)t≥0, and the positive parameter σ allows one to
slow or speed up the clock of the latter. The next figure shows an approximation of a
sample path of the resulting process.

Figure 1: A sample path of the velocity process (vt)0≤t≤10 on S2 (left) and the correspond-
ing (xt)0≤t≤10 in R3 (right) for the choice of covariance matrix Σ = diag(1, 1.1, 1.2).

On a general Riemannian manifold (M, g), an analogue process (xt, vt)t≥0 with values
in the unit tangent bundle T 1M can be constructed starting from the above Euclidean
process and using the classical stochastic development/parallel transport machinery.
Namely, the process (xt, vt)t≥0 in T 1M is characterised by the fact that the image of
vt ∈ T 1

xtM in the fixed unit tangent space T 1
x0
M' Sd−1 by the inverse stochastic parallel

transport along (xs)0≤s≤t solves equation (1.1) above.
The isotropic analogue of the process, i.e. the process associated with Σ = Id,

was introduced in [26], where its was shown, under geometric constraints on the base
manifoldM, that as the parameter σ goes from zero to infinity, then the sample paths of
the process (xσ2t)t≥0 interpolates in a precise sense between geodesics and Brownian
paths. In [1], it was given the name kinetic Brownian motion, and convergence was
proved in all generality. The authors also fully determined, for a fixed intensity parameter
σ, the Poisson boundary of the process if the base manifold is rotationally invariant. It is
easy to prove that, as σ tends to 0, the generalised anisotropic motion converges to the
geodesic equations as well; in this work, we intend to describe the limit σ →∞.

The motivation to introduce anisotropy in this context is twofold. From an applied
point of view, the kinetic Brownian motion is a simple, yet very reasonable model for
the dynamics of a mesoscopic spherical particle with bounded velocity in an isotropic
heat bath. Compared to the standard Langevin dynamics where the velocities are
Gaussian, the fact that the velocities are here of unit norm is perfectly consistent with
special relativity theory. The homogenisation phenomena shown in [1] illustrates the
fact that the scaling limit of the process, i.e. the macroscopic behaviour of the particle is
nevertheless diffusive, as anticipated. Now, if the geometry of the mesoscopic particle
under consideration is not spherical, or if the heat bath is anisotropic, the dynamics of
the velocity process has to be anisotropic, see e.g. [19, 11, 24] and the references therein.
In that context, the velocity evolution given by the stochastic differential equation (1.1)
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with Σ 6= Id is very natural. As we will see below and with this applied point of view, the
main result of this article guarantees that the macroscopic behaviour of the particle is
still diffusive, with an explicit anisotropy matrix.

From a more theoretical point of view, the introduction of anisotropy is also unavoid-
able if one wants to generalise the results of [1] to an infinite dimensional setting, say to
an infinite dimensional Hilbert space. Indeed, doing so, one quickly faces the problem of
defining spherical Brownian motion in this context. Looking at equation (1.1), the orthog-
onal projection makes perfect sense in a Hilbert setting but we have to give meaning to
the driving Brownian motion B. This can naturally be done using the notion of abstract
Wiener space, see e.g. [17, 18] or [34, Chapter 8]. Roughly speaking, in that framework
the driving process in (1.1) has to belong to the image of a radonifying injection, hence
introducing a Hilbert-Schmidt covariance operator. In a finite dimensional setting, the
action of this Hilbert-Schmidt operator amounts to replacing the standard Brownian
motion B by a Brownian motion with covariance Σ 6= Id, i.e. to replace the isotropic
noise driving kinetic Brownian motion by an anisotropic noise; this justifies our choice of
dynamics for the velocity process.

Our goal in this paper is to exhibit the asymptotics of the time rescaled process
(xσσ2t, v

σ
σ2t)t≥0 as the intensity parameter σ goes to infinity. More precisely, we show

that in both Euclidean and Riemannian contexts, its first projection converges to an
anisotropic Brownian motion. The presence of anisotropy drastically complexifies the
approach and computations compared to the isotropic framework. Namely, in the
isotropic Euclidean setting considered in Section 2.2 of [1] and which is the core of
the proof when associated with rough paths techniques, the homogenisation of kinetic
Brownian motion was proved using Itô calculus and standard martingale techniques. As
it will be clear in Section 2 below, the Doob–Meyer decomposition of the velocity process
given by equation (1.1) gets more involved here, its invariant measure is not likely to
be easy to describe, and martingale techniques need explicit solutions of the Poisson
equation which seems hopeless in this context. In fact, guessing a formula for the
invariant measure of the vσ on the sphere before reading the statement of Proposition
1.1 does not seem obvious.

For this reason, we adopt a different approach and point of view here. Our proof
of homogenisation for the time rescaled version of the process (xσt , v

σ
t )t≥0 is indeed

essentially based on quantitative mixing properties of the velocity process. We show in
particular that

Proposition 1.1 (Lemma 2.1 and Proposition 2.4 below). The process vσt solution of (1.1)
is ergodic in Sd−1 with an explicit invariant measure µ whose density with respect to the
uniform measure dθ on the sphere is given by

dµ

dθ
(θ) =

‖A−1θ‖1−d∫
Sd−1 ‖A−1θ‖1−ddθ

.

In particular, the invariant measure µ are well as the trajectories are invariant under all
the coordinate reflections

(θ1, · · · , θi, · · · , θd) 7→ (θ1, · · · ,−θi, · · · , θd), 1 ≤ i ≤ d. (1.3)

Moreover, there exists a positive constant τ such that, if F[a,b] denotes the σ-algebra
generated by the unit speed (σ = 1) velocity process vt, for a ≤ t < b, then for any
0 ≤ s < t and any bounded measurable real-valued random variables P and F that are
F[0,s] and F[t,∞]-measurable, respectively, we have∣∣Eµ[PF ]− Eµ[P ]Eµ[F ]

∣∣ . |P |∞|F |∞ e−(t−s)/τ . (1.4)
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The above strong mixing and symmetry properties of the velocity process are the
key ingredients to establish the homogenisation of the anisotropic version of kinetic
Brownian motion in the Euclidean setting. Indeed, we have the following result.

Theorem A (Theorem 3.6 below). Let (xσt , v
σ
t )t≥0 with values in T 1Rd be the solution

of equation (1.1) and (1.2), starting from (x0, v0) where x0 is fixed and v0 chosen at
random according to µ. Then as σ goes to infinity, the time rescaled process (xσσ2t)t∈[0,1]

converges in law to a Brownian motion in the Euclidean space Rd, with covariance matrix
diag(c1, · · · , cd) where

ci := 2

∫ +∞

0

Eµ[vi0v
i
t]dt, 1 ≤ i ≤ d.

Our strategy of proof in the manifold setting consists in establishing that the rough
path lift of (xσσ2t)t≥0 converges to the Stratonovich rough path lift of a Brownian motion
with the above covariance. To do so, we use again the strong mixing properties of
the velocity process, associated with a Lamperti-type criterion to ensure the tightness
of the lift in rough path topology — see Lemmas 3.1 and 3.2 below. We then identify
the limit process by showing that it has to be a stationary process with independent
Gaussian increments on the nilpotent group associated with the rough path structure,
see Theorem 3.6.

Using the fact that the notion of stochastic development amounts to solving a stochas-
tic differential equation and that the Itô map is continuous with respect to the rough
paths topology, one can conclude that the previous Euclidean statement actually holds
in that more general setting. Anisotropic Brownian motion on M is defined as the
stochastic development of an anisotropic Brownian motion in Tx0

M.

Theorem B (See section 3.3 below). Let (M, g) be a complete and stochastically com-
plete Riemannian manifold and let (xσt , v

σ
t )t≥0 be the process with values in T 1M char-

acterised by the fact that the image of vt ∈ T 1
xtM in the fixed unit tangent space

T 1
x0
M' Sd−1 by the inverse stochastic parallel transport along (xs)0≤s≤t solves equation

(1.1) in T 1
x0
M. Then as σ goes to infinity, the time rescaled process (xσσ2t)t∈[0,1] converges

in law to an anisotropic Brownian motion on the base manifoldM.

The use of rough paths is not a mere commodity. Indeed, on a general manifold, the
arguments of the proof of Theorem A will fail, and we have to rely on other methods to
make our way up to Riemannian manifolds. As we discuss in more details in example
4.2.1, one can actually prove that for kinetic motions such that property (1.3) does not
hold, it is possible that the manifold-valued behaviour be non-Brownian in the limit, a
phenomenon not present in the euclidean setting. The rough path theoretic approach
provides us with a framework to deal with these subtleties; in fact the limit in the rough
equivalent of Theorem A (see Theorem 3.6) is the canonical (Stratonovich) Brownian
rough path under condition (1.3), but could be other lifts of the Brownian motion for
other kinetic processes.

