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Abstract

We show that for many models of random trees, the independence number divided
by the size converges almost surely to a constant as the size grows to infinity; the
trees that we consider include random recursive trees, binary and m-ary search
trees, preferential attachment trees, and others. The limiting constant is computed,
analytically or numerically, for several examples. The method is based on Crump–
Mode–Jagers branching processes.
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1 Introduction

The independence number i.e., the maximum size of an independent set of nodes, is
a quantity that has been studied for various models of random trees (and other random
graphs, not considered here). In the present paper we consider rooted trees that can be
constructed as family trees of a Crump–Mode–Jagers branching process stopped at a
suitable stopping time; this includes, for example, random recursive trees, preferential
attachment trees, fragmentation trees, binary search trees and m-ary search trees; see
Section 2.1 and [8] for details, and the examples in Sections 4–8 below.

We denote the independence number of T by I(T ) and the number of nodes by |T |.
Our main result, Theorem 3.1, gives a strong law of large numbers for I(T ); more
precisely, it shows convergence almost surely (a.s.) of I(Tn)/|Tn|, the fraction of nodes
that belong to a maximum independent set, for a sequence Tn of random trees. The limit
ν is a constant depending on the random tree model; the theorem expresses this limit in
terms of the solution p(t) of the functional equation (3.3). We show in Sections 4–8 how
this equation can be solved and ν found explicitly (at least numerically) in some important
examples, viz. random recursive trees, binary search trees, preferential attachment
trees, extended binary search tress and m-ary search trees (in particular m = 3).

Note that the cases of random recursive trees and binary search trees have been
studied before. For random recursive trees, the expectation was found already by
Meir and Moon [12, 15]. More recently, both Dadedzi [4] and Fuchs et al. [6] prove
(independently, and with different methods) the weak version (i.e., convergence in
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On the independence number of some random trees

probability) of (3.2) below for random recursive trees and binary search trees, with
explicit ν, and also a much stronger central limit theorem. Nevertheless, we think
that the present approach is of interest, since it is quite general; moreover, it gives
convergence a.s. Furthermore, although we only prove a law of large numbers in the
present paper, we hope that future development of our methods will also lead to a central
limit theorem.

Similar results have also been proved for other types of random trees. For simply
generated trees, see e.g. Meir and Moon [11, 13] and Banderier, Kuba and Panholzer
[2]; for uniform unlabelled trees (rooted or unrooted), see Meir and Moon [14].

Remark 1.1. As is well known, for trees, several other quantities are determined by the
independence number by linear relations, and our results thus immediately transfer to
these quantities. These include, for example:

(i) The minimum size of a vertex cover, i.e., of a vertex set that contains at least one
end-point of every edge. This equals |T | − I(T ); this is trivial because a set is a
vertex cover if and only if its complement is independent.

(ii) The matching number, i.e., the maximum size of a partial matching. This also
equals |T | − I(T ), see e.g. [5, Theorem 2.1.1].

(iii) The nullity, i.e., the dimension of the kernel of the adjacency matrix, or the multi-
plicity of the eigenvalue 0 of the adjacency matrix. This equals 2I(T )− |T |, see e.g.
[18, Corollary 5.2.6]. (The results in [4] referred to below are actually stated for
the nullity.)

See e.g. [6] for further examples.

2 Preliminaries

We give some definitions and notation, together with some known results that will be
used.

If T is a rooted tree, and v ∈ T (i.e., v is a node in T ), then T v denotes the fringe
subtree of T at v, i.e., the subtree consisting of v and all its descendants; T v is defined
as a rooted tree with root v.

Exp(λ) denotes an exponential random variable with rate λ; it thus has mean 1/λ and
density function λe−λx, x > 0.

2.1 Family trees of branching processes

We follow [8, Section 5], to which we refer for further details. Let Tt be the family
tree of all individuals born up to time t > 0 in a given Crump–Mode–Jagers (CMJ) process,
starting at time t = 0 with a single individual (the root). Let the children of the root be
born at (random) times (ξi)

N
1 , where 0 6 N 6 ∞ and 0 < ξ1 6 ξ2 6 . . . . We regard the

(multi)set of birth times as a point process Ξ; formally, Ξ is the random (discrete) measure∑
i δξi , where δt is the Dirac measure (point mass) at t. Moreover, each individual x has

its own copy Ξx of Ξ; the processes Ξx are i.i.d. (independent and identically distributed).
Let σx be the time individual x is born. For simplicity we assume that all individuals live
forever.

