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Existence of (Markovian) solutions to martingale
problems associated with Lévy-type operators
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Abstract

We study the existence of (Markovian) solutions to the (A,C∞
c (Rd))-martingale prob-

lem associated with the Lévy-type operator A with symbol q(x, ξ). Firstly, we establish
conditions which ensure the existence of a solution. The main contribution is that
our existence result allows for discontinuity in x 7→ q(x, ξ). Applying the result, we
obtain new insights on the existence of weak solutions to a class of Lévy-driven SDEs
with Borel measurable coefficients and on the the existence of stable-like processes
with discontinuous coefficients. Secondly, we prove a Markovian selection theorem
which shows that – under mild assumptions – the (A,C∞

c (Rd))-martingale problem
gives rise to a strong Markov process. The result applies, in particular, to Lévy-driven
SDEs. We illustrate the Markovian selection theorem with applications in the theory
of non-local operators and equations; in particular, we establish under weak regularity
assumptions a Harnack inequality for non-local operators of variable order.
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1 Introduction

Lévy-type operators appear naturally in the theory of stochastic processes, for in-
stance as infinitesimal generators of Lévy(-type) processes [5, 14] and in the context of
stochastic differential equations [22, 29]. A Lévy-type operator is defined on the smooth
functions with compact support C∞c (Rd) and has a representation of the form

Af(x) = b(x) · ∇f(x) +
1

2
tr(Q(x) · ∇2f(x))

+

∫
Rd\{0}

(
f(x+ y)− f(x)−∇f(x) · y1(0,1)(|y|)

)
ν(x, dy)
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Existence of (Markovian) solutions to martingale problems

where (b(x), Q(x), ν(x, dy)) is for each fixed x ∈ Rd a Lévy triplet. Equivalently, A can be
written as a pseudo-differential operator

Af(x) = −
∫
Rd
eix·ξq(x, ξ)f̂(ξ) dξ (1.1)

with symbol q,

q(x, ξ) := −ib(x) · ξ +
1

2
ξ ·Q(x)ξ +

∫
Rd\{0}

(
1− eiy·ξ + iy · ξ1(0,1)(|y|)

)
ν(x, dy).

In this paper, we are interested in the martingale problem associated with the Lévy-type
operator, i.e. for a given initial distribution µ we study probability measures Pµ on the
Skorohod space D[0,∞) such that the canonical process (Xt)t≥0 satisfies Pµ(X0 ∈ ·) = µ

and

Mt := f(Xt)− f(X0)−
∫ t

0

Af(Xs) ds, t ≥ 0,

is a Pµ-martingale for any f ∈ C∞c (Rd); as usual we set Px := Pδx . If the martingale
problem is well-posed (i.e. Pµ is unique for any initial distribution µ), then this gives a lot
of additional information on the stochastic process; for instance, well-posedness of the
martingale problem implies the Markov property of (Xt)t≥0, see e.g. [8, Theorem 4.4.2],
and under some weak additional assumptions (Xt)t≥0 is a Feller process, cf. [21]. It is,
however, in general difficult to prove the well-posedness of the martingale problem (see
e.g. [5, 20] for a survey on known results), and for many interesting examples it is known
that well-posedness does not hold. It is therefore of great interest to study properties of
solutions to martingale problems which are not necessarily well-posed. This paper has
three parts.

Firstly, we are interested in finding sufficient conditions on the operator A (or
its symbol q) which ensure the existence of a solution to the (A,C∞c (Rd))-martingale
problem. If q has continuous coefficients, i.e. x 7→ q(x, ξ) is continuous for all ξ, then the
existence of solutions is well understood, cf. [10, Theorem 3.2] and [21, Corollary 3.2].
The situation is more delicate if q is discontinuous, and we are not aware of a general
existence result in the discontinuous setting (see Section 3 for a detailed discussion of
known results). In this paper, we will show that a solution to the martingale problem
for a Lévy-type operator A (with possibly discontinuous coefficients) exists if A can
be approximated by a sequence of Lévy-type operators An, n ≥ 1, satisfying a Krylov
estimate, cf. Theorem 3.5 for the precise statement. Combining the result with heat
kernel estimates obtained in [20], we obtain a new existence result for weak solutions
to Lévy-driven SDEs with Borel measurable coefficients, cf. Corollary 3.10. Moreover,
Theorem 3.5 allows us to prove the existence of stable-like processes with discontinuous
coefficients, cf. Example 3.12 and Example 3.13.

Secondly, we will study under which assumptions a solution to the martingale problem
gives rise to a (strong) Markov process. More precisely, we will investigate the following
question: Assuming that for each initial distribution µ there exists a solution to the
(A,C∞c (Rd))-martingale problem with initial distribution µ, i.e.

Πµ := {P;P is a solution to the martingale problem with initial distribution µ} 6= ∅,

then under which assumptions can we choose Px ∈ Πδx such that (Xt,P
x;x ∈ Rd, t ≥ 0)

is a strong Markov process? Krylov [18] proved an abstract criterion for the existence
of a Markovian selection for a large class of operators A (which need not be Lévy-type
operators) and applied it to establish a Markovian selection theorem for diffusions (i.e.
A is a local Lévy-type operator, ν = 0). Krylov’s criterion has been refined by Ethier &
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Kurtz, cf. [8, Section 4.5]; roughly speaking, they show that, for “nice” operators A, a
certain compact containment condition implies the existence of a Markovian selection.
The result is the key tool to prove a Markovian selection theorem for Lévy-type operators;
in particular, we obtain the following statement, which seems to be new.

Theorem 1.1. Let A be a Lévy-type operator with symbol q. If x 7→ q(x, ξ) is continuous
for all ξ ∈ Rd, q is locally bounded, i.e.

∀R > 0 : sup
|x|≤R

sup
|ξ|≤1

|q(x, ξ)| <∞,

and q is locally uniformly continuous at ξ = 0

lim
R→∞

sup
|y|≤R

sup
|ξ|≤R−1

|q(y, ξ)| = 0,

then there exists a conservative strong Markov process (Xt,Ft,Px;x ∈ Rd, t ≥ 0) such
that Px is, for each x ∈ Rd, a solution to the (A,C∞c (Rd))-martingale problem with initial
distribution µ = δx.

If the symbol q does not have continuous coefficients, we have to assume additionally
the existence of a solution to the martingale problem for any initial distribution µ,
cf. Theorem 4.1 for details. As a by-product, we obtain a sufficient condition for the
existence of a Markovian (weak) solution to Lévy-driven SDEs, cf. Corollary 4.4.

In the third, and final, part of the paper, we will illustrate the well-established fact
that there is a strong connection between probability theory and the analysis of PDEs and
pseudo-differential operators. We will present two applications of Markovian selection
theorems in the theory of non-local operators and equations. The first one is a Harnack
inequality for a class of pseudo-differential operators, cf. Section 5.1, and the second one
concerns viscosity solutions to a certain integro-differential equation, cf. Section 5.2.

2 Preliminaries

We consider Rd endowed with the Borel σ-algebra B(Rd) and write B(x, r) for the
open ball centered at x ∈ Rd with radius r > 0; Rd∂ is the one-point compactification of
Rd. The transpose of a matrix A ∈ Rd×d is denoted by AT . If a certain statement holds for
x ∈ Rd with |x| sufficiently large, we write “for |x| � 1”. We denote by C(Rd) the space
of continuous functions f : Rd → R; C∞(Rd) (resp. Cb(Rd)) is the space of continuous
functions which vanish at infinity (resp. are bounded). A function f : [0,∞) → Rd is
in the Skorohod space D[0,∞) if f is right-continuous and has finite left-hand limits in
Rd. On C2

b (Rd), the space of two times continuously differentiable functions which are
bounded (with its derivatives), we define a norm by

‖f‖(2) := ‖f‖∞ + ‖∇f‖∞ + ‖∇2f‖∞, f ∈ C2
b (Rd),

here ∇f and ∇2f are the gradient and Hessian of f , respectively. We write

‖f‖% := ‖f‖∞ + sup
x,y∈Rd
x 6=y

|f(x)− f(y)|
|x− y|%

, % ∈ (0, 1]

for the Hölder norm of a function f . The space of bounded Borel measurable functions
f : Rd → R is denoted by Bb(Rd), and P(Rd) is the family of probability measures on
(Rd,B(Rd)).

For a filtration (Ft)t≥0 on a measurable space (Ω,A) we set F∞ := σ(Ft; t ≥ 0). If
τ : Ω→ [0,∞] is an Ft-stopping time, i.e. {τ ≤ t} ∈ Ft for all t ≥ 0, then

Fτ := {A ∈ F∞ : ∀t ≥ 0 : A ∩ {τ ≤ t} ∈ Ft}
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is the σ-algebra associated with τ . For a probability measure P on (Ω,A) and a bounded
A-measurable random variable Y we denote by

EY :=

∫
Ω

Y (ω)P(dω)

the expectation with respect to P; we write EP if we need to emphasize the underlying
probability measure P.

We will usually work on the Skorohod space Ω = D[0,∞) endowed with the Borel σ-
algebra induced by the Skorohod topology. We denote by Xt(ω) := ω(t), ω ∈ D[0,∞), the
canonical process. Unless otherwise mentioned, we will always consider the canonical
filtration Ft := FXt := σ(Xs; s ≤ t) of (Xt)t≥0.