As will be clear from the proof of Theorem A, the homogenisation phenomenon
holds as soon as the mixing properties of the velocity process and the symmetry of the
trajectories described in Proposition 1.1 hold. In other words, the conclusion of Theorem
B is valid as soon as the process (xσt , v

σ
t )t≥0 we consider is the stochastic development of

a velocity process satisfying the conclusions of Proposition 1.1. In particular, our proof
actually applies even if (vt)t≥0 = (vσt )t≥0 is an ergodic Markov process with jumps on
Sd−1 as soon as the conditions (1.3) and (1.4) are fulfilled.

Theorem C (Theorem 4.1 below). Let (M, g) be a complete and stochastically complete
Riemannian manifold and let (xσt , v

σ
t )t≥0 be the process with values in TM characterised
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by the fact that the image of vt ∈ TxtM in the fixed tangent space Tx0
M ' Rd by the

inverse stochastic parallel transport along (xs)0≤s≤t satisfies the conditions (1.3) and
(1.4). Then as σ goes to infinity, the time rescaled process (xσσ2t)t∈[0,1] converges in law
to an anisotropic Brownian motion on the base manifoldM.

See Theorem 4.1 for a precise statement. In this level of generality, in Section
4.2 we recover classical results, amongst which Pinsky’s so-called random flight [33]
and time-dependent variations of it; the anisotropic Langevin diffusion, where v is an
anisotropic Ornstein-Uhlenbeck process; and linear interpolation of symmetric random
walks as in [8]. It is unclear whether or not the methods of X.M. Li [27, 28] or Herzog,
Hottovy and Volpe [20] can get back such a result. In a somewhat independent direction,
the interesting work [10] of Chevyrev and coauthors studies this kind of convergence in
deterministic systems.

The outline of the article is the following. In the next Section 2, we study the
velocity process solution of equation (1.1). We characterise its invariant measure and
establish the mixing properties which are the key ingredients in our approach of the
homogenisation phenomenon. Section 3 is then devoted to the proofs of our main
Theorems A and B. More precisely, in Section 3.1, we show the tightness of the rough
path lift of the process in the Euclidean setting. In Section 3.2, we then identify the limit
as a Brownian motion on the underlying two-step nilpotent Lie group. This completes
the proof of Theorem A in the Euclidean setting. Finally, in Section 3.3, we use the
continuity of the Itô map to extend the proof of homogenisation to an arbitrary complete
stochastically complete Riemannian manifold. The last section consists in developments,
including Theorem C and comments in Section 4.1, and various examples in Section 4.2.

2 Mixing properties of the velocity process

Let (Bt)t≥0 be a Euclidean Brownian motion in Rd with non degenerate covariance
matrix Σ. Without loss of generality, up to an appropriate choice of coordinate system,
we can assume that the matrix Σ is diagonal, with square root A, namely

Σ = diag
(
α2

1, · · · , α2
d

)
, A = diag (α1, · · · , αd) .

Let us recall that, by definition, the anisotropic velocity process (vt) = (v1
t , · · · , vdt ) with

values in Sd−1 ⊂ Rd and with intensity σ > 0 is the solution of the Stratonovich stochastic
differential equation

dvt = σΠv⊥t
◦ dBt,

where Πv⊥t
denotes the projection on the orthogonal of vt. Equivalently, there exist a

standard Euclidean Brownian motion (Wt)t≥0 such that vt satisfies the Itô stochastic
differential equation

dvt = σΠv⊥t
AdWt −

σ2

2

(
Σ + tr(Σ)Id− 2〈vt,Σvt〉Id

)
vtdt,

or even more explicitly in Euclidean coordinates, for 1 ≤ i ≤ d

dvit = −σ
2

2
vit

α2
i +

d∑
j=1

α2
j − 2

d∑
j=1

α2
j |v

j
t |2
dt+σ

αidW i
t − vit

d∑
j=1

αjv
j
tdW

j
t

. (2.1)

In the following, d and Σ are fixed, and we write f . g for some quantities f and g
whenever f ≤ Cg for a constant C > 0 independent of any other parameter.
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2.1 Invariant measure

The object of this section is to establish that the velocity process (vt)t≥0 is ergodic
in Sd−1 and to write down its invariant measure explicitly. From equation (2.1), it is
not difficult to express the infinitesimal generator L of the process and try to solve
the equation L∗µ = 0. Nevertheless, since we are working on the sphere, integrations
by parts and computations are quite unpleasant, and we prefer to introduce a natural
Euclidean lift of the velocity process. Namely, if ‖·‖ denotes the standard Euclidean norm,
consider the Rd-valued process (ut)t≥0 starting from u0 6= 0 such that v0 = u0/‖u0‖, and
solution of the stochastic differential equation system

duit =
σ2

2

(
−uit‖ut‖2 + α2

iu
i
t

)
dt+ σαi‖ut‖dW i

t , 1 ≤ i ≤ d.

Equivalently, it is the solution to the Stratonovich stochastic differential equation

dut = −σ
2

2
‖ut‖2ut dt+ σ‖ut‖ ◦ dBt.

Then, a direct application of Itô’s formula shows that the projection ut/‖ut‖ on Sd−1

satisfies equation (2.1). To show that ut is ergodic and find an explicit expression
for its invariant measure, let us now perform the simple linear change of variable
yt := A−1ut = Σ−1/2ut. By Itô’s formula we get

dyit =
σ2

2

(
−‖Ayt‖2yit + α2

i y
i
t

)
dt+ σ‖Ayt‖dWt.

Setting VA(y) := − log ‖Ay‖+ 1
2‖y‖

2, the infinitesimal generator Ly of yt is given by

Ly =
σ2

2
‖Ay‖2L0, where L0 := (−∇VA · ∇+ ∆) .

The diffusion process with generator L0 is naturally ergodic with invariant measure
proportional to e−VA so that (yt)t≥0 is also ergodic with invariant measure

ν(dy) := CA ‖Ay‖−1e−
1
2‖y‖

2

dy,

where CA is a normalizing constant. In other words, the Euclidean lift (ut)t≥0 of (vt)t≥0

is ergodic in Rd and its invariant measure is proportional to ‖ · ‖−1 times the centred
Gaussian measure with covariance Σ. One can then compute the invariant measure of
the velocity process as the image measure of the latter with respect to the projection on
the sphere.

Lemma 2.1. The velocity process (vt)t≥0 is ergodic in Sd−1 and its invariant measure µ
is absolutely continuous with respect to the uniform measure dθ on the sphere, with a
density given by

dµ

dθ
(θ) =

‖A−1θ‖1−d∫
Sd−1 ‖A−1θ‖1−ddθ

.

In particular, the invariant measure µ of the velocity process is invariant under all the
coordinate reflections (θ1, · · · , θi, · · · , θd) 7→ (θ1, · · · ,−θi, · · · , θd), for 1 ≤ i ≤ d.
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Proof. For any bounded measurable test function f on Sd−1, we have∫
Sd−1

f(v)µ(dv) = CA

∫
Rd
f

(
Ay

‖Ay‖

)
e−

1
2‖y‖

2

‖Ay‖
dy

= CA

∫
Rd
f

(
u

‖u‖

)
‖u‖−1e−

1
2‖A

−1u‖2 du

detA

= C ′A

∫ +∞

0

∫
Sd−1

f (θ) r−1e−
1
2 r

2‖A−1θ‖2rd−1drdθ

=

∫
Sd−1 f(θ)‖A−1θ‖1−ddθ∫
Sd−1 ‖A−1θ‖1−ddθ

.

The next figures illustrate the relation between the covariance matrix Σ, the sample
paths of the velocity process (vt) and its invariant measure µ. The colour map on the
sphere is chosen according to the value of the density of the invariant measure: small
values of ‖A−1θ‖1−d are represented in light grey whereas large values are represented
in dark grey.

Figure 2: From left to right, sample paths of the velocity process and colour map
of the invariant probability measure for Σ = diag(1, 1.1, 1.2), Σ = diag(1, 4, 9), and
Σ = diag(1, 100, 100).

Remark 2.2. Let us emphasise here that the invariant measure µ of the velocity process
actually differs from the projected Gaussian measure with covariance Σ, also known as
angular Gaussian distribution, which, at first sight, could seem like a natural candidate
for the velocity’s equilibrium measure. Namely, if f is a bounded measurable test
function on the sphere, and if X is a Gaussian variable in Rd with law N (0,Σ), we have
indeed

E
[
f
(

X
‖X‖

)]
=

∫
Sd−1 f(θ)‖A−1θ‖−ddθ∫
Sd−1 ‖A−1θ‖−ddθ

.

In other words, the invariant measure µ admits a density proportional to ‖A−1θ‖ with
respect to the standard projected Gaussian measure of covariance Σ.

Remark 2.3. Going back to the modelisation point of view mentioned in the introduction,
where (vt)t≥0 is thought as the velocity of a mesoscopic particle in an anisotropic heat
bath, the invariant measure µ also differs from the standard choices for equilibrium
measure in directional statistics, such as the Von Mises–Fisher distribution, Fisher–
Bingham distribution or wrapped Brownian distributions, see Sections 9.3 and 9.4 of
[32] and the references therein. We emphasise here the fact that the dynamics governed
by equation (1.1) is fully intrinsic so that the measure µ is a simple and natural candidate
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to model anisotropic data; it also has natural interpretation in terms of projection of the
invariant measure of the Euclidean lift (ut)t≥0.

