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On the peaks of a stochastic heat equation on a sphere
with a large radius

Weicong Su*

Abstract

For every R > 0, consider the stochastic heat equation
Aur(t,x) = %AS%uR(t ,x) + o(ur(t,z))Eér(t,z)

on ng, where £r = WR are centered Gaussian noises with the covariance struc-
ture given by E[Wg(t, z)Wr(s,y)] = hr(z,y)do(t — s), where hg is symmetric and
semi-positive definite and there exist some fixed constants —2 < Chup < 2 and
1Ch,, —1< Chy,. < Ch,, such that forall R > 0 and =,y € S, (log R)“haown/? =
haown(R) < hr(z,y) < hup(R) = (log R) hur/?, AS% denotes the Laplace-Beltrami
operator defined on S% and ¢ : R — R is Lipschitz continuous, positive and uni-
formly bounded away from 0 and co. Under the assumption that ug,o(z) = ur(0, )
is a nonrandom continuous function on = € S% and the initial condition that there
exists a finite positive U such that supp.osup,csz lur,0(z)] < U, we prove that for
every finite positive ¢, there exist finite positive constants Cyown (t) and Cy,(t) which
only depend on ¢ such that as R — 0o, sup,cs2 |ur(t,x)| is asymptotically bounded
below by Caoun (t)(log R)"/*+Craown/4=hun/® and asymptotically bounded above by
Cup(t)(log R)*/*"run/* with high probability.
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1 Introduction

Suppose {(2r ,-#r ,PRr)} - is a collection of probability spaces. For each R > 0, let
ERr denote the expectation with respect to Pr. For each R > 0, let £z denote time-white
space-colored noise on 5% x [0, o), with S% being a sphere of radius R, defined on the
probability space (Qr, %r,Pr). The covariance structure of £ = Wk is given by

Egr [WR(t,J;)WR(s,y)} = hr(z,y)00(t — s), (1.1)
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Peaks of SHE on spheres

where hp is a symmetric, positive semi-definite function on S% x S% and there exist some
fixed constants —2 < C,,, < 2 and 3C, — 1 < Ch,,,,, < Ch,, such that for all R > 0
and z,y € S%,

(log R)Chdm“"/2 = hdown(R) < hR(fU,y) < hup(R) - (log R)Chw]/2' (1.2)

For 0 < Cy,,,, < Cs,, <oo,leto: R — [Cs,,.,.,Cs,,] be Lipschitz continuous with the
Lipschitz constant 0 < IL, < co. Consider a collection of stochastic heat equations, each
of which is defined on [0, 00) x S% x Qp,

atuR(t ) CC) = %AS;‘QUR(t ) 1’) =+ G(UR(t ) I))é-R(t ) I), (13)
0<t<oo, x € 512%, subject to the initial value condition,
ug(0,r) =upo(z) forallz € 5%,

where A s2 is the Laplace-Beltrami operator on S% and the initial function ug(-) is
nonrandom and continuous. In this paper, we consider the following mild form of
solution to (1.3).

Definition 1.1. A mild solution to (1.3) is defined to be a jointly measurable random
field ug(-,-,-) : [0,00) x S% x Qp + R which for each0 <t < 00,0 < R < o0, z € S%,
Pr-almost surely satisifies the equation

¢
ug(t,x) = /S2 pR(t,x,y)uR,o(y)dy—i—/o /S2 pr(t—s,2,y)o(ur(s,y))Wr(ds,dy), (1.4)

where pr, is the heat kernel on Sfa and 1y is a probability space which depends on R.

Remark 1. We will show in Section 3 that ug(t,z) exists and is unique up to a Pg-
modification independent of ¢t and x € S%. For this reason, we also say ur(t,z) is the
mild solution to (1.3).

Remark 2. Whenever it is clear from the context, we write ) for Qz, P for P and E for
EpR for brevity. For example, we can rewrite (1.1) as

E [WR(t,x)W'R(s,y) = ha(w,y)0(t — 5),

whenever there is no confusion.

The goal of this paper is to give an asymptotic estimate of sup,c 52 lur(t,x)| as R — oo.
The following is the main theorem of this paper.

Theorem 1.1. If there exists a finite positive U such that supg..osup,csz [uro(z)| < U,
then for any 0 < t < oo, there exist constants 0 < Cooun (t) < Cyp(t) < oo, which only
depend on t, such that

lim P (Cdown(t) (log R)™ < sup |ugr(t,z)| < Cup(t) (logR)a“> =1, (1.5)

R—o0 zeS?

where oy = 1/4 + Ch,,,,,,/4 — Ch,,/8 and o, = 1/2 4 C},, /4.

Remark 3. The scaling property of the heat kernel (see (2.5) below) suggests the mild
solution up for different R might also follow a similar scaling property. Suppose the noise
¢r = Wk satisfies the condition £x(t,z) = & (t/R?,z/R) forall t > 0 and 2 € S3. Then
from (1.4) the mild solution up satisfies the scaling property ug(t,r) = u(t/R?,z/R).
The equation in Theorem 1.1 can then be rewritten as

lim P (cdownu) (log R)™ < sup [u(t/R?,x)| < Cup(t) (1ogR>“u) -1, (1.6
R— o z€S?
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where u denotes u, provided that sup,cg» |u(0, z)| is finite. Unfortunately, the scaling
relation &g (¢, z) = & (t/R? ,2/R) forces a strong growth rate condition on hg, which is
incompatible with (1.2).

The stochastic heat equation (1.3) provides a model of the heat flow on a large
sphere. In this model, Theorem 1.1 gives an estimate of the highest temperature on
a large heated sphere. The result of this paper offers a potential explanation for the
existence of solar flares on a large-sized star and estimates the temperatures of the
solar flares relative to the radius of the star. While a majority of papers in the theory
of SPDE focus on SPDEs on Euclidean spaces, there are a smaller number of published
works that study SPDEs on Riemannian manifolds. We find several papers related to
SPDEs on Riemannian manifolds: Lang, Schwab [1], Elliott, Hairer, Scott [3], Dalang,
Lévéque [6] [7], Gyongy [12] [13], Peszat, Tindel [18], Funaki [20], Kazashi, Le Gia [22]
and Brzezniak, Goldys, Le Gia [23], [24]. These papers though focus on more general
theories of SPDEs on spheres or Riemannian manifolds in general instead of investigating
a specific quantative property of a SPDE such as giving an asymptotic estimate of the
peaks of a SPDE, which is the main goal of our paper.

The challenge in finding an accurate asymptotic estimate on the peaks, as given in
Theorem 1.1, is to unveil the effect of the curvature of a sphere on the heat flow on its
surface under a noisy environment modeled by (1.3). Unlike its Euclidean counterpart,
the heat kernel of on a sphere does not have a compact form. The series expansion of the
heat kernel on a Riemannian manifold is well-developed via the spectral theory of Laplace-
Beltrami operator (See [19]). The technique to estimate of the maximal temperature
of peaks, sup,¢ 52 |lur(t,z)|, relies on finding sufficiently-many “independent” points
on a large sphere in the sense that heat flows originate from these points will not
interact with each other in a short amount of time. This idea was introduced in [4].
While there always exist sufficiently-many “independent” points in a Euclidean space
as done in [4], cleverly fitting in these “independent” points on a sphere is the key to
achieving the goal of this paper. This fitting requirement poses strong restrictions on the
choices of various variables used to define an underlying coupling process. Successful
coordination on the choice of these variables makes everything fall into the right place.
In addtion to having to circumvent the “dependence” among points, we will need access
to accurate estimations on the heat kernel on a sphere. Among various works on heat
kernel estimations such as Li, Yau [17], Varadhan [21], and Molchanov [16], we will use
Molchanov’s result to prove the main theorem of this paper. Molchanov [16] gives a
uniform estimation on a compact subset of the sphere excluding the South pole.

Before moving to the more technical details and the long series of calculations, an
outline of our paper is given. This paper is organized as follows. In Section 2, we recall
the Laplacian-Beltrami operator [19] and Molchanov’s heat kernel estimates [16], and
develop some preliminary estimates associated with the spherical heat kernels which
will be frequently used throughout this paper. In Section 3, we show that the mild
solution (1.4) exists uniquely and prove that it is jointly measurable. In Section 4, we
show that the mild solution has spatial continuity. In Section 5, we follow the method in
[4] to give an asymptotic upper bound of the supremum of the mild solution by noting
that there exist sufficiently many “independent” points on a sphere of large radius. In
Section 6, necessary tail probability estimates are developed which will be used to give
an asymptotic lower bound of the supremum of the mild solution. In Section 7, we use
a discretization technique as in [5] along with spatial continuity to give an asymptotic
lower bound of the supremum of the mild solution, thus finishing the proof of the main
Theorem 1.1 of the paper. In the appendix, we follow the argument in [14] to give the
proof of the spherical version of Garsia’s Lemma that is used in Section 4.

Throughout this paper, the following notations will be used. Let S? denote S? the unit
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sphere, as usual. For each k, R > 0, “|| - ||,r” denotes the || - ||,x(q,)-norm. Denote z/R
to be z for each = € SIQ%, R > 0. When there is no confusion as to which probability space
(Qr,Zr,Pr)is involved, we write ||-||x instead of ||-||x, g for brevity. For real-valued func-
tions f and ¢, which are defined on [0, c0), we write “f(t) ~; g(t)” to mean that there exist
a constant 0 < ¢y < 1 such that 1 — ¢y < liminf;,q|f(t)/g(t)] < limsup,_,q |f(t)/g(t)] <
1+ €g. For real-valued functions f and g, which are defined on [M , oo) for some finite pos-
itive M, we write “f(R) x<r g(R)” to mean that there exist constants 0 < C; < Cs < 00

such that ¢ < liminfr_, o |f(R)/g(R)| < limsupp_, . |[f(R)/g9(R)| < C2

2 The heat kernels on spheres and some preliminary estimates

We use the following definition of the heat kernel. See [19] and [9] for references.

Definition 2.1. The heat kernel on a Riemannian manifold M is a function p(t,z,y) €
C>®(R* x M x M) such that
1. it satisfies the heat equation

atp(tam7y) = %A]\pr(t,x,y), (21)

where Ay, is the Laplace-Beltrami operator acting on z,
2. for every continuous function f with compact support in M and every x € M,

lim [ p(t,z,9)f(y)dy = f(2). (2.2)
—VJ M

It is well known that ASIQ% = R72Ag [19] and that the spherical harmonics
{Yim}i=o0,- 0o:—1<ms<i are eigenfunctions of Ag> which form an orthonormal basis in
L?(S?%) with the relations [19]

As2Yiy = =l + 1)Yim,

for every | > 0 and —! < m < I. Define the collection of functions Y;,.r(-) = Yim(-/R) on
S% for every | > 0 and — < m <[, then for all x € S%,

I(1+1)
R2
The orthogonality of {Yim.r}i>0 —i<m<i inherits from that of {Yi,, }i>0,—1<m<; and that

foreveryl > 0and —l < m <, every R > 0,

1
RQ

Asf%yim;R(x) == Yim;r(z).
|YlmR( )|?da = 1.

Hence, for every R > 0, {RilYlm;R}Do —i<m<i form an orthonormal basis of L?(S%). By
Proposition 3.1 in [19], and Proposition 3.29 in [15], forevery ¢, R > 0, x,y € 512%,

prtz.y) FZ S MY )T ) 2.3)
=0 m=—1
1 _ 2 S —
= @Z Z o DRIy, 2/ R)Yim (y/ R),
=0 m=-1

where (2.3) holds in the sense of pointwise convergence and L?(S?(R))-convergence. By
the well-known summation formula of spherical harmonics [15],

— 2l+1
Z Yim(2)Yim(y) = 4+ P(x-y) foreachl!>0andanyxz,yc S?, (2.4)
m=—1
EJP 25 (2020), paper 5. http://www.imstat.org/ejp/
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where P, denotes the | — th Legendre polynomial and “-” is the inner product for vectors,
i.e., for every z,y € S? whose Cartesian coordinates are given by x = (21,22, 3) and
y = (y1,Y2,y3) respectively, x - y = z1y1 + T2y2 + z3y3. Denote d : S% x 5% — [0,00) to
be the geodesic distance on S% and 6(-,-) = d(-,-)/R the angle formed by two points on
S%. Then, by (2.3) and (2.4),

pr(t,z,y) == pr(t,0(z,y)) (2.5)
o0 (21 + 1)e —1(14+1)t/2R?
4T R?