In this paper we are interested in martingale problems associated with Lévy-type
operators, i.e. pseudo-differential operators (1.1) with symbol

q(x, ξ) := q(x, 0)−ib(x) ·ξ+
1

2
ξ ·Q(x)ξ+

∫
Rd\{0}

(
1− eiy·ξ + iy · ξ1(0,1)(|y|)

)
ν(x, dy). (2.1)

We call (b,Q, ν) the characteristics of q. Throughout this paper, we will always assume
that q(x, 0) = 0 for all x ∈ Rd and that (x, ξ) 7→ q(x, ξ) is Borel measurable. A symbol q
with characteristics (b,Q, ν) is locally bounded if

sup
x∈K

(
|b(x)|+ |Q(x)|+

∫
y 6=0

min{|y|2, 1} ν(x, dy)

)
<∞ (2.2)

for any compact set K ⊆ Rd; by [31, Lemma 6.2], q is locally bounded if, and only if,
for any R > 0 there exists a finite constant CR > 0 such that |q(x, ξ)| ≤ cR(1 + |ξ|2) for
all |x| ≤ R, ξ ∈ Rd. If (2.2) holds for K = Rd, then q has bounded coefficients. We say
that q has continuous coefficients if x 7→ q(x, ξ) is continuous for all ξ ∈ Rd, see [24,
Theorem A.1] for a characterization in terms of the characteristics (b,Q, ν). Our standard
references for martingale problems associated with pseudo-differential operators is the
monograph [15], see also [11] and the references therein.

There is a close connection between Feller processes and martingale problems for
pseudo-differential operators, cf. [5, 21] for a detailed discussion. If the symbol q is of
the form

q(x, ξ) = −ib(x) · ξ + ψ(σ(x)T ξ), x, ξ ∈ Rd

for the characteristic exponent ψ of some Lévy process (Lt)t≥0, it is known that a
solution to the (−q(x,D), C∞c (Rd))-martingale problem gives rise to a weak solution to
the Lévy-driven SDE

dXt = b(Xt−) dt+ σ(Xt−) dLt (2.3)

and vice versa, cf. [29] and [31].

3 Existence of solutions to martingale problems with discontinu-
ous coefficients

Let (q(x, ·))x∈Rd be a family of continuous negative definite functions represented
by (2.1) such that q(x, 0) = 0 for all x ∈ Rd. If x 7→ q(x, ξ) is continuous, then there are
general existence results for solutions to the (−q(x,D), C∞c (Rd))-martingale problem.
The key tool is the following statement, cf. [8, Theorem 4.5.4].

Theorem 3.1. Let A : D(A)→ C∞(Rd) be a linear operator such that D(A) ⊆ C∞(Rd),
and let µ ∈ P(Rd) be a probability measure. If A satisfies the positive maximum principle
and D(A) is dense in C∞(Rd), then there exists an Rd∂ -valued solution to the (A,D(A))-
martingale problem with initial distribution µ.
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If A is a pseudo-differential operator with symbol q and domain D(A) := C∞c (Rd),
then the assumption A : C∞c (Rd) → C∞(Rd) in Theorem 3.1 means, in particular, that
x 7→ q(x, ξ) has to be continuous, i.e. Theorem 3.1 allows us only to derive existence
results for martingale problems with continuous coefficients. Hoh [11, Theorem 3.15]
used Theorem 3.1 to establish the existence of solutions to the (A,C∞c (Rd))-martingale
problem under the assumption that x 7→ q(x, ξ) is continuous and q has bounded co-
efficients, i.e. |q(x, ξ)| ≤ c(1 + |ξ|2), x, ξ ∈ Rd, for some absolute constant c > 0. The
following refinement has recently been obtained in [21, Corollary 3.2].

Theorem 3.2. Let A be a pseudo-differential operator with symbol q, q(x, 0) = 0. If q
has continuous coefficients, is locally bounded and satisfies the linear growth condition

lim
|x|→∞

sup
|ξ|≤|x|−1

|q(x, ξ)| <∞ (3.1)

then there exists for any µ ∈ P(Rd) a (non-explosive) solution to the (A,C∞c (Rd))-
martingale problem with initial distribution µ.

Let us mention that the growth condition (3.1) can be formulated in terms of the
characteristics (b,Q, ν) of q, cf. [21, Lemma 3.1].

For martingale problems with discontinuous coefficients we are not aware of general
statements on the existence of solutions. The publication [13] is concerned with such an
existence result but there might be a problem with its proof, see Remark 3.6(i) below.
For the particular case that the symbol q of the pseudo-differential operator A is of the
form

q(x, ξ) = −ib(x) · ξ + ψ(σ(x)T ξ), x, ξ ∈ Rd

for the characteristic exponent ψ of a Lévy process (Lt)t≥0, it is known that solving the
(A,C∞c (Rd)) is equivalent to studying weak solutions to the SDE

dXt = b(Xt−) dt+ σ(Xt−) dLt. (3.2)

There are, however, only few results on the existence of weak solutions to SDEs with
discontinuous coefficients b, σ, and they are mostly restricted to SDEs driven by isotropic
α-stable Lévy processes. Kurenok [28] used a timechange method to study SDEs of the
form (3.2) driven by a one-dimensional isotropic α-stable Lévy process, α ∈ [1, 2], and for
Borel measurable coefficients b, σ. For the particular case that there is no drift part (i.e.
b := 0) and (Lt)t≥0 is a one-dimensional isotropic Lévy process, Zanzotto [34] obtained
an Engelbert-Schmidt-type result which gives a necessary and sufficient condition for
the existence of the weak solution. Moreover, a result by Kurenok [26] states that the
SDE

dXt = b(t,Xt−) dt+ dLt, X0 ∼ δx

has a weak solution if b is a bounded measurable function and the characteristic exponent
ψ : Rd → C of the Lévy process (Lt)t≥0 satisfies

lim
|ξ|→∞

|ξ|
Reψ(ξ)

= 0.

In this section we will derive a new existence result for martingale problems with
discontinuous coefficients, cf. Theorem 3.5. This will allow us to establish a new existence
result for Lévy-driven SDEs with discontinuous coefficients, see Corollary 3.10. As usual
we denote by (Xt)t≥0 the canonical process on Ω := D[0,∞). We start with the following,
rather simple observation.
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Proposition 3.3. Let A : C∞c (Rd) → Bb(Rd) and L : C∞c (Rd) → Bb(Rd) be two linear
operators such that

Af(x) = Lf(x) for Lebesgue almost all x ∈ Rd

for all f ∈ C∞c (Rd). If (Xt,Ft,Px;x ∈ Rd, t ≥ 0) is a Markov process which solves the
(A,C∞c (Rd))-martingale problem and (Xt)t≥0 admits a transition density p with respect
to Lebesgue measure, then (Xt,Ft,Px;x ∈ Rd, t ≥ 0) is a Markovian solution to the
(L,C∞c (Rd))-martingale problem.

Roughly speaking, the process (Xt)t≥0 does not “see” Lebesgue null sets (since it has
a transition density with respect to Lebesgue measure), and therefore we can modify Af
on a Lebesgue null set.

Proof of Proposition 3.3. For any y ∈ Rd, f ∈ C∞c (Rd) and s ≤ t we have

Ey
(∫ t

s

Af(Xr) dr

)
=

∫ t

s

∫
Rd
Af(z)pr(y, z) dz dr =

∫ t

s

∫
Rd
Lf(z)pr(y, z) dz dr

= Ey
(∫ t

s

Lf(Xr) dr

)
.

Using that (Xt)t≥0 is a solution to the (A,C∞c (Rd))-martingale problem which has the
Markov property we find

0 = Ex

(
m∏
i=1

gi(Xti)

[
f(Xt)− f(Xs)−

∫ t

s

Af(Xr)

])

= Ex

(
m∏
i=1

gi(Xti)

[
f(Xt)− f(Xs)−

∫ t

s

Lf(Xr)

])

for any gi ∈ Cb(Rd) and 0 ≤ t1 ≤ . . . ≤ tm ≤ s ≤ t. This shows that Px is a solution to the
(L,C∞c (Rd))-martingale with initial distribution µ = δx.

Proposition 3.3 is a useful tool to derive existence results for the particular case that
the symbol q is “nice” up to a null set.

Example 3.4 (Isotropic stable-like process). Let α : Rd → (0, 2] be a Hölder continuous
mapping which is bounded away from from 0. If β : Rd → (0, 2] satisfies α = β Lebesgue-
almost everywhere, then there exists a Feller process which solves the martingale
problem for the pseudo-differential operator with symbol p(x, ξ) = |ξ|β(x), x, ξ ∈ Rd.

Proof. It is known that there exists a Feller process with symbol q(x, ξ) = |ξ|α(x) and that
the process admits a transition density, cf. [19, Theorem 5.2] or [20, Theorem 5.2]. As

Af(x) := −
∫
Rd
eix·ξq(x, ξ)f̂(ξ) dξ = −

∫
Rd
eix·ξp(x, ξ)f̂(ξ) dξ =: Lf(x)

for Lebesgue almost all x ∈ Rd, we have Af = Lf almost everywhere; applying Proposi-
tion 3.3 finishes the proof.

A possible choice for β is, for instance, β(x) = α(x)1Rd\A for a Lebesgue null set
A ⊆ Rd. Let us remark that Example 3.4 works in a similar fashion for other stable-like
processes, for instance relativistic stable-like processes or Lamperti stable-like processes,
cf. [20, Section 5.1].