2.2 Mixing properties

Let us now establish the strong mixing properties of the velocity process that will be
our main tool in the proof of the homogenisation result, Theorem A. To avoid changes
in the time scale, we fix σ = 1, from here to the end of the section. We also introduce a
few additional notations. If λ is a probability distribution on Sd−1, let Pλ be a probability
measure under which the velocity (vt)t≥0 solves equation (1.1) with initial condition
v0 ∼ λ, and Eλ its associated expectation. We denote by (Pt)t≥0 the semigroup associated
to v, acting on continuous functions f : Sd−1 → R, and by (P ∗t )t≥0 its dual, acting on
probability measures on Sd−1. In other words,

Ptf(x) := Eδx [f(vt)] and P ∗t λ := L(vt|v0 ∼ λ),

for any such f and λ.
To get to the second part of Proposition 1.1, we use the well-known fact that since

the velocity process (vt)t≥0 is an elliptic diffusion in a compact Riemannian manifold,
here the unit sphere, with invariant probability measure µ, we have the estimate

‖P ∗t λ− µ‖TV . exp(−t/τ) (2.2)

for any probability λ on Sd−1, for some positive constant τ . Given an interval [a, b) of
[0,∞), define F[a,b) as the σ-algebra generated by the unit speed velocity process vt, for
a ≤ t < b. We write A ∈ F[a,b) to say that a random variable is F[a,b)-measurable.

Proposition 2.4. For any 0 ≤ s < t and any bounded measurable real-valued random
variables P ∈ F[0,s) and F ∈ F[t,∞), we have∣∣Eµ[PF ]− Eµ[P ]Eµ[F ]

∣∣ . |P |∞|F |∞ e−(t−s)/τ .

Proof. Since ∣∣Eµ[PF ]− Eµ[P ]Eµ[F ]
∣∣ ≤ |P |∞Eµ[∣∣Eµ[F |F[0,s]]− Eµ[F ]

∣∣],
by the Markov property, it suffices to prove that one has∣∣EP∗uλ[G]− Eµ[G]

∣∣ . |G|∞e−u/τ , (2.3)

for any probability measure λ on Sd−1 and any real-valued measurable functional G. By
a monotone class argument, it suffices to prove estimate (2.3) for elementary functionals
of the form G = g(vt1 , . . . , vtk), for some bounded continuous real-valued function g on
(Rd)k and times t1 ≤ · · · ≤ tk. But since the diffusion has the Feller property, the function
g(v0) := Ev0

[
g(vt1 , . . . , vtk)

]
is continuous on the sphere, so we get (2.3) in that case by

applying (2.2) to g.

The remainder of the section is devoted to the proof of the technical Lemma 2.6,
that states an estimate about iterated integrals involving the covariances between the
coordinates of the unit speed velocity process. Given a collection of positive times
s1, . . . , sn, set ∆ := max1≤k<n(sk ∧ sk+1). We denote by k0 ∈ J1, n − 1K an index where
this maximum is attained.

Proposition 2.5. Under P = Pµ, and for any indices 1 ≤ j1, . . . , jn ≤ d and times
s1, · · · , sn ≥ 0, ∣∣∣E[vj1s1 · · · vjns1+···+sn

]∣∣∣ . e−∆/τ .
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Proof. For 1 ≤ i ≤ n, set ti := s1 + · · ·+ si, and define the bounded quantities

V− := vj1t1 · · · v
jk0−1

tk0−1
, V0 := v

jk0
tk0
, V+ := v

jk0+1

tk0+1
· · · vjntn .

Note that V0 is centred. Applying Proposition 2.4 twice, this decomposition gives∣∣∣E[vj1s1 · · · vjns1+···+sn
]∣∣∣ =

∣∣E[V−V0V+]− E[V−]E[V0]E[V+]
∣∣

≤
∣∣E[V−V0V+]− E[V−]E[V0V+]

∣∣+ |V−|∞ |E[V0V+]− E[V0]E[V+]|

. |V−|∞|V0V+|∞e−sk0/τ + |V−|∞|V0|∞|V+|∞e−sk0+1/τ

. e−∆/τ .

Lemma 2.6. Suppose P = Pµ. Given a positive integer n, we have∫
0≤t1≤···≤t2n≤T

∣∣Eµ[vi1t1 · · · vi2nt2n]∣∣ dt1 . . . dt2n .n T
n

for any indices 1 ≤ i1, · · · , i2n ≤ d.

Proof. The idea is to apply Proposition 2.5 with the largest ∆ possible for each tuple
(t1, · · · , t2n). Write first∫

0≤t1≤···≤t2n−1

∣∣E[vi1t1 · · · vi2nt2n]∣∣ dt1 . . . dt2n ≤
∫

[0,T ]2n

∣∣E[vi1s1 · · · vi2ns1+···+s2n
]∣∣ ds1 . . . ds2n.

Fix now the tuple (s1, · · · , s2n), and set

∆(s) := max
1≤k<2n

(sk ∧ sk+1) ,

so the integrand in the right hand side above is bounded above by a constant multiple of
e−∆(s)/τ , from Proposition 2.5.

The rest is combinatorics. We first sort the indices k of the gaps sk according to
the value of sk with respect to ∆ = ∆(s). Set a := min{k ∈ J1, 2nK : sk = ∆}. Then,
note that there are at most n gaps sk of size larger than ∆: otherwise, two of them
would be consecutive, and ∆ would not be optimal. This is the same as saying that
there are at least n small gaps sk ≤ ∆, including sa. Define 1 ≤ b1 < · · · < bn−1 ≤ 2n

as the first (n− 1) indices different from a corresponding to gaps of size at most ∆. In
other words, if sk ≤ ∆, then either k = bi for some 1 ≤ i < n, k = a, or k > a, bn−1.
Finally, denote by 1 ≤ c1 < · · · < cn ≤ 2n the other indices, so that we have a partition of
{1, · · · , 2n} in three sets A(s) := {a}, B(s) := {b1, · · · , bn−1} and C(s) := {c1, · · · , cn} of
fixed sizes. Now, given a fixed partition (α, β, γ) of J1, 2nK with α = {α0} of size 1, and
the set β = {β1, . . . , βn−1} of size n− 1, we have∣∣E[vi1s1 · · · vi2ns1+···+s2n

]∣∣1(A(s),B(s),C(s))=(α,β,γ) . e−∆(s)/τ1sβ1 ,...,sβn−1
≤∆(s)

. e−sα0
/τ1sβ1 ,...,sβn−1

≤sα0
,

from which we get∫
[0,T ]2n

∣∣E[vi1s1 · · · vi2ns1+···+s2n
]∣∣1(A(s),B(s),C(s))=(α,β,γ) ds1 . . . ds2n

. Tn
∫ T

0

e−s/τsn−1ds .n Tn

and the result of the lemma, by summing over the set of all partitions (α, β, γ) of J1, 2nK
with the above size.
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3 Proof of the main result

Let us now describe how the mixing properties of the velocity process derived in
Section 2.2 imply the homogenisation for the time rescaled position process (xσσ2t)t≥0, as
σ goes to infinity, in both Euclidean and Riemannian framework. As mentioned in the
introduction, we will actually work with a rough path lift of the kinetic process. We refer
the reader to [15, 5] for gentle introductions to rough paths theory, and given γ ∈ (0, 1),
we denote by RP(γ) = RPγ([0, 1],Rd) the set of weak geometric γ-Hölder rough paths.

The strategy is a classical Prokhorov argument: we first show that the family of laws
of the rescaled processes is tight, then identify a unique candidate for the limit.

Notations We are interested in the stationary case P := Pµ, where µ is the invariant
measure of the velocity, as described in Lemma 2.1. Define Xσ : t 7→ xσσ2t, so that we
are interested in the limiting behaviour of (Xσ

t )t≥0. To make good use of the mixing
properties of v such as Proposition 2.4 without having to change the time scale, from
now on (vt)t≥0 will always stand for (vσt )t≥0 with σ = 1. With this convention, we can
express the increments of Xσ as

Xt −Xs =
1

σ2

∫ σ4t

σ4s

vudu.

The process Xσ being C1, it admits a canonical rough path lift Xσ = (Xσ,Xσ), where Xσ

is defined by

Xσ
ts :=

∫ t

s

(Xσ
u −Xσ

s )⊗ dXσ
u =

1

σ4

∫ σ4t

σ4s

∫ u

σ4s

vz ⊗ vudz du.

Our proof relies on the algebraic properties of rough paths. Namely, that in the 2-step
nilpotent group G ⊂ R⊕Rd ⊕ (Rd)⊗2, the process xσ : t 7→ (1, Xσ

t ,X
σ
t0) has increments

(xσs )−1xσt = (1, Xσ
t −Xσ

s ,X
σ
ts),

which, using the above expressions, are measurable with respect to σ
(
(vu)σ4s≤u<σ4t

)
.

