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Abstract

In 1990, Bertoin constructed a measure-valued Markov process in the framework of a
Bessel process of dimension between 0 and 1. In the present paper, we represent this
process in a space of interval partitions. We show that this is a member of a class of
interval partition diffusions introduced recently and independently by Forman, Pal,
Rizzolo and Winkel using a completely different construction from spectrally positive
stable Lévy processes with index between 1 and 2 and with jumps marked by squared
Bessel excursions of a corresponding dimension between −2 and 0.
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1 Introduction

We define interval partitions, following Aldous [3, Section 17] and Pitman [12, Chap-
ter 4].

Definition 1.1. An interval partition is a set β of disjoint, open subintervals of some
finite real interval [0,M ], that cover [0,M ] up to a Lebesgue-null set. We write ‖β‖ to
denote M . We refer to the elements of an interval partition as its blocks. The Lebesgue
measure of a block is called its mass or size.

In this paper we construct diffusion processes in a space of interval partitions in
Bertoin’s [4, 5] framework of a Bessel process of dimension d ∈ (0, 1). Bertoin studied
the excursions of such a Bessel process. Specifically, he first decomposed the Bessel
process

R = B− (1− d)H (1.1)

into a Brownian motion B and a path-continuous process H with zero quadratic variation.
He constructed excursions of the Markov process (R,H) away from (0, 0), each consisting
of infinitely many excursions of R away from 0. By extracting suitable statistics, namely
the set {R(t) : t ≥ 0, H(t) = y}, he showed [5, Theorems II.2–II.3] that the measure-
valued process

y 7→ µy[0,T ] :=
∑

0≤t≤T : H(t)=y,R(t)6=0

δR(t) (1.2)
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Figure 1: Left: The sloping black lines show the scaffolding X. Shaded blobs decorating
jumps show the corresponding spindles: points (sj , fj) of N . Right: Graph of one spindle.
Bottom: A skewer, with blocks shaded to correspond to spindles; not to scale.

is path-continuous (in the vague topology for sigma-finite point measures on (0,∞)) and

Markovian when T is chosen suitably such as an inverse local time τ (0,0)
R,H (u), u ≥ 0, of

(R,H) at (0, 0). He further showed in [4, Theorem 4.2] and [5, Corollary II.4] that

y 7→ λy(T ) := 2

∫
(0,∞)

xµy[0,T ](dx) = 2
∑

0≤t≤T : H(t)=y

R(t) (1.3)

is BESQ(0), a zero-dimensional squared Bessel process. We provide a more comprehensive
review of Bertoin’s results in Section 2. In this paper, we represent his measure-valued
process (1.2) as a diffusion in a space of interval partitions.

Theorem 1.2. In the setting of (1.1)–(1.3), with T = τ
(0,0)
R,H (u), the interval partitions

βy :=
{(
λy(t−), λy(t)

)
: t ∈ [0, T ], R(t) 6= 0, H(t) = y

}
, y ≥ 0,

form a diffusion process in a suitable space interval partitions.

While the interval lengths λy(t)− λy(t−) of βy are (twice) the locations R(t) of atoms
of µy[0,T ], the order of the intervals is not captured by µy[0,T ]. Hence, this theorem is not

an immediate consequence of Bertoin’s corresponding results for (µy[0,T ], y ≥ 0).
Indeed, we prove this theorem by identifying this diffusion process as an instance of

a class of diffusion processes introduced in [8], where we gave a general construction of
processes in a space of interval partitions based on spectrally positive Lévy processes
(scaffolding) whose point process of jump heights (interpreted as lifetimes of individuals)
is marked by excursions (spindles, giving “sizes” varying during the lifetime, one for each
level crossed). Informally, the interval partition evolution, indexed by level, considers for
each level y ≥ 0 the jumps crossing that level and records for each such jump an interval
whose length is the “size” of the individual (width of the spindle) when crossing that
level, ordered from left to right without leaving gaps. This construction and terminology
is illustrated in Figure 1.

Specifically, if N =
∑
i∈I δ(si,fi) is a point process of times si ∈ [0, S] and excursions

fi of excursion lengths ζi (spindle heights), and X is a real-valued process with jumps
∆X(si) := X(si) − X(si−) = ζi at times si, i ∈ I, we define the interval partition
SKEWER(y,N,X) at level y, as follows.

Definition 1.3. For y ∈ R, s ∈ [0, S], the aggregate mass in (N,X) at level y, up to time
s is

My
N,X(s) :=

∑
i∈I : si≤s

fi(y −X(si−)). (1.4)
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Interval partitions from Bertoin’s study of BES0(d)

The skewer of (N,X) at level y, denoted by SKEWER(y,N,X), is defined as{(
My
N,X(s−),My

N,X(s)
)

: s ∈ [0, S], My
N,X(s−) < My

N,X(s)
}

(1.5)

and the skewer process as SKEWER(N,X) :=
(
SKEWER(y,N,X), y≥0

)
.

This definition is meaningful when X has finitely many jumps as in Figure 1, and also
when X has a dense set of jump times and the fi are such that MN,X is finite. In [8],
we established criteria under which SKEWER(N,X) is a diffusion. Specifically, N is a
Poisson random measure (PRM) with intensity measure Leb⊗ν, where ν is the Pitman–Yor
excursion law [14] associated with a suitable (self-similar) [0,∞)-valued diffusion, and
X is an associated Lévy process, suitably stopped at a time S when X is zero. In this
interval partition evolution, each interval length (block) evolves independently according
to the [0,∞)-valued diffusion, which we call block diffusion, while between (the infinitely
many) blocks, new blocks appear at the pre-jump levels of X. The PRM of jumps is
obtained by mapping the PRM of spindles onto the spindle heights. Conversely, we may
view the PRM of spindles as marking the PRM of jumps by block excursions. See Section 3
for more details.