Let Zt be the number of individuals at time t. In the simplest, and most common,
case, we define the stopping time

τ(n) := inf{t : Zt > n}, (2.1)

the first time the number of individuals is at least n, and Tn := Tτ(n), the family tree at
that time. (By the assumptions below, τ(n) < ∞ a.s.) Thus Tn is a random tree with
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|Tn| > n. Typically, the birth times ξi are continuous random variables and a.s. no two
births are simultaneous, and then |Tn| = n.

More generally, we fix a weight ψ(s). This is assumed to be a characteristic, i.e., a
random function ψ(s) > 0 associated to the root and its point process Ξ, and we assume
that each individual x is equipped with its own copy ψx(s) of ψ; the simplest case is
that ψx(s) is a deterministic function of the point process Ξx. (More generally, ψx may
also depend on the entire tree of descendants of x, and possibly also on some extra
randomness, see [8, in particular Remark 5.10].) We assume ψx ∈ D[0,∞), and we
exclude the trivial case ψ(t) = 0 for all t > 0 a.s. The argument s > 0 of ψx(s) should be
interpreted as the current age of x, which is t− σx at time t. Let

Zψt :=
∑

x:σx6t

ψx(t− σx) (2.2)

be the total weight at time t > 0. We then let

τ(n) := inf{t : Zψt > n}, (2.3)

the first time the total weight is at least n. (We define inf ∅ =∞.) Finally, as before, we
define Tn := Tτ(n). Note that the choice ψ(s) = 1 gives Zψt = Zt, and thus the simple
definition (2.1) of Tn.

Examples of common random trees that can be constructed as Tn in this way are
given in Sections 4–8; see further [8].

Let µ := EΞ be the intensity of the point process Ξ. In other words, µ is the
(deterministic) measure on [0,∞) such that, for any Borel set A, µ(A) is the expected
number of children of the root born at times t ∈ A. In particular, with N 6∞ as above
the (random) total number of children of the root, µ[0,∞) = EN 6∞.

We use the following assumptions throughout the paper:

(A1) ξ1 > 0, i.e., no children are born immediately at their parent’s birth. (Equivalently,
µ{0} = 0.)

(A2) µ is not concentrated on any lattice hZ, h > 0. (The results extend to the lattice
case with suitable modifications, but we do not know any interesting examples and
ignore this case.)

(A3) N > 1 a.s. and EN > 1. (Thus, every individual has at least one child, so the
process never dies out, and Z∞ =∞ a.s.)

(A4) There exists a real number α (the Malthusian parameter) such that∫ ∞
0

e−αtµ(dt) = 1. (2.4)

(By 2.1, α > 0.)

(A5) There exists θ < α such that ∫ ∞
0

e−θtµ(dt) <∞. (2.5)

2.2 Independence numbers

We collect here some simple and well-known properties of independence numbers of
(rooted) trees; see e.g. [11].

For a tree T , let I(T ) be the independence number of T , i.e., the maximum size of an
independent set of nodes. For a rooted tree T , let further I1(T ) be the maximum size of
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an independent node set containing the root, and let I0(T ) be the maximum size of an
independent node set not containing the root. Thus, with x ∨ y denoting max{x, y},

I(T ) = I1(T ) ∨ I0(T ). (2.6)

Furthermore, if the children of the root are v1, . . . , vd, then it is easily seen that

I0(T ) =

d∑
i=1

I(T vi), (2.7)

I1(T ) = 1 +

d∑
i=1

I0(T vi). (2.8)

Since I0(T ) 6 I(T ) by (2.6), it follows that I1(T ) 6 I0(T ) + 1, and thus

I0(T ) 6 I(T ) 6 I0(T ) + 1. (2.9)

Define

ι(T ) := I(T )− I0(T ) ∈ {0, 1}. (2.10)

Then (2.7) yields

I(T ) = ι(T ) +

d∑
i=1

I(T vi), (2.11)

which shows that the independence number I(T ) is an additive functional on rooted
trees with toll function ι(T ).