Recall that we write f . g for some quantities f and g when there exists a positive
constant C > 0 depending on Σ alone such that f ≤ Cg. If C is allowed to depend on a
parameter, say p, we write f .p g.

3.1 Tightness in rough paths space

We first establish that the family of processes (Xσ
t ) and their rough paths lifts are

tight for the corresponding topology. To do so, we use a standard Lamperti criterion,
namely we have the following lemma.

Lemma 3.1. For every a ≥ 1,

sup
σ>0

E
[
|Xσ

t −Xσ
s |a
]
.a |t− s|a/2.

Proof. Given any positive time T and any positive integer n, we show that one has

E

∣∣∣∣∣
∫ T

0

vt dt

∣∣∣∣∣
2n
 ≤ CnTn (3.1)

for some positive constant Cn depending only on n. The inequality of the lemma follows
as a consequence since for any positive integer n such that 2n ≥ a, we have

E
[
|Xσ

t −Xσ
s |a
]

= E
[
|Xσ

t−s|a
]
≤ 1

σ2a
E

∣∣∣∣∣
∫ σ4(t−s)

0

vu du

∣∣∣∣∣
2n
a/2n ≤ Ca/2nn (t− s)a/2.
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Given T > 0 and n ∈ N∗, we have

E

∣∣∣∣∣
∫ T

0

vt dt

∣∣∣∣∣
2n
 = E

 ∑
1≤i≤d

(∫ T

0

vit dt

)2
n

=
∑

1≤i1,··· ,in≤d

∫
[0,T ]2n

E
[
vi1t1v

i1
t2 · · · v

in
t2n−1

vint2n

]
dt1 · · · dt2n,

with the following estimate for each individual term on the right hand side. Fix 1 ≤ jk ≤ d,
for 1 ≤ k ≤ 2n. For any permutation φ ∈ S2n, we have from Lemma 2.6∫

[0,T ]2n
E
[
vj1t1 · · · v

j2n
t2n

]
1tφ(1)<···<tφ(2n)

dt =

∫
0≤t1≤···≤t2n≤T

E
[
v
jφ(1)
t1 · · · vjφ(2n)

t2n

]
dt1 · · · dt2n

.n T
n,

from which the result of the Lemma follows by summation over φ and j.

We use the Hilbert-Schmidt norm | · | on Rd ⊗Rd ' L(Rd) ' Rd2 ; it coincides with
the Euclidean norm on Rd

2

.

Lemma 3.2. For every a > 0,

sup
σ>0

E
[
|Xσ

ts|a
]
.a |t− s|a.

Proof. As above, the inequality of the statement follows from an inequality of the form

E

[∣∣∣∣∫
0≤s≤t≤T

vs ⊗ vt dsdt

∣∣∣∣2n
]
≤ CnT 2n,

for some positive constant Cn depending only on n. Fix T > 0 and n ∈ N∗, and set for
` ∈ J1, dK4n

I` :=

∫
0≤s1≤t1≤T

· · ·
∫

0≤s2n≤t2n≤T
E
[
v`1t1 v

`2
s1 · · · v

`4n−1

t2n v`4ns2n

]
ds1dt1 · · · ds2ndt2n,

so we have

E

∣∣∣∣∣
∫ T

0

∫ t

0

vs ⊗ vt dsdt

∣∣∣∣∣
2n
 = E

 ∑
1≤i,j≤d

(∫ T

0

∫ t

0

visv
j
tdsdt

)2
n

=
∑

i,j∈J1,dKn
Ii∗j

with i ∗ j = (i1, j1, i1, j1, · · · , ik, jk, ik, jk). As in Lemma 3.1, estimating each Ii∗j using
Lemma 2.6 does the job.

One can then apply the Kolmogorov-Lamperti tightness criterion for rough paths
stated in Corollary A.12 of [16] to get the following result from Lemma 3.1 and Lemma
3.2.

Corollary 3.3. Pick γ < 1/2. The family {L(Xσ)}σ>0 of distributions on RP(γ) is tight.

Remark 3.4. Note that the usual rough path space RP(γ) actually involves more iterated
integrals as γ → 0. For instance, one has to consider the quantity∫ t

s

∫ u

s

(Xv −Xs)⊗ dXv ⊗ dXu
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for rough differential equations to be well-posed whenever 1/4 < γ ≤ 1/3. However,
there is a canonical continuous injection from RP(γ) to RP(γ′) for 0 < γ′ < γ, constructed
in much the same way as the Riemann integral from the limit Riemann sum. Accordingly,
the convergence in RP(γ), γ > 1/3 is sufficient to prove it for smaller γ′; this is what we
do in what follows.

Remark also that, for γ > 1/2, we have RP(γ) ' Cγ([0, 1],Rd), from which the
existence of canonical lift of Cγ paths follows in this range of regularity.

3.2 Brownian limit

The family of processes (Xσ
t ) and their lifts being tight for the rough paths topology,

in order to establish its convergence, we are left to identify the possible limit process.
Our strategy here is to prove that the latter is necessarily a stationary process with
independent Gaussian increments on the underlying nilpotent group, and therefore is a
Brownian motion. Let us set

ci := 2

∫ ∞
0

E[vi0v
i
t] dt.

Proposition 3.5. For every γ < 1/2, the processes Xσ converge in law in Cγ([0; 1],Rd)

to the Brownian motion on Rd with covariance matrix diag(c1, · · · , cd), as σ goes to∞.

Proof. Stationarity and independence. We first show that any Rd-valued process X
whose law P̂ is a limit point of (L(Xσ))σ>0 in Cγ([0; 1],Rd) as σ tends to∞ has stationary
independent increments.

Indeed, since v0 has distribution the invariant measure of the diffusion v, the incre-
ments of Xσ are stationary for every σ, so the increments of X are stationary as well.
Fix now 0 ≤ s1 < t1 ≤ · · · ≤ sn < tn ≤ 1, and bounded continuous functions Fi : Rd → R,
for 1 ≤ i ≤ n. Fix ε > 0 small enough. From a repetitive use of Proposition 2.4, as used
in Proposition 2.5, we have∣∣∣∣∣∣E

 ∏
1≤i≤n

Fi(X
σ
ti−ε −X

σ
si)

− ∏
1≤i≤n

E
[
Fi(X

σ
ti−ε −X

σ
si)
]∣∣∣∣∣∣ .n |F1|L∞ · · · |Fn|L∞ e−σ

4ε/τ

for some positive constant τ , and we see that

Ê

 ∏
1≤i≤n

Fi(Xti−ε −Xsi)

 =
∏

1≤i≤n

Ê
[
Fi(Xti−ε −Xsi)

]
,

sending σ to∞ along a proper subsequence. Using the boundedness and continuity of
the functions Fi and the continuity of the process X, we can send ε to 0 and see that X
has independent increments. So X is a Brownian motion; it has null mean since every
Xσ

1 has null mean, and its covariance is given by the limit of the covariances of the Xσ
1 .

Covariance formula. First, it follows from the identity

L(v1, · · · , vi, · · · , vn) = L(v1, · · · ,−vi, · · · , vn)

that different components of X1 have null covariance since this is the case for different
components of Xσ

1 . Now, for 1 ≤ i ≤ d, we have

E
[(

(Xσ
1 )i
)2]

=
1

σ4

∫ σ4

0

∫ σ4

0

E[visv
i
t] dsdt =

2

σ4

∫ σ4

0

∫ σ4

t

E[visv
i
t] dsdt

=
2

σ4

∫ ∞
0

∫ ∞
0

1t+u≤σ4E[vit+uv
i
t]dudt = 2

∫ ∞
0

(
1− u

σ4

)
+
E[viuv

i
0]du
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with (·)+ the positive part. According to Proposition 2.4, the integrand is smaller than a
constant multiple of exp(−u/τ), uniformly on σ. It is integrable, so we see from Lebesgue
dominated convergence theorem that the above variance tends to γi.

Theorem 3.6 (Main Theorem A). Pick γ < 1/2. The processes Xσ converge in law in
RP(γ) to the Brownian rough path on Rd with covariance matrix diag(γ1, · · · , γd), as σ
goes to∞.

Here, the rough path lift of the Brownian motion is understood in the Stratonovich
sense: for W a Brownian motion with fixed covariance (or any semimartingale for that
matter), it is defined as w = (W,W) with Wst :=

∫ t
s
Wu ⊗ dWu, where the integral is the

Stratonovich one.

Proof. G-valued Lévy process. As above, we first notice that any limit measure of the laws
of (Xσ)σ>0 turns the canonical process on RP(γ) into a random process with stationary
independent increments, in the free nilpotent Lie group of step 2, as a consequence
of the corresponding property for Xσ. The canonical process on the free nilpotent Lie
group of step 2 is thus a continuous Lévy process under any limit law, so, according to
Hunt’s theorem, we can identify the former from its generator. More specifically, the law
of such a process Y is characterised by the action

f 7→ lim
t→0

1

t
Ee[f(Yt)− f(e)] ∈ R

of its generator on smooth functions f : G → R with compact support, where e is the
unit of G; see [2, Theorem 5.3.3] or [29, Theorem 1.1].

