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Abstract

We prove an annealed weak limit of the trajectory of the random walks in cooling
random environment (RWCRE) under both slow (polynomial) and fast (exponential)
cooling. We identify the weak limit when the underlying static environment is recurrent
(Sinai’s model). Avena and den Hollander have previously proved a Gaussian limiting
distribution for the distribution of the endpoint of the walk. We find that the weak
limit of the trajectory exists as a time-rescaled Brownian motion in the slow cooling
case but the limit degenerates to a constant function in the fast cooling one.
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1 Introduction, background, and main results

Research on random walks in disordered environments has attracted a lot of attention
by mathematicians and physicists over the last few decades. The model of random walks
in random environment (RWRE) was first studied by Solomon in [18]. In this model the
disorder in the environment is random,1 but fixed for all time by the walk. Much of the
subsequent interest in this model was driven by the fact that RWREs could exhibit a
surprisingly rich array of asymptotic behaviors such as transience with asymptotically
zero speed [18], and limiting distributions which are non-Gaussian and have non-diffusive
scaling [14, 15, 17]. These interesting phenomena can be understood as occurring
because of the “trapping” effects of the environment. See [19] for an overview of basic
results in RWRE.

More recently, there has been interest in a generalization of RWRE called random
walks in dynamic random environments (RWDRE) in which the disorder of the envi-
ronment is random in both space and time. One can see that RWDRE interpolates
between simple random walk (SRW) and RWRE: If the dynamics are “frozen”, i.e. the
environment is not changing after initial set-up, then this is simply a RWRE. On the
other hand, if the environment is space-time i.i.d. then it is easy to see that the distri-
bution of the RWDRE (under the annealed measure) is the same as that of a SRW. For
RWDRE models which are between these two extremes there is an interplay between
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Functional weak limit of RWCRE

the trapping effects introduced by the randomness of the environment and the rate
at which the time dynamics of the environment causes these traps to disappear. One
might expect therefore that environments with “fast” mixing time dynamics should have
similar characteristics as a SRW (e.g. path convergence to Brownian motion) while
“slow” mixing time dynamics might retain some of the strange behaviors of RWRE (e.g.,
non-Gaussian limiting distributions or transience with sublinear speed).

Many of the results thus far in RWDRE have focused on dynamic environments which
are in some sense fast mixing, see [1, 7, 8]. For example, the environment may be
assumed to be a Markov chain with uniformly mixing time dynamics or which satifies
a Poincaré inequality. A variety of approaches have been used in these papers, but in
all cases one can obtain convergence to Brownian motion after centering and diffusive
scaling.

Environments which are more slowly mixing present different problems as the trap-
ping effects of the environment may possibly be stronger. Examples of environments like
conservative particle systems have poor mixing rates [9, 11]. A particularly interesting
example is the case where the dynamic environment is given by a simple symmetric
exclusion process. Avena and Thomann have made conjectures based on simulations
that this model can exhibit many of the same strange behaviors as that of RWRE (e.g.,
transience with zero speed and non-diffusive scaling). However, the results for this
model have been limited to some cases where the parameters of the model are near their
extremes and in these cases once again the distribution of the walk converges under
diffusive scaling to a Brownian motion. Other examples of slow mixing environments for
which the RWDRE has been shown to converge to Brownian motion are [4, 12, 13].

All the above results for RWDRE have shown limiting behavior which is like that of
a SRW. Recently, however, Avena and den Hollander have introduced a new model of
RWDRE, random walks in cooling random environment (RWCRE), in which the dynamics
can be slow enough that the model retains some of the strange behavior of RWRE [5].
In this model the environment is totally refreshed at some points called resampling
times. Results for this model have included a strong law of large numbers, a quenched
large deviation principles, sufficient conditions for recurrence/transience, and limiting
distributions [2, 3, 5]. Most relevant to the results of the present paper, for certain cases
of RWCRE they prove that the limiting distributions are Gaussian but with non-diffusive
scalings that interpolate between the (log n)2 scaling of recurrent RWRE and the diffusive√
n scaling of SRW [3, 5]. The main goal of this paper is to determine the appropriate

limiting distributions for the path of the walk in these cases.
The paper is organized as follows. We introduce the model of one-dimensional RWCRE

in Section 1.1. In Section 1.2 we review the limiting distribution results for both recurrent
RWRE (Sinai’s random walk) and corresponding model of RWCRE. In Section 1.3, we
give our main result, the functional weak limit under both slow (polynomial) and fast
(exponential) cooling. The proof is given in Section 2.