The main result in this section is the following existence result. Recall that (Xt)t≥0

denotes the canonical process.
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Theorem 3.5. Let An, n ≥ 1, be a pseudo-differential operator with symbol qn such
that qn(x, 0) = 0. For fixed µ ∈ P(Rd) let Pn, n ≥ 1, be a solution to the (An, C

∞
c (Rd))-

martingale problem with initial distribution µ. Assume that the following assumptions
are satisfied.

(C1) (Local equiboundedness)

∀R > 0 : sup
n≥1

sup
|x|≤R

(
|bn(x)|+ |Qn(x)|+

∫
y 6=0

min{|y|2, 1} νn(x, dy)

)
<∞;

here (bn, Qn, νn) denotes the characteristics of qn;

(C2) (Uniform equicontinuity at ξ = 0) limR→∞ supn≥1 sup|y|≤R sup|ξ|≤R−1 |qn(y, ξ)| = 0;

(C3) (Krylov estimate) There exist a locally finite measure m on (Rd,B(Rd)) and a
constant p ≥ 1 such that for any T > 0

EPn

(∫ t

0

u(Xs) ds

)
≤ c‖u‖Lp(m), u ∈ Bb(Rd), u ≥ 0, n ∈ N, t ∈ [0, T ] (3.3)

for some absolute constant c = c(T ) > 0.

Denote by Lp(m) the Lp-space associated with the measure m and the constant p ≥ 1

from (C3). If L : C∞c (Rd)→ Bb(Rd) is a linear operator such that

inf
g∈Cb(Rd)

(
lim sup
n→∞

‖Anf − g‖Lp(m) + ‖Lf − g‖Lp(m)

)
= 0 for all f ∈ C∞c (Rd), (3.4)

then there exists a solution to the (L,C∞c (Rd))-martingale problem with initial distribu-
tion µ.

We will construct the solution P as the weak limit of (a subsequence of) (Pn)n∈N;
(C1) and (C2) give tightness of (Pn)n∈N whereas (C3) and (3.4) are used to show that
the weak limit P is indeed a solution to the (L,C∞c (Rd))-martingale problem.

Remark 3.6. (i). There is a related existence result in [13] but there might be a problem
with its proof. The proof relies on [32, Theorem 1.2], see also [13, Theoren 2.7], and this
result has a gap in the proof, in the sense that the result only holds for t ≤ t(ξ); in [13]
the result is needed for t(ξ) =∞. We point out that – in any case – the existence result
in [13] is a special case of Theorem 3.5.

(ii). If Lf = limn→∞Anf then (3.4) is equivalent to

inf
g∈Cb(Rd)

‖Lf − g‖Lp(m) = 0, f ∈ C∞c (Rd).

This condition is automatically satisfied if m is a finite measure; indeed, if m is finite,
then Cb(Rd) is dense in Lp(m) and Lf ∈ Bb(Rd) ⊆ Lp(m).

(iii). By [31, Lemma 6.2], the boundedness condition (C1) is equivalent to

∀R > 0 : sup
n≥1

sup
|x|≤R

sup
|ξ|≤1

|qn(x, ξ)| <∞.

(iv). Condition (C3) implies, by the Radon-Nikodým theorem, that the distribution
Pn(Xt ∈ ·) is absolutely continuous with respect to m for Lebesgue almost every t > 0.
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(v). We will see in the proof of Theorem 3.5 that the solution P satisfies the Krylov
estimate

EP

(∫ t

0

u(Xs) ds

)
≤ c‖u‖Lp(m), u ∈ Bb(Rd), u ≥ 0, n ∈ N, t ∈ [0, T ].

In particular, P(Xt ∈ ·) is absolutely continuous with respect to m for Lebesgue almost
all t > 0.

(vi). Inequality (3.3) is automatically satisfied for functions u ≥ 0 such that ‖u‖Lp(m) =∞.
The local finiteness of m ensures that Lp(m) is sufficiently rich (in particular, Cc(Rd) ⊆
Lp(m)).

For the proof of Theorem 3.5 we need some auxiliary statements.

Lemma 3.7. Let A be a pseudo-differential operator with symbol q, q(x, 0) = 0, and
characteristics (b,Q, ν). If f ∈ C∞c (Rd) is such that the support of f is contained in the
closed ball B(0, R) for some R > 0, then

‖Af‖∞ ≤ 2‖f‖(2) sup
|x|≤R

(
|b(x)|+ |Q(x)|+

∫
y 6=0

min{|y|2, 1} ν(x, dy)

)
+ ‖f‖∞ sup

|x|>R
ν(x,B(−x,R)).

(3.5)

Moreover, there exist absolute constants C1, C2 > 0 (not depending on R and f ) such
that

‖Af‖∞ ≤ 2‖f‖(2) sup
|x|≤R

(
|b(x)|+ |Q(x)|+

∫
y 6=0

min{|y|2, 1} ν(x, dy)

)
+ C2‖f‖∞ sup

|x|>R
sup

|ξ|≤|x|−1

|Re q(y, ξ)|
(3.6)

and

‖Af‖∞ ≤ C1‖f‖(2) sup
|x|≤R

sup
|ξ|≤1

|q(y, ξ)|+ C2‖f‖∞ sup
|x|>R

sup
|ξ|≤|x|−1

|Re q(y, ξ)|. (3.7)

Proof. Fix f ∈ C∞c (Rd) and R > 0 such that supp f ⊆ B(0, R). If |x| ≤ R then by Taylor’s
formula

|Af(x)| ≤ 2‖f‖(2) sup
|x|≤R

(
|b(x)|+ |Q(x)|+

∫
y 6=0

min{1, |y|2} ν(x, dy)

)
.

On the other hand, we have for |x| > R

|Af(x)| =
∣∣∣∣∫
y 6=0

f(x+ y) ν(x, dy)

∣∣∣∣ ≤ ‖f‖∞ν(x,B(−x,R)),

and combining the estimates gives (3.5). Since

ν(x,B(−x,R)) ≤ C2 sup
|ξ|≤|x|−1

|Re q(x, ξ)|

for some absolute constant C2 > 0, see e.g. [19, Proof of Theorem 1.27] or [5, Proof of
Lemma 3.26], we get (3.6). Finally, (3.7) follows from [31, Lemma 6.2] and (3.6).

The following maximal inequality is a crucial tool for the proof of Theorem 3.5 but
also for the proof of the Markovian selection theorem in Section 4.

EJP 25 (2020), paper 16.
Page 8/26

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP424
http://www.imstat.org/ejp/


Existence of (Markovian) solutions to martingale problems

Proposition 3.8. Let A : C∞c (Rd) → Bb(Rd) be a pseudo-differential operator with
symbol q, q(x, 0) = 0, and let Pµ be a solution to the (A,C∞c (Rd))-martingale problem
with initial distribution µ. Then there exists an absolute constant c > 0 (not depending
on µ or Pµ) such that

Pµ
(

sup
s≤t
|Xs| ≥ R, |X0| ≤ r

)
≤ ct sup

|y|≤R
sup
|ξ|≤R−1

|q(y, ξ)|

for any t > 0 and R ≥ 2r > 0.

For Feller processes (Xt)t≥0 the maximal inequality goes back to Schilling [30] (see
also [5, Theorem 5.1]), and has been refined in [20, Lemma 1.29]. A localized maximal
inequality was derived in [25], and [23] gives a maximal inequality for solutions to
martingale problems.

Proof of Proposition 3.8. The reasoning is similar to the proof of [5, Theorem 5.1] (see
also [23, Lemma 3.1]) but for the readers’ convenience we sketch the idea of the proof.
Fix 0 < r ≤ 2R <∞ and u ∈ C∞c (Rd), 0 ≤ u ≤ 1 such that u|B(0,1/2) = 1 and u|B(0,1)c = 0.
If we set uR := u(·/R) and

τR := inf{t > 0;Xt /∈ B(0, R)}

then it follows from the optional stopping theorem that

Mt := uR(Xt∧τR)− uR(X0)−
∫ t∧τR

0

AuR(Xs) ds

is a Pµ-martingale; in particular,

EPµ
(
uR(X0)− uR(Xt∧τR)

)
= −EPµ

(∫ t∧τR

0

AuR(Xs) ds

)
. (3.8)

For any ω ∈ {τR ≤ t} ∩ {|X0| ≤ r} we have |Xt∧τR(ω)| ≥ R and |X0(ω)| ≤ r ≤ R/2; thus

uR(X0(ω))− uR(Xt∧τR(ω)) = 1

which implies

Pµ
(

sup
s≤t
|Xs| ≥ R, |X0| ≤ r

)
≤ EPµ

(
uR(X0)− uR(Xt∧τR)

)
.

Using (3.8) and exactly the same reasoning as in [5, Proof of Theorem 5.1], we get

Pµ
(

sup
s≤t
|Xs| ≥ R, |X0| ≤ r

)
≤ −EPµ

(∫ t∧τR

0

AuR(Xs) ds

)
= EPµ

[∫ t∧τR

0

(
1|y|<R

∫
Rd
eiy·ξq(y, ξ)ûR(ξ) dξ

) ∣∣∣∣
y=Xs−

ds

]
≤ ct sup

|y|≤R
sup
|ξ|≤R−1

|q(y, ξ)|

where c := 2
∫
Rd

(1 + |η|2)|û(η)| dη.