As is well known, (2.11) is equivalent to

I(T ) =
∑
v∈T

ι(T v). (2.12)

Furthermore, by (2.10), (2.6) and (2.7)–(2.8),

ι(T ) = 1 ⇐⇒ I1(T ) = 1 + I0(T ) ⇐⇒
d∑
i=1

I0(T vi) =

d∑
i=1

I(T vi)

⇐⇒ ι(T vi) = 0 for every child vi of the root. (2.13)

Say that a node v ∈ T is essential if it belongs to every maximum independent set of
T v. This is equivalent to I1(T v) > I0(T v), and thus to ι(T v) = 1. In other words,

ι(T v) = 1{v is essential}. (2.14)

In particular, ι(T ) equals the indicator that the root is essential in T . Note also that,
by (2.14) and (2.13),

a node is essential if and only if none of its children is. (2.15)

Remark 2.1. By (2.12) and (2.14), the independence number I(T ) equals the number
of essential nodes in T . Moreover, (2.15) implies that the set of essential nodes is
independent, and thus an independent set of maximum size.
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3 Main result

We next state our main theorem. Recall that the Laplace functional of the point
process Ξ is defined as

LΞ(f) := E e−
∫
f dΞ (3.1)

for (measurable) functions f > 0 on [0,∞).

Theorem 3.1. Let Tn, n > 1, be random trees that can be defined as stopped family
trees of Crump–Mode–Jagers processes as in Section 2.1, for some point process Ξ = (ξi)

satisfying assumptions 2.1–2.1and some weight ψ. Then, as n→∞,

I(Tn)

|Tn|
a.s.−→ ν := α

∫ ∞
0

e−αtp(t) dt, (3.2)

where α is the Malthusian parameter and p(t) is the unique function [0,∞) → (0, 1]

satisfying

p(t) = E
∏
i:ξi6t

(
1− p(t− ξi)

)
= E e

∫ t
0

log(1−p(t−s)) dΞ(s)

= LΞ

(
− log

(
1− p(t− ·)

)
1{· 6 t}

)
, t > 0. (3.3)

Note that the result does not depend on the choice of weigth ψ.

Proof. By (2.12) and (2.14), I(Tn)/|Tn| is the fraction of nodes in Tn that are essential.
We apply [8, Theorem 5.14(ii)] to the property that a node is essential. (This theorem is
a special case of deep results by Jagers and Nerman [9, 16], see also Aldous [1].) Then
[8, (5.23)–(5.24)] yield (3.2), with

p(t) := P
(
the root is essential in Tt

)
= P

(
ι(Tt) = 1

)
. (3.4)

To see (3.3), condition on Ξ = (ξi)i, i.e., on the sequence of times that the root gives
birth. Then, the children of the root of Tt are the individuals i born at times ξi 6 t. Each
such child has grown a tree T it that has the same distribution as Tt−ξi , and thus

P
(
ι(T it ) = 0 | Ξ

)
= 1− p(t− ξi), ξi 6 t. (3.5)

Furthermore, still conditioned on Ξ, the events in (3.5) for different i are independent,
and thus using (2.13),

P
(
ι(Tt) = 1 | Ξ

)
= P

(
ι(T it ) = 0 for every child i of the root | Ξ

)
=
∏
i:ξi6t

(
1− p(t− ξi)

)
. (3.6)

Hence, (3.3) follows, using (3.1).

Finally, suppose that p1(t) is another function [0,∞)→ [0, 1] that satisfies (3.3), and
let ∆p(t) := |p(t)− p1(t)|. Then,

∆p(t) =
∣∣∣E ∏

i:ξi6t

(
1− p(t− ξi)

)
− E

∏
i:ξi6t

(
1− p1(t− ξi)

)∣∣∣
6 E

∑
i:ξi6t

∣∣p(t− ξi)− p1(t− ξi)
∣∣ = E

∑
i:ξi6t

∆p(t− ξi). (3.7)
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Fix β > α, and define h(t) := sups6t e
−βs∆p(s) ∈ [0, 1]. Then, (3.7) yields

e−βt∆p(t) 6 e−βtE
∑
i:ξi6t

eβ(t−ξi)h(t) = h(t)E
∑
i:ξi6t

e−βξi

= h(t)E

∫ t

0

e−βx dΞ(x) = h(t)

∫ t

0

e−βx dµ(x). (3.8)

Since h(t) is monotone, this implies

h(t) = sup
s6t

(
e−βs∆p(s)

)
6 h(t)

∫ t

0

e−βx dµ(x). (3.9)

However, by (2.4),∫ t

0

e−βx dµ(x) 6
∫ ∞

0

e−βx dµ(x) <

∫ ∞
0

e−αx dµ(x) = 1, (3.10)

and thus (3.9) implies h(t) = 0 for any t > 0. Thus p1(t) = p(t), and the solution to (3.3)
is unique.