M

Pi(cosbO(x,y))
1=0

- $p1<t/R2 0z 1).

It has been proved in [16] that for every 6, € (0, ),

e 0w /2t | h(z,y)

2.
27t sinf(z,y)’ (2.6)

pl(t7$7y) = pl(tv 9($7y)) ~t

uniformly for all 0 < 6(z,y) < 6p. This together with the scaling property (2.5) gives the
following.

Lemma 2.1. Foreveryt >0,0< 0y <7, 0< ey <1, there exists 0 < Ry,01(t, 60, €0) < 00
such that for all R > R,0i(t, 00, €0),

e—R29(x,y)2/2t 9(m7y)

pr(t0(a,y)) = CUH/ R Bl y) o [ g s @.7)
where 1 — ¢y < infocg<q, C(t/R?,0) < supgcgeg, C(t/R*,0) < 1+ €.
The fact that the heat kernel is a transition density function gives
Lemma 2.2. Forall R,t >0, z € 5%,
/S?2 pr(t,0(z,y))dy = 1. (2.8)

The following three quantities will be useful in the upcoming chapters.
For every nonnegative «, 3, t, R > 0, let Bg(x,/(t) be the geodesic ball centered at
x with radius /Bt on S% and define

t
fula, R t) = / ds / e 2 (s 0 y) (s 0, o) h(ys, yo)dyndys s (2.9)
S2 % S2

and
fes(a, R t) (2.10)
t
- / ds / €29 (s, 00z, y1))pr(s 0 , y2) b (y1, v2)dysdya
BR(ZIZ )XBR(I r)
and
fepla, R t) (2.11)

/ ds / 2 p (s, 0z 1) )pr(s .0 , y2) hr(ys, v ) dyr dys.
S2\Bg(x,v/Bt)x SE\Br(z,\/Bt)

For notational convenience, denote Bgr(z,+/ft) x Bgr(z,+/8t) by T1(8,z,R,t) and
S%\ Br(z,v/Bt) x S%\ Br(x, \/Bt) by To(B,x, R ,t). The following estimates will be used
later.

EJP 25 (2020), paper 5. http://www.imstat.org/ejp/
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Lemma 2.3. Forevery 0 <t,R,a < 0o, fo(a,R,t) < (20)  hyp(R).

Proof. By (2.9) and Lemma 2.2, forevery 0 < t,R,a < oo,

t
fuola, Rot) < hup(R) / ds / e (s 00z, y1))pr(s 0z ,y2))dyrdys
0 S2,x S2

¢ 2
= hup(R>/0 672asd5 (/92 pR(579(I7y))dy>

hup(R)

<
= 2a

O

Lemma 2.4. For every 0 < t < oo, there exists a finite positive R,,, (t) such that for
R 2 Rmol(t), ~
fepla, R t) < 2Ry, (R)te™2VaPE (2.12)

provided that o < § <g (log R)¢ where 0 < ¢ < 1 is a constant.

Proof. By checking the details in [16], for every 0 < t < o0, 0 < 0y < 7, there exist
finite positive J, ¢o , Rmoi(t, 9, co, 8p) such that for all R > R, (t, 9, co,6p), 0 < 6 < 0y, and
0<s<t,

—R?0%/2s

. /
pi(s/R2,0) > (1 R 5/5) (1 - cov/s/R) 67\/9/ sin 6. (2.13)

This together with (2.5) and the elementary inequality v#sin@ > 6./1 — 62/6 (for all
0 < 6 < «) implies that for all finite positive ¢, 3, there exists a finite positive R, (t, )
such that for all finite positive « and R > R (t, 5),

N ¢ VBt/R ,
fopla, R t) < hup(R)/ e2‘”ds<1 - 277/ (1 —e B 5/5) (1 —cov/'s/R)
0 0

—R292/2s

x R0 — /102 d9)

< hup(R) /Ot e—20s (1 - (1 —e—Rf%) (1 - CO\f) \J1- ) ds
<hup(R)< /0 e Bt/25d3+ —2“( \/7 )

¢
+/ o—2as (e*Rﬁra/t + coﬁ/R) ds)
0

2Vt t (R) ( _ge
- ovapi | hup(R)BL | Ty R251 _
< hup(R)te T 2arr T o4 (e eoVi/ R)

This implies for every 0 < ¢t < oo, there exists a finite positive R,,,(¢) such that for
R 2 Rmol(t),

fepla, R,t) < 2hyp(R)te™2Vebt (2.14)
provided that « <p 8 <g (log R)® where 0 < ¢ < 1 is a constant. O

Lemma 2.5. For every 0 < t,8 < oo, 0 < ¢ < 1, there exists a finite positive
Ryoi(t, /4, €0) such that for all R > max{ R (t,7/4,¢e0),4v/Bt/7},

2
Fo5(0, R 1) = 20t hgoun(R)(1 — €9)? (1 - e_5/2> . (2.15)

EJP 25 (2020), paper 5. http://www.imstat.org/ejp/
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Proof. By (2.10) and Lemma 2.1, forevery 0 < ¢, < 00, 0 < ¢y < 1, there exists a finite
positive R,,,i(t,7/4, €y) such that for all R > max{R,..(t,7/4,¢€0),4v/Bt/7},

2

t 2 2 0(z,y1)
fe7 07R7t 2 h own R)(1—¢ 2/ s*st / eiR 0(@y1)"/2s %dy
a( ) down (R)( 0) ; Bz, /B) sin 0(x, y1) !

¢ VIR 2
= 47 hgown (R) (1 — 60)2R4/ s 2ds / e 707/25\ /0 sin 6d0
0 0

¢ VBi/R . 2
>%%mMmmfmﬁm/sﬁm / 9e 107 /25q0
0 0

2
= 2%t hgguwn (R)(1 — €)? (1 - e_g) 7

where in the second inequality, the assumption R > 4./ft/m comes into play. It implies

V/Bt/R < 7/4 and hence v0sinf > /20/2 for all 0 < 0 < \/Bt/R. O

3 Existence, uniqueness, and measurability

Following the development in the Section 1, we establish in this section the existence
and uniqueness of the mild solution.
Remark 4. The existence and uniqueness theorem follows from the contraction mapping
principle. See Section 7.1 of [11] for details on the proof of the existence and uniqueness
theorem on a general class of stochastic differential equations. We present the proof
here for the completeness of this paper.
Definition 3.1. For every 0 < T ,R < o0, and each 0 < t < T, x € S% define the
sequence of approximating random field {ugg) (t,2)}n>0 to be

u@(t,x) = up(0,2) = upo(@), (3.1)
and
t
u%wl)(t,x) = /52 pR(t,x,y)ugL)(O,y)der/o /32 pr(t — s,x,y)g(ugb)(s Y)W (ds , dy).
R R

(3.2)

Theorem 3.1. Forevery 0 < T, R < oo, the sequence of approximating random field
{ug) (t,z)}n>0 defined above has a Pr-limit ug(t,z) for every 0 < t < T, x € S% and is
unique up to a Pr-modification independent of't , x.

Remark 5. We have not proved that the Pg-limit ug(¢, z) is the mild solution since the
jointly measurability has not been established yet.

Proof. Lett — 0in (2.2) to get
ufg (0, 2) = lim [S pr(t,e )’ (0,y)dy = uf (0, 2).
R

By induction,

ug)(o ,z) =upg o(z) foralln. (3.3)
From (3.2),
WS (@ ) — a0 (8 ) (3.4)
t
= [ [ e 5.2.0) (o025 ) — 000, ) WCas, )
0 Jsz,
EJP 25 (2020), paper 5. http://www.imstat.org/ejp/
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For notational brevity, denote for all 0 < s < t < 00, 0 < R < oo, positive integer n,
T,y1,y2 € Sh,

Vilt,s,Rom,a,yn,y2) = palt = 5,0, y0pa(t = s,o,9) (o(ulf) (s, 90) = ouff ™ (s,0))
(o (5,92)) = o(uV(s,12)))
and

‘/2(t757R7n7xay15y2) :pR(t—S,l’,y1)pR(t—S7$7y2)

(n—1

o2l (s, ) — V(s )| [ulg (5, 92) — o (s, m0)|

By Carlen-Krée’s bound [2] for Burkholder-Gundy-Davis inequality, and a similar argu-
ment in [10], and (3.3), we have forany k > 2, 0 <t <T <00, 0<a,R<ocoand z € 5122
that

ugﬂ)(t,m) — ugg)(t,x)H]C (3.5)

e—at

=t [ =0 (o0 ) = o0 0,00 Wt )

<2Vk

eiat / hR<ylay2)Vl(t7S7R7naxayl 7y2)d5dy1dy2
[0,t]xS% x S% k

< 2L, VEk

\// hR(yla y2)e_2a(t_s)‘/2(t » S R T, Y1, y?)deyldyQ
[0,t]xS% % S%

< 2Lo\/kfo(a,R,t) sup sup e *

0<t<T ves?,

k

ug)(t,x) — u%fl)(tJ)Hk.

Along Lemma 2.3, this implies for any k¥ > 2, 0 < T < 00, 0 < o, R < 0o and z € S% that

sup sup e * ugﬂ)(t,m) —ugl)(t,x)H (3.6)
0<I<T z€8?2, k
Lo/2hyp(R)k .
< 22X sup sup e u(n)t,x PG )t,xH .
Ja oSy P r (t,2) —up (t2)|
Define the norm || - ||, 5 for the collection of random fields on [0, 7] x §% x Qg by
| X|la.x = sup sup e X(t,x,w)”k (3.7)

0<t<T z€82,

where X : [0,7] x S% x Qr — R.
Choose a = k? > max{4,2L2h,,(R)} then Loy Q%F(R)k = Lov 2:“‘"(R) <1

The contraction mapping principle implies that ug)( -,+) converges to a unique limit

in || - |42 g-norm for & > max{2,L,+/2h.,(R)}. We denote this limit by ug(-,-). By
Markov’s inequality, for each 0 <t < T, x € S%, ur(t,z) is the Pg-limit of ug) (t,z) and
is hence P z-measurable. ur(t, ) is unique up to a modification independent of ¢, x since
if Supg <7 SUPes2, |lur(t,z) —ug(t, z)||k2,x = 0 then almost surely ugr(t,z) = ag(t,z) for
al0 <t < T,z € S% forevery 0 < T, R < cc. O

Next, we want to show the joint measurability of the Pg-limit ui(t,z). To do this
we develope three lemmas, which state the Pg-limit ug(¢, ) is spatial-continuous and
time-continuous in L*((2) for each k > 2 and is a uniform limit in probability of its Picard
iterations, independent of space and time.

EJP 25 (2020), paper 5. http://www.imstat.org/ejp/
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Lemma 3.2. Forevery0 < T ,R < oo, let ug(t,z) be the limit random field defined in
Thereom 3.1. Then ug(t,x) is spatial-continuous in the L* sense. More precisely, for
every k > 2,0<t<T,0< e <1 there exists a finite positive R, (t, €y) such that for
all R > R0t €0), and every =, 2’ € S% such that 0(z,2') < t3/2(1 + ¢) ' R™4,

k k
|urtt,2) —un(t.2)|| < <4\/§c%,/khu,,(3)(1+eo)1/3R4/39(x,x/)1/3> .38

Proof. Assume throughout the proof that k£ > 2. Denote for every positive integer n,
0<s,R<oo,z,2 ,y1,y2 € S%,

Qnﬁ(sv R, z, JJ/, Y1, y2) = [pR(S’ H(CIL‘, yl))a(u(n)(s ) yl)) - pR(S’ 9(1}/, y1)>0_(u(n) (S ) yl))]

% [pr(s,0(z,y2))o (™ (s, y2)) = pr(s,6(z', y2))o (™ (s, 42))] ,
and
Q(sﬂRaxvxlaylayQ) = |pR(s,0(x,y1)) _pR(sag(x/ayl))| . ‘pR(S;a(x;ZIZ)) _pR(sve(x/ayQ))‘ y

for notational brevity. By Carlen-Krée’s optimal bound ([2]) on the Burkholder-Gundy-
Davis inequality, for every 0 < ¢t, R < oo and z, 2’ € S%,
k

e (k) —ufg )| (3.9)
7 k
< (2Vk)* / ds/ dy1dy2hr(y1,Y2)Qn.o (s, R, x, 2, y1, y2)
0 5% xS% X
A ) ¢ k/2
< (2VE) <hup(R)Co.up/ ds/ dyldng(s,R,x,x’,yl,yg)> )
0 S% xS%
Forevery0 <d <t 0< R <oo, z,2' € S%,
¢
/ / Q(s, R,z 2", y1,y2)dsdy1dys (3.10)
0 JS%xS%

& t
= / / Q(S7Ruxvx/aylvyZ)deyldyQ + / Q(&R7$a$/7il/1»y2)d5dy1dy2~
0 JSEXSE 5§ JS%xS?