Generator. Let P̂ be any limit point of the laws of Xσ on RP(γ), and denote by
X = (X,X) its canonical variable. We know from Proposition 3.5 that X is a Brow-
nian motion W ; denote by W = (W,W) its canonical Stratonovich rough path lift,
also defined on the space (RP(γ), P̂). Since the velocity process v = (v1, . . . , vd) and
(v1, . . . , vi−1,−vi, vi+1, . . . , vd) have the same law for every 1 ≤ i ≤ d, for v0 distributed
according to the invariant measure µ, the antisymmetric part AX

ts := 1
2 (Xts − tXts) is

centred for any 0 ≤ s ≤ t ≤ 1. We also know from the uniform estimates proved in
Lemmas 3.1 and 3.2 that

Ê
[
|Xt|2

]
. t, Ê

[
|AX

t0|2
]
. Ê

[
|Xt0|2

]
. t2, (3.2)

uniformly in t ∈ [0, 1].

A last piece of notation. Since the set of antisymmetric matrices lies in the tangent
space to the free nilpotent Lie group G of step 2, at any point z ∈ G, any smooth
real-valued function f defined on G, with compact support, has a well-defined partial
differential ∂Af(z) in the direction of antisymmetric matrices, defined by the identity

∂Af(z)(A) =
d

dt |t=0
f
(
z + t(0, 0,A)

)
,

for any z = (1, Z,Z) ∈ G and any antisymmetric matrix A. Setting z :=
(
1, Z, 1

2 (Z+ tZ)
)
,

we further have ∣∣f(z)− f(z)− (∂Af)(z)(Az)
∣∣ .f |Az|2,

since f has compact support. Denote by e the unit of the group G. Denote by AW the
antisymmetric part of W and set Xt :=

(
1, Xt,

1
2X
⊗2
t

)
∈ G, so that Xt = Xt + (0, 0,AX)
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and Wt = Xt + (0, 0,AW). We have, for some fixed f smooth with compact support,∣∣∣∣1t Ê[f(Xt) −f(e)
]
− 1

t
Ê
[
f(Wt)− f(e)

]∣∣∣∣
=

1

t

∣∣∣Ê[f(Xt + (0, 0,AX
t )
)
− f

(
Xt + (0, 0,AW

t )
)]∣∣∣

.f
1

t

∣∣∣Ê[((∂Af)(Xt)− (∂Af)(e)
)

(AX
t −AW

t )
]∣∣∣+

1

t

∣∣∣Ê[(∂Af)(e)(AX
t −AW

t )
]∣∣∣

+
1

t

(
Ê
[
|AX

t |2
]

+ Ê
[
|AW

t |2
])

.f (1) + (2) + (3).

We show that each term vanishes as t goes to 0, which implies that the two Markov
processes X and W have the same generator, hence the same distribution. We have first
from estimates (3.2) the upper bound

(1) ≤ 1

2t
Ê
[√

t
∥∥(∂Af)(Xt)− (∂Af)(e)

∥∥2
]

+
1

2t
Ê
[ 1√

t

∣∣AX
t −AW

t

∣∣2]
.f

1√
t
Ê
[
|Xt − e|2

]
+

1

t
√
t
Ê
[∣∣AX

t

∣∣2]+
1

t
√
t
Ê
[∣∣AW

t

∣∣2]
.f
√
t.

We also have (2) = 0, since AX
t and AW

t are centred and ∂Af(e) is linear. Finally, we have
(3) . t from the upper bounds (3.2). We thus have the upper bound∣∣∣∣1t Ê[f(Xt)− f(e)

]
− 1

t
Ê
[
f(Wt)− f(e)

]∣∣∣∣ .f √t,
from which the result follows.

3.3 From Euclidean space to Riemannian manifolds

Let (M, g) be a Riemannian manifold of dimension d, without boundary. From Theo-
rem A, the remainder of this section shows how to deduce the homogenisation property
described in Theorem B, in the manifold setting. We emphasised in the introduction that
anisotropic Brownian motion describes the random motion of a non-point-like object,
with its own notion of local orientation. Such an object is represented by a point in the
orthonormal frame bundle OM ofM, where its dynamics is described by a stochastic
differential equation. We refer to Hsu’s book [21] for a reference textbook on stochastic
differential geometry.

In this subsection, we use Einstein summation convention: indices appearing twice
are implicitly summed.

3.3.1 The orthonormal frame bundle

Denote by z = (q, e) a generic point of the orthonormal frame bundle OM ofM, with
q ∈ M and e : Rd → TqM, an orthonormal frame of TqM; we write π : OM →M for
the canonical projection map. The Levi-Civita connection on TM induces a notion of
horizontal vectors on TM or OM. Let H stand for the horizontal lift operator, meaning
the map OM×Rd → TOM uniquely characterised by the property that Hz(u) ∈ TzOM
is horizontal and

dπz
(
Hz(u)

)
= e(u),
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for any u ∈ Rd and z = (q, e) ∈ OM. Letting
(
ε1, . . . , εd

)
be the canonical basis of Rd,

local coordinates qi onM induce canonical coordinates on OM by writing

ei := e(εi) = eji
∂

∂qj
.

Denoting by Γkij the Christoffel symbols of the Levi-Civita connection associated with the
above coordinates, the vector fields H(u) have the following expression.

Hz(εα) = eiα
∂

∂qi
− Γkij(q)e

i
αe
j
l

∂

∂ekl
.

3.3.2 Cartan’s development map and anisotropic kinetic Brownian motion

Roughly speaking, Cartan’s development map associates in its simplest form a C1 path
in M, started from q0 ∈ M, to any C1 path in the Euclidean space Rd. Technically,
given a C1 path (xt)t≥0 in Rd, and z0 = (q0, e0) ∈ OM, the Cartan development of (xt)t≥0

on M is defined as the projection (qt)0≤t<T on M of the horizontal OM-valued path
(zt) =: (qt, et)0≤t<T solution of the ordinary differential equation

dzt = Hzt(dxt), i.e. żt = Hz(ẋt) (3.3)

started from q0, possibly up to some explosion time T . Note that the choice of x : t 7→ tu

for some u ∈ Rd leads to q being a geodesic with initial condition q̇0 = e0(u); in particular,
the development of Xσ tends to a geodesic with random initial condition as σ → 0.

Classical stochastic analysis (in the Stratonovich sense) can be used to make sense of
the preceding equation for x a semimartingale, defining Cartan’s stochastic development
— refer to Hsu’s book [21] for a pedagogical account of the theory. For example, one of
the many equivalent constructions of Brownian motion onM started at q0 consists in
developing a standard Euclidean Brownian motion. Accordingly, we define anisotropic
Brownian motion on M as the development of the Euclidean Brownian motion with
covariance diag(γ1, · · · , γd).

Anisotropic kinetic Brownian motion (qσt )0≤t<T onM is the stochastic development
of the anisotropic kinetic Brownian motion (Xσ

t )t≥0 on Rd; it is indexed by the speed
parameter σ of its flat counterpart. This is a C1 random path which depends on the
entire frame e0 — its isotropic counterpart only depends in law on e0, from symmetry
properties of Wiener measure on Rd. Although Xσ converges in law to an anisotropic
Brownian motion B on Rd, the poor regularity properties of the Itô solution map does
not allow to conclude that anisotropic Brownian motion xσ onM converges to projection
onM of the solution of the equation

dzt = H(zt) ◦ dBt.

This is exactly the kind of conclusion that rough paths theory provides.

3.3.3 Rough paths and rough differential equations with values in manifolds

We discuss a few results of rough paths theory with values in manifolds. These results
are all classical, and their Euclidean counterparts can be found e.g. in [15] or [16]. Let
N be a manifold, and, for a collection A = (A1, · · · , An) of smooth vector fields on N and
an initial condition p ∈ N , consider the (deterministic) controlled differential equation

dzt = A(zt)dxt, z0 = p
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on N , where x is a driving curve with values in Rn. The equation makes sense whenever
x is of class C1 (dividing each side by dt, one might say), and if moreover x is of class C2,
its solution is characterised by the fact that for any fixed t ≥ 0 and f : N → R smooth
with compact support,

f(zt) = f(zs) + (Aif)(zt)(x
i
t − xis) +O(|t− s|2)

as s → t. Now if X = (X,X) is a rough path of Hölder regularity 1/3 < γ ≤ 1/2, we
consider the following notion of solution: a continuous path z : [0, T )→ N is a solution
of the rough differential equation

dzt = A(zt)Xdt , z0 = p (3.4)

if one can find some a > 1 such that any choice of t ≥ 0 and f : N → R smooth with
compact support yields

f(zt) = f(zs) + (Aif)(zt)(X
i
t −Xi

s) + (AiAjf)(zt)X
ij
ts +O(|t− s|a)

as s → t. This point of view is taken from [4, 5], in the mindset of [13]. We say that z
explodes as t→ T if z leaves any compact set.