Note that T0 consists of the root only, and thus (3.4) yields the initial condition, also a
trivial special case of (3.3),

p(0) = 1. (3.11)

Remark 3.2. An explanation for the formula (3.2) for ν is that a random fringe tree of
Tn converges in distribution to Tτ , the tree obtained by stopping the branching process
at a time τ ∼ Exp(α) independent of the brancing process; thus ν is the probability that
the root of Tτ is essential. See further [8].

Remark 3.3. It is sometimes convenient to define p(t) := 0 for t < 0; then (3.3) may be
written

p(t) = E

N∏
i=1

(
1− p(t− ξi)

)
, t > 0, (3.12)

taking the product over all children (born yet or not). We will use this a couple of times,
but note that all formulas for p(t) assume t > 0.

4 The random recursive tree

The random recursive tree is an example of a random tree that can be constructed as
in Section 2.1, taking Ξ to be a Poisson process with constant intensity 1 on [0,∞) and
the trivial weight ψ(t) = 1, see [8, Example 6.1]. Thus Theorem 3.1 applies and shows
I(Tn)/|Tn|

a.s.−→ ν as n→∞.
To find the limit ν, note first that by the standard formula [10, Theorem 3.9] for the

Laplace functional of a rate 1 Poisson process

LΞ(f) = e−
∫

(1−e−f(s)) ds, (4.1)

(3.3) yields

p(t) = exp
(
−
∫ t

0

p(t− s) ds
)

= exp
(
−
∫ t

0

p(u) du
)
. (4.2)

This can also be seen directly as follows. The number of children of the root at time t has
the Poisson distribution Po(t). Furthermore, a child born at time s 6 t has probability
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p(t − s) of being essential at time t, and thus, by the independence properties of the
branching process, the children of the root that are essential at time t are born according
to a random thinning of the rate 1 Poisson process; this thinning is a Poisson process on
[0, t] with intensity p(t− ·). In particular, the number of children of the root of Tt that are
essential is Po(λ(t)) with λ(t) =

∫ t
0
p(t− s) ds. By (2.15), the root is essential if and only

if this number is 0, which has probability e−λ(t), and (4.2) follows.
Since p(t) ∈ [0, 1], (4.2) implies that p(t) is continuous, and by induction infinitely

differentiable. Differentiating (4.2) yields

p′(t) = − exp
(
−
∫ t

0

p(u) du
)
p(t) = −p(t)2, t > 0, (4.3)

and thus

d

dt

1

p(t)
= − p

′(t)

p(t)2
= 1. (4.4)

Consequently, by the initial condition p(0) = 1 (3.11),

p(t) =
1

1 + t
. (4.5)

The Malthusian parameter α = 1, and thus by (3.2) and (4.5)

ν =

∫ ∞
0

e−t

t+ 1
dt =

∫ 1

0

1

1− log x
dx = 0.59634736 . . . (4.6)

as proved by Meir and Moon [12, 15], Dadedzi [4] and Fuchs et al. [6]; this number is
known as the Euler–Gompertz constant.

5 Preferential attachment trees

Consider now a preferential attachment tree, where nodes are added one by one,
and each new node chooses a parent at random, with the probability of choosing a node
v as the parent is proportional to χd(v) + ρ, where d(v) is the current outdegree of v,
and χ and ρ are given constants. (Here ρ > 0 and either χ > 0 or ρ/|χ| is an integer
> 2. Only the ratio χ/ρ is significant.) This random tree can be constructed by a CMJ
process where an individual that already has k children gets the next child with rate
χk + ρ; see [8, Example 6.4]. Again the weight ψ(t) = 1. Thus Theorem 3.1 applies and
shows I(Tn)/|Tn|

a.s.−→ ν as n→∞.
To find p(t) and ν, we use instead of (3.3) the following (closely related) argument.