From Proposition 3.8 we can deduce the following statement on the tightness of a
sequence of solutions to martingale problems.
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Existence of (Markovian) solutions to martingale problems

Corollary 3.9. For k ≥ 1 let (qk(x, ·))x∈Rd be a family of continuous negative definite
mappings with characteristics (bk, Qk, νk) such that qk(x, 0) = 0. Let Pk be a solution to
the (−qk(x,D), C∞c (Rd))-martingale problem with initial distribution µ. If

∀R > 0 : sup
k≥1

sup
|x|≤R

(
|bk(x)|+ |Qk(x)|+

∫
y 6=0

min{|y|2, 1} νk(x, dy)

)
<∞ (3.9)

and

lim
R→∞

sup
k≥1

sup
|y|≤R

sup
|ξ|≤R−1

|qk(y, ξ)| = 0, (3.10)

then (Pk)k≥1 is tight.

Proof. For fixed ε > 0 there exists r > 0 such that µ(B(0, r)c) ≤ ε. Applying Proposi-
tion 3.8 we find

Pk

(
sup
t≤T
|Xt| ≥ R

)
≤ ε+ Pk

(
sup
t≤T
|Xt| ≥ R, |X0| ≤ r

)
≤ ε+ cT sup

|y|≤R
sup
|ξ|≤R−1

|qk(y, ξ)|

for some absolute constant c > 0. By (3.10) this implies that the compact containment
condition

lim
R→∞

sup
k≥1

Pk

(
sup
t≤T
|Xt| ≥ R

)
= 0

holds for any T > 0. Moreover, it is not difficult to see that (3.10) gives

sup
k≥1

sup
|x|>R

sup
|ξ|≤|x|−1

|qk(x, ξ)| <∞,

and therefore we find from Lemma 3.7 that supk≥1 ‖ − qk(x,D)f‖∞ < ∞. Now the
assertion follows from Aldous tightness condition, cf. [15, Theorem 4.1.16].

We are now ready to prove Theorem 3.5.

Proof of Theorem 3.5. It follows from (C1), (C2) and Corollary 3.9 that the sequence
(Pn)n≥1 is tight, and therefore the weak limit P = limk→∞Pnk exists for a suitable
subsequence. It remains to prove that P is a solution to the (L,C∞c (Rd))-martingale
problem. We claim that P satisfies the Krylov estimate

EP

(∫ t

0

u(Xs) ds

)
≤ c‖u‖Lp(m) for all u ∈ Bb(Rd), u ≥ 0, t ∈ [0, T ]. (3.11)

Indeed: If u = 1A for some open set A ⊆ Rd, then this is a direct consequence of the
Portmanteau theorem, Fatous lemma and (C3); for general u ≥ 0 the Krylov estimate
then follows from a straight-forward application of the monotone class theorem.

In order to show that P is a solution to the (L,C∞c (Rd))-martingale problem, it suffices
to prove that

∆ := E

[
N∏
i=1

gi(Xti)

(
f(Xt)− f(Xs)−

∫ t

s

Lf(Xr) dr

)]
= 0 (?)

for any 0 ≤ t1 ≤ . . . ≤ tN ≤ s ≤ t, f ∈ C∞c (Rd) and gi ∈ Cb(Rd), 0 ≤ gi ≤ 1. Fix ε > 0. By
(3.4), we can choose g ∈ Cb(Rd) such that

lim sup
k→∞

‖Ankf − g‖Lp(m) + ‖Lf − g‖Lp(m) ≤ ε. (3.12)
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Writing Lf = (Lf − g) + g in (?) we get ∆ = ∆1 + ∆2 where

∆1 := EP

[
N∏
i=1

gi(Xti)

(
f(Xt)− f(Xs)−

∫ t

s

g(Xr) dr

)]

∆2 := EP

[
N∏
i=1

gi(Xti)

(∫ t

0

(Lf − g)(Xr) dr

)]
.

We estimate the terms separately. It follows from (3.11) and (3.12) that

|∆2| ≤ c‖Lf − g‖Lp(m)

N∏
i=1

‖gi‖∞ ≤ cε.

Since g is continuous, the weak convergence of Pnk to P gives

∆1 = lim
k→∞

EPnk

[
N∏
i=1

gi(Xti)

(
f(Xt)− f(Xs)−

∫ t

s

g(Xr) dr

)]
.

Using that Pnk solves the (Ank , C
∞
c (Rd))-martingale problem we obtain

∆1 = lim
k→∞

EPnk

[
N∏
i=1

gi(Xti)

∫ t

s

(g −Ankf)(Xr) dr

]
.

Thus, by (C3) and (3.12),

|∆1| ≤ c lim sup
k→∞

‖g −Ankf‖Lp(m) ≤ cε.

Let us illustrate Theorem 3.5 with some examples. We obtain the following existence
result for solutions to SDEs with not necessarily continuous coefficients.

Corollary 3.10. Let (Lt)t≥0 be a one-dimensional Lévy process with characteristic
exponent ψ satisfying the following assumptions.

(L1) ψ has a holomorphic extension Ψ to the domain

U := U(ϑ) := {z ∈ C\{0}; (arg z) mod π ∈ (−ϑ, ϑ)}

for some ϑ ∈ (0, π/2); here arg z ∈ (−π, π] denotes the argument of z ∈ C.

(L2) There exist constants α, β ∈ (0, 2] and c1, c2 > 0 such that

Re Ψ(z) ≥ c1|Re z|β , z ∈ U, |z| � 1,

and
|Ψ(z)| ≤ c2|z|α1{|z|≤1} + c2|z|β1{|z|>1}, z ∈ U.

(L3) |Ψ′(z)| ≤ c2|z|β−1 for all |z| � 1, z ∈ U .

Let b : R→ R and σ : R→ (0,∞) be bounded measurable functions. If

β > 1 or b = 0 (3.13)

and
inf
x∈R

σ(x) > 0, (3.14)

then there exists for any µ ∈ P(Rd) a weak solution to the Lévy-driven SDE

dXt = b(Xt−) dt+ σ(Xt−) dLt, X0 ∼ µ. (3.15)

For Lebesgue-almost every t > 0 the distribution Pµ(Xt ∈ ·) is absolutely continuous
with respect to Lebesgue measure.
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Corollary 3.10 applies, for instance, if (Lt)t≥0 is isotropic stable, relativistic stable,
Lamperti stable or a truncated Lévy process; see [20, Table 5.2] for further examples
of Lévy processes satisfying (L1)–(L3). Corollary 3.10 generalizes, in particular, [27,
Theorem 4.1] which is restricted to isotropic stable driving Lévy processes.

Remark 3.11. (i). Condition (3.13) means that the jump part dominates the drift part.

(ii). If the characteristic exponent ψ is symmetric, i.e. ψ(ξ) = ψ(−ξ) for all ξ ∈ R, then
we can drop the assumption that σ is non-negative and replace (3.14) by infx∈R |σ(x)| > 0.

Proof of Corollary 3.10. Let (Lt)t≥0 be a Lévy process satisfying (L1)–(L3). We split the
proof in two parts; in the first part we will derive a Krylov estimate for SDEs with Hölder
continuous coefficients, and in the second part we will approximate the coefficients b, σ
by Hölder continuous functions in order to apply Theorem 3.5.

Step 1: Let f, g be bounded Hölder continuous functions such that infx g(x) > 0. In
[20, Theorem 5.23] (see also [19, Corollary 5.19]) it was shown that there exists a Feller
process (Xt,Ft,Px;x ∈ Rd, t ≥ 0) which is the unique weak solution to the SDE

dXt = f(Xt−) dt+ g(Xt−) dLt. (3.16)

The Feller process (Xt)t≥0 has a continuous transition probability pt(x, y). Using the
heat kernel estimates from [20] we find that there exists a continuous function C such
that∫ t

0

ps(x, y) ds ≤ C(T, ‖f‖%(f), ‖g‖%(g), 1/ inf
x
g(x))Q(x− y), x, y ∈ R, t ∈ (0, T ] (3.17)

where %(f) and %(g) denote the Hölder exponent of f and g, respectively, and

Q(z) := |z|−1−α∧β1|z|≥1 + (|z|−1+β + | log |z||)10<|z|≤1 + 1|z|=0,

see the appendix for details. Since the transition probability p is continuous, it is
not difficult to see that x 7→ Px(A) is measurable for any A ∈ F∞, and therefore
Pµ :=

∫
Px µ(dx) defines a probability measure; it is a weak solution to (3.16) with initial

distribution µ ∈ P(Rd), and

Pµ(Xs ∈ B) =

∫
Rd
Px(Xs ∈ B)µ(dx) =

∫
Rd

∫
B

ps(x, y) dy µ(dx)

for any B ∈ B(Rd), s > 0. Consequently, we obtain from Fubini’s theorem and (3.17)∫ t

0

EPµu(Xs) ds =

∫ t

0

∫
Rd

∫
Rd
u(y)ps(x, y) dy µ(dx) ds

≤ C(T, ‖f‖%(f), ‖g‖%(g), 1/ inf
x
g(x))

∫
u(y)

(∫
Rd
Q(x− y)µ(dx)

)
dy

(3.18)

for any function u ≥ 0, u ∈ Bb(Rd), i.e. a Krylov estimate holds for p = 1 and the measure

m(dy) :=

(∫
Rd
Q(x− y)µ(dx)

)
dy.