In a probabilistic mindset, the fundamental remark is that, for X the Stratonovich
rough path lift of some standard Brownian motion W , such a solution coincides almost
surely with the solution of the Stratonovich equation

dzt = A(zt) ◦ dWt, z0 = p.

It is a striking feature of rough paths theory that not only does (3.4) admit a unique
solution z for any (deterministic) rough path X, in the above sense and up to some
explosion time T > 0, but also the Itô-Lyons map X 7→ z is continuous in the following
sense. Fix d a Riemannian distance on N . If T ′ < T and ε > 0, there exists some δ > 0

such that for any X′ at rough path distance at most δ from X, the solution z′ of

dz′t = A(z′t)X
′
dt , z′0 = p

is defined on [0, T ′] and satisfies d(zt, z
′
t) < ε for all 0 ≤ t ≤ T ′.

This kind of continuity in enough to ensure convergence in law: namely, if (Xn)n≥0 is
a family of random rough paths converging in law to X with respect to the rough path
topology, then in a sense, the (random) solution zn of (3.4) driven by Xn converges to the
solution of that driven by X. Let us make that point precise. Denote by N̂ the one point
compactification of N (N̂ = N if N is compact) and set Cp the space of continuous paths

z : [0, 1] → N̂ starting at p such that zt+· ≡ ∞ whenever zt = ∞. Fix d a Riemannian
metric on N such that d(p, p′)→∞ as p′ →∞, and define on Cp the smallest topology
containing, for any γ ∈ Cp and R, ε > 0, the set of paths z ∈ Cp satisfying

max
t≥0

d(p,γt)≤R

d(zt, γt) < ε.

The topology does not depend on d, and a sequence zn of curves in Cp converges to z∞ if
and only if for all R, the curves zn·∧τR stopped when they get at distance R of p converge
uniformly to z∞·∧τR . We can now state what one might call a theorem of continuity in law,
in the following form.

Theorem 3.7. For some fixed 1/3 < γ ≤ 1/2, let (Xn)n≥0 be a sequence of random
γ-rough paths with values in Rd, whose distributions converge weakly to that of X∞.
These processes might be defined on different probability spaces.
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Then, for any 0 ≤ n ≤ ∞, there exists a unique random variable zn with values in Cp
such that it solves the rough differential equation

dznt = A(znt )Xn
dt , zn0 = p

almost surely up to explosion, and the distributions of zn converge to that of z∞ with
respect to the topology of Cp described above.

3.3.4 The interpolation result

The proof of Theorem B then follows from the rough path convergence of the rough path
lift Xσ of anisotropic kinetic Brownian motion Xσ in Rd, Theorem 3.6, and the continuity
properties of the Itô-Lyons solution map to rough differential equations. As in [1], one
needs to use the stochastic and geodesic completeness of (M, g) to conclude that the
convergence of the OM-valued development of anisotropic kinetic Brownian in Rd in not
only local, but that weak convergence holds true; see Proposition 2.4.3 and Lemma 2.4.4
in [1]. Stochastic completeness refers here to the isotropic Brownian motion onM. We
implicitly use here the fact that for a complete and stochastically complete Riemannian
manifold, the anisotropic Brownian motion onM is also stochastically complete.

4 A wider class of kinetic ergodic motions

In this section, we take a step back, and see what remains of Theorem B in a
higher level of generality. Unfortunately, it is difficult to state a general theorem on
kinetic ergodic motions without hiding the ideas under a layer of abstract machinery,
unnecessary in most applications. Instead, we chose in this last section to introduce
basic notations and state a prototypical result first, which is in essence a reformulation
of Theorem C in the introduction, and then to discuss its hypotheses through a variety of
examples, which we believe convey the versatility of the method.

4.1 From kinetic Brownian motion to kinetic ergodic processes

We introduce a few notations, which will be useful in the following section. Suppose
that (vσt )t≥0 is of the form vσt = I(vσ2t), with (vt)t≥0 a càdlàg Markov process with values
in some manifold W and I : W → Rd bounded continuous — for instance, Theorem B
deals with the case I :W = Sd−1 ↪→ Rd and v the anisotropic spherical Brownian motion
with time scale 1. Because the path (xσt )t≥0 integrating the velocity is Lipschitz, its
development on a Riemannian manifold is well-defined, and the objects described in
Theorem C make sense. Note also that, because the velocity is locally bounded, the
rough path lift used in the proof is well-defined as well; see Remark 3.4.

This subsection is devoted to the proof of the following rewriting of Theorem C. We
discuss its hypotheses in the following Subsection 4.2.

Theorem 4.1 (Main Theorem C). Let (M, g) be a Riemannian manifold of dimension d,
and (qσt )t≥0 a process onM whose velocity q̇σt ∈ TqtM has image vσt ∈ Tq0M' Rd under
the inverse stochastic parallel transport along q. Suppose that, for some càdlàg Markov
process v on a manifoldW, (vσt )t≥0 is the continuous image of (vσ2t)t≥0, i.e. vσt = I(vσ2t)

with I :W → Tq0M bounded continuous. Suppose that v admits an invariant measure µ
such that under P = Pµ,

1. equation (1.4) holds with F[a,b] the σ-algebra generated by {I(vt)}a≤t<b;
2. for all 1 ≤ i ≤ d, the reflections (v1, · · · , vi−1,−vi, vi+1, · · · , vd) have the same

distribution as v = vσ = (v1, · · · , vd) for some, hence all, σ > 0.
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Then as σ →∞, the time rescaled process (qσσ2t)t∈[0,1] converges in law to an anisotropic
Brownian motion onM with covariance diag(γ1, · · · , γd),

γi :=

∫ ∞
0

E
[
I(v0)iI(vt)

i
]

dt.

Remark 4.2. Throughout our study, we have worked at equilibrium, with P = Pµ.
Although it simplifies the proofs, it is merely a cosmetic concern in the case of kinetic
Brownian motion. In fact, under the assumption (2.2), Theorem 4.1 holds for any Pλ: see
Proposition 4.3 below. For instance, it will be the case in examples 4.2.2 and, to some
extent, 4.2.6 below. It is not clear whether the result should hold without this additional
property.

To establish Theorem 4.1, let us review the ingredients of the proof of Theorem B.
The tightness results, more specifically Corollary 3.3, are essentially a consequence
of Lemma 2.6. It holds whenever (1.4) is satisfied (condition (1)), I(v0) is centred
(condition (2)) and I is bounded. On the other hand, the convergence towards Brownian
motion relies, in addition, on the symmetry property (condition (2)) and independence of
the increments. Equation (1.4) ensures the latter, so that the proof of Theorem 4.1 is
essentially that of Theorem B.

Proposition 4.3. Replace condition (1) in Theorem 4.1 by the following variant of (2.2).
There exists some mixing time τ > 0 such that for all x ∈ W and t > 0,

‖P ∗t δx − µ‖TV ≤ f(x) exp(−t/τ) (4.1)

for some function f :W → R+ integrable with respect to µ. Let the initial distribution λ
be any probability measure onW such that

∫
fdλ <∞.

Then under the measure Pλ, for (qσt )t≥0 defined as in Theorem 4.1 above and as
σ → ∞, the time rescaled process (qσσ2t)t∈[0,1] also converges in law to an anisotropic
Brownian motion onM with the same covariance diag(γ1, · · · , γd).

Proof. It is enough to show the convergence of the Euclidean rough paths (Xσ)σ>0.

Tightness We claim that Proposition 2.4 holds for Eλ. Indeed, by the same arguments,
we see that

|EP∗uδx [G]− Eµ[G]| ≤ |G|∞ f(x) e−u/τ (4.2)

holds in lieu of (2.3). From this we deduce

|EP∗t−sδx [G]− EP∗t λ[G]| ≤ |EP∗t−sδx [G]− Eµ[G]|+ |Eµ[G]− EP∗t λ[G]|

≤
(
f(x) +

(∫
fdλ

)
· e−s/τ

)
|G|∞ e−(t−s)/τ ,

which is enough for rest of the proof to hold. It is then an easy exercise to adapt the
proof of Corollary 2.5, and from this point every idea leading to tightness is the same,
even if some care must be given to non-stationarity in the actual computations, e.g.
regarding equation (3.1).

Brownian limit Let P̂µ be the law of the Brownian rough path on RP(γ), and P̂λ a

limit point of the laws of Xσ under Pλ. We only need to show that P̂λ = P̂µ.
Define the translation operator Th on RP(γ) as

Th(Y,Y) := (Yh+· − Yh,Yh+·,h+·).

EJP 25 (2020), paper 39.
Page 18/26

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP439
http://www.imstat.org/ejp/


Homogenisation for anisotropic kinetic random motions

Now, for any continuous bounded map F : C([0, 1], G)→ R and ε > 0, equation (4.2) gives

|Eλ[F (TεX
σ)]− Eµ[F (TεX

σ)]| ≤ λ(f)|F |∞ e−σ
4ε/τ ,

which, taking limits along a proper subsequence, implies that

Êλ[F (TεX)] = Êµ[F (TεX)].