Consider also, for λ > 0, a modified branching process Xλ, where the starting individual
(= the root) is special, and gets children with the rate χk + λ, where k is the current
number of children. All other individuals are as before, with rate χk + ρ. (If χ < 0,
we assume that λ/|χ| is an integer; this case will be enough below.) Let pλ(t) be the
probability that the root is essential in the family tree of Xλ at time t. Note that if λ = ρ,
then the modified process equals the original one, and thus p(t) = pρ(t).

Consider again the original process, let t > 0, and condition on the first child of the
root being born at time s 6 t. The probability that this child is not essential at time t
is 1− p(t− s). Furthermore, if we ignore this child and its descendants, the rest of the
tree evolves after time s as the modified process Xχ+ρ. Hence, the probability that no
child of the root after the first is essential at time t is pχ+ρ(t− s). (Note that the property
that such a child v is essential depends only on the fringe subtree T v, and is thus not
affected by the deletion of the first child of the root and its offspring.) Consequently,
conditioned on the first child being born at time s 6 t, the probability that the root has
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no essential child at time t is
(
1− p(t− s)

)
pχ+ρ(t− s). By (2.15), this is the conditional

probability that the root is essential at time t, and since the time the first child is born
has the distribution Exp(ρ), we have

p(t) = e−ρt + ρ

∫ t

0

e−ρs
(
1− p(t− s)

)
pχ+ρ(t− s) ds

= e−ρt + ρe−ρt
∫ t

0

eρu
(
1− p(u)

)
pχ+ρ(u) du. (5.1)

If we have two independent modified processes Xλ1
and X′λ2

, then we may merge
them by identifying the two roots. This yields a modified process Xλ1+λ2

with parameter
λ = λ1 + λ2. There are no essential children of the root in the combined process if and
only if there are none in both modified processes taken separately; hence, it follows that,
for any t > 0 and λ1, λ2 > 0,

pλ1+λ2
(t) = pλ1

(t)pλ2
(t). (5.2)

Fix t > 0. Since 0 < pλ(t) 6 1, (5.2) implies that λ 7→ pλ(t) is decreasing, which in turn
implies that (5.2) has the solution pλ(t) = e−C(t)λ for some C(t) > 0. Hence,

pλ(t) = pρ(t)
λ/ρ = p(t)λ/ρ. (5.3)

Combining (5.1) and (5.3) yields the functional equation

p(t) = e−ρt + ρe−ρt
∫ t

0

eρu
(
1− p(u)

)
p(u)χ/ρ+1 du. (5.4)

Again, p is infinitely differentiable, and taking the derivative yields

p′(t) = −ρe−ρt − ρ2e−ρt
∫ t

0

eρu
(
1− p(u)

)
p(u)χ/ρ+1 du+ ρ

(
1− p(t)

)
p(t)χ/ρ+1

= −ρp(t) + ρ
(
1− p(t)

)
p(t)χ/ρ+1. (5.5)

Let χ′ := χ/ρ, and

h(x) := x− xχ
′+1(1− x) = x− xχ

′+1 + xχ
′+2. (5.6)

Then (5.5) can be written

p′(t) = −ρh(p(t)). (5.7)

By (5.6), h(1) = 1 > 0 and h(0) = 0. (If χ < 0, then ρ = m|χ| for an integer m > 2, and
thus χ′ = −1/m ∈ [− 1

2 , 0), so χ′ + 1 > 0 also in this case.) Let q be the largest zero of h
in [0, 1], i.e.,

q := max{x ∈ [0, 1] : h(x) = 0}. (5.8)

By continuity and h(0) = 0, this maximum always exists. Furthermore, if χ > 0, then (5.6)
implies h(x) > 0 on (0, 1], and thus q = 0. On the other hand, if χ < 0, then h(x) < 0 for
small positive x, and thus 0 < q < 1.