Since pp is a transition density function, for every 0 < § <t,0 < R < o0, z,2’ € 5%,

5
/ / Q(s, R, z, 2, y1, y2)dsdy:dys (3.11)
0 ngsf%

)
< / / (pr(s,0(x,y1)) + pr(s,0(z",11))) (PR(s,0(,y2)) + Pr(S,0(2', y2))) dsdy:dy,
0 JSExS%

= 46.

Denote forany 0 < d <t < oo, 0 < R< oo, z,2',y € 5122,
[ee]
204+1 2 2
S(6.4. R 1oy —1(141)8/2R> _ _—1(1+1)t/2R )
(7 B ,l‘,l‘,y) ;27‘_10_’_1) (e €
x [Pi(cos0(z,y)) — Pcosb(z’,y))]

for notational brevity. Then forany 0 < § < t,0 < R < o0, z,2' € 5%,
t
/ / Q(SaR7x7x/7y17y2)d3dyldy2
5 JS%ExS%

= / S(§,t,R,l‘,:ﬂ,,yl)S(§,t,R,$,$,,y2)dy1dy2. (312)
52 xS%
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By uniform convergence and that sup_;,<; |P/(a)| <I(I +1)/2, we have

204+ 1 _wtns
< 2 _ba
EE I

1=1
(3.13)

20+ 1 _ldys _ld+be
§ ot Z , P, - P,
27rl(l 1) ¢ 2R € 2R )( l(a) l(b))

=1

forany 0 < d <tandany —1 < a,b< 1.
1(1+1)8
Note that ) ;2 ﬂ—ilef o = p1(2 ,2,2) forany 0 < §, R < oo and any z € S%. By
Molchanov’s heat kernel estimate (Lemma 2.1), for every 0 < § < t, 0 < ¢y < 1 there

exists 0 < R,,0(t,€9) < co such that for any z € S? and any R > R,,.(t, €0),

(1 + 60)R2
oré

Hence, forany —1 <a,0<1,0<d <t 0<¢ <land R > Rt €0),

pl(é/R2az7Z) <

o0 2
Z 2l+1 _lns i o (1+e)R

(i + 1) —e 27 ) (Pa) = P(b)) | < o la — b). (3.14)

=1

Use (3.14), the triangle inequality and the trignometric inequality | cos o« — cos 8| < |a— |
in (3.12)togetforany 0 < d <t,0< ¢y < 1land R > R,,0(t,€0), and any x ,a’ € sz,

t 4(1 2p8
/ / Q(SﬂvavmlvyhyQ)deyldyQ < %0(£K7wl)2' (315)
5 Jszxs2 0

Use (3.11) and (3.15) in (3.10) to get, forany 0 < § <t,0 < ¢y < 1 and R > Rpi(t, €0),
and any = ,z’ € S%,

! 4(1 2R8
/0 /S2 o Q(s,R,x, 2’ y1, y2)dsdy1dys < 46 + %9(%%/)? (3.16)
RXPR
Take

o=(1+ 60)2/3R8/39(x,m/)2/3. (3.17)

Then for any 0 < ¢t < 00, 0 < €9 < 1 and R > Ry,i(t, €0), and any =,z € S% such that

, t3/2

o (1 + en )R 3.18
(@) < T eyRY (3.18)

we have § < . (3.14) and hence (3.16) can be applied to give that for any 0 < ¢ < oo,
0<¢ <land R > Ryt o), and any =, 2’ € S% such that 6(x,2") < t3/2(1 4+ ¢o) "' R74,

t
/ / QUs, R, 1, ya)dsdyndys < 8(1 + e0)*/3R30(a , a')/3, (3.19)
0 ngsg

Use (3.19) in (3.9) to get forany 0 < t < 00, 0 < €9 < 1, R > Rpoi(t,€0), and x, 2’ € S%
such that §(z,z') < t3/2(1 4 ¢9) 'R,

k k
& < (4\/50%17 khup(R)(1 + 60)1/334/39(33,33’)1/3) .

(3.20)

[ue Ve, 2) - w20

Letn — ocotogetforany 0 <t < oo, 0 < ¢ < 1and R > R,,.(t €), and any z, 2’ € S%,
such that 0(x,2') < t3/%(1 + ¢) ' R4,

k ) ) k
HUR(t,x) fuR(t,x')Hk < <4\/§C(,up,/khu,,(R)(l +eo)1/3R4/39(z,x’)1/3> . (3.21)

O
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Lemma 3.3. Forevery0 <T,R < oo, let ug(t,z) be the limit random field defined in
Thereom 3.1. Then ug(t,z) is time-continuous in L* sense. More precisely, for every
k>22,0<t1 <ta<T,R>0,

k k/2
sup |lug(ts,x) — ug(te ,m)Hk < (2\/%)’C (hup(R)C’gup (ta — tl)) . (3.22)

zeS?

Proof. By Carlen’s optimal bound ([2]) on Burkholder-Gundy-Davis inquality and Lemma
2.2, forevery 0 < t; <ty < 00, x € S%,

W (@) — ul (¢ ) 3.23
R 1733) UR(2733)k (3.23)

k/2
to

< (2vR)" (hupm)czw Iy pR<s,o<x,y1>>pR<s,0<x,yl>>dsdy1dy2>
t1 S%XSIZ{

k

[ re 0@me (860) |

t1 k

k/2

< @V (hup(RIC2, (12 — 1))

up
Let n — oo to finish. O

Lemma 3.4. For every k > 2, 0 < T < oo, there exists a finite positive R,,.(T)
such that for all R > R,,,(T), there exists a full probability space dr r on which

SUPg< /<7 SUPze 52, ‘ug_f?) (t,z) —ug(t, )| is Pr-measurable. Moreover, for all nonnegative
; . (n) _
integer n and supg¢;<r SUP,e g2 ’uR (t,x) —ug(t, J;)| converges to zero almost surely as
n — oo.
Proof. For each positive integer n, define

T,={T-27",2T-27" 3T-27" ... T}, (3.24)
and

Gprn= {x € Sg o= (Rsin(iymd™") cos(2iomd~ D) | Rsin(iywd ™) sin(2ipmda (") |

Recos(iyr4™")) for some iy iy € Z}. (3.25)

By Doob’s separability theory, Theorem 2.4 in [8] specifically (since [0, 7] x 5122 can be
parametrized by ¢,0,¢ each of which is linear), for each n there exists a version of
u%’) (t,z) — ur(t, ) such that there exists a countable subset of [0, 7] x S%, denoted by
Dy (T, R) such that supg; <7 Sup,csz ‘ugl) (t,z) —ugp(t,z)| = SUD(¢,2)eD, (T, R) |u$§)(t ,T) —
ur(t,=)| and hence supy; <7 SuP,c sz |u§§;) (t,z) — ug(t,x)| is measurable with respect
to PR.

By throwing away the bad sets for each n where sup;¢;<r SUP,e 52 }ug) (t,x) —
ur(t, x)] is non-measurable with respect to Py, we get a full probability subset 27 r of
 on which sup< ;< SUPyes? |u§§) (t,z) — ug(t, )| is Pr-measurable for each n. For the
rest of the proof, we redefine forall 0 < ¢t <7, R > 0 and z € 5%,

up(t,z,w) = uR(taxaw)l{weﬂT,R} ) (3.26)
and for each nonnegative n

u%)(t,x,w) = u%)(t,x,w)l{wemﬂ}. (3.27)
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Foreverye >0,0<¢y <1,k >2,0<T,R < oo, positive integer n,

P| sup sup
0<t<T 252,

ur(t, @) — Pt )’ > e) (3.28)

<e*E( sup sup
0<t<T zes?,

ug‘)(t,x) —uR(t,x)’k>

< e Fang2ntligh—1 gyp sup sup sup <M01 + Mos + Moz + Moy + M05),
teT, |t/ —t|<T-2-" 2€GR,» O(z' ,3)<m-4="

where

Mole( u$(tz) —ul x)k> Mo, = (( o) —ul (2

k

)

k
M%zE( Wu:w—umﬂwv),Mm=E(@m5ww—uﬂufﬂ),

Mos =E ( ur(t, ') - uR(t,x)‘k) .

Similar to (3.6) we will get forany 0 < o, T, R < 00, k > 2and m > n,

sup sup e~ ¥

0T zes?,

uff (@) — Pt

_ KE" Qhup(R>k/a)m+...+ (L, zhup(R)k/aﬂ

—at (1)(1? x)—ug%) t,x H

X sup sup e
0<I<T 252,

Let m — oo to get for any 0 < a < o0,

sup sup e~

0<t<T €S,

ur(t,z) — ugg)(t,x)Hk

—at

(]LU Qhup(R)k/a> sup sup e

— (Lo v/2hup(R)R]a) 0<i<T acs

uD(t,x) — 'O, x)Hk.

Choose o = 812 h,,,(R)k to get for every 0 <t <T < 00,0 < R< 00, k > 2 and z € S%,

k
HuR(t7m) - ug) (t,ac)H’c < SLohup (AR To=(n=Dk qup gup

k
ul )(t x) —ug)(t,x)H .
0<t<T z€5% k

(3.29)

By taking the supremum on the left, we have for 0 < R < oo, k > 2 and = € S%,

k
sup sup uR(t,x)—ug)(t,x)H SegEih”"f’(R)kQTQ—("_l)k sup
0<t<T zeS% k 0St<T
k
sup ug)(t,x) (0)(15 x)” .
zeS? k

Use the above upper bound, Lemma 3.2 and (3.20), Lemma 3.3 and (3.23) in (3.28) to
get for any fixed k > 2, and every 0 < 7' < 00, 0 < ¢y < 1, there exists a finite positive
Rinoi(T, €0) such that for all R > R, (T, €9) and any n such that

EJP 25 (2020), paper 5. http://www.imstat.org/ejp/
Page 12/38


https://doi.org/10.1214/20-EJP415
http://www.imstat.org/ejp/

Peaks of SHE on spheres

47" < (27"T)3/2(1 + €)' R~* (so Lemma 3.2 and (3.20) can be applied),

P ( sup sup

0<t<T zes?,

ug(t,) —ugg)(t,x)‘ > e)

< ¢ kopnt25k-1 (esmihup(R)kQTg("l)k sup sup

k
u (t,w) —uf (¢, 2)|
0<t<T ze 5% k

k k)2
+2(4\/§caup khup(R)(l+eo)1/3R4/3(7r~4_")1/3> + 22V (hup(R)CgupT”T) )

Choose € = 2= "/4 to get for any fixed k > 2, 0 < ¢y < 1, and every 0 < T' < oo, there
exists a finite positive R;,0i(T) = Rmot(T ,€0) such that for all R > R,,,(T) and any n
such that 74=" < (27"T)3/2(1 + ¢)"'R™4,

P ( sup sup

0T zeS%,

ugr(t,z) — ug”)(t,x)’ > 2"/4)

k
u%)(t,m) —ugg)(t,x)Hk

2 2 .
g 2(5+k/4)n+25k—1 eg]Lghup(R)k T2—(7L—1)k sup sup
0<I<T zeS%

k
i (4ﬁ0% Vb (B)(1+ ) R (47 3) +20VE) (np(m)2, 21" )

Choose any k > 20 so 9(5+k/4n+2  9—(n—1)k _ 2(57%)n+k+2 and 206+k/49n+2  9—2nk/3 _
2(5=15)n+2 gng 2(6+k/Ont+2 . 9g-nk/2 — 9(5-1)n+2 g]] decay exponentially fast as n — oco.
Hence,

iP( sup sup

ug(t,z) — ug)(t,m)‘ > 274 < .
= \o<t<Taesz

Borel-Cantelli’s lemma implies there almost surely exists a finite N(w) such that for
n > N(w),

sup sup |ug(t,z)— ugl) (t,x)‘ <27/, (3.30)
0<t<T z€52, O

We are now ready to show that the Pg-limit ug(¢, x) is jointly measurable.