Theorem 1.4. When the block diffusion is BESQ(−2(1− d)), a squared Bessel process of
dimension −2(1−d)∈(−2, 0), and the scaffolding Lévy process is Stable (2−d) stopped
at an inverse local time τ0

X(v) of X at 0, the interval partition evolution associated via
SKEWER is distributed as the diffusion in Theorem 1.2, for u = 2d−1v.

The remainder of this paper is organised, as follows. In Sections 2 and 3, we state
the main results of [4, 5] and [8, 9], in order to exhibit the parallels. A few of these are
used in Section 4 to make precise the connections between the two frameworks and to
deduce the theorems we have stated. In Section 5, we discuss some further observations.
We explore the one-to-one correspondence between frameworks to reprove results and
to obtain new results. Furthermore, we discuss the prospects and the challenges to use
representations in terms of Brownian motion such as the developments in this paper,
or indeed in [13], to simplify the approach of [8, 9], which we have used to solve two
long-standing conjectures by constructing a continuum-tree-valued process [1, 2, 7] and
a two-parameter family of Fleming–Viot processes [11, 6, 10]. But more work is needed
here, and we conclude by posing a problem.

2 Bertoin’s study of Bessel processes [4, 5]

Consider a Bessel process R ∼ BESx(d) of dimension d ∈ (0, 1) starting from x > 0.
Let TR(0) = inf{t ≥ 0: R(t) = 0}. On [0, TR(0)), the Bessel process R satisfies an SDE
that yields

R(t) = x+ B(t)− 1− d
2

∫ t

0

du

R(u)
. (2.1)

Furthermore, this singular integral is finite as t ↑ TR(0). By time reversal, this means
that this integral is also well-defined under the excursion measure of the Bessel process.
While the excursions can be stitched together to form a Bessel process that has 0 as a
reflecting boundary, the positive values of these integrals are not summable so that the
representation (2.1) fails beyond TR(0). However, (2.1) can be extended beyond TR(0) if
some compensation is introduced, as follows. It is well-known that the Bessel process R

has jointly continuous space-time local times on (0,∞)2. To obtain a family of local times
that extends continuously to [0,∞)2, it is convenient to choose the level-a local time
(La(t), t ≥ 0), a > 0, of R such that the occupation density of R is (ad−1La(t), a > 0, t ≥ 0).
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Interval partitions from Bertoin’s study of BES0(d)

By the occupation density formula and since L0(t) = 0 for t < TR(0), we can write

1

2

∫ t

0

du

R(u)
=

1

2

∫ ∞
0

ad−1La(t)
da

a
=

1

2

∫ ∞
0

ad−2(La(t)− L0(t))da =: H(t) (2.2)

for t < TR(0). Bertoin showed that defining H(t) by the right-most integral in (2.2) also
for t ≥ TR(0) yields a path-continuous process H with unbounded variation, but zero
quadratic variation (the finiteness of H follows from the Hölder continuity of La(t) in a).
Clearly, this process H is increasing on all excursion intervals of R away from zero, but
the effect of the compensating local time at zero is that H does not increase across the
zero-set of R. With this notation, we have

R(t) = x+ B(t)− (1− d)H(t), for all t ≥ 0. (2.3)

Bertoin noted that (R,H) is a Markov process and that (0, 0) is recurrent for this Markov
process. It is instructive to consider the excursions of (R,H) away from (0, 0) by plotting
R(t) against “time” H(t). Since H increases during each excursion of R away from 0, on
(`, r), say, such a plot shows a time-changed excursion of R starting from 0 at “time” H(`)

and returning to 0 at “time” H(r) > H(`). As H does not increase across the zero-set of
R, the excursions for different (`, r) overlap, in general, when included in the same plot.

Since H is increasing when R is away from 0, and can only decrease across the zero-
set of R, the excursions of (R,H) away from (0, 0) typically consist of many excursions
of R. Specifically, each excursion of (R,H) can be decomposed into three parts: first,
at the “beginning”, there is an escape from (0, 0) towards the left by an accumulation
of short R-excursions until, in the “middle”, one R-excursion takes (R,H) across to
positive H-values and, at the “end”, there is a final approach back to (0, 0) from the right
by an accumulation of short R-excursions.

The main objects of interest in Bertoin’s work [4, 5] are

• the excursions away from (0, 0) of (R,H), and associated quantities,

• the excursions away from 0 of R̃ :=2R ◦ T+
H , where T+

H(y)=inf{t≥0:H(t)>y},
• local time processes (λy(t), y ≥ 0) and (λ−y(t), y ≥ 0) of H, up to time t ≥ 0,

• measure-valued processes y 7→µy[0,T ] =
∑

0≤t≤T : H(t)=y,R(t)6=0 δR(t) for some T >0.

Specifically, some of the main results of [4] are the following. We use Bertoin’s numbering
for ease of reference.