But TεX→ X in C0([0, 1], G) for fixed X, so the above equation holds for ε = 0, and P̂λ is
the law of the announced anisotropic Brownian motion. Note that TεX has no reason to
converge to X in the rough path topology, so tightness had to be proved beforehand.

4.2 Discussion of the hypotheses

Because we introduced Theorem 4.1 merely as a reformulation of Theorem B with
highlight on the key assumptions, there is much room for improvement. Below are a few
examples where the hypotheses can be weakened; in theory, none of these methods are
mutually exlusive, although the manipulations might get tedious when applied to actual
data.

4.2.1 Asymmetrical velocity — spinning motion

We show in this first example illustrates that the symmetry condition (2) in Theorem
4.1 above is indeed necessary. Assuming only that I(v) is centred, the existence and
Brownian behaviour of the Euclidean limit follows from the tightness result stated in
Corollary 3.3 and the characterisation of Proposition 3.5, whose proofs hold with no
change whatsoever; however, the limit rough path need not be Brownian, as is the case
in what follows.

Set I :W = R/2πZ→ C ' R2 the exponential v 7→ eiv, and define v as the spinning
motion

dvt = dt+ dWt, i.e. vt = v0 + t+Wt (mod 2π),

where W is a standard Brownian motion on R. Its dynamics is of course very simple:
it admits a unique invariant measure µ(dv) = 1

2πdv and satisfies equation (2.2), so all
hypotheses but condition (2) in Theorem 4.1 above are satisfied.

As described above, the laws of (Xσ)σ>0 do converge to that of a Brownian process.
As of those of the lifts (Xσ)σ>0, however, some drift appears in the limit. Indeed, setting
Aσ the antisymmetric part of Xσ,

(Aσt0)12 =
1

2σ4

∫ σ4t

0

∫ s

0

sin(vs − vu)dsdu =

∫ ∞
0

∫ ∞
0

1

2σ4
1u+τ≤σ4t sin(vu+τ − vu)dudτ,

so we get

E
[
(Aσt0)12

]
=

∫ ∞
0

∫ ∞
0

1

2σ4
1u+τ≤σ4t sin(τ) e−τ/2dudτ =

1

2

∫ ∞
0

(
t− τ

σ4

)
+

sin(τ) e−τ/2dτ

with (·)+ the positive part. The limit is a non-zero linear function of t, so the limit of the
lifts cannot be Brownian.

In particular, the homogenisation result does not hold for its manifold-valued coun-
terpart, and one should not consider this example as an isolated pathological case. In
the common ‘rolling without slipping’ analogy used to described stochastic development
of Brownian motion, one might think of the resulting non-Brownian effect as a force
rotating the paper around the contact point, so that the path on the manifold may have a
tendency to lean to one side.
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Such drift phenomena in the Lévy area have arisen and been studied in different
works recently, particularly in the context of random walks. See e.g. the articles [31, 30]
of Lopusanschi and Simon, and those of Ishiwata, Kawabi and Namba, [22, 23]. In
the continuous setting, it has been described by Friz, Gassiat and Lyons in [14] as the
small-mass limit of the behaviour of a charged particle in a magnetic field.

4.2.2 Velocity with jumps — random flight

The so-called random flight is perhaps the most elementary situation where the velocity
has jumps. Studied by Pinsky under the name of isotropic transport process in [33],
it is a piecewise-geodesic motion on a Riemannian manifold M where the direction is
sampled uniformly on the unit tangent sphere, and updated at exponential times. It is
shown in [33] to exhibit a limiting Brownian behaviour under suitable normalisation. In
terms of our I and v, we describe it by setting I : W = Sd−1 ↪→ Rd and v a pure jump
process, with rate 1 and uniform measure. In this case, the mixing property (1.4) is a
consequence of the stronger statement (2.2) that the dynamics converges exponentially
fast to equilibrium in total variation, in the same way we treated anisotropic Brownian
motion, so that our Theorem 4.1 applies readily and the limit is indeed Brownian. There
are no complications in dealing with jumps.

Because the velocity process is isotropic, the limit covariance diag(γ1, · · · , γd) is
proportional to Id. Setting T the first jump time,

γi =
2

d

∫ ∞
0

E[v0 · vt]dt =
2

d

∫ ∞
0

P(T ≤ t)dt =
2

d
,

and we recover the result of [33].

4.2.3 Discrete time — Donsker invariance principle for random walks

In certain situations, the ergodic properties of the system are most easily described
in deterministic discrete time. An example, studied in [8] by Breuillard, Friz and
Huesmann, is that of random walks. If (Yk)k≥0 is a sequence of independent bounded
random variables with values in Rd, symmetric in the sense that their common law is
invariant with respect to the reflections as described in condition (2) in Theorem 4.1
above, we consider the piecewise linear process W that, on each interval [k, k + 1], is
affine and increases by Yk. In other words, we express it as

W : t 7→
∑
k<btc

Yk + (t− btc)Yn.

The classical invariance principle of Donsker states that the rescaled processes Wσ :

t 7→ Wσ4t/σ
2 converge in law to an anisotropic Brownian motion, with respect to the

uniform convergence on compact sets (in most expositions, the convergence is proved
for σ4 = N , as N →∞). The result of [8] strengthens it to rough path convergence.

Let us translate this dynamics in our framework. SetW = R/Z×Rd, I : (α, y) 7→ y,
and define the dynamics of (vt)t≥0 = (αt, yt)t≥0 as follows. Given initial conditions
(α0, y0) ∈ [0, 1)×Rd, α grows continuously with rate 1, i.e. αt = α0 + t (mod 1), whereas
y stays constant on time intervals of length 1, then jumps independently of the past
according to the law of Yk, i.e. yt = Ybt−α0c with the convention Y−1 = y0. Under the
initial condition δ0 ⊗ L(Y0), we see that the law of Xσ is exactly that of Wσ.

The process v is Markovian, although not Feller, and admits an invariant measure
Unif(R/Z) ⊗ L(Y0). Because it is not ergodic, there is no hope for equation (2.2) to
hold. Maybe surprisingly, even if I kills the non-mixing coordinate, it is also false that
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condition (1) of Theorem 4.1 holds: in the case where Y has no atoms, take P to be the
first jump time in [0, 1], and F the first jump time in [n, n+ 1]. However, it is true for any
µα := δα ⊗ L(Y0), with constants independent of α: indeed, it is obvious that for t > 1

and any probability law λ on Rd,

P ∗t (δα ⊗ λ) = µα+t = P ∗t µα

holds in lieu of (2.2). Remarkably, nothing more than this is needed throughout the proof.
It should be clear that Proposition 2.5 holds for any µα, and that tightness follows in the
same fashion. Independence of increments, as stated in Propositions 3.5 and Theorem
3.6, hides no difficulty either. It is true that one has to be careful about the limit variance
in Proposition 3.5, because the Markov property is used in a crucial way. In our case, for
any α ∈ [0, 1) and σ > 1, we end up with

Eµα
[(

(Xσ
1 )i
)2]

=
1

σ4

∫ σ4

0

∫ σ4

0

Eµα [yisy
i
t] dsdt

=
∑
n≥−1

1

σ4

∫ σ4

0

∫ σ4

0

1n+α≤s,t<n+1+αEµα [yisy
i
t] dsdt

= E[|Y i0 |2] · (1− α)2 + bσ4 + α− 1c+ {σ4 + α− 1}2

σ4

with {·} the fractional part. In the limit, the variance converges to E[|Y i0 |2], so the result
of Theorem B, and in particular the rough path strengthening of the Donsker invariance
principle, holds with covariance E[Y0Y

∗
0 ], in accordance with [8].

Surprisingly enough, the symmetry condition (2) is not mandatory here: see [8]. Intu-
itively, the increments would have to work together to spin in some privileged direction,
but this is prevented by independence. In particular, a drift in the antisymmetric part of
Xσ that does not vanish in the limit, as mentioned in example 4.2.1 above, must come
from additional structure: in [31], the hidden Markov chain; in [30], the underlying
directed graph; etc.

Note that in the case of random walks, as a consequence of the work of Chevyrev, see
[9, Example 5.8], convergence of Xσ as stated in Proposition 3.5 in enough to ensure
convergence of Xσ to some random rough path. It is not clear from this approach,
however, that this limit is indeed Brownian.

4.2.4 Discrete time and correlation — Donsker invariance principle for Markov
chains

The reader may have noticed that in the above example 4.2.3, independence of the
variables (Yk)k≥0 is a bit much, and one could work with covariances vanishing exponen-
tially fast. Suppose for instance that (Yk)k≥0 is a time-homogeneous Markov chain with
invariant measure µ with compact support, whose correlations decrease as e−k/τ , τ > 0;
namely, letting Q be the transition kernel of Y ,

‖δy Qk − µ‖TV . e−k/τ

for all y in the support of µ. Then, setting µ0 := δ0 ⊗ µ, we get, for any probability
measure λ with Supp λ ⊂ Supp µ,

‖P ∗t (δ0 ⊗ λ)− P ∗t µα‖TV =

∥∥∥∥∫ (δy Q
btc − µ)λ(dy)

∥∥∥∥
TV

. e−t/τ .
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Again, this inequality can be substituted for equation (2.2) in the proof of Proposition
2.4, and under the same symmetry condition as above, the convergence result still holds
true.