Theorem 3.5. For every 0 < T < oo, there exists a finite positive R,,,(T) such that
for every R > R,,,(T), there is a version of the Pr-limit ug(t,x) such that ug(-,-,-) :
[0,7] x S% x Q + R is measurable.

Proof. First, make the modification that forall0 <¢t< T and z € 512%,

UR(t y Ly w) = UR(t » Ly w)]]‘{UJGQT,R} )

and for each nonnegative n,

u%)(t,x,w) = ug)(t,x s Wl {wer ) s

where ()7 g is given in Lemma 3.4. For notational brevity, define for each real number o
random sets

Mi(a) = {t c€[0,T],z € S%,we Q’UR(t,x,w) > oz}

m{t €[0,T],z € S%,we Q‘uR(t,x,w) :limsupugg)(t,x,w)},

n—oo
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and
Msy(a) = {te [O,T],zESﬁ,wGQ’uR t,r,w) 204}

te[0,T],x € S},w € Qlugr(t,r w);éhmsupu( )(t x,w)ep.
R

n—oo

Then
a)ﬂMg(a) = {t €[0,T],z€ S%,we Q‘uR(t,x,w) > a}.

It suffices to show for each real number «, M;(«) is measurable with respect to the
product measure in the measurable space [0,7] x S% x Q since Ms(«) has product
measure zero by Lemma 3.4. Note that

M (a) = {te [0,T],2 € S} ,w e Q

limsupug)(t,a: yw) = a}

n—oo

ﬂ{te [0,77, xESR,wEQ‘uRt x w)—hmsupu%)(t x w)}

n—oo

The set

{te 0,77, mESR7w€Q‘uRt x w)—hmsupus%)(t x w)}

n— oo

has full product measure. Moreover,

{te [0,T7], xeSR,oJEQ‘hmsupug%)(t x w)>a}

n—oo

1
—ﬂU{ €[0,T] LEGSR,WGQ’ U”tz,w)}ozf%}
k=1n>k

is jointly measurable since each of u%) is by iteration. This finishes the proof. O

We now have enough recipes to prove the uniqueness and existence theorem of the
mild solution.

Theorem 3.6. For every 0 < T < oo, there exists a finite positive R,,, (1) such that for
every R > Ry, (T), the mild solution ug(t, z) exists for every 0 < t < T and x € S% and
is unique up to a Pr-modification independent of't , x.

Proof. By Theorem 3.5, for every 0 < T < oo, there exists a finite positive R,,,(T)
such that for every R > R,,,(T), the Pg-limit ug(¢, ) of the sequence of approximating
random field is jointly measurable up to a Pr-modification independent of ¢, x. Let n go to
inifinity in (3.2), we see that ug(¢, ) satisfies (1.3) and is unique up to a Pr-modification
independent of ¢, x. O

4 Spatial continuity

In this section, we apply a version of Kolmogorov’s continuity theorem to show the
mild solution is spatial-continuous almost surely. Time continuity can also be obtained
by a similar method but we do not prove it in the paper since time continuity is not used
to prove our main results.

We follow the developments in [14] to prove a spherical version of Kolmogorov’s
continuity theorem by setting up the Garsia’s theorem. Since we are working on
spheres, some necessary arguments for the sphrical versions of Garsia’s theorems and
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Kolmogorov’s continuity theorem will be given, which will be similar to the arguments in
[14]. Further details are given in the appendix.

We begin by setting up some necessary notations and terminologies. Suppose { ,uk} k2
is a sequence of subadditive measure. Fix k > 2 and ro(k) = 1, define iteratively,

Tnt1(k) = sup {r >0 pp(r) = %uk(rn(k))} 4.1)

Define for every x € S%,

~ 1
n N dz| 4.2)
f 7k(x) |BR(-%" Tn(k))‘ Br(z,rn(k)) f(Z) ’
and (2r)
Fre o
o 7 4.3
we = 0N () -

where Bg(z,r) is the geodesic ball centered at x with radius r in S% and | - | denotes the
surface measure. For notational convenience, denote

BR(T) = BR(Nar) ) (4.4)

where N is the North Pole of S%.

Define the operator + on spheres by assigning for any z,z € SIQ% the point z+2 to
be the isotropic image of z by rotating S]%L along the great circle which contains =,z , N
from r to N if 2 # N and 2+z = z if v = N. We can rewrite f, .(z) as

1
Brr ()| Ja(ra i)

Ik:/ da?/ dy
St Sk

The spherical version of Kolmogorov’s continuity theorem is based on the following
lemma and theorem of Garsia’s theory. The proofs on the results of Garsia’s theory are
omitted in this section and are given in the appendix.

fnk(x) f(z+2)dz. (4.5)

Define Garsia’s integral

(4.6)

f@) - 1w ||

Lemma 4.1. Suppose f € L'(S%), fu is defined as in (4.2), I is defined as in (4.6)
and there exists 1 < k < oo such that

1. I < 0o and
1 _
2. [y IBr(r)|=?Fdpue(r) < oc.
Then fi, = lim,, oo fn.x exists and for each integer( > 0,
_ _ 1/k ri1(k) ok
sup (7o) = Fur@) <161 [ Balr)| (o). @.7)
wGS% 0
Moreover, f, = f a.e.

Theorem 4.2. Suppose | € LI(S}%) and f;, is defined for some 1 < k < oo as in Lemma
4.1. Then for all z ,x’ € S% such that Rf(z,2') < 1,

RO(zx,x")
\fi(z) = fi(a')| <AC,, (2 + Cp) 1" / |Br(r)| =2/ dp(r). (4.8)
0
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Our spherical version of Kolmogorov’s theorem will be a consequence of the following
two theorems. They will be of use again later when we give an asymptotic upper bound
of sup,cgz [ur(t,z)| as R — oc.

Theorem 4.3. Forevery 0 <t < 00, 0 < ¢ < 1,0 < a <2, 0 < q < 1/3, there
exist finite positive K(a,q) and R, (t,€9) such that for all k > max{2,K(a,q)}, R >

max{ (3(2m)~L(1 + ¢g)~113/2) /" ,Rmol(t,eo)} and n such that TR2™™ < 1 and 72" <

32(14 €)' R7Y,

ur(t,z) —ugr(t,z’) ’
(RO(x,"))*

E sup (4.9)

0<f(z,x’)<m2—"

k
<ot (12288, [2hup(R)Co,, (2 — a) (1 + 60)1/3w13/3aq2q31/3fI> kM2,

Theorem 4.4. Forevery0 <t <o0,0<¢ <1,0<a<2, 0<q<1/3, there exist finite

1/4
positive K (a,q) and R,,.(t,€y) such that for all R > max{ (%) 71’%,,1(71(75,60)},

n > max {2>K(a,q) ,logy (TR) ,
| log, (m(1 + eo)R*) — 3(log, t)/2] + 1}, 0<7vy< oo,

P ( sup lur(t,z) —ur(t,z")] = 7TR2_""> (4.10)

O(x,x’)<m2—™

n
< 71_&—4 (12288 /2hup(R)Cg-up (2 _ a)—l(l + 60)1/37T10/3—(12(IR—2/3> n'ﬂ/22(7_q)n2.

We postpone the proofs of the above two theorems but state and prove the spatial
continuity theorem.

Theorem 4.5. For every 0 < ¢t < oo, there exists a finite positive R(t) such that for
all R > R(t) and 0 < vy < 1/3, there exists a finite positive n(R,t,7y) > max{2,K(’y)7
log, (TR) ,log, (3w R*/2) — 3(log, t)/2} where K (v) is a finite positive number such that

for all positive integern > n(R,t,),

sup  |ug(t,x) —ug(t,z')| < wTR27™. (4.11)
O(z,x’)<m2—™

Moreover, n(R,t,7) is increasing in R.
Proof of Theorem 4.5. By Theorem 4.4, forevery 0 <t < o0, 0 <y < %
positive K (1, 2+1) and Ry,0i(t, 1/2) such that for all R > max { (t3/2 /)

n > ng = maX{Q,K(l,% + 3),log, (TR) , |log, (37R*/2) — 2log, t] + 1},

, there exist finite
e ) Rmol(ta 1/2)},

Z P sup  |ug(t,z) —ug(t,z")| > rR27™ (4.12)
n=ng 0(z,x")<m2—"
<> ad (12288\/2hup(R)Caup(3/2)1/37r7/32;+<15R_2/3> n/22(—5n*

n=no

By the Borel-Cantelli Lemma, almost surely there exists a random finite N, N > ng such
that forn > N,

sup lur(t,z) —ugr(t,z")| < TR277". (4.13)
0(x,x’)<m2—™ O
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We finish this section by demonstrating the proof of Theorem 4.3 and Theorem 4.4.

Proof of Theorem 4.3. Lemma 3.2 implies that forevery k > 2, 0 <t <00, 0 < ¢ < 1,
there exists 0 < R,,01(t, €9) < oo such that for all R > R,,.1(t, €0) and =, 2’ € S% such that

3/2
O(x,2") < m,

3 k
HuR<t,x>—uR<t,x'>Hk<(4«50% khup<R><1+eo>1/3R4/3e<z,x'>1/3) L @19

By (4.14) and Fubini’s theorem we have local integrability for u(t, -) so for a fixed k > 2
we can define

ur(t,z) = liminf ! ur(t,y)dy, (4.15)

n—oo | Br(x,mn(k))| Br(z,r, (k)

where r, (k) is such that ug(rn+1(k)) = pr(ra(k))/2.

Define
Ik —/ dl’/ /
52, 52,

By (4.14), forany0 <a <2, k>2,0<t<o0,0<en <1, R> Ry(t,€)and z,2' € S%
such that 0(x,2') < t3/2(1 +¢o) ' R4,

(4.16)

k
ur(t,z) —ugr(t, )
pi(RO(2 , 2'))

k
(4V2C ., /Rl (BY(1 + €0) PR30 ') 2
Elkg/ dx da’ - (4.17)
i It (RO(x,2")""3

k ™
<4f Co, (R)(1+eo)1/3> Ri—atk / (277 / 9“sin0d9> day
S2 0
k g
< (4\/50% khup(R)(1+eo)1/3> RA-atk (87r2 / el—acw)
0

k
= ((2 — a)_171'4—’132\/§cgup k;hup(R)(l + 60)1/3) R4_a+k,

The identity 1 — cosf = 2sin®(#/2) gives us

—2/k

TR TR r/R
/ |BR(z,r)|*2/’€dr:/ <27r/ R%m@d@) dr (4.18)
0 0 0

1 TR 1
= (47TR2)2/k/0 (Sin(?”/2R))4/kdr

For k > 4, (4.18) is finite.
Apply Lemma 4.1 to ur(t, ) to get for any k > 4, 0 < ¢, R < oo and almost all z € S%,
up(t,z) =l _ (t,y)d (4.19)
Url\L, )= lm up(l,y)dy, .
n=00 |BR(z,7n (k)| JBr(a,r. k)
and is spatial-continuous.
By Fatou’s lemma, Fubini’s theorem, and (4.14), forevery m >0, k >4, 0 < ¢ < 1,

EJP 25 (2020), paper 5. http://www.imstat.org/ejp/
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0<t<oo, R> Rnalteo),
P (lag(t,x) — ug(t, )] >27™)

T o o [ur(t,y) — ur(t, z)|dy
< om : : R(xﬂn(k))
s (lﬂéﬂf Bale 7]

S ) E[lur(t,y) — ur(t, z)[*]dy
|Br(z,ry(K))|

k
< 2™ lim (4\/§Cgup1/khup(R)(1 + 60)1/3R4/3rn(k)1/3)

< 2™ lim inf
n— oo

n—oo

=0.