2.4 The inverse local time τ (0,0)
R,H of (R,H) at (0, 0) is stable with index (1− d)/2.

3.1 The Itô excursion process of (R,H) is a PRM.

3.2 Under the excursion measure, excursions of (R,H) are time-reversible.

3.3 (i) A.s., all excursions of (R,H) away from (0, 0) start into [0,∞)×(−∞, 0), cross
(0,∞)× {0} at a unique time U and finish from [0,∞)× (0,∞).

(ii) The PRM has points at excursions whose value of R when the excursion is
crossing the line H = 0 has (sigma-finite) law ((1− d)/Γ(d))xd−2dx, and

(iii) points at excursions with an H-infimum below −y occur at rate yd−1.

3.4 Mid-excursion Markov property: conditionally given an R-value of R(U) = x at
the crossing time U of the line H = 0, the post-U part of the excursion and the
time-reversed pre-U part are independent and distributed as the process (R,H)

starting from (x, 0) and stopped when hitting (0, 0).

4.1 In the setting of result 3.4, conditionally given R(U)=x, the above-0 and below-0
local time processes (λy(t), y ≥ 0) and (λ−y(t), y ≥ 0) of H during an excursion of
(R,H) are two independent BESQ2x(0).
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Interval partitions from Bertoin’s study of BES0(d)

4.2 The level-0 local time λ0 of H time-changed by the inverse local time τ (0,0)
R,H is a stable

subordinator of index 1−d. Given λ0(τ
(0,0)
R,H (u))=x, the processes (λy(τ

(0,0)
R,H (u)), y≥0)

and (λ−y(τ
(0,0)
R,H (u)), y≥0) are two independent BESQx(0).

The main additional results of [5] are the following.

I.5 Under the Itô excursion measure of R̃, excursions

(i) start positive with initial values at rate (21−d(1−d)/Γ(d))xd−2dx, and

(ii) when starting from x evolve as BESQx(−2(1− d)).

I.6 The semi-group of R̃ is characterised by its Laplace transforms, for γ ≥ 0,
Ex(exp(−γR̃(y))) = exp(−x/2y)

(
(1 + 2γy)1−d exp(x/(2 + 4γy))− (2γy)1−d).

II.1 The measure-valued process y 7→ µy[0,TH(−1)] for TH(−1) := inf{t ≥ 0: H(t) = −1}
admits a continuous version in the space N ((0,∞)) of point measures that are
finite on (ε,∞) for all ε > 0, equipped with the topology of vague convergence.

II.2 (i) The process (µy[0,TH(−1)], y ≥ 0) is Markovian.

(ii) Its semi-group κNy , y ≥ 0, acts on functions fϕ(
∑
i∈I niδxi

) =
∏
i∈I(ϕ(xi))

ni

for continuous ϕ : (0,∞) → [0, 1] as κNy fϕ = fϕy
, where ϕy(x) is given by

e−x/y+
∫∞

0
ϕ(a)py(x, da)

/(
1+y1−d∫∞

0
((1−d)/Γ(d))sd−2(1−ϕ(s))e−s/yds

)
, where∫∞

0
e−γapy(x, da) = (1 + γy)1−d(e−γx/(1+γy) − e−x/y

)
, for all γ ≥ 0.

(iii) The process (µ−1+y
[0,TH(−1)], 0 ≤ y ≤ 1) is Markovian with semi-group κ̃Ny , y ≥ 0,

given by κ̃Ny fϕ = fϕy

/(
1 + y1−d∫∞

0
((1−d)/Γ(d))sd−2(1−ϕ(s))e−s/yds

)
.

II.3 Given µ0

[0,τ
(0,0)
R,H (1)]

, the processes (µy
[0,τ

(0,0)
R,H (1)]

, y ≥ 0) and (µ−y
[0,τ

(0,0)
R,H (1)]

, y ≥ 0) are

conditionally independent and have the semi-group (κNy , y≥0), of II.2(ii).

II.4 (i) The process (λ−1+y(TH(−1)), 0≤y≤1) is a BESQ0(2− 2d).

(ii) Given λ0(TH(−1)) = x, the process (λy(TH(−1)), y≥0) is a BESQx(0).

(iii) Given λ0(τ
(0,0)
R,H (1)) = x, the process (λy(τ

(0,0)
R,H (1)), y≥0) is a BESQx(0).

3 Skewer processes of marked Lévy processes [8, 9]

Let α∈(0, 1) and X a spectrally positive Stable (1+α)-process with Laplace exponent
ψ(c) = c1+α/2αΓ(1+α). We call X scaffolding and proceed to decorate it. Specifically,
consider the PRM

∑
i∈I δ(si,∆X(si)) of its jumps. For each jump ∆X(si), consider an

independent BESQ(−2α) excursion (spindle) fi of length ζ(fi) = ∆X(si). These excursions
were studied by Pitman and Yor [14], who also noted, in their Remark (5.8) on pp. 453f.,
that when conditioned on their length, they are BESQ(4 + 2α) bridges from 0 to 0. By
standard marking of PRMs, N :=

∑
i∈I δ(si,fi) is itself a PRM on the space [0,∞)× E , where

E is the space of (continuous) excursion paths. This is illustrated in a simplified way in
Figure 1. The intensity measure Leb⊗ ν of N is the Pitman–Yor excursion measure of
[14], which can be described by entrance laws and a further evolution as unconditioned
BESQ(−2α) processes.