Examples of such Markov chains are any aperiodic irreducible finite state Markov
chain; or any Markov chain with transition kernel Q(y,dy′) absolutely continuous with
respect to some measure ν, and such that dQ(y,·)

dν is bounded below by a positive constant
m > 0, uniformly in y, y′. Note however that the symmetry condition (2) of Theorem 4.1
is a bit stronger than in the independent case, since we need the reflections to leave the
law of the whole sequence invariant.

4.2.5 Time-dependent randomness — time-dependent Brownian motion

The way we wrote our convergence theorems is ill-suited to treat time-dependent random-
ness, i.e. when the motion of the velocity is not homogeneous in time. However, there
are cases where randomness can be somewhat dissociated from the time dependence,
and our methods do in fact yield interesting convergence results. In the present example,
we set to recover, in the limit, the Brownian motion on a manifoldM endowed with a
time-dependent metric gt, as introduced in [3] by Arnaudon, Coulibaly and Thalmaier.

Such an approach has already been set up in [25], in a similar fashion as the random
flight described in example 4.2.2 above. The idea is to freeze the metric in small time
intervals [ti, tt+1], say of size 1/σ4, over which the movement q is purely geodesic with
respect to the metric gti , the initial condition being chosen uniformly at ti on the unit gti -
sphere of the tangent space ofM at qti . Suitably renormalised, this process converges
to the time-dependent Brownian motion described above. We introduce a similar random
flight which lets the metric vary continuously, and may be considered more natural in
this respect, then prove its convergence to time-dependent Brownian motion.

We begin by describing time-dependent Brownian motion and its surroundings.
Suppose gt is smooth, as a function on R+ × TM⊗ TM. Let FM be the frame bundle
overM, and choose a point q0 ∈ M together with a g0-orthonormal frame e0 of Tg0M.
For a C1 path (xt)t≥0 in Rd, we define the time-dependent development of x as the
solution (zt)t≥0 = (qt, et)t≥0 of the following equation, whose terms we describe below.

dzt = Ht,zt(dxt)−
1

2

∂gt
∂t

(utεi, utεj)V
ij
ztdt, z0 = (q0, e0). (4.3)

We use Einstein notation. As in Section 3.3.1, (ε1, · · · , ε) is the canonical basis of Rd, and
the Ht,zεi, resp. Vij

z , are the canonical horizontal vector fields, resp. vertical vector fields.
Note that because the metric g is time-dependent, the associated horizontal vector fields
H must depend on t as well. In coordinates,

Ht,z(εα) = eiα
∂

∂qi
−
(
Γt(q)

)k
ij
eiαe

j
l

∂

∂ekl
, Vij

z = ekj
∂

∂eki
.

If we compare (4.3) to (3.3), the added vertical fields are there to ensure that et is at all
times orthonormal for gt. We refer to [12] for an insight about why this definition is a
sensible choice.

In particular, the time-dependent geodesics are the solutions of the equation asso-
ciated to xt = tu for some fixed u ∈ Rd, and the time-dependent Brownian motion is
the solution driven by some standard Brownian motion W in the Stratonovich sense, or,
equivalently, by the standard Stratonovich rough path W in the rough sense.

Note that we did not discuss time-dependent rough differential equations in Section
3.3.3. In the case of an equation driven by a C1 control x, the standard technique is of
course to consider t 7→ (t, xt) as the control. The same trick works with rough paths:
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associated to any rough path Y = (Y,Y) is a canonical lift Ŷ of t 7→ (t, Yt) compatible
with Y. The solution of time-dependent rough differential equations is then well-defined.
In what follows, we will also use the fact that Y 7→ Ŷ is continuous in the rough path
topology, so X̂σ → X̂ in law whenever Xσ → X in law.

We define a kind of interpolated random walk onM whose limit will be the Brownian
motion described above. Fix σ > 0, and define Wσ successively on each interval
[s, t] = [ nσ4 ,

n+1
σ4 ] as follows: ξσn is chosen independently of all the rest according to the

uniform measure on the unit gs-sphere of TWσ
s
M, and Wσ on [s, t] is a time-dependent

geodesic in the above sense, with initial condition Ẇσ
s =

√
d ξσn .

As in the previous example, there is a direct equivalent of this dynamics in our
framework. Set W = R/Z × Sd−1 and I : (α, y) ↪→

√
dy, following the same dynamics

as in 4.2.3, with Y0 uniformly distributed on Sd−1. We choose the initial condition to be
δ0 ⊗Unif(Sd−1); for the same reasons as in example 4.2.3 above, (Xσ)σ>0 converges to
the Brownian rough path X with covariance dE[Y0Y

∗
0 ] = Id.

Everything described so far is essentially time-invariant — the time-dependence
appears when we use this family of rough paths to describe a motion onM. Fix q0 ∈M,
and e0 a g0-orthonormal frame of Tq0M. Define the solution (zt)t≥0 = (qt, et)t≥0 (up to
explosion) on the frame bundle FM of equation (4.3) driven by X, in the rough sense.

By definition, qt defined as above is the Brownian motion associated to the time-
dependent metric gt, as described in [3]. If we set zσ = (qσ, uσ) the solution of the
equation driven by Xσ, we get instead qσ = Wσ in law. The convergence of Xσ, together
with the general theory of rough paths (see Theorem 3.7), ensures that qσ, hence Wσ,
converges in law to the time-dependent Brownian motion q.

4.2.6 Velocity with unbounded support — Langevin process

We conclude with an example where the velocity v has unbounded support, which
goes against the implicit assumption that I be bounded. We consider the process with
anisotropic Ornstein-Uhlenbeck velocity, i.e. satisfying

dvt = −vtdt+ dBt

for B an anisotropic Brownian motion of covariance Σ. In the isotropic case, it is a
simple scalar example of the hypoelliptic Laplacian of Bismut, and convergence towards
Brownian motion can be seen as a geometric analogue of the interpolation described
by the latter between the Laplace operator and the geodesic generator; see [7]. The
anisotropic convergence is also treated in [6].

When the parameter σ is introduced, we get a velocity vt satisfying

dvt = −σ2vtdt+ σdBt,

and we want to prove that the associated position process converges to Brownian motion,
as σ →∞ and under suitable time change. Here, I :W = Rd → Rd is simply the identity,
and hence does not quite fit the boundedness hypothesis of Theorem C. However, it is
well known that v admits as an invariant measure the Gaussian distribution µ = N (0, 1

2Σ)

with covariance 1
2Σ. Using the coupling B′t = −Bt, it is known, and not difficult to see,

that
‖P ∗t δx − µ‖TV . (1 ∨ |x|) e−t,

from whence, because 1 ∨ |x| is in L1(µ), we derive Proposition 2.4; see Proposition 4.3.
In our proof, boundedness of the velocity is essentially used twice: for proving the

decorrelation of coordinates in Proposition 2.5, and to show that the variance of the limit
must be the limit of the variances in 3.5. Because µ has moments of all order, the latter
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will add no difficulty — in fact, any moment of order > 2 would suffice. As for the former,
it is a bit trickier. We use the following variation of Proposition 2.5.

Proposition 4.4. Fix some ε > 0 and some positive integer n ∈ N∗. There exists
τ ′ = τ ′(τ, n, ε) > 0 such that under P = Pµ, and for any indices 1 ≤ j1, · · · , jn ≤ d and
times s1, · · · , sn ≥ 0,∣∣∣E[vj1s1 · · · vjns1+···+sn

]∣∣∣ . |vj10 |Ln+ε · · · |vjn0 |Ln+ε e−∆/τ ′ .

We give only hints of the proof. In the spirit of the proof of Proposition 2.5, set

V− :=
∏

1≤k<k0

(
vjktk /|v

jk
0 |Ln+ε

)
and similarly for V0 and V+. Write V∗ = W∗ +R∗ with W∗ := V∗1|V∗|≥M ; for M = exp(η∆)

with η > 0 small enough, the proof of Proposition 2.5 applied to W∗, together with
a careful handling of the remainder R∗, are enough to get to the above result. It
automatically implies Lemma 2.6, since µ has moments of all order, hence the conclusion
of Theorem B.

Note that the treatment of unboundedness is not specifically designed for the
Langevin process, so it can be applied to the above study of the random walk as well.
Moreover, it is not necessary for all moments to exist: moments of order α > 2/(1− 2γ)

are enough to ensure tightness in RP(γ); this means α > 6 if one only cares about the
convergence of the development with respect to the uniform topology. Indeed, our proof,
enhanced by the above corollary, will hold with moments of order 2n > 2/(1 − 2γ) for
any positive integer n; but adding an easy truncation argument at the beginning of the
proofs of Lemma 3.1 and 3.2 will strengthen the result to non even integral moments. In
this respect, our moment assumption is a bit weaker than that of [8], when we stay in
the symmetrical case.
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