Let m — oo, then for any = € S%, ur(t,z) = ug(t,z) on a full probability subset (2, of Q.
By Doob’s separability theory, sup,c gz |ur(t, ) — ur(t, z)| = sup,ep, |Ur(t, z) — ur(t, )|
on a full probability subset )y of {2 where Dy is a countable subset of SIZQ. Then on the
full probability subset Qo U (Useps ), sub,esz |r(t ) — up(t, z)| = 0. This shows for
each 0 < t < oo, Ug(t,-) is an a.s.-continuous modification of ug(t,-), independent of the
spatial variable. For any fixed 0 < a < 2, k > 2, take

(1) = r3tE, (4.20)
Then
C, = 25FF, (4.21)

By Theorem 4.2, for every 0 < t < oo, k > 2 and z,2’ € S% such that Rf(z,2’) < 1,

lug(t,z) — ug(t,2’)| (4.22)

Lk RO(x,z")
< 4.2l /3ralk (2 + 21/3+“/’“) I /0 |Br(r)|~2/*d(r1/3talk),
. . : . 2/k
Using the identity cos § = 1 —2sin*(#/2), we have for k such that Sa?ffg’ik (4/m) F <2, ev-
ery 0 < t < oo, every 0 < ¢y < 1, and R > max { (3(2m)~*(1 + 60)71t3/2)1/4 , Rinoi(t, €0) }
and z,2’ € S% such that (z,2") < t3/2(1 +¢) " 'R74,
RO(z,z")
/ |Br(r)|~2/Fd(rt/3Talk) (4.23)
0
0(x,x")
_ <1 n a) (4F)—2/kR(a—4)/k+1/3/ /=213 (gin (u/2))~Y* du
37 % )
1 a —2/k pla—4)/k+1/3 o) a/k—2/3 —4/k
<(g+g)Uun) iR u (u/4) " du
0

< 2R(a—4)/k+1/30(x7xl)(a—4)/k+1/3.

Along these lines, it is required that 0(x,2’) < 27/3 in order to imply that sin(u/2) >
u/4 for all 0 < u < O(x,2'). That 0(z,2') < O(x,2') < t32(1 + ¢g)"'R™* and R >
(32m) "1+ eo)’1t3/2)1/4 will suffice for this purpose.

Define Ko = inf{k > 0 : 3255 (4/m)%/* < 2} then by (4.22) for every 0 < ¢ < oo,
every 0 < ey <1,k > Ky R> max{ (3(271')_1(1 + 60)_1t3/2) 14 ,Rmog(t,eo)} and z,2’ €
52 such that 0(z,2') < 0(x,2') < t3/2(1 + o) "' R* and Rf(z,2’) < 1,

lar(t,z) — ap(t,a')] < 8- 91/3+a/k (2 + 21/3+a/k~) I]i/kR(a—él)/k-i-l/Se(x7$/)(a—4)/k+1/3.
(4.24)

EJP 25 (2020), paper 5. http://www.imstat.org/ejp/
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This implies (using the estimate 2!/3t%/k < 6) for every 0 < t < 00, 0 < ey < 1,0 < e <1,
0 <a<2k>mx{2 K}, R > max{(32m)(1+e) 2" Ruoilt,c0)} and
x,x' € S% such that 0(x,2') < O(z,2') <t3%(1+¢) 'R~* and RI(z, ') <,

lur(t,z) —ar(t, )| < 3848 /3 +a—4, (4.25)
By (4.17), (4.25), forevery 0 <t < 00, 0 < eg < 1,0 < a < 2, k > max{2,Ky}, R >
max { (3(27)"L(1 + €0)"4¥2)""*  Rpai(t, o)}, n such that 7R2™" < 1 and 72" <
O(x,2') <t3/2(14+¢) 'R™% and 0 < ¢ < &,

an(t,z) —an(t, )|
(RO(z,2"))*

E sup
2= (ntD) Lh(z,z’ ) <2~

(4.206)

ﬂR(t ) 33) - ﬂR(t ) Jfl)
(WRQ—("H))q

<E sup
O(x,x")<m2— "

a— ].
< 3R4FEI, (mR2)" T p—

k

< <12288, [2hup(R)C,, (2 = @)1 (1 + eo)l/3w13/3aq2qR1/3q> /2

X 2_7L((%_‘1)k+a_4) .

Define K; = inf{k > 0 : 2=((1/3=0)k+a=4) < 1} Summing from n to cc in (4.26) to
get for every 0 <t < 00, 0 < ¢ <1, 0<a <2 0<gq< 3 k>max{2 Ky,K1},
R >max { (3(2m)~'(1+ 60)_1t3/2)1/4 s Rimoi(t, €0) }, n such that TR2™" < 1 and
27" < 13/2(1 + ¢) 'R,

k
QR(t,x) — QR(t,x’)

Sl O (RO(x, /)"

0<O(z,x’)<m2— "™

k
< qa—4 (12288 /2hup(R)Caup(2 _ a)—l(l + 60)1/37T13/3—a—q2q‘Rl/3—q> kk/2

g—n((3—q)k+a—1)
X oG- ra—1)

k
<ot (12288, /2hup(R)Co,, (2 — a) (1 + 60)1/37r13/3“2QR1/3Q> kM2,

This finishes the proof since ur(t,-) is a version of ug(t,-) with the modification uniform
in the spatial variable. O

(4.27)

Proof of Theorem 4.4. By Markov’s inequality, and Theorem 4.3, for every 0 < t,v < oo,
0<e<l,0<a<2,0<qg< % there exist finite positive K(a, q) and R, (¢, €9) such
that for all k > max{2, K(a,q)}, B > max { (3(27)"1(1 + €0)"4¥2)""* | Rpai(t, o)} and
n such that TR2™™ < 1 and 727" < t3/2(1 + ) 'R™%,

P sup  |ug(t,z) —ug(t,z')] > TR2™™ (4.28)
O(xz,x’)<m2—™
<E|  swp Jur(t,a) - unlt,2)" | ———
O(x,z’)<m2—n ’ ’ (WRQiV")k

k
<ot <12288 2hup(R)Co,, (2 — a) M (1 + 60)1/37T10/3a2qR2/3) k20— amk,
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Choose k = n to finish the proof. O

Remark 6. It is worth mentioning that the spatial continuity could possibly be proved by
the method in [25] which favors a semi-group approach on Banach spaces. Since it is not
the major concern of this paper, we will not give further arguments on this alternative
approach in proving spatial continuity.

5 An asymptotic lower bound of the supremum of the mild solu-
tion
Following the idea of [4], we show in this section that for some fixed positive constant
C(t) which depends on a fixed finite positive ¢, sup,c g2 [ur(t, )| > C(t)v/Iog R asymptot-
ically as R — oo with high probability. The goal of this section is to prove the following
main theorem.

Theorem 5.1. Assume supp.(sup,cgz |ur(t,z)] < U < oo. For every 0 < t < oo,
0 < €y < 1, there exists a finite positive constant C(t, ¢y) such that

Jim P <3x €S2 : [ug(t,z)| = C(t, &) (log R)“‘”Chdown/“*chw/8) =1 (5.1)
—00

Moreover, for all 0 < t < oo, 0 < ¢y < 1, finite positive constant C, there exist finite
positive constants C(t,€p) and R(t, ¢y, C) such that for R > R(t, ¢, C),

P (Hx € S% : lug(t,r)| = C(t, ) (log R)1/4+C"dmm/470’1“P/S> >1— R=Cme*(1/2=Cnup /4)
(5.2)

We begin with some important definitions and lemmas that lead to the proof of
Theorem 5.1.

Definition 5.1. Define the “space-truncated” coupling process by

UCR@) = [ alt. 6 m)uralu)dy (5.3)
R

+ / pr(t — 5,00z ,4))o (UL (1)) W (ds , dy).

(0,t)xBr(z ,\/E)

Definition 5.2. Define the n-th step Picard iteration of the “space-truncated” coupling
process by

U5 (2) = ug o(x)

and

U8 (z) = /S pr(t, 00, UL (y)dy

2
R

,(n—1
(0,t)x Br(z ,v/Bt)
As in Section 3, we can show the mild solution of (5.3) exists as the unique P-limit of
its Picard iterations, is jointly measurable in time, space and probability and has spatial
continuity up to a modification by Doob’s separability theory. By the same argument as

in [4], we have the following independence result.

Lemma 5.2. Forevery 0 < 3,t,R,n < oo, and z1,22,--- € S% such that d(z; ,x;) >
2n+/Bt wheneveri # j, {Ut(ﬁ%’") (xj)}j=1,2,.. is a collection of i.i.d random variables.

EJP 25 (2020), paper 5. http://www.imstat.org/ejp/
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As a first step, we find upper and lower bounds of the moments of Ut(gz’") (z) to give a
tail probability estimate of Ut(ﬁé")(a:). The following gives lower bounds of the moments
of U1 (x).

Lemma 5.3. For every 0 < t,8 < oo, 0 < ¢ < 1, there exists a finite positive

R01(t, /4, €0) such that for everyl positive integers k, and every R such that
R > max {Ryo(t,m/4,€),4v/Bt/7},

k
472 hyo (R)EC2 1—¢0)2(1 —eB/2)2k
B [0 @)*] >2ﬁ< ™ o (R}, (1 = €0)"(1 = e777) ) LG4
’ e

e

Proof. Take t = 0 in Definition 5.2 to get for every 0 < 3, R < oo, positive integer n,
z € S%,

sT ,n—1
U@ = [ prl0,66 UG )y
R

As in Section 3, we get by induction

Ué,ﬂé") (z) = ur o(x), (5.5)

Ufﬁé”)(w) = /S pr(t,0(x,y))ur o(y)dy (5.6)

2
R

4 / pa(t — 5,00, 9)o (UL ()W (ds , dy).
[0,t]x Br(z ,v/Bt)

Define a martingale {M (u) }oguxt bY

M) = [ palt0@)un o)y .7

R

4 / pr(t — 5,00, 1) (UG @)W (ds, dy).
[0 ,u]x Br(z ,+/Bt)

By Ito’s formula, for all £ > 1,

2k
M(u)* = (/S pR(t,e(w))uR,o(y)dy) (5.8)

R

¢ 2k(2k — 1) [
+ 2k/ M (s)F=DdM(s) + % / M(s)=2d (M, M), .
0 0
Let v =t and take expectation to get

2k ¢
B (1) = ( /. pR<t,e<x,y>>uR,o<y>dy> + 2O e | [ 2aqr, o,

(5.9)

For notational brevity, denote

gt R.n,x g1, y2) = pr(t —s, 0z, y1)pr(t — 5,00z, y2))o (UL (1) (UG (12))

(5.10)
and
z(t,R,m:/ pa(t —s.6(@,y))pr(t — s,0(z ,y2))dydys.  (5.11)
BR(I\/E)XBR(I,\/E)
EJP 25 (2020), paper 5. http://www.imstat.org/ejp/
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Then
t
E [/ M(s)2=2d (M,M)S} (5.12)
0
t
= E|:/ M(s)(Qk_Q)ds/ 9(t7R7n7$7y17y2)hR(y1>y2)dyldy2
0 BR(JJ,\/E)XBR(:I;,\/E)
t
> hio(R)CS, / E {M(s)(%—ﬂ dsI(t,R,p).
0
Define
prp(t,ds) == hzo(R)dS/ pr(t —s,0(z,y1))pr(t — s,0(z, y2))dy:1dys
Br(z ,v/Bt)x Br(z ,v/Bt)
(5.13)
then (5.12) can be written as
t t
E [/ M(s)@2d (M, M>S} >C2 / E {M(s)@’“*?)} prp(t,ds). (5.14)
0 0
Use (5.14) in (5.9) to get
2k(2k — 1)C? ¢
B (0] > M 2) Tdown / E [M(s)@k—?)} pr(t, ds). (5.15)
0

By induction,

(2k)IC2E ot 2 2
> Tw"/ MR,B(t,dsl)/ MR,B(Slad32)"'/ pr(sk—1,dsk) (5.16)
0 0 0

(2k)1C2F (/t )’“
= 28 Odoun t,ds
Sk ; pr,p(t,ds)

(2k)IC2k

= g (fep(0, R 1)".

E[M (t)*]

By Stirling’s approximation that for all positive integer n,

1

1
Vorn™T2e ™™ < n! <en™t2e . (5.17)

This together with Lemma 2.5 implies that for every 0 < ¢,8 < 00, 0 < ¢y < 1, there
exists a finite positive R,,.(t,7/4,¢p) such that for all positive integers k,n, and all

R > max {Ryo(t,7/4,€0),4v/Bt/7},

(5.18)

k

2 472 hgoun (R)EC2 1—¢0)%(1 —e P22
EM?%Wsz<ﬂd B, Z - PR
O

e

The next lemma gives upper bounds of the moments of Ut(%") ().