Recall that the skewer of Definition 1.3 extracts from N =
∑
i∈I δ(si,fi) all level-y

spindle masses fi(y −X(si)), where y ∈ (X(si−), X(si)), i ∈ I, and builds the interval
partition that has these as interval lengths in the order given by the si, i ∈ I. The set IH
of all interval partitions can be equipped with a distance dH that applies the Hausdorff
metric to the set of points not covered by the intervals.

Since X is spectrally positive, its (càdlàg) excursions away from 0 (or any other level
y) start negative, jump across zero and end positive. Applied to (N,X), the skewer at
level y extracts one block from each excursion of X away from y. In [8], we denote
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Interval partitions from Bertoin’s study of BES0(d)

the PRM of excursions of X away from y by Gy and enhance the excursion theory of X
to include N: each excursion e[`,r] := (−y+X|[`,r](`+s), s∈ [0, r−`]) of X has its jumps
marked by spindles. We denote by Fy the associated random measure whose points are
pairs of e[`,r] and the restriction N|[`,r]×E shifted to [0, r − `]× E . In each excursion with
spindle marks, the central spindle crossing 0 can be viewed as the “middle” of three
parts, separating the spindles of the “beginning” where X is negative from the spindles
of the “end” where X is positive.

We refer to excursions of (X,N) as bi-clades, to the negative part of such an excursion
including the central spindle up to level 0 as an anti-clade, and to the remainder as
a clade. To start an interval-partition-valued process from any interval partition β,
we consider clades starting from Leb(V ), V ∈ β, as follows. For each interval V ∈ β
independently, consider fV ∼ BESQLeb(V )(−2α) and an independent (X,N) stopped at
SX(−ζ(fV )) := inf{s≥0: X(s) =−ζ(fV )}, for the length ζ(fV ) of fV , then form the clade
(XV ,NV ) := (ζ(fV )+X|[0,SX(−ζ(fV ))], δ(0,fV ) +N|[0,SX(−ζ(fV ))]×E). We stitch together all
excursions XV in the left-to-right order of V ∈β to form a scaffolding Xβ , similarly build
Nβ from NV , V ∈β, and consider SKEWER(Nβ ,Xβ).

Some of the main objects of interest are

• the pair (X,N) of the Stable (1 + α) scaffolding X and the PRM N of spindles,

• the random point measures Fy, y ≥ 0, of bi-clades of (X,N),

• the type-1 evolution (βy, y≥0) := SKEWER(Nβ ,Xβ), extracting intervals from the
spindles in jumps of Xβ crossing level y, for any initial interval partition β.

• the total mass process (‖βy‖ , y ≥ 0).

Some of the main results of [8] are the following, in the numbering of [8].

1.3 The interval-partition-valued process y 7→ βy admits a continuous version.

1.4 Type-1 evolutions y 7→ βy are path-continuous Hunt processes: they can be started
from any interval partition in a Lusin state space (IH , dH), are continuous in the
initial condition and satisfy the strong Markov property.

3.2 The level-y aggregate mass process s 7→ My
N,X(s) of (1.4), time-changed by the

inverse local time τyX of X at level y is a stable subordinator of index α.

4.9 Fy is a PRM, whose intensity measure we call bi-clade excursion measure.

4.11 Bi-clades are space/time-reversible in the sense that reversing scaffolding time and
block diffusion time in spindles yields the same bi-clade excursion measure.

4.15 Mid-bi-clade Markov property: conditionally given a spindle mass fR(−XR−) = x

of the spindle (R, fR) in N at the time R when the scaffolding X crosses the line
X = 0, the clade part (post-R) and the time-reversed anti-clade part (pre-R) are
independent and distributed as clades starting from x.

5.6 The skewer processes of (N,X) stopped at stopping times including τ0
X(u) and

SX(−u) for u ≥ 0 are type-1 evolutions.

In [9], we further prove the following.

1.2 The type-1 semi-group κIy , y ≥ 0, is as follows. Independently for each block
V ∈ β0 of size b = Leb(V ), there is a contribution to level y with probability
1−e−b/2y. Such a contribution consists of a left-most interval with Laplace trans-
form (1+γ/r)α(ebr

2/(r+γ)−1)/(ebr−1), where r=1/2y, concatenated with a scaled
PDIP(α, α), the interval partition formed by the excursion intervals of a BES(2− 2α)-
bridge, scaled by an independent Gamma(α, 1/2y)-distributed random factor. The
contributions are concatenated in the order of V ∈ β0 to give the distribution under
the time-y transition kernel starting from β0.
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1.3 The kernels κ̃Iy obtained by concatenating a PDIP(α, α) scaled by an independent
Gamma(α, 1/2y) with the interval partition from κIy , y≥0, also form the semi-group
of a path-continuous Hunt process, called type-0 evolution.

1.4 (i) The total mass process (‖βy‖ , y≥0) of a type-1 evolution is BESQ‖β0‖(0), for all
initial β0 ∈ IH , hence including the case of a single clade.

(ii) The total mass processes of type-0 evolutions are BESQ‖β0‖(2α).

3.2 (i) The PRM Fy has points at bi-clades whose value of the central spindle mass
when crossing X = 0 has (sigma-finite) law (α/Γ(1− α))x−α−1dx, and

(ii) points at bi-clades with X-supremum above y at rate 2−αy−α.

3.10 (SKEWER(y,N|[0,SX(−u)]×E , u+X|[0,SX(−u)]), 0≤y≤u) is a type-0 evolution.