1.1 Random walks in cooling random environment

We will use the same notations as in Avena and den Hollander [5]. Let N0 = N ∪ {0}.
The classical one-dimensional random walk in random environment (RWRE) is defined
as follows. Let ω = {ω(x) : x ∈ Z} be an i.i.d. sequence with probability distribution

µ = αZ (1.1)

for some probability distribution α on (0, 1). The random walk in the spatial environment
ω is the Markov process Z = (Zn)n∈N0

starting at Z0 = 0 with transition probabilities

Pω(Zn+1 = x+ e|Zn = x) =

{
ω(x), if e = 1,

1− ω(x), if e = −1,
n ∈ N0. (1.2)
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The properties of Z are well understood, both under the quenched law Pω(·) and the
annealed law

Pµ(·) =

∫
(0,1)Z

Pω(·)µ(dω). (1.3)

The random walk in cooling random environment (RWCRE) is a model where ω is
updated along a growing sequence of determined times. Let τ : N0 → N0 be a strictly
increasing map such that τ(0) = 0 and τ(k) ≥ k for k ∈ N. Define a sequence of random
environments Ω = (ωn)n∈N0

as follows: At each time τ(k), k ∈ N0, the environment
ωτ(k) is freshly resampled from µ = αZ and does not change during the time interval
[τ(k), τ(k+ 1)). That is, ωn = ωτ(k) where k is such that τ(k) ≤ n < τ(k+ 1). The random
walk in the space-time environment Ω is the Markov process X = (Xn)n∈N0

starting at
X0 = 0 with transition probabilities

PΩ,τ (Xn+1 = x+ e|Xn = x) =

{
ωn(x), if e = 1,

1− ωn(x), if e = −1,
n ∈ N0. (1.4)

We call X the random walk in cooling random environment with resampling rule α

and cooling rule τ . The distribution PΩ,τ of the random walk for a given space time
environment is called the quenched law. The annealed law of the walk {Xn}n≥0 is
obtained by averaging the quenched with respect to the distribution Q = Qα,τ on Ω.

Pτ (·) =

∫
((0,1)Z)N0

PΩ,τ (·)Q(dω). (1.5)

1.2 Slow and fast cooling: Gaussian fluctuations for recurrent RWRE

In Solomon’s seminal paper [18], he showed that the recurrence/transience of a
RWRE is determined by the sign of Eα[log ρ(0)], where

ρ(0) =
1− ω(0)

ω(0)
(1.6)

and Eα[·] denotes expectations with respect to the measure α. In particular, if
Eα[log ρ(0)] = 0 then the RWRE is recurrent. Subsequently, the scaling limit in the
recurrent case was identified by Sinai [17] and the explicit form of the limiting distribu-
tion by Kesten [15]. Moreover, it was shown by Avena and den Hollander [5] that the
convergence also holds in Lp. The next proposition summarises their results.

Proposition 1.1 (Scaling limit RWRE: recurrent case). Let α be any probability distribu-
tion on (0, 1) satisfying E(log ρ(0)) = 0 and σ2

µ = E[log2 ρ(0)] ∈ (0,∞). Then, under the
annealed law Pµ, the sequence of random variables

Zn

σ2
µ log2 n

, n ∈ N, (1.7)

converges in distribution and in Lp to a random variable V on R that is independent of
α. The law of V has a density p(x), x ∈ R, with respect to the Lebesgue measure that is
given by

p(x) =
2

π

∑
k∈N0

(−1)k

2k + 1
exp

[
− (2k + 1)2π2

8
|x|
]
, x ∈ R. (1.8)

In their initial paper on RWCRE Avena and den Hollander introduced several kinds
of cooling regimes that are interesting to research. For RWCRE in our paper, following
their works, we focus on two kinds of growth regimes for τ(k). Let Tk = τ(k)− τ(k − 1),

(R1) Slow cooling: Tk ∼ βBkβ−1, for some B ∈ (0,∞) and β ∈ (1,∞).

(R2) Fast cooling: log Tk ∼ Ck, for some C ∈ (0,∞).
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When the distribution α is as in Proposition 1.1, Avena and den Hollander [5] proved
a limiting distribution for the walk under both the fast and slow cooling regimes. Later
in [3] they strengthened this to Lp convergence. The following proposition summaries
their results. Note that here and throughout the remainder of the paper we will use
N (µ, σ2) to denote a Gaussian random variable with mean µ and variance σ2.

Proposition 1.2 (Slow and fast cooling: Gaussian fluctuations for recurrent RWRE). Let
α be as in Proposition 1.1. In regime (R1) and (R2), under the annealed law P,

Xn − E(Xn)√
χn(τ)

→Lp N (0, 1), (1.9)

where

χn(τ) =

{
(σ2
µσV )2(β−1

β )4( nB )
1
β log4 n, in regime (R1),

(σ2
µσV )2( 1

5C5 ) log5 n, in regime (R2),
(1.10)

with σ2
µ the variance of the random variable log ρ(0) and σ2

V the variance of the random
variable with density (1.8). Moreover, in (R2) the centering part can be removed. That
is,

Xn√
χn(τ)

→Lp N (0, 1). (1.11)

Remark 1.3. In the most recent work [3], the authors have studied more general
cooling regimes and have found their limiting behavior. In fact, despite the sequence
being always tight, depending on the relative variance weight, the centered walk may
not always converge. In short, relative variance weight describes how significant the
variance of the walk in a single cooling interval over the variance of Xn. The results
(Theorem 1.9 and Corollary 1.10 in [3]) showed that for general cooling sequences there
might be no limiting distribution for Xn/

√
Var(Xn), but that one can identify a class of

limiting distributions along subsequences which are mixtures of Kesten’s distribution
and standard Gaussian. See Examples 5 and 6 in [3] for more details.