The function p(t) is continuous on [0,∞), with p(0) = 1. Suppose that p(t) = q for
some t <∞, and let t0 be the smallest such t. Then p(t) ∈ [q, 1] for t ∈ [0, t0]. However,
h(x) is continuously differentiable and thus Lipschitz on [q, 1], as is seen by considering
the cases χ > 0 and χ < 0 separately, and thus the differential equation (5.7) has at
most one solution for t ∈ [0, t0] with p(t) ∈ [q, 1] and p(t0) = q. Since p(t) = q is another
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solution of (5.7), this is a contradiction. Hence, p(t) 6= q, and thus, by continuity, p(t) > q

for all t > 0.
This further implies, by (5.7) again, that p(t) is strictly decreasing on [0,∞). Hence

the limit p(∞) := limt→∞ p(t) exists. Then (5.7) implies p′(t) → −ρh(p(∞)) as t→∞,
and thus p(∞) > q is impossible; hence,

p(t)→ p(∞) = q, t→∞. (5.9)

Consequently, p is a bijection [0,∞)→ (q, 1].
Let, for x ∈ (q, 1],

Ψ(x) :=

∫ 1

x

1

h(y)
dy. (5.10)

Thus Ψ(1) = 0 and Ψ′(x) = −1/h(x). Hence, (5.7) implies by the chain rule

d

dt
Ψ(p(t)) = Ψ′(p(t))p′(t) =

−ρh(p(t))

−h(p(t))
= ρ, (5.11)

and thus

Ψ(p(t)) = ρt, t > 0. (5.12)

Hence, if Ψ−1 : [0,∞)→ (q, 1] denotes the inverse function, then

p(t) = Ψ−1(ρt). (5.13)

It follows from (5.12), letting t→∞, that the limit Ψ(q) =∞, which also easily can be
seen directly from (5.10).

The Malthusian parameter α = χ+ ρ, see [8, (6.20)], and thus (3.2) and (5.13) yield

ν = α

∫ ∞
0

e−αtΨ−1(ρt) dt = (χ′ + 1)

∫ ∞
0

e−(χ′+1)sΨ−1(s) ds. (5.14)

The change of variables s = Ψ(x) and an integration by parts yield the formulas

ν = (χ′ + 1)

∫ q

1

e−(χ′+1)Ψ(x)xΨ′(x) dx (5.15)

= (χ′ + 1)

∫ 1

q

e−(χ′+1)Ψ(x) x

h(x)
dx (5.16)

= 1−
∫ 1

q

e−(χ′+1)Ψ(x) dx. (5.17)

These integrals can be evaluated numerically.

Example 5.1. Let χ = 0 and ρ = 1; this yields the random recursive tree in Section 4.
We have χ′ = 0, and thus (5.6) yields h(x) = x2. Hence, (5.10) yields Ψ(x) = 1/x− 1 =

(1− x)/x, and (5.13) yields (4.5) again. Furthermore, (5.16) becomes

ν =

∫ 1

0

e1−1/xx−1 dx =

∫ ∞
1

e1−yy−1 dy, (5.18)

which by a change of variables agrees with (4.6).

Example 5.2. Let χ = ρ = 1; this yields the standard preferential attachment random
tree. (This is the same as the plane oriented recursive tree [17]; it is a special case of the
preferential attachment graphs [3], [7, Chapter 8].) We have χ′ = 1, and thus (5.6) yields

h(x) = x− x2 + x3. (5.19)
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We find from (5.10),

Ψ(x) = 1
2 log(x2 − x+ 1)− log(x)− 1√

3
arctan

(2x− 1√
3

)
+

π

6
√

3
(5.20)

and thus (5.17) yields, with an integral that magically has an elementary primitive
function,

ν = 1−
∫ 1

0

e−2Ψ(x) dx = 1− e−
π

3
√

3

∫ 1

0

e
2√
3

arctan((2x−1)/
√

3) x2

1− x+ x2
dx

= 1− e−
π

3
√

3

[
(x− 1)e

2√
3

arctan((2x−1)/
√

3)
]1

0

= 1− e−2π/(3
√

3) = 0.70156394 . . . (5.21)

Thus, Theorem 3.1 shows that for the standard preferential attachment tree,
I(Tn)/|Tn|

a.s.−→ 1− e−2π/(3
√

3) as n→∞.

6 The binary search tree

The binary search tree is another example where Theorem 3.1 applies. (This is the
special case χ = −1, ρ = 2 of Section 5, but we prefer to treat it directly.) Now each node
gets two children, after waiting times that are independent and Exp(1). Again, ψ(t) = 1.