4 Construction of (X,N) from (R,H) and vice versa

Let τ0
R(s)=inf{L0(t)>s}, s≥0, be the inverse local time of R at 0, and K the PRM of

excursions of R away from 0. For each excursion interval (τ0
R(s−), τ0

R(s)) = (`, r) of R, we
decompose the Bessel excursion (R(`+t), 0 ≤ t ≤ r−`) in K as in R = B−(1−d)H in (2.3),
and we define the associated occupation density local time process λs := (λys , y ≥ 0) of
(H(`+ t)−H(`), 0 ≤ t ≤ r − `).
Proposition 4.1. The random measure

∑
s≥0: τ0

R(s−)<τ0
R(s) δλs

is a PRM
(
Leb⊗ ν

)
, where

ν is a Pitman–Yor excursion measure associated with BESQ(−2(1− d)), the process H ◦ τ0
R

is a spectrally positive stable process of index 2−d. The pair has the same distribution
as (N,X) in Section 3, with α = 1− d, up to a linear time-change.

Proof. Since t 7→ H(t) is differentiable almost everywhere, with derivative H′(t) =

1/2R(t), its local time at level H(t) increases by a jump of 2R(t) at time t. Specifically,
during each excursion interval (τ0

R(s−), τ0
R(s)) = (`, r) of R away from 0, we get

λH(`+t)−H(`)
s = 2R(`+ t), 0 ≤ t ≤ r − `, (4.1)

i.e. the local times of H during excursions are continuous time-changes of the excursions
of 2R. Hence, the jump sizes of H ◦ τ0

R are

H(τ0
R(s))−H(τ0

R(s−)) = inf{y > 0: λys = 0} = sup{y ≥ 0: λys > 0}, s ≥ 0.

Bertoin [4, Proof of Lemma 3.2] showed that H◦ τ0
R is a spectrally positive stable process

of index 2−d. Furthermore, by standard mapping of PRMs,
∑
s≥0: τ0

R(s−)<τ0
R(s)δλs

is a PRM.

We will identify its intensity measure as a BESQ(−2(1 − d)) excursion measure by [14,
(3.1) First description].

Specifically, this description requires us to check three points. (i) Neither excursion
measure charges the zero excursion. (ii) Whether the hitting time Tx of level x by the
excursion of R is finite or not is not affected by the time-change, and the associated
rate under either excursion measure is proportional to 1/s(x) where s(x) = x2−d is the
common scale function of BES(d) and BESQ(−2(1 − d)), see e.g. [14, (3.5) Examples].
(iii) We will show that the pre-Tx and post-Tx processes are, as required. The pre-Tx
part of the excursion of R is a BES0(d) conditioned to stay positive, i.e. a BES0(4 − d)

(see again [14, (3.5) Examples]). The time-change relation (4.1) transforms this into a
BESQ0(4+2(1−d)), by [16, Proposition XI.(1.11)], which is a BESQ0(−2(1−d)) conditioned
to stay positive, as required. Bertoin [5, bottom of p. 117] noted the corresponding time-
change relation for BES(d) and BESQ(−2(1− d)) starting from y stopped when hitting 0.
This identifies the post-Tx parts of the excursions and completes the proof.
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Proof of Theorems 1.2 and 1.4. This will follow from Proposition 4.1 because applying
SKEWER(y, ·) to the scaffolding-and-spindles pair of the proposition yields an interval
partition with blocks

λ
y−H(τ0

R(s−))
s = 2R(t) = λy(t)−λy(t−) if y=H(t) and t∈(τ0

R(s−), τ0
R(s)), (4.2)

by (4.1) and (1.3). Since SKEWER(y,N,X) is unaffected by (linear) changes of scaffold-
ing time of X and N, the process of Theorem 1.2 can be constructed as claimed in
Theorem 1.4, when stopped at a time that corresponds to an inverse local time τ (0,0)

R,H (u)

of (R,H) at (0, 0) and that after time change by τ0
R, is an inverse local time of the

Stable(2− d) process H ◦ τ0
R.

Let us work out the constant c for which stopping (X,N) at τ0
X(cu) yields the same

initial distribution for the skewer process as the stopped scaffolding-and-spindles pair
constructed from (R,H) stopped at τ (0,0)

R,H (u). We do this using the parts of [4, Lemma
3.3] and [9, Proposition 3.2] that we recalled in Sections 2 and 3 here. Specifically,
the statistics of excursions of (R,H) of H-infima directly transfer to H ◦ τ0

R-infima that
correspond to X-infima, which, by bi-clade reversibility (see 4.11 above) or the mid-bi-
clade Markov property (see 4.15 above) have the same rates as X-suprema in a bi-clade.
But the rates of H-infima and X-suprema differ by the constant c = 2α = 21−d, hence
X needs to run longer than H ◦ τ0

R, by a factor of c, to achieve the same number of
excursions exceeding any given level y.

Finally, we note that the skewer process associated with (N|[0,τ0
X(v)]×E ,X|[0,τ0

X(v)]) is a
diffusion by [8, Theorem 1.4], again as recalled in Section 3 here.

A similar argument to work out c can be based on the values of R when crossing
H = 0 and the mass of the central spindle of N when crossing X = 0. Note, however,
that these also differ by a factor of 2, by (4.1).

Corollary 4.2. In Bertoin’s setting, under the Itô excursion measure of R, the local time
process of H has as its law a Pitman–Yor excursion measure of BESQ(−2(1−d)).