1.3 Functional weak limit under the slow and fast cooling

In this section we will introduce our main results of the weak limit of (X̃k/
√
χn(τ), k =

1, 2, ..., n) where X̃k = Xk(ω)−E(Xk) is the centered walk2 of Xk under both polynomial
and exponential cooling. Since the walk (X̃k, k = 1, 2, ..., n) is a discrete time random
walk and we are considering the scaled (under both time and space parameters) weak
limit of it, it is reasonable to make this discrete-time-walk a continuous random walk Xn

t

within the time interval t ∈ [0, 1]. The simplest way to solve this is to make the process
piecewise linear. To this end, define

Xn
t (ω) =

1√
χn(τ)

X̃btnc(ω) + (tn− btnc) 1√
χn(τ)

(X̃btn+1c(ω)− X̃btnc(ω)). (1.12)

Obviously Xn
t is a random function in C[0, 1], the space of continuous functions on [0, 1],

equipped with the uniform topology. The main results are stated as follows.

Theorem 1.4 (Slow cooling: functional weak limit for recurrent RWRE). Let α be as in
Proposition 1. In regime (R1), Xn

t given in (1.12). Under the annealed law P,

(Xn
t , t ∈ [0, 1]) ⇒n (Bt1/β , t ∈ [0, 1]), in regime(R1), (1.13)

where (Bt, t ∈ [0, 1]) is a standard Brownian motion. The limit in the right hand side
means a time-scaled Brownian motion. The convergence in law holds in the uniform
topology on C[0, 1].

2All the ˜ signs in our paper mean the centered random variable under the annealed measure.
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In the exponential cooling case, the result is slightly different. The functional weak
limit of Xn

t is a random constant function and the law of the random constant is a
standard Gaussian distribution.

Theorem 1.5 (Fast cooling: functional weak limit for recurrent RWRE). Let α be as in
Proposition 1. In regime (R2), Xn

t given in (1.12). Under the annealed law P, for any
a ∈ (0, 1],

(Xn
t , t ∈ [a, 1]) ⇒n (Nt, t ∈ [a, 1]), in regime(R2), (1.14)

where Nt = N for all t ∈ [a, 1] and N ∼ N (0, 1). The convergence in law holds in the
uniform topology on C[a, 1].

Remark 1.6. In Theorem 1.5 the convergence holds in space C[a, 1] for any a ∈ (0, 1].
In fact, if we want to extend the convergence to then entire time interval [0, 1] then
neither continuous function space C[0, 1] nor the Càdlàg function space D[0, 1] (with the
Skorohod topology) will be sufficient since the sequence is not tight in either space.
Moreover, one can guess the limiting process on [0, 1] should be 0 when t = 0 and Nt for
t ∈ (0, 1], which is not a Càdlàg function. So if we want to extend the convergence to a
function space on [0, 1] then a wider space would be required, e.g. Lp[0, 1], together with
a corresponding topology where the weak convergence holds.

Remark 1.7. A heuristic thinking of the result in Theorem 1.5 is by the fact the expo-
nential increment is faster than any polynomial increment. If we let β go to infinity, then
the weak limit in Theorem 1.4 will become 0 at time 0 and B1 for t ∈ (0, 1]. This also
explains the guess in the above remark.

2 Proof of the theorem

We begin by noting the following useful decomposition property of RWCRE. Let

k(n) = max{k ∈ N : τ(k) ≤ n} (2.1)

be the number of resamplings of the environment prior to time n. It’s easy to see k(n) ∼
(n/B)1/β in (R1) and k(n) ∼ (1/C) log n in (R2). Furthermore, Xn has a decomposition
that will be very useful in the following proof of the theorems,

Xn =

k(n)∑
j=1

Yj + Ȳn, (2.2)

where Yj = Xτ(j) − Xτ(j−1), j = 1, 2, .., k(n), Ȳn = Xn − Xτ(k(n)). A simple fact is that
all terms in (2.2) are independent under the annealed measure. Moreover, under the
annealed measure, Yj has the same distribution as ZTj for j ≥ 1, and Ȳn has the same
distribution as Zn−τ(k(n)) for n ≥ 1, where {Zn}n≥0 is a RWRE. Since we will deal with
the remainder part Ȳn throughout the proof, we will use the notation T̄n = n− τ(k(n))

and T̄ cn = τ(k(n) + 1)− n.