Lemma 5.4. Assume for each finite positive R, sup,¢cs2 [ur,o(z)| < Ur < oo. Then for

every 0 < T,a,R < 00, 0 < 8 < n?R?/T, k such that L,+/2kh,,(R)/a < 1, and every
positive integer n,

_ n Ugr + |o(0)|\/2khy,(R)/c
sup sup e atHUt(% )(a:)Hkg & +[o(0)] p(B)/ . (5.19)

0<I<T z€S2, ’ 1 —Loy/2khyp(R)/
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Proof. As in the proof of Theorem 3.1 we can apply the Carlen-Krée bound [2] on
Burkholder-Gundy-Davis inequality, Lemma 2.3 and a similar argument in [10], to get for
0<t<T<o00, R>0,0<B<7?R?*/T, a >0 and k such that L,/2kh,,(R)/a < 1,

e Ui ( —at (5.20)

Uf,%"‘%c)Hk) .

0G| < Ut POV 591)
&R B 1 - Loy/2khey(R) /o 0

||k<e

[, prlt0 ) oy

R

+2v/kfo(a,R,t) sup sup

0<t<T €S2

)

< Ug + 1/2khyy(R)/a | |0(0)| + L, sup sup e **
0<I<T zes?,

* (Io(0)] + Lo

By induction and a little algebra, we have

sup sup e

0T ze sy

With Ut(fg (r) replacing the role of Ut(i’”) (r) and Ut(ﬁz’"fl)(m) in the proof of Lemma
5.4, we will get

Lemma 5.5. Assume for each finite positive R, sup,cgz2 |ur,0(z)| < Ur < cc. Then for
every0 < T,a,R < oo, 0< < n?R%/T, k such that L,+/2kh,,(R)/a < 1,

U 0 2khy, (R
sup sup e_atHU(ﬁ) < i+ |o(0)] p )/04.

x X
0<I<T zes? 0@l 1 — Lo +/2khuy(R)/

(5.22)

The following lemma gives a tail probability estimate based on the previous lemmas.

Lemma 5.6. Assume for each finite positive R, sup,cg2 lug,o(z)| < Ug < 0. For every
0<t,a,B <oo,0< ¢ <1, there exists a finite positive R, (t,m/4,€y) such that for
all positive integer n, and all R > max { Ry (t,7/4,€),4v/B /77} positive integer k

such that L,+/2kh,,(R)/a < 1, all X such that 0 < A < m\/haown(R)t/eCy,,,,.. (1 —€0)(1 —
e PI2)\VE,

P (|UG@)] > X) > mem 0D (g (RUCE, (1~ c0)(1— P/2%)

t,R Tdown

Un +2/o(0)]y/ 2!

1-2L, /2khup(R)

Proof. By the Paley-Zygmund inequality, Lemma 5.3 and Lemma 5.4, we have for every
0<t,a,B <oo,0< ¢ <1, there exists a finite positive R,,/(t,7/4,€y) such that for
all positive integer n > 2, and all R > max { Ry,o(t,7/4,€0),4y/Bt/7}, positive integer k

such that L, /2kh,,(R)/a < 1, all A such that 0 < A < 7w4/hgown(R)t/eCs,,,,. (1 —€0)(1 —
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P w1 3) > P (W @) = 3 @],

([ er)

& [[U5 @[]

2k
> me~(dat+2)k=2 (4772hdown( HeF,  (1—e0)?(1— 6_5/2)276)

Odown

Un +2/o(0)] /22

1_9L /2khup(R)
a «

Now we have obtained a tail probability estimate of Ut(ﬁ ")( ). Based on the approx-

imation to u; r(z) b Ut(ﬁ%")(:c), we can achieve the goal of finding a tail probability
estimate of u; p(x). The accuracy of the approximation is described in the following
three lemmas.

Lemma 5.7. Assume for each finite positive R, sup,cg2 |ur,0(z)| < Ur < oo and that
a<p B =g (log R)“ where 0 < ¢ < 1 is a constant. Then for every 0 <t < 0o, R > R,01(t)
where R,,,(t) is as in Lemma 2.4 and all k > 2 such that L,+/2kh,,(R)/a < 1,

at

o Up-+]o(0)]y/ 2Hur
2212 [k (R)e™ VP <0(0)|+]er Rl_]LU\/M
uR(t,x)—Ut(ﬁg)(x)H S a |

k 1 — Lo/2hup(R)k/cx

sup e
zeS%

Proof. Recall from Definition 5.1 that

U () = / pa(t 60z, y))ur o(y)dy
SZ

R

+/ pr(t — s,9(96,y))a(Ut(’%)(y))W(ds,dy).
0,6)x Br(z ,/BL)

Define a coupling process by

Vinle) = [ pat.06.))un ofu)dy

R

4 / pr(t— 5,00z, 1) (US) (1)) W (ds, dy).
(0,t)xS%

Denote
St.r.p =10, x S;\ Br(w,\/Bt) x S\ Br(z,/Bt), (5.23)
and
91(5 ; R ; B y Ly Y1 ay2) = e_za(t_S)pR (t—S ; 9(:1; ’ yl))pR (t—S ; 9(:1: ; 92))0(U5(§%(y1))0(Us(§%(y2)) ;
(5.24)
and

92(3 ) R?IB?I » Y1 792) = 672a(t78)pR(t - S, 9(I ) yl))pR(t - S, e(xva))

o () = o (UR))| - |o (ws.nls2) = o (U w))|
(5.25)
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for notational brevity.

Then, as in the proof of Theorem 3.1 we can apply Carlen-Krée’s bound on Burkholder-
Gundy-Davis inequality [2], Lemma 2.4, a similar argument in [10], and Lemma 5.5 to
get under the assumption that o <r 8 x<g (log R)“ where 0 < ¢ < 1 is a constant, for
every 0 < t < oo there exists a finite positive R, (¢) such that for all R > R, (t), k > 2

such that L, /2h,,(R)k/a < 1,

Ut(761%)(x) - Vt,R(x)Hk (5.26)

e—at

<2Vk \// hr(y1,y2)e22%g1(s, R, B,x,y1 ,y2)dsdyidys
St,R,8

< 2\/kfop(a, R, t)sup sup e ot (|0(0)| + L,

t20 zeS%

1/2 e Ur + |0(0)|\/2khup(R)/
< 2V2tY2 [khyy(R) <| (0)] + L, LR (B )

By Lemma 2.3, forevery 0 <t,R,a < 0o, 0 < 8 < m2R2/t, k > 2,

k

ool

e ugr(t,z) — Vi r(z)|, (5.27)

<2Vk

\// h’ul)(R)e_2aSQQ(S 7R76737791 ay2)d8dy1dy2
St,Rr,p

< 2L, kfe(a, R, t) sup e_“tHuR(t,x) - Uﬁ%(m)“

2
z€SE

k
k

< Loy /2hyp(R)k/o sup et
zeS%

ur(t, ) — Ufﬁg(x)Hk.

From (5.26) and (5.27), we get for every 0 < ¢t < oo, R > R,,,(t), and 0 < 3 < n2R?/16t,

k > 2 and a > 0 such that L, /2h,,(R)k/a < 1,

up(t,z) — U (x)Hk (5.28)

at

sup e
zeS?

< 2V2tY2 kb, (R)e~VePt <|0(0)| + L,

+ Ly y/2hup(R)k/a sup e

z€S%

U + |0(0)|\/2hup(R)k /]
1 — Lo+/2hep (R)K

ur(t, ) — Uffjg(x)Hk.

By the same argument, we can also get for every 0 < ¢t < co, R > R,,,,(t), and 0 < 8 <
w2 R?/16t, k > 2 and « > 0 such that L,+/2h,,(R)k/a < 1, and every positive integer n,

at

ul"y(x) — U (x)H (5.29)

sup e
k

zeS%

U 0)|\/2khyp(R
1 =T, \/2khuy(R) o

+ Lo y/2hup(R)k/a sup e UIE,,HR_I)(I) _ Ut(%n—l)(z)

.

zeS%
This rules out the possibility of
. —at _ (B) —
sup e ur(t,z) — U /p(x)|| = o0, (5.30)
zeS? ’ k
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since by assumption

Loy/2huy(R)k/a < 1. (5.31)

After a little algebra in (5.28), we arrive at the inequality

sup e~

zeS?

ug(t,x) — Ut(%)(x)H (5.32)

V212 [k (R)e™ VP (|a(0)|+]LUUR+|U(O)| 2““”“”‘”)
<

1-LLo/2khuy(R)/a
1= Lo/ 2hup(R)k/a
Lemma 5.8. Assume for each finite positive R, sup,¢g2 [ur,o(z)| < Ur < oo. Then for

every0 < T,R < o0, 0< 8 <mR?/T, k> 2, a> 0 such that L,+/2h,,(R)k/a < 1 and
\/2hyp(R)k/a < 1 and every positive integer n,

O

sup sup e

0T ze 83

®) (8.m) (]L" 2hup(B)K/ O‘)n
_ 3 < ’
Ut,R (x) Uth () Hk = (Cgup +2Ur) Ur — Lo+\/2hup(R)k /o

Proof. As in the proof of Theorem 3.1 we can apply Carlen-Krée’s bound on Burkholder-
Gundy-Davis inequality [2], Lemma 2.3, a similar argument in [10], and Lemma 5.5 to
getforevery0 <T,R < o00,0< 3 < m*R?/T, k > 2, a > 0 such that L, /2h,,(R)k/a < 1
and /2h,,(R)k/a < 1 and every positive integer n,

at

sup sup e
0<t<T z€S%

U5 @) - U @)

< 2L,\kfe(a,R,t) sup sup e

0T zes?,

s ,n—1
U5 @) - Ul V)|

< Loy/2hyp(R)k/a sup sup e
0<IST zes?

n ,n—1
Ul @) - U @)

By induction, for m > n,

sup sup e
0<I<T 252,

UG @) - UG @), (5.33)

at

(L, 2hup(R)k/a) oy o o

. Lo/ 2hup(R)k/a 120 zes?,

1 ,0
U @) - U0 @)

Note that
Ui (@) = UR" (@) = /S pr(t.0(,y))uro(y)dy — uro()
R

4 / pr(t— 5,602 .9))0 (uroly)) W(ds, dy).
[0,t]x Br(z ,7/Bt)

Forevery 0 <t,R < oo,

| [ pr(t. 0 1) urolu)dy - uro(o)
SR
<o sup funo(e)| 1+ [ pe(t. 6o )dy
xES% S%
< 2Ug.
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Since /2h,,(R)k/a < 1, by Carlen-Krée’s bound on the Burkholder-Gundy-Davis in-
equality,

/ pa(t — 5.0(z ,y))o(uno(y))W(ds,dy)|| < Co.,.
[0.6]x B (x ,/BP) "
Let m — oo in (5.33) to get
®) (8.n) ( Qh“”(R)k/a>
sup sup e | U (@) - U (@)| < (Can, +2UR) .
0<t<T z€52, ’ ’ k 1 — Lo/ 2hyp(R)k/cx

Lemma 5.9. Assume for each finite positive R, sup,cg2 [ur0(z)| < Ur < oo and that

a < B =g (logR)" where 0 < ¢ < 1 is a constant. Then for every 0 < t < oq,
R > Ry,01(t) where Ry, (t) is as in Lemma 2.4, k > 2 such that L,+/2h,,(R)k/a < 1 and
2h.p(R)k/a < 1, every positive integern, A > 0, N > 1 points z1 ,--- ,xy € S%,

)

20W2t1/2 /khup(R)eat—\/oth <|0.<0)+EUUR+|U(O)\/Qkhup(R)/0¢>

(8,m)
p (ijagN ’Ut,R (zj) — ut,r(x5)

N B} 1=Lo\/2khyp (R)/
< 5()‘/2) 1-— ILU\/W

. (Ko /2y (BR]a)”

F WD Coy 2y =

Proof. By Lemma 5.7, Lemma 5.8, Markov’s inequality and Jensen’s inequaltiy,

Byn
P (1<m]a<XN \U( )(Jﬁj) —ug,r(zj)| > )‘>

k
< NAFsup sup E <[Ut(’%n) () — uR(t,x)} )

t>0 93652
k
N(A/2)7F 73313 beusz (HU(m Ut(,%”)(x)HkﬂL HuR(t )~ U H )
v 2202 Ry e (1o 0)] 4, L T T
Y /26Ty ]

2 1= Ly/2huy (B)k /0

N (Lov/2hup (R)F/ )