Proposition 4.1 makes precise the sense in which the framework of a single Bessel
process R ∼ BES0(d) of [4, 5], via (R,H), yields the scaffolding-and-spindles framework
(N,X) of [8, 9]. The main step in the proof is time-changing the excursions of R away
from 0 to form BESQ(−2(1− d)) spindles. Let us invert this time-change and construct R
from the spindles of N. To this end, recall our notation ν for the Pitman–Yor excursion
measure of BESQ(−2α) of Section 3.

Proposition 4.3. For N =
∑
i∈I δ(si,fi) ∼ PRM(Leb⊗ ν), set ζi :=

∫ ζ(fi)
0

fi(y)dy and

ei(t) :=
1

2
fi

(
inf

{
z ≥ 0:

∫ z

0

fi(y)dy > t

})
, t ∈ [0, ζi) , and ei(ζi) = 0.

Then
∑
i∈I δ(si,ei) has the same distribution as the Itô excursion process K of R ∼ BES0(d),

up to a linear time change, with d = 1− α. In particular, the ei can be stitched together
in the order of the si, i ∈ I, to yield a process R ∼ BES0(1− α).

Proof. This follows from Proposition 4.1. Specifically, mapping fi to ei is elementary
since all fi are continuous with compact support a.s.. In present notation, we can
write (4.1) as

fi

(∫ t

0

du

ei(u)

)
= 2ei(t), t ∈ [0, ζi].

This is a.s. well-defined for all ei, i ∈ I, so the time-changes relating fi and ei are bijective,
and hence the associated PRMs are bijectively related by standard mapping of PRMs. In
particular, we deduce the claimed distributional identities up to a linear time change. The

ECP 25 (2020), paper 75.
Page 8/13

https://www.imstat.org/ecp

https://doi.org/10.1214/20-ECP355
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Interval partitions from Bertoin’s study of BES0(d)

construction of Markov processes from excursions has been well-studied [17]. Note that
a linear time change of the PRM has no effect on the BES0(1− α)-excursions themselves.
Specifically, we define τ(s) =

∑
i∈I : si≤s ζi, s ≥ 0, and R(τ(si−) + t) = ei(t), 0 ≤ t ≤ ζi,

also setting R(t) = 0 for t 6∈
⋃
i∈I[τ(si−), τ(si)] and obtain R ∼ BES0(1−α), and this is

the same process as if we replace si by asi, i ∈ I, throughout, a>0. The process τ is an
inverse local time of R at 0, and replacing si by asi corresponds to a different choice of
local time.

Corollary 4.4. For (X,N) as in Section 3 and notation R as in Proposition 4.3, with
τ(s) =

∑
i∈I : si≤s ζi, s ≥ 0, define H on the range of τ as H(τ(s)) := X(s), s ≥ 0, and

outside the range of τ as

H

(
τ(si−) +

1

2

∫ z

0

fi(y)dy

)
:= X(si−) + z, 0 ≤ z < ∆X(si) = ζ(fi).

Then the pair (R,H) has the same distribution as (R,H) of Section 2.

Proof. Since H is determined by R via (2.2) and R
d
= R, it suffices to show that H

relates to R in the same way. Indeed, we have H ◦ τ = X, by construction, and X(s) is
the compensated limit of its jumps ∆X(si)=ζ(fi) for i∈I with si≤s. But

ζ(fi) =

∫ ζ(ei)

0

du

ei(u)
=

∫ ∞
0

ad−2Lai (∞)da,

where (ad−1Lai (∞), a ≥ 0) is the continuous version of the total occupation density local
time of ei at level a. This entails that the right-most equality of (2.2) holds for t = τ(s),
when (R,H) is replaced by (R,H). Since these limits exist almost surely uniformly for s
in compact intervals, they also hold at t = τ(si−), i ∈ I. Beyond the range of τ , we have,
for each i ∈ I,

H

(
τ(si−) +

1

2

∫ z

0

fi(y)dy

)
= H(τ(si−)) + z, 0 ≤ z ≤ ζ(fi).

But according to the bijective time change relationships transforming fi into ei noted in
the proof of Proposition 4.3, we have

z =

∫ t

0

du

ei(u)
if and only if t =

1

2

∫ z

0

fi(y)dy.

Hence, we obtain

H(τ(si−) + t) = H(τ(si−)) +

∫ t

0

du

ei(u)
, 0 ≤ t ≤ ζ(ei),

and this completes the proof.

5 Further consequences of the connection between [4, 5] and
[8, 9]

In the light of the results of Section 4, the results of [4, 5] and [8, 9] are closely
related. Indeed, many results of [4, 5] can now be deduced from [8, 9], and the approach
of [4, 5] could be refined to handle the additional order structure needed for the interval
partitions of [8, 9]. Table 1 pairs the analogous results, which will mostly have been
evident already from the formulations in Sections 2 and 3.

One may note, however, that these results differ in detail, not just because (βy, y≥0)

and (µy[0,T ], y ≥ 0) have different state spaces. Specifically, [8, Theorem 1.4] and [9,
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Table 1: Each column lists pairs of results (or groups of results) from [8] or [9], and from
[4, 5] that are analogues of each other.

[8]‖[9] 1.3 1.4 4.9 4.11 4.15 5.5 1.2 1.2, 1.3, 3.10 1.4 3.2

[4, 5] II.1 II.2 3.1 3.2 3.4 II.2 II.3 II.2 4.1, 4.2, II.4 3.3

Theorem 1.3] establish interval-partition-valued processes as path-continuous Hunt
processes that are continuous in the initial condition, while [5, Theorem II.2] does not
push beyond the simple Markov property. On the other hand, [4, Proposition 2.4] and [8,
Proposition 3.2] find stable inverse local times of different indices, but fundamentally play
the same role, since they provide the time parameterisations for the PRMs of excursions
of (R,H) and of bi-clades, respectively.