2.1 Slow cooling

Proof of Theorem 1.4. We start by finding the weak limit of the finite dimensional random
vector (Xn

t1 , X
n
t2 , ..., X

n
tk

). To start with, we will prove the weak convergence under the

case k = 2, i.e. the weak limit of (Xn
t , X

n
s ) for 0 ≤ t < s ≤ 1. By [5], X̃btnc/

√
χbtnc(τ)⇒n

N (0, 1). Obviously lim
χbtnc(τ)

χn(τ) = t1/β, so X̃btnc/
√
χn(τ) ⇒n N (0, t1/β). If ψn,t is the

rightmost term in (1.12), then ψn,t ⇒n 0 by the fact that all the numerators are bounded
but χn(τ) goes to infinity. We have

(Xn
t , X

n
s −Xn

t ) =
1√
χn(τ)

(X̃btnc(ω), X̃bsnc(ω)− X̃btnc(ω)) + (ψn,t, ψn,s − ψn,t). (2.3)
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To find the weak limit of (X̃bsnc − X̃btnc)/
√
χn(τ), we will follow the approach of [5] in

using the following Lyapunov condition.

Lemma 2.1 (Lyapunov condition, Petrov [16]). Let U = (Uk)k∈N be a sequence of inde-
pendent random variables (at least one of which has a non-degenerate distribution). Let
mk = E(Uk) and σ2

k = V ar(Uk). Define

χn =

n∑
k=1

σ2
k. (2.4)

Then the Lyapunov condition

lim
n→∞

1

χ
p/2
n

n∑
k=1

E(|Uk −mk|p) = 0, (2.5)

for some p > 2 implies that

1

χn

n∑
k=1

(Uk −mk)⇒n N (0, 1). (2.6)

Recall Xn has the decomposition

Xn =

k(n)∑
j=1

Yj + Ȳn. (2.7)

Define the variance of Xbsnc −Xbtnc (which is also the variance of X̃bsnc − X̃btnc) for any
s < t and n large enough

χt,sn (τ) =

k(bsnc)∑
j=k(btnc)+2

Var(Yj) +Var(Ȳbsnc) +Var(Ȳ cbtnc) (2.8)

where Ȳ cn = Xτ(k(n)+1) − Xn. Recall that Ỹj = Yj − E(Yj),
˜̄Yn = Ȳn − E(Ȳn), and

˜̄Y cn = Ȳ cn − E(Ȳ cn ). For p > 2, let

χt,sn (τ ; p) =

k(bsnc)∑
j=k(btnc)+2

E
(
|Ỹj |p

)
+ E

(
| ˜̄Ybsnc|p

)
+ E

(
| ˜̄Y cbtnc|

p
)
. (2.9)

Since Yj has the same distribution as ZTj , then by Proposition 4 in [5] the following two
asymptotic estimates hold as j →∞.

Var(Yj) ∼ (σ2
µσV )2 log4 Tj , E

(
|Ỹj |p

)
= O(log2p Tj), p > 2. (2.10)

Applying these to (2.8) and (2.9) we obtain

k(bsnc)∑
j=k(btnc)+2

Var(Yj) ∼ (σ2
µσV )2

k(bsnc)∑
j=k(btnc)+2

log4 Tj ,

k(bsnc)∑
j=k(btnc)+2

E
(
|Ỹj |p

)
= O

 k(bsnc)∑
j=k(btnc)+2

log2p Tj

 .

(2.11)
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Moreover, using that
∑k
j=1 log2p j ∼

∫ k
1

log2p xdx ∼ k log2p k for all p ≥ 2 and that

k(n) ∼ (n/B)1/β , we have

(σ2
µσV )2

k(bsnc)∑
j=k(btnc)+2

log4 Tj ∼ (σ2
µσV )2(β − 1)4

×
[
(
sn

B
)1/β log4

(
(
sn

B
)1/β

)
− (

tn

B
)1/β log4

(
(
tn

B
)1/β

)]
∼ (σ2

µσV )2(β − 1)4(
n

B
)1/β(

1

β
)4(s1/β − t1/β) log4 n

= χn(τ)
(
s

1
β − t

1
β

)
,

and

k(bsnc)∑
j=k(btnc)+2

log2p Tj ∼ (σ2
µσV )2(β − 1)2p(

n

B
)1/β(

1

β
)2p(s1/β − t1/β) log2p n

= χ
p
2
n (τ)

(
s

1
β − t

1
β

)( n
B

) 2−p
βp

, p > 2.

(2.12)

Since Ȳn has the same distribution as ZT̄n , we can again use Proposition 4 in [5] to obtain
that there exists C(2) > 0, C(p) > 0, such that

Var
(
Ȳn
)
≤ C(2) log4 T̄n, E

(
| ˜̄Yn|p

)
≤ C(p) log2p T̄n. (2.13)

These upper bounds will be used to control Var(Ȳ cn ) and E
(
|Ȳ cn − E(Ȳ cn )|p

)
. For n large

enough,

Var(Ȳ cn ) = Var(Yk(n)+1 − Ȳn) ≤ 2Var(Yk(n)+1) + 2Var(Ȳn)

≤ 4
[
(σ2
µσV )2 + C(2)

]
log4 Tk(n)+1,

E
(
| ˜̄Y cn |p

)
= E

(
|Ỹk(n)+1 − ˜̄Yn|p

)
≤ 2p−1

[
E
(
|Ỹk(n)+1|p

)
+ E

(
| ˜̄Yn|p

)]
= O(log2p Tk(n)+1).