+5 (V27" | (Co,, +2UR) =

2 1= Ly/2hup(R)k/a

We are now ready to prove the main theorem of this section that gives the aymptotic
lower bound of sup,cg2 [ur(t, )|

Proof of Theorem 5.1. Assume throughout the proof, a <z 8 =g (log R)1/2+Ch“1° /4, n <p
log R, k =g (log R)"/27mur/* X =p (log R)"/*TCraoun/4=Crun/8  ang
supUr < U < 0, (5.34)
R>0
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and
Loy/2Rhup(R)k/a < 1, (5.35)

and
2hup(R)k/a < 1, (5.36)

and
0 <A< 7V hdgown(R)t/eCy,.. (1 —e)(1 —e P 2)WE/2. (5.37)

Whenever a statement/an equality/an inequality involves the above variables, it is as-
sumed the involved variables are subjected to the above estimates. More accurate
estimations will be given along the proof. By Lemma 5.2, for all 0 < ¢, R < oo and every
positive integer n, N such that

2n+/BtN < 27R, (5.38)

there exist N points z,--- ,zy such that Ut(ﬁ "ay) - U(B ") () are ii.d. random
variables. By Lemma 5.6 and Lemma 5.9, for every 0 < t < oo and 0 < €9 < 1, there
exists a finite positive R(t,€g) such that for all R > R(¢, ),

P (ijz%XN lur(t, z;)| < )\> (5.39)
Bmn), .. Bm). y _ )
< (g 057 @)l < 20) 4P (om0 (03) = wnte )] > )
N
=TT [1- P (1057l > 2)] + (o 1057 (0)) ~ un(e.p)] > 2)

Jj=1

2k
1 o )

—4k\ N
. (U +200(0)V2Fh, (B
1 — 2L, \/2khyy(R) /o

2\/§t1/2 khup(R)eatf\/ociﬂt <|0(0)|+]LGU+|U(O)\/2khup(R)/0¢>

%(m 1-Loy/2khuy (R) /@
N\ o Co. +2U ( Qh“”(mk/o‘)n
5( / ) ( up T >1 - ]LU\/W |

where M(t,C,,,... €0, 8) = 472tC2, (1 —€9)*(1 — e #/%)% Take
N = [k“*N(k)| +1, (5.40)

for some finite positive constant C; < 2, where

4k
at+1/2 U D) 0 2khu R
N(k) = € + 2|0 (0)] p(B)/a) 5.41)
\/M Udown , €0, ﬁ)hdown(R)k' 1-— 2]LU
Then
2khup(R) —aky\ ¥
2k [ U + 2|0 (0)] Supi)
1 _ ro—(4at+2)k—2 ( M(t,Cy,.. €0, 3) hdown(R) k) \
1-—2L, 2khup(R)
<o (5.42)
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Take
o = 872 hyp(R) (max{1,L,})* k, (5.43)

(so (5.35) and (5.36) are satisfied) and
[ = 4at. (5.44)

Since /2kh,,(R)/a < (27L,)~!, we have

2\/57‘)1/2 khup(R)eat—\/m <|O'(O)+EUUR+|J(O) Zkh“,p(R)/a>

1-Lo+/2khup(R)/a
1T,/ 2he (R)k/a
< 8v2r? (|o(0)| + Lo U) /% /khy (R) o= 87 hup (R)(max{1.Ly })%k

(2r —1)2 ’
(5.45)
and
(Lo v/2hup (R o,
(Co,, +2U) < (Cy,, +2U)(2m) ™ (5.46)
1 — Lo\/2hyp(R)k/a 27 —1
Take
n = log R. (5.47)

Then for every 0 < ¢t < oo, there exists a finite positive R, (¢) such that for all R > R,,(¢),

21 8v212 (|o(0)] + Lo U) tY/2/khyy,(R)
-(C, 20N (27) ™" < Ld
o1 (Coun +20)(2m) (2r — 1)
% e—87r2hup(R)t(max{l,]L(,})zk- (5.48)

Use (5.42), (5.48), (5.45), (5.46) in (5.39) to get under the constraints of (5.38), for all
0<t<oo 0<e <1and R > max{R,(t), R(e,t)},

P (1I<r;a<xN lur(t,z;)| < )\) Lemme K (5.49)

k
8v2r? (o (0) + L, U) /2 khUP(R)e87r2hup(R)t(max{1,]LU})2k> .

+ N2 < o1y

Take
A = Vdgown(R)t/eCy,.. (1 —€0)(1 —e P2k, (5.50)

then (5.37) is satisfied.
Use (5.50) in (5.49) to get under the constraints of (5.38), forall0 <t < 00,0 < ¢ < 1
and R > max{R,(t), R(eo,t)},

P (1221<XN lur(t,z;)| < )\> (5.51)

< exp(—me 2kCr)

h (R) k/2
+N ("” ) M3 (U, Ca,,,..» €0, B)" exp (—8w2hup(R)t (max{1,L,})” k2) :
hdown(R)
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2
where My (U, C,,.. ,€,8) = (%_116)!2;Vé"(‘;(fgj);’iﬁlm). By (5.40) and (5.41), for every

0 < t < oo, there exists a finite positive Ry (¢) such that for all R > Ry (¢),
N g Qk(4ck72)khdown(R)72k‘e(4at+2)k. (552)

Hence, by (5.43), under the constraint of (5.38), forall 0 < t < 00, 0 < ¢y < 1 and
R > max{R,(t), Ry (t), R(eo,t)},

. < _ -2 Ck
P (121XN|UR(t’xJ) < )\) < exp(—me™ “k"*) (5.53)

o+ 2(Ma(t, oo €0, BY KOS g (R) =12y (R)/2
x R~ exp (78772hup(R)t (max{1, L, })%k? + 2k> )
(5.44), (5.47), (5.52) imply that it suffices to have
4t (log R) /ak“Ce =Dk g (R)~2Relat+ 2k 7R (5.54)
in order for (5.38) to hold. Take

log R)Y/2=Chuy/4
k= (log 1) ’ : (5.55)
2v/27/(4 + €q)t (max{1,L,})
where ¢, is a finite positive constant. Then
eSw2(4+ea)thup(R)(max{1,]LU})Qk2 <R (5.56)

Note that (5.56) implies (5.54) by (5.43). Hence, by choosing a larger Ry (t) if necessary,
forall0 <t < oo, 0< ¢ < 1and R > max{R,(t), Rn(t), R(eo,t)}, (5.38) is satisfied.
Since Cj < 2, by choosing a larger Ry (¢) (hence a larger k) if necessary, we have for all
0<t<oo 0<e <1land R > max{R,(t), Rn(t), R(eo, 1)},

2 (M2 (t, Cogons €05 B) KA D0 By (R) 5%/ 2y (R)M/2 R2F (5.57)
x exp ( =812 hy,(R)t (max{1, L, 224 2k) ) < exp (—me 2Kk .
(—872hup

By (5.50), (5.53) and (5.57), for all 0 < ¢t < o0, 0 < ¢y < 1, finite positive constant Cj, < 2,
and R > max{R,(t), Ry (t), R(eo,t)},

p (1g1_<XN lur(t,z;)| < Vhaown(R)t/eCy,,,, (1 — €0)(1 — em)\/E) < 2exp (—me?kH) .
BYE
(5.58)
By (5.44) and (5.55), for every 0 < t < 00, 0 < ¢y < 1, there exists a finite positive
constant C'(¢, ¢g) such that

R—o0 IES}%

lim P (sup lup(t,z)| = C(t, ¢) (log R)l/4+0hdown/4—chup/8> =1 (5.59)

By Theorem 4.5, the results can be restated as every all 0 < ¢ < o0, 0 < ¢y < 1, there
exists a finite positive constant C(t, ¢g) such that
Rlim p (Ekv € 8% : |lup(t,z)| = C(t, ) (log R)1/4+Chd0wn/47Chu,p/8) =1. (5.60)
— 00

Moreover, by (5.58), for every 0 < ¢t < oo, 0 < ¢¢ < 1, finite positive constant C, there
exist finite positive constants C(t, ¢p) and R(t, ¢, C') such that for R > R(t, €9, C),

P (Elx € 5%t lug(t, )| = C(t, ) (log R) T acwn/1=Crup/ 8) >1— ROme*(1/2=Cnyp /4),
(5.61)
O
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6 Tail probability estimates

Assume throughout this section that ug ¢(z) = 0. Then ug(¢,z) has mean zero and is
subgaussian. In this section, we give a tail probability estimate of ug(t,x), which will
be useful when we derive an asymptotic upper bound for sup, g2 |ur(t, )| in the next
section. '

Lemma 6.1. Then forany 0 < t,R < oo, z € 5%,
Var(ug(t,z)) < hup(R)thup. (6.1)

Proof. By Lemma 2.2,

t
Var(ug(t,r)) < Coz'uphup(R)/ dS/ pr(s,0(x,y1))pr(s,0(z,y2))dyidy:
0 82 xS%
= hup(R)IC3, . (6.2)
O

Lemma 6.2. Forany(0 < t,R < oo, € S%, any integer k > 2,

k
Ellur(t,z)*] < <20%,/hup(3)t> kk/2, (6.3)

Proof. By Lemma 2.2, Carlen-Krée’s optimal bound on the Burkholder-Gundy-Davis
inquality [2],
k

E[|ur(t, )] < (2\/E)kH\/Var(uR((t,:E))H: < (2Cgup hup(R)tk) . (6.4)

O

Lemma 6.3. Forall0 <t,R, )\ < oo,z € 5%,

E[exp (Mug(t,))] < (1 + 2)\Cgup\/hup(R)te> exp (4Cguphup(R)te)\2) . (6.5)

Proof. By Lemma 6.2,

k
% A (up(t,z))" © (2X\Cy,, \/hup(R)t) Kk*/?
E[exp (Mun(t,z))] Elzw <1+Z( - ) . (6.6)
k=0 k=2
By Sterling’s estimation,
VarkFtie ™ Lkl (6.7)

This implies
ek /2Rl —1/4

Jh72 < o (6.8)
So now
o (”\Cau,, m) " /2174
E[exp (Aug(t,z))] <1+ ; TSN (6.9)
.S (2ACh ., /By ()
P V!
< (1 + (2ACC,W,/ hup(R)te>> exp <4C§Whup(R)te/\2> .0
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Theorem 6.4. Forany 0 <t,R < oo, x € 8%, M > 4C,, \/hup(R)te,

2
sup P(|ugr(t,z)| > M) < M > . (6.10)

M
res? (200upw/hup(R)te> o (‘ 1602, hup(R)te

Proof. By Markov’s inequality and Lemma 6.3, forall 0 < t, R, )\ < co and x € S%,

P(lun(t,z)| > M) < e E [exp unl(t, ))]

< (1 + (200up hup(R)te/\>> exp (4C§uphup(R)te)\2 - MA) . (6.11)

Take A = M (8C2, huy(R)te) " to get for M > 4C,,, \/huy(R)te,

P(lug(t,z)| > M) < (1

M M?
+ exp| ———5 7o
4Cs, ,\/ hup(R)te 166’aw hup(R)te

< M e M (6.12)
X YL AN . .
2C,, v/ hup(R)te b 16CZ, hup(R)te

Take the supremum on the left-hand side to finish the proof. O

7 An asymptotic upper bound of the supremum of the mild solu-
tion and the proof of the main theorem

In this section, we prove that for any fixed ¢ > 0, there exists a constant C' > 0
the probability of the event {sup,cg2 [ur(t,z)| > CvIog R} is small as R tends to oo,
hence obtaining an asymptotic upper bound of sup, g2 |ur(t,z)|. The main result of this
section is the following.

Theorem 7.1. For every 0 < t < oo, there exists a positive constant C such that

lim P (Ekv € S2 such that [ug(t, )| > C(log R)1/2+Chup/4) = 0. (7.1)

R—o0

Moreover, for every 2 — 2'/* < r < 1, log,(2 —7) < v < 1/3,0 < t < oo, there exists a
finite positive R(t,r,v) such that for R > R(t,r,~) and 32C,,, V'telog,_,(2) < C < oo,

P (ax € S% such that |ug(t,z)| > C(log 3)1/2+Chw/4>

O, - T 1/2 1/2 2 —-Tr
el . D (togo () " e <<1og2_,‘<R>> (log<16> - %))
(7.2)

As a result, we have obtained:

Proof of Theorem 1.1. Theorem 1.1 is obtained by combining Theorem 5.1 and Theorem
7.1. O

We begin by establishing some notations. Suppose C > 0 is a constant. For each
t>0,R>0,a>0,v>0,0<r <1 and positive integer k£ > 1, positive integer n, define
sets as follows.