We proceed to find the limit ν. In this case, (3.3) yields

p(t) =
(

1−
∫ t

0

p(t− s)e−s ds
)2

=
(

1− e−t
∫ t

0

eup(u) du
)2

, t > 0. (6.1)

This can also, perhaps more easily, be seen as follows. As always, if a child is born
at time s 6 t, then the probability that this child is essential at time t is p(t − s).
Hence, the probability that the left child of the root is born and is essential at time t
is
∫ t

0
p(t − s)e−s ds, and thus the probability that there is no left child that is essential

equals 1−
∫ t

0
p(t−s)e−s ds. The same holds for the right child, and since the two children

appear and develop independently, (2.15) yields (6.1).
To solve the functional equation (6.1), let g(t) := p(t)1/2, so (6.1) may be written

g(t) = 1− e−t
∫ t

0

esg(s)2 ds. (6.2)

It follows, by induction, that g is infinitely differentiable; furthermore, (6.2) yields the
differential equation

g′(t) = e−t
∫ t

0

esg(s)2 ds− g(t)2 = 1− g(t)− g(t)2. (6.3)

This differential equation is separable and can be written

dg

1− g − g2
= dt, (6.4)

which is solved by standard methods as follows.
Let γ± := −1±

√
5

2 be the roots of 1− γ − γ2 = 0. Then

1

1− g − g2
= − 1

(g − γ+)(g − γ−)
=

1

γ+ − γ−

( 1

g − γ−
− 1

g − γ+

)
(6.5)

and thus (6.4) can be integrated to

log(g(t)− γ−)− log(g(t)− γ+) = (γ+ − γ−)t+ C, (6.6)
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where g(0) = 1 yields C = log(1− γ−)− log(1− γ+). Hence,

g(t)− γ−
g(t)− γ+

=
1− γ−
1− γ+

e(γ+−γ−)t (6.7)

and thus

g(t) =
γ+(1− γ−)e(γ+−γ−)t − γ−(1− γ+)

(1− γ−)e(γ+−γ−)t − (1− γ+)
. (6.8)

Consequently, p(t) = g(t)2 with g(t) given by (6.8). Note also that we have γ+ − γ− =
√

5

and, with φ := 1+
√

5
2 , the golden ratio,

γ+ = φ−1, 1− γ+ = φ−2, (6.9)

γ− = −φ, 1− γ− = φ2. (6.10)

The Malthusian parameter α = 1, and thus (3.2) and (6.8) yield, with x = e−t,

ν =

∫ ∞
0

e−tg(t)2 dt =

∫ ∞
0

e−t
(
φe
√

5 t + φ−1

φ2e
√

5 t − φ−2

)2

dt

=

∫ 1

0

(
φ+ φ−1x

√
5

φ2 − φ−2x
√

5

)2

dx =
φ2

√
5

∫ 1

0

(
φ2 + y

φ4 − y

)2

y1/
√

5−1 dy. (6.11)

This integral can be evaluated as the sum of a rapidly (geometrically) convergent series
by expanding (φ4 − y)−2 = φ−8(1− φ−4y)−2 into a power series, which yields

ν =

∞∑
k=0

(k + 1)φ−4k−6
( φ4

k
√

5 + 1
+

2φ2

(k + 1)
√

5 + 1
+

1

(k + 2)
√

5 + 1

)
. (6.12)

The integrals (6.11) and the sum (6.12) are all easily evaluated numerically, yielding (by
Maple)

ν = 0.54287631 . . . (6.13)

as found by [4] and [6].

7 Extended binary search trees

An extended binary search tree is a binary search tree where we have added further
leaves at all possible places; thus the original nodes (called internal nodes) have all two
children each, and the new nodes (called external nodes) have no children. This can
be constructed by a CMJ process where each individual gets twins after an Exp(1) time
(and no further children). Note that in the tree Tt, the internal nodes are the ones that
have had children, while the others are external nodes.