(2.14)

From (2.13) and (2.14),

Var(Ȳbsnc) +Var(Ȳ cbtnc) ≤ C
(2) log4 T̄bsnc + 4

[
(σ2
µσV )2 + C(2)

]
log4 Tk(btnc)+1 = O(log4 n),

E
(
| ˜̄Ybsnc|p

)
+ E

(
| ˜̄Y cbtnc|

p
)
≤ C(p) log2p T̄bsnc +O(log2p Tk(btnc)+1) = O(log2p n).

(2.15)

By (2.12) and (2.15), we can therefore give the asymptotic of χt,sn (τ) and χt,sn (τ ; p),

χt,sn (τ) ∼ χn(τ)
(
s

1
β − t

1
β

)
,

χt,sn (τ ; p) = O

(
χ
p
2
n (τ)

(
s

1
β − t

1
β

)( n
B

) 2−p
βp

)
, p > 2.

(2.16)

From these asymptotics it is easy to check that the Lyapunov condition holds, and thus

X̃bsnc − X̃btnc√
χn(τ)

⇒n N (0, s1/β − t1/β). (2.17)

In order to prove the vector (Xn
t , X

n
s − Xn

t ) converges to a 2-d Gaussian vector with
independent components, it suffices to show that any linear combination of Xn

t and
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Xn
s −Xn

t converges to the corresponding linear combination of the components of the
limiting Gaussian vector. To this end, the proof is quite similar to what we did above:
Decompose λXbtnc + µ(Xbsnc −Xbtnc) into independent sums and check the Lyapunov
condition (2.5). Notice that

λXbtnc + µ(Xbsnc −Xbtnc) = λ

k(btnc)∑
j=1

(
Xτ(j) −Xτ(j−1)

)
+ λ

(
Xbtnc −Xk(btnc)

)
+ µ

(
Xk(btnc)+1 −Xbtnc

)
+ µ

k(bsnc)∑
j=k(btnc)+2

(
Xτ(j) −Xτ(j−1)

)
+ µ

(
Xbsnc −Xk(bsnc)

)

= λ

k(btnc)∑
j=1

Yj +
(
λȲbtnc + µȲ cbtnc

)
+ µ

k(bsnc)∑
j=k(btnc)+2

Yj + µȲbsnc.

(2.18)

The key point to the proof is the expressions of the variance of λXbtnc + µ(Xbsnc −Xbtnc)

Var
(
λXbtnc + µ(Xbsnc −Xbtnc)

)
= λ2

k(btnc)∑
j=1

Var(Yj) + µ2

k(bsnc)∑
j=k(btnc)+2

Var(Yj)

+µ2Var(Ȳbsnc) +Var
(
λȲbtnc + µȲ cbtnc

)
,

(2.19)

and the sum of centered p-th moments of the independent components in the above
decomposition,

λp
k(btnc)∑
j=1

E
(
|Ỹj |p

)
+ µp

k(bsnc)∑
j=k(btnc)+2

E
(
|Ỹj |p

)
+ µpE

(
| ˜̄Ybsnc|p

)
+ E

(
|λ ˜̄Ybtnc + µ ˜̄Y cbtnc|

p
)
.

(2.20)

The last term in each expression above cannot be separated into two parts because those
two random variables are not independent under the annealed measure. But still, we can
estimate the last term by the fact that V ar(X + Y ) ≤ 2(V ar(X) + V ar(Y )) (and similarly,
E(|X + Y |p) ≤ 2p−1(E|X|p +E|Y |p) for the p-th moment) for any two random variables
X and Y . Thus, with the same approach, the last two terms in (2.19) and (2.20) will
be dominated by the first two sums. Moreover, the asymptotics of the first two sums
in (2.19) and (2.20) can be obtained using the same methods as in the first part of the
proof above.

The result is for any λ > 0, µ > 0, λXn
t +µ(Xn

s −Xn
t ) converges weakly toN (0, λ2t1/β+

µ2(s1/β−t1/β)). This also reveals the independence of the coordinates of the limit random
vector, i.e.

(Xn
t , X

n
s −Xn

t )⇒n (N1, N2), (2.21)

where (N1, N2) is a Gaussian vector with mean (0, 0) and variance (t1/β , s1/β − t1/β), also
N1 and N2 are independent.

It is natural to extend the weak convergence of 2-dimension vector into finite dimen-
sion vector (Xn

t1 , X
n
t2 , ..., X

n
tk

), 0 ≤ t1 < t2 < ... < tk ≤ 1 i.e.

(Xn
t1 , X

n
t2 , ..., X

n
tk

)⇒n (B
t
1/β
1
, B

t
1/β
2
, ..., B

t
1/β
k

), (2.22)

where (Bt, t ∈ [0, 1]) is a standard Brownian motion. The proof of this statement follows
the same steps as what we did in dimension 2: Decompose

∑k
i=1 λi(Xbtinc −Xbti−1nc)

into independent sums where t0 = 0. Then take the variance and the the sum of centered
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Functional weak limit of RWCRE

p-th moment of the independent components of the decomposition to check the Lyapunov
condition (2.5). The decomposition is

k∑
i=1

λi(Xbtinc −Xbti−1nc) = λ1

k(bt1nc)∑
j=1

Yj +

k∑
i=2

λi

k(btinc)∑
j=k(bti−1n+2c)

Yj

+

[
k−1∑
i=1

(λiȲbtinc + λi+1Ȳ
c
btinc) + λkȲbtknc

]
.