Note that m is a finite measure since, by Tonelli’s theorem and the invariance of the
Lebesgue measure under translations,

m(Rd) =

∫
Rd

∫
Rd
Q(z) dz µ(dx) =

∫
Rd
Q(z) dz <∞.
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Existence of (Markovian) solutions to martingale problems

Step 2: Let b and σ be as in Corollary 3.10. By Lemma A.2, we can choose sequences
(fn)n∈N, (gn)n∈N ⊆ C(R) and (αn)n∈N, (βn)n∈N ⊆ (0, 1] such that

sup
n∈N
‖fn‖αn + sup

n∈N
‖gn‖βn <∞

inf
x∈R

σ(x) ≤ gn(x) ≤ ‖σ‖∞ ‖fn‖∞ ≤ ‖b‖∞
(3.19)

and
fn(x)

n→∞−−−−→ b(x) gn(x)
n→∞−−−−→ σ(x)

Lebesgue almost everywhere. If we denote by An the pseudo-differential operator with
symbol qn(x, ξ) := −ifn(x)ξ + ψ(gn(x)ξ), then Step 1 shows that there exists for each
n ∈ N a solution Pn to the (An, C

∞
c (Rd)) martingale problem with initial distribution µ

which satisfies the Krylov estimate∫ t

0

EPnu(Xs) ds ≤ C(T, ‖fn‖αn , ‖gn‖βn , 1/ inf
x
gn(x))‖u‖L1(m)

for C and m defined in Step 1. Because of (3.19) and the continuity of C we can choose
a constant K = K(T ) > 0 such that∫ t

0

EPnu(Xs) ds ≤ K‖u‖L1(m) for all n ∈ N, u ∈ Bb(Rd), u ≥ 0, t ∈ [0, T ].

This shows that (C3) in Theorem 3.5 holds for p = 1 and the finite measure m. Moreover,
it can be easily verified that (3.19) gives (C1), (C2). If we denote by L the pseudo-
differential operator with symbol q(x, ξ) := −ib(x)ξ+ψ(σ(x)ξ), then qn(x, ξ)→ q(x, ξ) for
Lebesgue-almost all x ∈ R, and so

lim sup
n→∞

‖Anf − g‖L1(m) = ‖Lf − g‖L1(m) for all f ∈ C∞c (R), g ∈ Cb(R).

Since m is a finite measure, Cb(R) is dense in L1(m), and as Lf ∈ Bb(R) ⊆ L1(m) this
implies

inf
g∈Cb(R)

‖Lf − g‖L1(m) = 0.

Applying Theorem 3.5 we find that there exists a solution to the (L,C∞c (R))-martingale
problem with initial distribution µ. It is known that the solution is a weak solution to
(3.15), see [29]. The absolute continuity of the distribution follows from Remark 3.6(iv).

Using the heat kernel estimates in [20, Section 5.3] and an approximation procedure
as in the proof of Corollary 3.10 we can use Theorem 3.5 to derive results on mixed
processes and stable-like processes.

Example 3.12 (Mixed Lévy processes). Let ψ1, ψ2 : R→ R be two continuous negative
definite functions satisfying (L1)–(L3) from Corollary 3.10. For two measurable bounded
mappings ϕ1, ϕ2 : R → (0,∞) we denote by A the pseudo-differential operator with
symbol

q(x, ξ) := ϕ1(ξ)ψ1(ξ) + ϕ2(x)ψ2(ξ), x, ξ ∈ R. (3.20)

If
inf
x∈R

(ϕ1(x) + ϕ2(x)) > 0

then there exists for any µ ∈ P(Rd) a solution to the (A,C∞c (R))-martingale problem
with initial distribution µ.
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A possible choice in Example 3.12 is, for instance, ψ1(ξ) = |ξ|γ (isotropic stable) and

ψ2(ξ) =
√
|ξ|2 +m2

%/2
−m% (relativistic stable) for some γ, % ∈ (0, 2] and m > 0; we refer

to [20, Table 5.2] for further examples of continuous negative definite functions satisfying
(L1)–(L3). We would like to remark that Example 3.12 can be extended to higher
dimensions; for d > 1 we have to replace (L1) by the assumption that ψi(ξ) = Ψi(|ξ|),
ξ ∈ Rd, for a function Ψi which is holomorphic on U (defined in (L1)) and which satisfies
the growth conditions (L2), (L3). Let us mention that the existence of (Feller) processes
with a decomposable symbol of the form (3.20) has been studied in [9, 17] (for smooth
ϕi) and in [24, Theorem 5.5] (for continuous ϕi).

Example 3.13 (Stable-like processes). Let I = [α0, α1] ⊆ (0, 2), I 6= ∅, and J ⊆ Rn be an
open set. Let f : I × J → (0,∞) be a bounded function such that

(i). β 7→ f(α, β) is differentiable for each α ∈ I and sup(α,β)∈I×J |∂βjf(α, β)| <∞ for all
j ∈ {1, . . . , n},

(ii). f0 := inf(α,β)∈I×J f(α, β) > 0.

For a Borel measurable function ϕ : Rd → J denote by A the pseudo-differential operator
with symbol

q(x, ξ) :=

∫
I

|ξ|αf(α,ϕ(x)) dα, x, ξ ∈ Rd. (3.21)

Then there exists for any µ ∈ P(Rd) a solution to the (A,C∞c (Rd))-martingale problem
with initial distribution µ.

Remark 3.14. It follows from the well-known identity

|ξ|α = cα,d

∫
Rd

(1− cos(y · ξ)) 1

|y|d+α
dy, ξ ∈ Rd, α ∈ (0, 2)

that we can write the symbol (3.21) in the form

q(x, ξ) =

∫
Rd

(1− cos(y · ξ))ν(x, dy)

where

ν(x, dy) := cα,d

∫
I

f(α,ϕ(x))
1

|y|d+α
dα dy.

4 Markovian solutions to martingale problems for Lévy-type op-
erators

Throughout this section, we denote by (Xt)t≥0 the canonical process on Ω = D[0,∞),
and (q(x, ·))x∈Rd is a family of continuous negative definite functions such that q(x, 0) = 0.

The aim of this section is to establish a condition which ensures the existence of a
Markovian solution to the (−q(x,D), C∞c (Rd))-martingale problem. It is well-known, see
e.g. [8], that the Markov property holds if the martingale problem is well-posed. It is,
however, in general hard to verify the well-posedness of a martingale-problem. Our main
result in this section, Theorem 4.1, states that a Markovian selection exists if the symbol
q satisfies a certain continuity condition at ξ = 0.

Theorem 4.1 (Markovian selection theorem). Let A be a pseudo-differential operator
with symbol q, q(x, 0) = 0, such that for any µ ∈ P(Rd) there exists a solution to the
(A,C∞c (Rd))-martingale problem with initial distribution µ. If q is locally bounded and
satisfies

lim
R→∞

sup
|y|≤R

sup
|ξ|≤R−1

|q(y, ξ)| = 0, (4.1)
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then there exists a strongly Markovian solution (Xt,Ft,Px;x ∈ Rd, t ≥ 0) to the
(A,C∞c (Rd))-martingale problem, i.e. there exists a family of probability measures
(Px)x∈Rd on D[0,∞) such that

(i) (Xt,Ft,Px, x ∈ Rd, t ≥ 0) is a conservative strong Markov process,

(ii) x 7→ Px is measurable,

(iii) For any µ ∈ P(Rd) the probability measure

Pµ :=

∫
Rd
Px µ(dx)

is a solution to the (A,C∞c (Rd))-martingale problem with initial distribution µ.

Moreover, the following statement holds true:

(iv) For any fixed f ∈ C∞(Rd), f ≥ 0, and λ > 0, the family (Px)x∈Rd can be chosen in
such a way that

EPx

(∫
(0,∞)

e−λtf(Xt) dt

)
= sup
P∈Πx

EP

(∫
(0,∞)

e−λtf(Xt) dt

)
, x ∈ Rd, (4.2)

where Πx is the family of all probability measures P solving the (A,C∞c (Rd))-
martingale problem with initial distribution δx.

If q has continuous coefficients, then the assumption on the existence of a solution is
automatically satisfied (cf. Corollary 4.2). For symbols q with discontinuous coefficients
we refer to Section 3 for sufficient conditions ensuring the existence.

We will see in Section 5.2 that the representation (4.2) is useful in order to study
properties of the function

u(x) := sup
P∈Πx

EP

(∫
(0,∞)

e−λtf(Xt) dt

)

which can be understood as the resolvent with respect to the sublinear expectation
EQx := supP∈Πx EP.

Corollary 4.2 (Markovian selection for symbols with continuous coefficients). Let A be
a pseudo-differential operator with symbol q, q(x, 0) = 0. If q is locally bounded, has
continuous coefficients and

lim
R→∞

sup
|y|≤R

sup
|ξ|≤R−1

|q(y, ξ)| = 0,

then the (A,C∞c (Rd))-martingale problem admits a solution (Xt,Ft,Px, x ∈ Rd, t ≥ 0)

which is strongly Markovian and satisfies 4.1.(i)–(iv).

We will first prove Theorem 4.1 and Corollary 4.2, and then we will present some
examples illustrating both results. The following result is compiled from Ethier & Kurtz
[8]; it is the key tool for the proof of Theorem 4.1.