Definition 7.1.

Aip = {Hx € S% such that |ug(t,z)| > C (log R)1/2+Ch“f’/4 } )
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At = {Elx € S2 such that |ug(t,z)| > C (log R)/*Chun/4 _ 2*‘”} ,

Grn = {x € Sg:x = (Rsin(iymd™") cos(2ipmd~ ") | Rsin(iymd ™) sin(2ipmd = (") |

)

Rcos(imél_")) for some i1 ,io € Z} ,

Lisna = {Elx € S% such that |ug(t,z)| > C (log R)/*TCrun/*

and for all © € G g, lup(t, )| < C (log R)/2+Crun/4 _ 2*%} ,

KiRna = {Elx € Ggr.n such that |ug(t,z)| > C (log R)"/*FCrur/t _ 2*%} ,

2—r\"
Crin~y = { sup |U(2_T)n (t,z) — U(g—pyn (t,2)| <n < 5 > }

O(x,x’)<m2—"

We record the following result which will be used in the proof of the main theorem of
this section.

Lemma 7.2. Forevery 0 <t < oo, 0 < ¢ < 1,224 < < 1, there exists a finite
positive n(t,q,r) such that for alln > n(t,q,r), and 0 < v < oo,

P < sup [u@ryn (t, ) — u@_pyn (t,2)] > 7(2 - r)"2m> (7.3)
o(

z,x’)<w2—n

<l (12288\6( log (2 — 1))/ C,. (3/2)1/37r7/32q)n

2
27—4 n
(1/24Chyp /00 (2"
" (&)

Proof. Choose ¢g =1/2,a=1, R=(2—r)" in Theorem 4.4. O
We are now ready to prove Theorem 7.1.

Proof of Theorem 7.1. Assume throughout the proof that 2 — 2'/4 < r < 1, and log,(2 —
r)<~vy<1/3.

For every 0 < ¢,a < oo and positive integer, on L; o,y o, there exists z €
S,y such that [u ) (t,2)| > C (nlog(2 — ) /2T /% and for all y € Giaorynom,
[ug, (2—ryn (y)] < C (nlog(2 — 7’))1/2+C’L“P /% _9=an_For all positive integer n, there exists
y € G(a—y)n,n such that 0(z,y) < 7(2 —r)"4™". Hence for every 0 < t,a < oo, positive
integer n, on Ly (2_yyn n,o N Crt.n,5, there exist x € 5(22_r)n and y € G(2_)n », such that

2 _ n
27 < g a—pyn ()] — |y, 2—ryn (y)] < W( 277‘) . (7.4)

Choose any fixed 0 < a < y—log, (2 — 7). Thenforn > | (y—logy(2—7)—a)(logy 7)™t | +1,

—an 2—r "
2 >7T< 7 ) . (7.5)

EJP 25 (2020), paper 5. http://www.imstat.org/ejp/
Page 33/38


https://doi.org/10.1214/20-EJP415
http://www.imstat.org/ejp/

Peaks of SHE on spheres

This implies for every 0 < ¢ < o0, 0 < a < v — log, (2 —r), positive integer n >
L('y —logy(2 —1) — a) (log, 7T)_1J +1,

—an 2 —r\"
p (Lt,(2—r)",n,a n Cr,t,n,a) =P (2 < ( o ) ) = 0. (7.6)
On Ki(2_rynna, there exists z € Gp_pn, such that |uyo_,n(z) =
C(nlog(2 — 7“))1/2+Ch“"/4 — 2727 By Theorem 6.4, for every 0 < t,a < oo and positive

integer n > max < inf {n €7 :C(nlog(2 - r))1/2+ch“”’/4

C(nlog(2 — T))1/2+Ch“"/4} }

> 4U} 7inf{n €7 9l-on <

p (Kt,(er)”,n,a N Cnt,n,’y)

<22 gqup P (‘u(z,r)n(t : x)‘ > C(nlog(2 — r))1/2+c'”“”/4 - 2_“")

2
wGSQH_)”

C (nlog(2 — 7)Y/ #TChun/4
<22 gqup P <‘U/(2r)n (t,x)— U(Q,T)n@(x)‘ > (n log( 4>)

2
zGS(Q_T)n

1/24Ch, /4
C(nlog(2 —r u
+24"*2  qup P <‘u(2_r)n’0(x)’ > (1 log( ) )

mGS(ZQ_T)n 4

C(log(2 — r))% 12 C?log(2 — )
= — log(16) — ————= . 7.7
2, Vio n'/?exp | n | log(16) 26C2_to (7.7)

By (7.6), (7.7) and Lemma 7.2, forevery 0 <t < o00,0<¢<1/3,0<a <~y —logy(2—7),

positive integer n > max { inf {n €7 : C’(nlog(2 — r))1/2+ch'“p/4 > 4U} ,inf {n €7 :

ol—an C(n log(2 — r))1/2+ch“"’/4} , L(v —logy(2 —71) — a) (log, 7T)_1J + 1},

P (Ay2—rn #0)
< P(Kt,(QfT)”m,a n Cr,tﬂl,’Y) + P(Lt»(Q*T)":”’a n Cr’t’"ﬁ) - P(C:*t’"’v)
< P<Kt,(2—r)n,n,a n Cr,t,n,v) + P(C:7t,n,7)

< Mnlﬂ exp <n <log(16) _ OZI%(M))

2C,,,v/te 25607, te
2
n 274 n
4+ o3 (12288\/5 (log (2 _ r))C’Lup/4 Cou,, (3/2)1/371_7/3211) n(1/24+Chyp /40 ((2)2/3> .
—-r

Choose and fix ¢ € (v,1/3), 0 < a < v — log, (2 — r). Then for every 0 < ¢t < oo, there
exists a finite positive n(t) such that for all positive integer n > n(t),

C(log(2 - 7‘))% ) C?log(2 — )
) <= U gl -2 =2 ). )
P (Apaoryn #0) < Covie o OPL" log(16) 356C7_ic (7.8)

In terms of R, the above can be restated as: for every 0 < ¢t < oo, there exists a finite
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positive R(t) such that for R > R(t),

C(log(2 —r H 1/2
P(An #0) < W(logQ_,.<R>) /

X exp ((IOgQ—r(R)> <1°g<16> - Cm>> '

This implies that for every 0 < ¢ < oo, 32C,, Vtelog,_,.(2) < C < oo,

lim P (Em € S% such that |up(t,z)| > C(log R)1/2+Chup/4) =0. (7.9)

R—o0

A Garsia’s theorem

We follow the arguments in [14] to give the proof of the Garsia’s theorem in the
spherical context. Relevant notations and symbols are defined in Section 4.

Proof of Lemma 4.1. By Jensen’s inequality,

| fis(@) = fop(@)|"

k
1 - 1 -
= | flz+z)dz — ————— flz+2)dz
| Br(rix1(k))| JBr(r i) |Br(ri(k))| J B (k)
k
1 - -
- a: [ ay(feta) - faty)
|Br(risa (k)| - IBR(ri(k)| Jererin ) JBrtrey ( )
1 ~ ~ 1k
< —2/ dz/ dy‘f(x—i—z) —f(x+y)| . (A.1)
|BR(TZ+1(k))| Br(ri41(k)) Br(ri(k))
For a > sup_.c g, (., (k) SWPyeBr(r (k) M (RO(2,9)),
~ ~ K
/ dz/ dy|f(x+z) - f(x—i—y)’ (A.2)
Br(ri41(k)) Br(ri(k))
~ Y
< ak/ dz/ dy|f(x+z) - f(xﬂi”
Br(risi(k))  JBa(ri(k)) |1k (RO(z ,y))|
< aka.
Hence,
k
_ _ k a1
| freik(@) — frr(@)] < —kQ (A.3)
|Br(ri1 (k)|
Let a converges to Sup.c g, (v, (k) SUPyc By (r (k) Mk (R0(2 ,y)). Then
1/k
_ _ (SupzeB (i1 (k) SUPye B (ry (k) Hk (39(273/))> I
| frein(@) = fir(@)| < = = 57k (A.4)
|Br(rii (k)|
Note that
sup sup  ur(RO(z,y)) < sup sup  pp(RO(z,N)+ RO(y,N))
2€BRr(ri141(k)) yeBRr(ri(k)) 2€BR(r141(k)) y€BRr(11(k))
< e (T +11)
g /~Lk(27nl)' (A5)
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So now U
Mk(ZTz)Ik/

| frvn (@) = fin(z)] < 5Tk (A.6)
|Br(ripa (k)|
For any positive integer L,
- B +L-1 B
’fz+L,k($) - fl,k(x)‘ < Z ’fn+1,k(33) - fn,k(ﬂﬂ)’ (A7)
n=lI
1k p (27
S Z 2/k
n=l ’BR(V’n+1(k))|
- /’Lk(rn)
<Cu /"y -
n=l ’BR(rn+1(k))| /
Since
pu(rn) = 2(pa (rn) = pk (1)) = 40w (rng1) — pr(rny2)) 5 (A.8)
we can continue to get
= = Tn (7
| fisrn(@) — fiu(e)| <4C, 1"  p(rnst) = e : j,‘f) (A.9)
|Br(rnt1(K))|
Tn4+1 k) d
4Cuk11/k Z/ pa(r) 2/k
w2 | Br(rag (k)]
ri(k) g
<4C,, 1/ / %
0 | Br(r)|
By letting L — oo, we have that B B
Je= lim frp (A.10)
n—oo
exists and for each integer ! > 0
_ 1k ri41(k) iy
sup | fu(@) = fre(z)| <4C,, I, / |Br(r)| ™2/ *dps(r). (A.11)
r€SE 0
To prove the last statement, let ¢ : 512% — R be a continuous function. By (4.7),
¢(2) fe(x)dz = lim [ ¢(x)fpr(2)dz (A.12)
S?a n—oo Sf%
= lim o f(@)bn i (z)dz
— [ @)ooy
Sh
This implies f = f; a.e. O

Proof of Theorem 4.2. Suppose 741(k) < R(x,z’) < (k) for some nonnegative integer
[. Then by the triangle inequality and Lemma 4.1,

| fr(z) = fr(a’)| <2 sup |fr(2) = fue(2)| + | fue(@) — fre(=")] (A.13)
z€ 12%

RO(z ,x") _ ~
< 8C,, 11" / Br) " dui(r) + | Fin(@) — fi(a)].
0

EJP 25 (2020), paper 5. http://www.imstat.org/ejp/
Page 36/38


https://doi.org/10.1214/20-EJP415
http://www.imstat.org/ejp/

Peaks of SHE on spheres

We can use a similar argument as in the proof of the previous lemma to estimate the last
term and get

= NT. ak |f(ﬁ”:h2‘)—f(a”q‘y)v~C
- <t r—is d d Al4
isla) = i)l < |Br(ri(K))[? /BR(Tl(k)) Z/BR(m(k)) y}u(Ra(xJ?z,x’JFy))|k A
o Oéklk
 Br(n(k)?

for any o > sup.e . (ry (k)) SUPye B (ry (k)) K (BO(2+2, 2 +y)).
Let o converges t0 sup,c g, (v, (k) SUPye Br(ri (k) Mk (RO(z+2,2'+y)) from above to get

| fir(@) = fir(a’)| < ( sup sup ,uk(RQ(xjrz,x/ly))> I;/k‘BR(”(k))rz/k'
2€BRr(ri(k)) y€BRr(ri(k))
(A.15)
For any z,y € Bgr (Tl(k))'
0(z+z,2'Ty) < O(xtz,2) + 0(x,a') +0(2' , 2" Fy) (A.16)
<3n(k)/R
< 4r;(k)/R.
Hence,
|f_-l7k(z) . fl,k(zl)| < Cﬁk:um(k)lli/k|BR(TI(‘Z€))‘72/]€ (A17)
k: —
< 40;2% (/‘mﬂ(k) - /Lm+2(k)) Ili/ |Br(ri+1(k))| 21k

< 402 Il/k /Re(w’x ) d’ui(r)
IR |Br(r)[?/*

Use (A.17) in (A.13) to get

RO(z,x")
(@) — Fula!)| < A 2+ Cu)IV® / B (r) [~/ * (). (A.18)
0
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