(2.23)

So the variance and the sum of centered p-th moment of the independent components
above are

λ2
1

k(bt1nc)∑
j=1

Var(Yj) +

k∑
i=2

λ2
i

k(btinc)∑
j=k(bti−1n+2c)

Var(Yj)

+

[
k−1∑
i=1

Var
(
λiȲbtinc + λi+1Ȳ

c
btinc

)
+ λ2

kVar(Ȳbtknc)

] (2.24)

and

λp1

k(bt1nc)∑
j=1

E(|Ỹj |p) +

k∑
i=2

λpi

k(btinc)∑
j=k(bti−1n+2c)

E(|Ỹj |p)

+

[
k−1∑
i=1

E
(
|λi ˜̄Ybtinc + λi+1

˜̄Y cbtinc|
p
)

+ λpkE(| ˜̄Ybtknc|
p)

]
.

(2.25)

All the terms in the big brackets are dominated by sums to the left of the brackets. To
check the Lyapunov condition holds in this case is nothing new but repeat our works
(2.11) and (2.12). The details are tedious and we omit them in our paper.

To complete the proof of the theorem under the slow cooling case, the tightness of
the sequence Xn is needed. To this end, by Theorems 7.3 and 7.4 in [6] it is enough
to show that for any ε > 0, η > 0, ∃δ > 0 and a sequence of numbers {ti}, where
0 = t0 < t1 < ... < tv = 1, s.t.

min
1<i<v

(ti − ti−1) ≥ δ, (2.26)

and ∃n0 > 0, for all n > n0,

v∑
i=1

P[ sup
ti−1≤s≤ti

|Xn
s −Xn

ti−1
| ≥ ε] < η. (2.27)

Since (Xn
t , t ∈ [0, 1]) is the continuous process of (X̃btnc/

√
χn(τ), t ∈ [0, 1]), the biggest

difference in the continuous process within a given interval is, up to an error smaller
than 2/

√
χn(τ), bounded by the biggest difference in the discrete time process. Hence

we can check the condition (2.27) by replacing Xn
s , s ∈ [ti−1, ti] and Xn

ti−1
by X̃m/

√
χn(τ),

m ∈ [ti−1n, tin] and X̃bti−1nc/
√
χn(τ) separately.

Let m be |X̃m − X̃bti−1nc| = sups∈[ti−1n,tin] |X̃s − X̃bti−1nc|, i.e. the exact value of s to
make the biggest difference happens. If there are more than one candidates, choose one
arbitrarily. We have the following decomposition,

X̃m − X̃bti−1nc =

τ(k(m))∑
j=τ(k(bti−1nc)+1)

Ỹj + ˜̄Ym − ˜̄Ybti−1nc, (2.28)

or just ˜̄Ym − ˜̄Ybti−1nc if k(bti−1nc) = k(m).
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Let’s deal with the decomposition above in two parts:

• Given q = bβc+ 1 > 1, define the martingale {Ml} as M0 = 0,

Ml =

τ(k(bti−1nc)+l)∑
j=τ(k(bti−1nc)+1)

Ỹj , l ≥ 1. (2.29)

Since the function x2q is convex, {M2q
l } is a submartingale. By Doob’s Maximal

Inequality [10], for integer L > 0,

P

(
sup
l∈[0,L]

|Ml|√
χn(τ)

≥ ε

2

)
≤

E[M2q
L ]

( ε2 )2qχqn(τ)
. (2.30)

To estimate the order of E[M2q
L ], notice that if we expand all the terms in M2q

L ,
it is a sum that several terms in it have zero mean. So by counting the number
of non-zero terms in E[M2q

L ] will give us the order of it. In fact, any term that
has non-zero mean cannot have a factor Ỹj of order only one, i.e. either it is not
divided by Ỹj or it is divided by Ỹ 2

j . Thus, a rough upper bound of the number of

the non-zero terms in E[M2q
L ] is

∑q
i=1

(
L
i

)
i2q. Since q is fixed, for L large enough,∑q

i=1

(
L
i

)
i2q ≤ q

(
L
q

)
q2q.

For any nonzero term in the expansion of E[M2q
L ], by (2.10), it is bounded from

above by C0 log4q n for some C0 > 0 since we are dealing with the case within the
interval [0, n]. So

E[M2q
L ] ≤ C0q

(
L

q

)
q2q log4q n ≤ C0q

2q+1Lq log4q n. (2.31)

Now back to the first part in (2.28),

P

 |∑τ(k(m))
j=τ(k(bti−1nc)+1) Ỹj |√

χn(τ)
≥ ε

2

 ≤ P( sup
l∈[0,k(btinc)−k(bti−1nc)]

|Ml|√
χn(τ)

≥ ε

2

)
.