Theorem 4.3. Let A : C∞c (Rd) → Bb(Rd) be a linear operator, and denote by Πµ the
family of solutions to the (A,C∞c (Rd))-martingale problem with initial distribution µ. If
Πµ 6= ∅ for any initial distribution µ and if the compact containment condition

∀r > 0, ε > 0, t > 0 ∃R > 0 ∀P ∈
⋃
µ

Πµ : P

(
sup
s≤t
|Xs| > R, |X0| ≤ r

)
≤ ε (4.3)
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holds, then there exist Px ∈ Πx := Πδx , x ∈ Rd, such that (Xt,Ft,Px;x ∈ Rd, t ≥ 0) is a
strong Markov process and x 7→ Px is measurable. For any fixed f ∈ Cb(Rd), f ≥ 0, and
λ > 0 the Markovian selection (Px)x∈Rd can be chosen in such a way that

EPx

(∫
(0,∞)

e−λtf(Xt) dt

)
= sup
P∈Πx

EP

(∫
(0,∞)

e−λtf(Xt) dt

)
for all x ∈ Rd. (4.4)

Proof. The first statement follows from Theorem 4.5.19 and (the proof of) Lemma
4.5.11(b) in [8]. Let us remark that Ethier & Kurtz assume in Lemma 4.5.11(b) that Af
is continuous; a close look at the proof shows, however, that this condition is not needed.
The existence of a Markovian selection satisfying (4.4) is a direct consequence of the
proof of Theorem 4.5.19, choose f1 := f in the proof of Theorem 4.5.19.

Proof of Theorem 4.1. Since q is locally bounded and satisfies (4.1), Lemma 3.7 shows
that Af is bounded for any f ∈ C∞c (Rd). Moreover, it follows from (4.1) and Proposi-
tion 3.8 that the compact containment condition (4.3) is satisfied. Applying Theorem 4.3
finishes the proof.

Proof of Corollary 4.2. The assertion is a direct consequence of Theorem 3.2 and Theo-
rem 4.1.

Let us illustrate the Markovian selection theorems with some examples. Since there
is a close connection between weak solutions to Lévy-driven SDEs and martingale
problems, Theorem 4.1 allows us to deduce the following statement.

Corollary 4.4 (Markovian selection for Lévy-driven SDEs). Let (Lt)t≥0 be a d-dimensional
Lévy process with characteristic exponent ψ. If b, σ : Rk → Rk×d are functions of
sublinear growth such that the Lévy-driven SDE

dXt = b(Xt−) dt+ σ(Xt−) dLt, X0 ∼ µ, (4.5)

has a weak solution for any µ ∈ P(Rd), then there exists a conservative strong Markov
process (Xt,Ft,Px;x ∈ Rd, t ≥ 0) such that (Xt)t≥0 is a weak solution to (4.5) with
respect to Pµ :=

∫
Px µ(dx) for any µ ∈ P(Rd).

The assumption on the existence of a weak solution to (4.5) is, in particular, satisfied
if b and σ are continuous. For Lévy-driven SDEs with discontinuous coefficients we refer
to Theorem 3.6 for a sufficient condition for the existence. Note that (4.5) covers SDEs
of the form

dXt = b(Xt−) dt+ f(Xt−) dBt + g(Xt−) dJt (4.6)

where (Jt)t≥0 is a pure jump Lévy process and (Bt)t≥0 an independent Brownian motion;
simply choose Lt = (Bt, Jt) in (4.5). Let us mention that Anulova & Pragarauskas [1]
proved a Markovian selection theorem for SDEs (4.6) for the particular case that f is
uniformly elliptic.

Proof of Corollary 4.4. Set q(x, ξ) := −ib(x) · ξ + ψ(σ(x)T · ξ), x, ξ ∈ Rk, and denote by A
the pseudo-differential operator with symbol q. Since b and σ are of sublinear growth, it
follows easily that q satisfies the assumptions of Theorem 4.1, and therefore there exists
a conservative strongly Markovian solution to the (A,C∞c (Rd))-martingale problem. It
is known, see e.g. [29], that any solution to the (A,C∞c (Rd))-martingale problem with
initial distribution µ is a weak solution to (4.5); this finishes the proof.
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Corollary 4.5 (Stable-dominated processes). Let κ : Rd×Rd\{0} → (0,∞) be a mapping
such that x 7→ κ(x, y) is continuous for all y ∈ Rd\{0}. If there exist finite constants
c1, c2 > 0 and α, β ∈ (0, 2) such that

κ(x, y) ≤ c1
1

|y|d+α
1{|y|<1} + c2

1

|y|d+β
1{|y|≥1} for all x ∈ Rd, y ∈ Rd\{0},

then there exists a conservative strongly Markovian solution to the martingale problem
for the pseudo-differential operator with symbol

q(x, ξ) :=

∫
Rd\{0}

(
1− eiy·ξ + iy · ξ1(0,1)(|y|)

)
κ(x, y) dy, x, ξ ∈ Rd.

We will see in Section 5.1 that Corollary 4.5 can be used to establish a Harnack
inequality. Corollary 4.5 applies, in particular, to stable-like processes. If we choose,
for instance, κ(x, y) = |y|−d−α(x) for a continuous mapping α : Rd → (0, 2) satisfying
infx α(x) > 0, we find that there exists a strongly Markovian solution to the the martingale
problem for the pseudo-differential operator with symbol q(x, ξ) = |ξ|α(x).

Proof of Corollary 4.5. Using the elementary estimates

|1− eiz + iz| ≤ 1

2
|z|2 and |1− eiz| ≤ min{2, |z|}

it is not difficult to see that q has bounded coefficients and satisfies the continuity
condition (4.1). Applying Corollary 4.2 proves the assertion.

The next example shows that the Markovian selection from Theorem 4.1 fails, in
general, to be unique. Moreover, it shows that we can, in general, not choose the
Markovian selection in such a way that the associated semigroup has nice mapping
properties (e.g. the Feller property or the Cb-Feller property).

Example 4.6. Consider the martingale problem for the pseudo-differential operator A
with symbol q(x, ξ) = −2iξ sgn(x)

√
|x|. Clearly, (the distribution of) a process (Xt)t≥0 is a

solution to the (A,C∞c (R))-martingale problem with initial distribution µ = δx if (Xt)t≥0

satisfies the ordinary differential equation

dXt = 2 sgn(Xt)
√
|Xt| dt, X0 = x. (4.7)

It is not difficult to check that both

Xt :=

{
(t+
√
x)2, x ≥ 0,

−(t+
√
−x)2, x < 0

and Yt :=

{
(t+
√
x)2, x > 0,

−(t+
√
x)2, x ≤ 0

are Markovian solutions, and hence uniqueness of a Markovian selection fails. Moreover,
we note that (4.7) has a unique solution for any x 6= 0, and therefore it follows easily that
limx↓0E

xf(Xt) = f(t2) and limx↑0E
xf(Xt) = f(−t2) for any selection (Xt,P

x)t≥0,x∈Rd of
solutions to the (A,C∞c (R))-martingale problem; in particular, the Cb-Feller property and
the Feller property fail to hold for any Markovian selection.

5 Applications

In this section we present two applications of Markovian selection theorems in the
theory of non-local operators and equations. The first one is a Harnack inequality for
pseudo-differential operators of variable order, cf. Section 5.1, and the second one
concerns viscosity solutions to a certain integro-differential equation, cf. Section 5.2.
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5.1 Harnack inequality for non-local operators of variable order

Harnack inequalities are an important tool in the study of partial differential equations.
In the last years there has been an increasing interest in Harnack inequalities for
functions that are harmonic with respect to a Lévy-type operator. Due to the non-local
nature of these operators, it is not possible to use the same techniques as for differential
operators. It has turned out that the probabilistic approach via martingale problems is
very powerful. In order to use this method, it is, however, necessary to know that there
exists a strongly Markovian solution to the martingale problem, and many important
contributions, e.g. [3, 4, 16, 33], have to assume the existence of a strongly Markovian
solution. It is, in general, difficult to prove that the martingale problem is well-posed, and
this made it so far difficult to check this assumption. Our Markovian selection theorem,
Theorem 4.1, allows us to prove the existence without the much harder well-posedness
of the martingale problem.

In this section we combine the Markovian selection theorem with the results from [3]
to prove a Harnack inequality for operators of variable order. In [3] Bass and Kaßmann
established a Harnack inequality for pseudo-differential operators of the form

Au(x) =

∫
Rd\{0}

(u(x+ y)− u(x)−∇u(x) · y1(0,1)(|y|))κ(x, y) dy, u ∈ C∞c (Rd), x ∈ Rd;

their result requires only weak assumptions on the kernel κ, but for the proof they have
to assume that there exists a strongly Markovian solution to the (A,C∞c (Rd))-martingale
problem. Thanks to the Markovian selection theorem, we can give mild assumptions
which ensure the existence of such a strongly Markovian solution.

We recall the following definition. As usual, (Xt)t≥0 denotes the canonical process
with canonical filtration Ft := σ(Xs; s ≤ t).
Definition 5.1. For a linear operator A : D(A)→ Bb(Rd) and x ∈ Rd let Px be a solution
to the (A,D(A))-martingale problem with initial distribution δx. A function u ∈ Bb(Rd)
is called harmonic in an open set D ⊆ Rd if (u(Xt∧τD ))t≥0 is a Px-martingale for each
x ∈ D; here

τD := inf{t > 0;Xt /∈ D}

denotes the first exit time of D.

The following theorem is the main result in this section.