The observation of Corollary 4.2, that H-local time processes in R-excursions are
BESQ(−2(1 − d)), is related to [5, Theorem I.5 or (0.3)], which notes BESQ(−2(1 − d))

evolution of time-changed R-excursions after they exceed previous H-suprema. In the
context of [8, 9], the corresponding result is a consequence of the construction from
BESQ(−2α) spindles (and the Markov property). But [5, Theorem I.5] goes further and
yields the following result when translated into the framework of [8, 9].

Corollary 5.1. For each y ≥ 0, let T+
X (y) = inf{s ≥ 0: X(s) > y} and denote by L(y) :=

fT+
X (y)(y−X(T+

X (y)−)) the value of the left-most spindle fT+
X (y) that crosses level y. Then

(L(y), y ≥ 0) is a Markov process whose excursions away from 0 start with a jump of
intensity (2αα/Γ(1− α))x−1−αdx and then evolve as BESQx(−2α).

Similarly, [5, Theorem I.6] then yields the semi-group of L.

Less immediate are the consequences of some further results of [9], which we have
not stated in Section 3, about what we call pseudo-stationarity of type-0 and type-1
evolutions, and the passage to normalised interval-partition evolutions on the subspace
IH,1 of interval partitions of [0, 1] via suitable time-change. We observe in the context
of Bertoin [5, Theorem II.2] that the marginal distributions of µ−1+y

[0,TH(−1)], y ∈ [0, 1], a

process starting from the zero measure 0 ∈ N ((0,∞)), can be read from

κ̃Ny fϕ(0) =
yd−1

yd−1+
∫∞

0
(1−ϕ(s))Πy(ds)

= E

(
fϕ

( ∑
j∈J : 0≤rj≤Ey

δ∆σy(rj)

))
, (5.1)

where Πy(ds)=((1−d)/Γ(d))sd−2e−s/yds is the Lévy measure of a subordinator (σy(r), r≥
0) with PRM

∑
j∈J δ(rj ,∆σy(rj)) of its jumps, and Ey∼Exp(yd−1) is an independent random

variable. Now [15, Proposition 21] showed, for y=1, that the decreasing rearrangement
(σy(Ey))−1(∆σy(t), 0≤ t≤Ey)↓ of normalised jump sizes of σy|[0,Ey ] has Poisson–Dirichlet
distribution PD(1 − d, 1 − d), and is independent of σy(Ey) ∼ Gamma(1 − d, 1/y), and a
simple change of variables extends this to all y > 0. As PD(1 − d, 1 − d) is preserved
at all times y > 0 (while Gamma(1 − d, 1/y) depends on y > 0), we call this behaviour
pseudo-stationarity, cf. [9, Theorem 1.5].

Furthermore, it is well-known that adding an independent R(0) ∼ Gamma(d, 1/y)

variable to the jumps of σy|[0,Ey ], we obtain R(0) + σy(Ey) ∼ Exp(1/y) independent
of (R(0) + σy(Ey))−1(R(0); ∆σy(t), 0 ≤ t ≤ Ey)↓ ∼ PD(1 − d, 0), and there is pseudo-
stationarity in the following sense.

Theorem 5.2. Let R be a BES(d) starting from R(0) ∼ Gamma(d, ρ) and let Q be a BESQ(0)

starting from Q(0) ∼ Exp(ρ/2) independent of (xi, i ≥ 1) ∼ PD(1− d, 0). Then µy[0,TH(−1/ρ)]

has the same distribution as
∑
i≥1 δxiQ(y)/2, for each fixed y > 0.
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Proof. Let f0 := λ0 = (λy0, y ≥ 0) be the local time process of (H(t), 0 ≤ t ≤ TR(0)).
Then f0(y) = R̃(y) for all 0 ≤ y < H(TR(0)) = ζ(f0), and by [5, Theorem I.5], f0 is a
BESQ(−2(1− d)), starting from 2R(0) ∼ Gamma(d, ρ/2). Proceeding as in Proposition 4.1,
where R(0) = 0, we obtain here, after the linear time-change noted in that proposition,
a point measure N0 := δ(0,f0) + N, in which N ∼ PRM(Leb ⊗ ν) is independent of f0 ∼
BESQ2R(0)(−2(1− d)) and scaffolding X0 := ζ(f0) + X.

By the strong Markov property of (R,H) at TH(0), and by (5.1) with y = 1/ρ, we
find that µ0

[0,TH(−1/ρ)] has the claimed initial distribution. Similarly, but now based on
the strong Markov property of (N0,X0) at SX0

(0) and on [9, Theorem 1.3], (N0,X0)

correspondingly stopped at SX0
(−1/ρ), has a skewer process (βy, y≥ 0) starting from

a PDIP(α, 0) scaled by the independent Exp(ρ/2). By [9, Theorem 1.5], (βy, y ≥ 0) is
pseudo-stationary with βy distributed as a PDIP(α, 0) scaled by an independent Q(y),
where Q is a BESQ(0) starting from Q(0) ∼ Exp(ρ/2).