(2.32)
Combining with (2.30) and (2.31) and recalling (k(btinc) − k(bti−1nc)) ∼
(n/B)1/β(t

1/β
i − t

1/β
i−1), we obtain that there exists C∗ > 0, depending only on ε,

such that

P

 |∑τ(k(m))
j=τ(k(bti−1nc)+1) Ỹj |√

χn(τ)
≥ ε

2

 ≤ C∗(t 1
β

i − t
1
β

i−1)q. (2.33)

• To deal with ˜̄Ym, notice that | ˜̄Ym| is bounded by the maximum of |Ȳn − E(Ȳn)|
where n ∈ [τ(k(m)), τ(k(m) + 1)]. Define Ỹ ∗j = maxn∈[τ(j−1),τ(j)] |Ȳn − E(Ȳn)|, then

| ˜̄Ym| ≤ Ỹ ∗k(m)+1, where k(m) can be from k(bti−1nc) to k(btinc). Hence,

P

(
| ˜̄Ym|√
χn(τ)

≥ ε

4

)
≤P

(
sup

j∈[k(bti−1nc)+1,k(btinc)+1]

Ỹ ∗j√
χn(τ)

≥ ε

4

)

≤
k(btinc)+1∑

j=k(bti−1nc)+1

P

(
Ỹ ∗j√
χn(τ)

≥ ε

4

)
.

(2.34)

Let Y ∗j = maxn∈[τ(j−1),τ(j)] |Ȳn|, we have

Ỹ ∗j = max
n∈[τ(j−1),τ(j)]

|Ȳn−E(Ȳn)| ≤ max
n∈[τ(j−1),τ(j)]

|Ȳn|+ max
n∈[τ(j−1),τ(j)]

E|Ȳn| ≤ Y ∗j +EY ∗j .

(2.35)
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Moreover, by the same proof of the Proposition 4 in [5] (both Zn > a and Z∗n > a

mean T (a) < n), for all p > 0,

sup
1≤j≤k(n)+1

E

(
Y ∗j

log2 n

)p
≤ sup

1≤j≤k(n)+1

E

(
Y ∗j

log2 Tj

)p
<∞. (2.36)

From (2.35), Chebyshev’s Inequality, and (2.36), there exists C ′ > 0 depending
only on ε such that

P

(
Ỹ ∗j√
χn(τ)

≥ ε

4

)
≤ P

(
Y ∗j + EY ∗j√

χn(τ)
≥ ε

4

)
≤
E
(
Y ∗j + EY ∗j

)4(
ε
4

)4
χ2
n(τ)

≤ C ′n−
2
β . (2.37)

Now the upper bound of (2.34) is clear,

P

(
| ˜̄Ym|√
χn(τ)

≥ ε

4

)
≤

k(btinc)+1∑
j=k(bti−1nc)+1

C ′n−
2
β = C ′ (k(btinc)− k(bti−1nc))n−

2
β . (2.38)

The right hand side goes to zero as n goes to infinity since k(n) ∼ (n/B)1/β .

Back to the tightness condition (2.27), for any given ε > 0, η > 0, let δ = 1/K, and
ti = i/K, i = 0, 1, ...,K, the positive integer K to be determined. By (2.13), (2.28), (2.33),
and (2.38), there exists c > 0 such that

K∑
i=1

P

(
sups∈[ti−1n,tin] |X̃s − X̃bti−1nc|√

χn(τ)
≥ ε

)
=

K∑
i=1

P

(
|X̃m − X̃bti−1nc|√

χn(τ)
≥ ε

)

≤
K∑
i=1

P
 |∑τ(k(m))

j=τ(k(bti−1nc)+1) Ỹj |√
χn(τ)

≥ ε

2

+ P

(
| ˜̄Ym|√
χn(τ)

≥ ε

4

)
+ P

(
| ˜̄Ybti−1nc|√
χn(τ)

≥ ε

4

)
≤

K∑
i=1

[
C∗(t

1
β

i − t
1
β

i−1)q + C ′ (k(btinc)− k(bti−1nc))n−
2
β +

16Var(Ȳbti−1nc)

ε2χn(τ)

]

≤C∗K sup
1≤i≤K

[(
i

K

) 1
β

−
(
i− 1

K

) 1
β

]q
+ cKn−

1
β

=C∗K1− q
β + cKn−

1
β .

(2.39)

Since q > β, by first choosing K large and then choosing n large enough the above
bound is less than η. Hence the tightness condition holds, and (1.13) is proved.

2.2 Fast cooling

Proof of Theorem 1.5. We do the proof in the same way as above. First we identify the
limits of the finite dimensional distributions and then we prove tightness of the process
(Xn

t , t ∈ [a, 1]). In this case, however, the computation of the limiting finite dimensional
distributions is slightly easier. We show that in this case the variance χt,sn (τ) is of smaller
order than χn(τ) and thus, (X̃bsnc − X̃btnc)/

√
χn(τ)⇒ 0.