Theorem 5.2. Let κ : Rd × Rd\{0} → (0,∞) be a Borel measurable mapping such
that x 7→ κ(x, y) is continuous for each y ∈ Rd\{0}. Assume that there exist constants
c1, c2, c3, c4 > 0 and α, β, κ ∈ (0, 2) such that the following conditions are satisfied.

(H1) κ(x, y) ≤ c1|y|−d−κ for all x ∈ Rd, |y| > 2,

(H2) c2|y|−d−α ≤ κ(x, y) ≤ c3|y|−d−β for all x ∈ Rd, 0 < |y| ≤ 2

(H3) κ(x, x− z) ≤ c4κ(y, y − z) for all |x− y| ≤ 1, |x− z| ≥ 1, |y − z| ≥ 1.

Then the following statements hold for the pseudo-differential operator A with symbol

q(x, ξ) :=

∫
Rd\{0}

(
1− eiy·ξ + iy · ξ1(0,1)(|y|)

)
κ(x, y) dy, x, ξ ∈ Rd,

(i) There exists a conservative strong Markov process (Xt,Ft,Px;x ∈ Rd, t ≥ 0) such
that Px solves for each x ∈ Rd the (A,C∞c (Rd))-martingale problem with initial
distribution δx.
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(ii) If β − α < 1 then a Harnack inequality holds; more precisely, if u ∈ Bb(Rd), u ≥ 0,
is harmonic on an open ball B(x0, 2r), then there exists C > 0 such that

∀x, y ∈ B(x0, r) : u(x) ≤ Cu(y); (5.1)

the constant C depends on r and c1, . . . , c4, but not x0 and u.

Theorem 5.2 is a direct consequence of Corollary 4.5 and [3]. Let us point out that the
assumptions (H2), (H3) and β − α < 1 are taken from [3] and are thus needed to prove
the Harnack inequality. The condition on the large jumps (H1) is slightly stronger than
in [3]; this is the price which we have to pay for the existence of a strongly Markovian
solution to the martingale problem (more precisely, (H1) is needed to ensure that the
continuity condition (4.1) holds).

Note that the Harnack inequality (5.1) can be used to study the regularity of harmonic
functions, see [16, Section 4].

Remark 5.3. It is not difficult to see that a function u ∈ C2
b (Rd) is harmonic in B(x0, 2r)

if Au(x) = 0 for all x ∈ B(x0, 2r). Theorem 5.2(ii) shows, in particular, that any such
function u ≥ 0 satisfies the Harnack inequality

sup
x∈B(x0,r)

u(x) ≤ C inf
x∈B(x0,r)

u(x)

for some finite constant C = C(r, c1, c2, c3, c4) > 0 not depending on u and x0.

5.2 Viscosity solutions

Viscosity solutions were originally introduced by Lions & Crandall to study non-linear
PDEs of the form

F (x, u(x),∇u(x),∇2u(x)) = 0.

The concept has been successfully extended to nonlinear non-local equations

G(x, u(x),∇u(x),∇2u(x), u(·)) = 0, (5.2)

and over the last two decades viscosity solutions have turned out to be one of the
most important notions for generalized solutions. Non-linear non-local equations (5.2)
appear naturally in the theory of stochastic processes, for instance in the study of Feller
processes (cf. [5]) and sublinear Markov processes (see e.g. [12, 7] and the references
therein). Costantini & Kurtz [6] showed that there is a close connection between
martingale problems and viscosity solutions to the integro-differential equation

λu(x)−Au(x) = f(x), λ > 0, f ∈ Cb(Rd), (5.3)

roughly speaking, they showed that a comparison principle for (5.3) implies the well-
posedness of the martingale problem for the operator A. Recently, this result has been
used by Zhao [35] to derive the existence of a unique weak solution to the SDE

dXt = b(Xt−) dt+ dLt

driven by an α-stable Lévy process, α ∈ (0, 1), under weak regularity assumptions on the
drift b. We will use the Markovian selection theorem, Theorem 4.1, to give a sufficient
condition which ensures that the function

u(x) := sup
P∈Πx

EP

(∫
(0,∞)

e−λtf(Xt) dt

)
is a viscosity solution to (5.3); here (Xt)t≥0 is the canonical process and Πx is the family
of probability measures on Ω = D[0,∞) which solve the (A,C∞c (Rd))-martingale problem
with initial distribution δx.
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Definition 5.4. Let A : C2
b (Rd)→ Cb(R

d) be a linear operator, λ > 0 and f ∈ C∞(Rd).

(i). An upper semicontinuous bounded function u is a viscosity subsolution to λu−Au =

f if the implication

sup
x∈Rd

(u(x)− φ(x)) = u(x0)− φ(x0) =⇒ λu(x0)−Aφ(x0) ≤ f(x0)

holds for any φ ∈ C2
b (Rd), x0 ∈ Rd.

(ii). A lower semicontinuous bounded function v is a viscosity supersolution to λu−Au =

f if

inf
x∈Rd

(v(x)− φ(x)) = v(x0)− φ(x0) =⇒ v(x0)−Aφ(x0) ≥ f(x0)

for any φ ∈ C2
b (Rd), x0 ∈ Rd.

(iii). A function u ∈ Cb(Rd) is a viscosity solution to λu−Au = f if u is both a viscosity
subsolution and a viscosity supersolution.

For a pseudo-differential operator A with negative definite symbol q, the assumption
A(C2

b (Rd)) ⊆ Cb(Rd) in Definition 5.4 means that the symbol q is continuous (with respect
to x and ξ) and has bounded coefficients.

Theorem 5.5. Let A be a pseudo-differential operator with symbol q of the form (2.1),
q(x, 0) = 0, and let f ∈ C∞(Rd), f ≥ 0. Assume that x 7→ q(x, ξ) is continuous, q has
bounded coefficients and

lim
R→∞

sup
|y|≤R

sup
|ξ|≤R−1

|q(y, ξ)| = 0. (5.4)

(i). The function

u(x) := sup
P∈Πx

EP

(∫
(0,∞)

e−λtf(Xt) dt

)
, x ∈ Rd

is a viscosity subsolution to

λu−Au = f ;

here Πx denotes the set of probability measures on D[0,∞) which are a solution to
the (A,C∞c (Rd))-martingale problem with initial distribution δx.

(ii). If u is lower semicontinuous, then u is a viscosity solution to λu−Au = f .

If u is lower semicontinuous (hence, by (i), continuous), then a result by Barles et
al. [2] shows that – under rather general assumptions – u is Hölder continuous. This, in
turn, would allow us to derive new results on the well-posedness of martingale problems
using a similar approach as in [35]. It seems, however, that the lower semicontinuity of
u is, in general, difficult to check; in fact, Example 4.6 shows that u fails, in general, to
be (lower semi)continuous.

Proof of Theorem 5.5. The first statement is a direct consequence of [6, Lemma 3.5]
and Proposition 3.8 but we prefer to give a direct proof which gives both (i) and (ii). By
Theorem 3.2 we have Πx 6= ∅ and therefore u(x) ∈ R is well-defined for each x ∈ Rd.
If (xn)n∈N ⊆ Rd is such that xn → x ∈ Rd, then Proposition 3.8 shows that for any
Pn ∈ Πxn , n ≥ 1, the sequence (Pn)n∈N is tight. It is not difficult to see that this implies
that u is upper semicontinuous, see [6, Lemma 3.4] for more details.
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Now let f ∈ C∞(Rd) and φ ∈ C2
b (Rd). By Corollary 4.2 there exists Px ∈ Πx, x ∈ Rd,

such that (Xt,Ft,Px;x ∈ Rd, t ≥ 0) is a strong Markov process with respect to the
canonical filtration Ft := σ(Xs; s ≤ t) and

u(x) = Ex
(∫ ∞

0

e−λtf(Xt) dt

)
for all x ∈ Rd; (5.5)

here (and throughout the remaining part of the proof) we use the shorthand Ex := EPx .
Using a standard approximation procedure and the fact that ‖Af‖(2) ≤ c‖f‖(2), f ∈
C2
b (Rd), for some absolute constant c > 0, it follows easily that Px is a solution to the

(A,C2
b (Rd))-martingale problem with initial distribution δx. Consequently,

φ(Xt)− φ(X0)−
∫ t

0

Aφ(Xs) ds

is a Px-martingale, and this implies that

φ(x) =

∫
(0,∞)

e−λtEx(λφ(Xt)−Aφ(Xt)) dt, (5.6)

cf. [6, Lemma 2.9]. Thus, by (5.5) and (5.6),

u(x)− φ(x) =

∫
(0,∞)

e−λtEx
(
f(Xt)− λφ(Xt) +Aφ(Xt)

)
dt.

If we define
τxr := τr := min{t > 0; |Xt − x| > r} ∧ r

then we find from the strong Markov property of (Xt)t≥0 that

u(x)− φ(x) = Ex

(∫
(0,τr)

e−λt[f(Xt)− λφ(Xt) +Aφ(Xt)] dt

)

+ Ex

(
e−λτrEXτr

[∫
(0,∞)

(f(Xt)− λφ(Xt) +Aφ(Xt)) dt

])
.

Invoking (5.5) and (5.6) we find

u(x)− φ(x) = Ex

(∫
(0,τr)

e−λt[f(Xt)− λφ(Xt) +Aφ(Xt)] dt

)
+ Ex

(
e−λτr [u(Xτr )− ϕ(Xτr )]

)
.