But as (N0,X0) has been constructed from (R,H) as Proposition 4.1 did for the proof
of Theorems 1.2 and 1.4, we read from (4.2) the coupling

µy[0,TH(−1/ρ)] = φ(βy), where φ(β) =
∑
V ∈β

δLeb(V )/2, (5.2)

so the distribution of µy[0,TH(−1/ρ)] follows from the distribution of the ranked sequence

of interval lengths of the pseudo-stationary βy, which are PD(α, 0) scaled by independent
Q(y), as required.

In the light of this coupling (5.2), [9, Theorem 1.6] has the following corollary.
Let N1((0,∞)) :=

{∑
i∈I δxi ∈ N ((0,∞)) :

∑
i∈I xi = 1

}
and consider the map µ =∑

i∈I δxi 7→ µ :=
∑
i∈I δxi/

∑
j∈I xj

from N ((0,∞)) \ {0} to N1((0,∞)).

Corollary 5.3. Let R be as in Theorem 5.2, set T := TH(−1) and consider the time-
change

%(u) := inf

{
y ≥ 0:

∫ y

0

dz

λz(T )
> u

}
, u ≥ 0.

Then the process
(
µ
%(u)
[0,T ], u ≥ 0

)
, obtained from

(
µy[0,T ], y ≥ 0

)
by first time-changing

by % and then mapping under µ 7→ µ, is a stationary Markov process whose invariant
distribution is the distribution of

∑
i≥1 δxi

for
(
xi, i ≥ 1

)
∼ PD(α, 0).

Proof. By [9, Theorem 1.6], the corresponding interval-partition-valued process is a
stationary Markov process, whose invariant distribution is PDIP(α, 0). Specifically, for
β ∈IH \{∅}, let β := {(a/‖β‖, b/‖β‖) : (a, b)∈β} ∈ IH,1 := {γ ∈IH : ‖γ‖= 1}. Recall that
with the coupling (5.2), for ρ=1, we have λy(T ) = ‖βy‖ for all y ≥ 0. Then

µ
%(u)
[0,T ] =

∑
V ∈β%(u)

δLeb(V )/‖β%(u)‖ =
∑

V ∈β%(u)

δLeb(V ).

This yields that each µ%(u)
[0,T ] has the claimed distribution. The Markov property will follow

from Dynkin’s criterion for when a function of a Markov process is a Markov process.
Specifically, any two β, γ ∈ IH with φ(β) = φ(γ) have intervals of the same lengths, so
there is a bijection η : γ → β such that Leb(η(V )) = Leb(V ) for all V ∈γ. We construct
coupled type-1 evolutions (βy, y≥ 0) starting from β and (γy, y≥ 0) starting from γ by
building (Xβ ,Nβ) from (XV ,NV ), V ∈ β, as in Section 3, and then building (Xγ ,Nγ)

by stitching together the same (Xη(V ),Nη(V )), V ∈ γ, in the order given by γ. Then

φ(βy) = φ(γy) and φ(β
%(u)

) = φ(γ%(u)). In particular, the distributions of φ(β
%(u)

) and
φ(γ%(u)) coincide, as required for Dynkin’s criterion.
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Finally, we rewrite R(t) = B(t)− (1−d)H(t) as a decomposition of Brownian motion
B(t) = R(t) + (1− d)H(t). In Proposition 4.1, we time-changed H by the inverse local
time τ0

R. But then (1−d)H(τ0
R(s)) = B(τ0

R(s)) is a time-changed Brownian motion. Also,
during each jump H(τ0

R(s))−H(τ0
R(s−)), we can write

B(τ0
R(s−)+t)−B(τ0

R(s−)) = R(τ0
R(s−)+t) + (1−d)

(
H(τ0

R(s−)+t)−H(τ0
R(s−))

)
,

which is the part of the Brownian motion from which the corresponding excursion of
R away from 0 is built. From that excursion, we built the corresponding (increasing)
stretch of (1− d)H, whose local time is a BESQ(−2(1− d)) excursion of length H(τ0

R(s))−
H(τ0

R(s−)), by Corollary 4.2. Note that this part of the Brownian motion is positive
(relative to its starting level) and indeed it stays above the increasing stretch of (1− d)H

since R(t) > 0 during (τ0
R(s−), τ0

R(s)).

At τ (0,0)
R,H (u), when R and H both vanish, we also have B(τ

(0,0)
R,H (u)) = 0. Bertoin [4,

Lemma 3.2] noted that R̃(t) = R(τ
(0,0)
R,H (u)− t) and H̃(t) = −H(τ

(0,0)
R,H (u)− t) give R̃

d
= R

and H̃
d
= H on [0, τ

(0,0)
R,H (u)]. This yields

−R̃(t) = B̃(t)− (1− d)H̃(t), t ∈ [0, τ
(0,0)
R,H (u)],

with a minus sign on the left-hand side, so the reversibility is rather subtle. It would
be interesting to understand more fully the behaviour of B on intervals [τ0

R(s−), τ0
R(s)].

E.g., what are the local times of B on [τ0
R(s−), τ0

R(s)], s ≥ 0?

The wider context for this problem includes the natural question of whether the
construction of interval partition evolutions in Theorem 1.2, or related evolutions, from
a single Brownian motion, provides a simpler approach than [8, 9]. The one-to-one
correspondence established here is a promising step, but results such as path properties
in the framework of [4, 5] pose a challenge beyond the scope of this short paper,
particularly when stitching together an initial condition from infinitely many intervals.
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