Given 0 < a ≤ t ≤ s ≤ 1, recall the variance of X̃bsnc − X̃btnc is

χt,sn (τ) =

k(bsnc)∑
j=k(btnc)+2

Var(Yj) +Var(Ȳbsnc) +Var(Ȳ cbtnc). (2.40)
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Again by (2.10), since t > 0, for n large enough,

Var(Yj) ≤ 2(σ2
µσV )2 log4 Tj ≤ 2(σ2

µσV )2 log4 n (2.41)

holds for j ∈ [k(btnc) + 2, k(bsnc)]. Using the upper bound in (2.15) we obtain

Var(Ȳbsnc) +Var(Ȳ cbtnc) ≤ C
(2) log4 T̄bsnc + 4

[
(σ2
µσV )2 + C(2)

]
log4 Tk(btnc)+1 = O(log4 n).

(2.42)
In the fast cooling case, since k(n) ∼ (1/C) log n, the number of terms in the sum∑k(bsnc)
j=k(btnc)+2Var(Yj) is (1/C)[log sn + o(log sn) − log tn − o(log tn)] = (1/C)[log s/t +

o(log n)]. Thus,

χt,sn (τ) ≤ 2(σ2
µσV )2

[
1

C
log
(s
t

)
+ o(log n)

]
log4 n+O(log4 n). (2.43)

Since χn(τ) is of order log5 n, it is obvious (X̃bsnc − X̃btnc)/
√
χn(τ) ⇒n 0. Moreover,

notice that χbtnc(τ) ∼ χn(τ) for any t ∈ [a, 1], and so X̃btnc/
√
χn(τ) ⇒n N , where N is

the standard Gaussian random variable. Hence (Xn
t , X

n
s −Xn

t )⇒n (N, 0), or equivalently
(Xn

t , X
n
s ) ⇒n (N,N). This argument easily extends to the weak convergence of finite

dimension vectors (Xn
t1 , X

n
t2 , ..., X

n
tk

), i.e.

(Xn
t1 , X

n
t2 , ..., X

n
tk

)⇒n (N,N, ..., N), (2.44)

where ti ∈ [a, 1], i = 1, 2, ..., k, N ∼ N (0, 1).
To check the tightness condition, it is enough to show that for any ε > 0,

lim sup
n→∞

P

(
sup

a≤s≤t≤1
|Xn

s −Xn
t | ≥ ε

)
= 0, (2.45)

which is equivalent to

lim sup
n→∞

P

(
sup

banc≤k≤l≤n

|X̃k − X̃l|√
χn(τ)

≥ ε

)
= 0. (2.46)

Since supbanc≤k≤l≤n |X̃k − X̃1| ≤ 2 supbanc≤s≤n |X̃s − X̃banc|, we can deal with |X̃s −
X̃banc| in the following proof. Let m be |X̃m − X̃banc| = supbanc≤s≤n |X̃s − X̃banc|. The
decomposition of it is

X̃m − X̃banc =

τ(k(m))∑
j=τ(k(banc)+1)

Ỹj + ˜̄Ym − ˜̄Ybanc, (2.47)

or just ˜̄Ym − ˜̄Ybanc if k(banc) = k(m). Similar to what we did in the proof of slow cooling,

P

 |∑τ(k(m))
j=τ(k(banc)+1) Ỹj |√

χn(τ)
≥ ε

2

 ≤ P( sup
l∈[0,k(n)−k(banc)]

|Ml|√
χn(τ)

≥ ε

2

)
. (2.48)

Combining (2.30) and (2.31) under the case q = 1, recall that k(n)−k(banc) ∼ −(1/C) log a,
there exists C2 > 0, depending only on ε,

P

 |∑τ(k(m))
j=τ(k(banc)+1) Ỹj |√

χn(τ)
≥ ε

2

 ≤ C2

log n
. (2.49)
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For ˜̄Ym, following all the steps from (2.34) to (2.38), there exists C ′′ > 0, depending only
on ε,

P

(
| ˜̄Ym|√
χn(τ)

≥ ε

4

)
≤ C ′′

log2 n
(k(n)− k(banc)) , (2.50)

and obviously the right hand side goes to zero as n goes to infinity. By (2.13), (2.49)
and (2.50),

P

(
sup

banc≤s≤n

|X̃s − X̃banc|√
χn(τ)

≥ ε

)
= P

(
|X̃m − X̃banc|√

χn(τ)
≥ ε

)

≤P

 |∑τ(k(m))
j=τ(k(banc)+1) Ỹj |√

χn(τ)
≥ ε

2

+ P

(
| ˜̄Ym|√
χn(τ)

≥ ε

4

)
+ P

(
| ˜̄Ybanc|√
χn(τ)

≥ ε

4

)

≤ C2

log n
+

C ′′

log2 n
(k(n)− k(banc)) +

16Var(Ȳbanc)

ε2χn(τ)

=O(
1

log n
).

(2.51)

The tightness condition holds. Hence (1.14) is proved.
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