(5.7)

Now let φ ∈ C2
b (Rd) and x0 ∈ Rd be such that

sup
x∈Rd

(u(x)− φ(x)) = u(x0)− φ(x0).

Without loss of generality, u(x0) = φ(x0). Then u ≤ φ yields u(Xτr )− ϕ(Xτr ) ≤ 0, and so

0 = u(x0)− φ(x0) ≤ Ex0

(∫
(0,τr)

e−λt[f(Xt)− λφ(Xt) +Aφ(Xt)] dt

)
.

By the right-continuity of the sample paths of (Xt)t≥0 we have Ex0(τr) > 0 for r > 0

sufficiently small; moreover, trivially Ex0(τr) ≤ r < ∞. Dividing both sides of the
previous equation by Ex0τr and letting r → 0 we obtain

0 ≤ f(x0)− λφ(x0) +Aφ(x0).
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As φ(x0) = u(x0), this shows that u is a viscosity subsolution. On the other hand, if

inf
x∈Rd

(u(x)− φ(x)) = u(x0)− φ(x0) = 0,

then (5.7) gives

0 = u(x0)− φ(x0) ≥ Ex0

(∫
(0,τr)

e−λt[f(Xt)− λφ(Xt) +Aφ(Xt)] dt

)
,

and we conclude that

0 ≥ f(x0)− λφ(x0) +Aφ(x0) = f(x0)− λu(x0) +Aφ(x0);

this proves (ii).

A Appendix

In the first part of the proof of Corollary 3.10 we used heat kernel estimates for
solutions to Lévy-driven SDEs to establish the Krylov estimate (3.18). Let us (re)state
the heat kernel estimates.

Lemma A.1. Let (Lt)t≥0 be a one-dimensional Lév process satisfying (L1)–(L3) from
Corollary 3.10. Let f, g : R→ R be bounded Hölder continuous functions with infx g(x) >

0, and denote by %(f) (resp. %(g)) the Hölder exponent of f (resp. g). The unique weak
solution to the SDE

dXt = f(Xt−) dt+ g(Xt−) dLt, X0 = x,

has a continuous transition density pt(x, y) with respect to Lebesgue measure and there
exists a continuous function C : (0,∞)4 → (0,∞) such that∫ T

0

ps(x, y) ds ≤ C
(
T, ‖f‖%(f), ‖g‖%(g), 1/ inf

x
g(x)

)
Q(x− y), x, y ∈ R, t ∈ [0, T ],

where

Q(z) := |z|−1−α∧β1{|z|≥1} + (|z|−1+β + | log |z||)1{0<|z|<1} + 1{z=0}, z ∈ R;

here α and β are the constants from (L2) which describe the growth behaviour of the
characteristic exponent ψ of (Lt)t≥0.

Lemma A.1 can be derived from general heat kernel estimates obtained in [20], let
us explain how to do so. The key tool is [20, Theorem 3.8]; it gives heat kernel estimates
for the transition densities of Feller processes with symbols of the form

q(x, ξ) := ψh(x)(ξ), x, ξ ∈ Rd;

here (ψκ)κ∈I , I ⊆ Rk, is a family of continuous negative functions and h : Rd → I a
Hölder continuous function. In Lemma A.1 we are interested in the particular case that

ψκ(ξ) = iξκ1 + ψ(κ2ξ), h(x) :=

(
f(x)

g(x)

)
x, ξ ∈ R, (A.1)

where ψ is the characteristic exponent of the driving Lévy process (Lt)t≥0, f : R→ R,
g : R→ (0,∞) are Hölder continuous functions such that

fL := inf
x∈Rd

f(x) ≤ sup
x∈Rd

f(x) =: fU <∞ 0 < gL := inf
x∈Rd

g(x) ≤ sup
x∈Rd

g(x) =: gU <∞

and κ := (κ1, κ2) ∈ I := [fL, fU ]× [gL, gU ]. The assumptions on the Lévy process (Lt)t≥0

ensure that [20, Theorem 3.8] is indeed applicable. In order to state the heat kernel
estimates we have to recall some assumptions on the family (ψκ)κ∈I :
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(i). There exists a Hölder continuous function γ∞ : I → (0, 2] and constants c1, c2 > 0

such that γL∞ := infκ∈I γ∞(κ) > 0 and

Reψκ(ξ) ≥ c1|ξ|γ∞(κ) and |ψκ(ξ)| ≤ c2|ξ|γ∞(κ) for all |ξ| � 1, κ ∈ I.

(ii). There exists a measurable mapping γ0 : I → (0, 2] and a constant c3 > 0 such that
γL0 := infκ∈I γ0(κ) > 0 and

|ψκ(ξ)| ≤ c3|ξ|γ0(κ) for all κ ∈ I, |ξ| ≤ 1.

[20, Theorem 3.8] states that, under suitable further assumptions on (ψκ)κ∈I (all of them
are satisfied in the particular case which we consider in Lemma A.1), there exists a
constant C1 > 0 such that the transition density p of the Feller process with symbol
q(x, ξ) = ψh(x)(ξ) satisfies

|p(t, x, y)| ≤ C1S(x− y, h(y), t) + C1
1

1 + |x− y|d+γL0 ∧γL∞
, x, y ∈ Rd, t ∈ (0, T ], (A.2)

with γL0 and γL∞ from (i), (ii) and

S(z, κ, t) :=


t−d/γ∞(κ), |z| ≤ t1/γ∞(κ) ∧ 1,

t
|z|d+γ∞(κ) , t1/γ∞(κ) < |z| ≤ 1,

t
|z|d+γ∞(κ)∧γ0(κ) , |z| > 1.

Integrating (A.2) with respect to t, it follows easily that∫ T

0

|p(t, x, y)| dt ≤ C2Q(x− y), x, y ∈ Rd (A.3)

for some constant C2 > 0 and

Q(z) := |z|−d−γ
L
0 ∧γ

L
∞1{|z|≥1} + (1 + | log |z||+ |z|−d+γL∞)1{0<|z|<1} + 1{z=0}.

A close look at the proof of [20, Theorem 3.8] shows that there exists a continuous
function F : (0,∞)10 → (0,∞) such that

C2 = F

(
d, T, c2, c3, ‖h‖%(h),

1

%(γ∞ ◦ h)
,

1

‖γ∞ ◦ h‖%(γ∞◦h)
,

1

γL0
,

1

γL∞
,

1

c1

)
; (A.4)

here %(h) and %(γ∞ ◦ h) denote the Hölder exponent of h and γ∞ ◦ h, respectively, and
‖ · ‖% is the Hölder norm. For our particular case in (the proof of) Lemma A.1, we have

γ∞(κ1, κ2) =

{
β, fU = fL = 0,

max{1, β}, otherwise

γ0(κ1, κ2) =

{
α, fU = fL = 0,

min{1, α}, otherwise

c1 := gL c2 := c3 := fU + gU

where α, β ∈ (0, 2] denote constants from (L1)–(L3), cf. Corollary 3.10. Note that γ∞ and
γ0 do not depend on κ = (κ1, κ2), and therefore γ∞ ◦ h is Lipschitz continuous for any
mapping h. Hence,

C2 = F̃

(
T, gU , fU , ‖f‖%(f), ‖g‖%(g),

1

gL

)
for some continuous function F̃ . Combining this with (A.4) and (A.3), finishes the proof
of Lemma A.1.

For the proof of Corollary 3.10 we also used the following result which concerns the
approximation of Borel measurable functions by Hölder continuous functions.
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Lemma A.2. Let f : Rd → R be a measurable bounded function. Then there exist
sequences (fn)n∈N ⊆ C∞(Rd) and (αn)n∈N ⊆ (0, 1) such that

(i) fn is αn-Hölder continuous for each n ∈ N and

M := sup
n∈N
‖fn‖αn <∞,

(ii) fn(x)→ f(x) for Lebesgue almost all x ∈ Rd,

(iii) ‖fn‖∞ ≤ ‖f‖∞ and fn(x) ≥ infy∈Rd f(y) for each n ∈ N, x ∈ Rd.

Proof. Step 1: For any Lipschitz continuous function f : Rd → R there exists α > 0 such
that ‖f‖α ≤ 4‖f‖∞.

Indeed: Denote by L > 0 the Lipschitz constant of f and choose α > 0 sufficiently
small such that 2Lα ≤ 3. If |x− y| ≥ 1/L, then

|f(x)− f(y)|
|x− y|α

≤ 2Lα‖f‖∞ ≤ 3‖f‖∞.

If |x− y| < 1/L, then

|f(x)− f(y)|
|x− y|α

≤ L|x− y|1−α ≤ Lα ≤ 3‖f‖∞.

Step 2: Let χ ∈ C∞c (Rd) be such that 0 ≤ χ ≤ 1 and
∫
Rd
χ(y) dy = 1. If we set

χn(x) := 1/ndχ(x/n) and fn := f ∗ χn ∈ C∞(Rd), then fn → f (Lebesgue-)almost
everywhere. Moreover,

‖fn‖∞ ≤ ‖f‖∞

and therefore it follows from Step 1 that we can choose αn > 0 such that ‖fn‖αn ≤ 4‖f‖∞
for all n ∈ N. Finally,

fn(x) =

∫
f(y)χn(y − x) dy ≥

(
inf
y∈Rd

f(y)

)∫
χn(y − x) dy = inf

y∈Rd
f(y).
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