We may choose to measure the size of an extended binary search tree in three
different ways: the total number of nodes, the number of internal nodes, or the number
of external nodes. (These are related in simple ways, since in the binary case treated
here, the number of external nodes is always 1 + the number of internal nodes.) We
obtain these three versions as our Tn by choosing different weight functions ψ; ψ(t) = 1

as usual gives the total number of vertices, while the number of internal vertices is
given by Zψt with ψ(t) := 1{ξ1 6 t} and the number of external vertices is given by
ψ(t) := 1{ξ1 > t}. Recall that Theorem 3.1 applies, and gives the same limit, to all three
versions.
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Since we have ξ1 = ξ2, (3.3) yields (with p(t) = 0 for t < 0, see Remark 3.3)

p(t) = E
[(

1− p(t− ξ1)
)2]

= e−t +

∫ t

0

e−s
(
1− p(t− s)

)2
ds

= e−t + e−t
∫ t

0

eu
(
1− p(u)

)2
du, t > 0. (7.1)

This yields the differential equation

p′(t) = −p(t) +
(
1− p(t)

)2
= 1− 3p(t) + p(t)2. (7.2)

Let q(t) := 1− p(t). Then (7.2) yields

q′(t) = −p′(t) = 1− q(t)− q(t)2, (7.3)

which is the same differential equation as (6.3), although now the initial condition is
q(0) = 1− p(0) = 0. The general solution is as in (6.6), and we obtain, cf. (6.7)–(6.8),

q(t)− γ−
q(t)− γ+

=
γ−
γ+

e(γ+−γ−)t (7.4)

and, using (6.9)–(6.10),

q(t) =
e(γ+−γ−)t − 1

γ+ − γ−e(γ+−γ−)t
=

e
√

5t − 1

φ−1 + φe
√

5t
=

φe
√

5t − φ
φ2e
√

5t + 1
. (7.5)

Thus, recalling φ2 = φ+ 1,

p(t) = 1− q(t) =
(φ2 − φ)e

√
5t + φ+ 1

φ2e
√

5t + 1
=

e
√

5t + φ2

φ2e
√

5t + 1
(7.6)

and, since the Malthusian parameter α = 1, using x = e−t,

ν =

∫ ∞
0

p(t)e−t dt =

∫ 1

0

1 + φ2x
√

5

φ2 + x
√

5
dx = φ2 − (φ4 − 1)

∫ 1

0

dx

φ2 + x
√

5

= φ2 − (3φ+ 1)

∞∑
k=0

(−1)k
φ−2−2k

k
√

5 + 1
= 0.5987899 . . . (7.7)

8 m-ary search trees

Consider now an m-ary search tree, for a given m > 3. (The case m = 2 was studied
in Section 6.) The m-ary search tree Tn generated by n random keys can be constructed
by the following CMJ process and weight ψ, see [8, Section 7.2].

Each individual (node) starts by gaining weight; the weight ψ(t) represents the
number of keys in the node. It starts with ψ(0) = 1, and then increases by 1 after
successive independent waiting times Y2, . . . , Ym−1 with Yi ∼ Exp(i). At time S :=∑m−1
i=2 Yi the weight thus reaches m−1; this marks puberty, and the node becomes fertile

and gets m children after further independent waiting times Xi ∼ Exp(1). (Thus, child i
is born at S +Xi.)
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Theorem 3.1 thus applies. To find ν, we condition on S and find that if 0 6 s 6 t, then
(with p(u) = 0 for u < 0, see Remark 3.3)

E
( ∏
i:ξi6t

(
1− p(t− ξi)

)
| S = s

)
= E

( m∏
i=1

(
1− p(t− ξi)

)
| S = s

)
= E

m∏
i=1

(
1− p(t− s−Xi)

)
=
(

1−
∫ t−s

0

e−xp(t− s− x) dx
)m

=
(

1− es−t
∫ t−s

0

eyp(y) dy
)m

. (8.1)

Hence, (3.3) or (3.12) yields, for t > 0, if fS is the density function of S,

p(t) = P(S > t) +

∫ t

0

(
1− es−t

∫ t−s

0

eyp(y) dy
)m

fS(s) ds. (8.2)

(We assume m > 3; for m = 2 we have S = 0 and (8.2) is replaced by (6.1).) We define

g(t) := 1− e−t
∫ t

0

eyp(y) dy (8.3)

and write (8.2) as

p(t) = P (S > t) +

∫ t

0

g(t− s)mfS(s) ds

= P (S > t) +

∫ t

0

g(s)mfS(t− s) ds. (8.4)

For simplicity, we consider in the sequel only the case m = 3. Then S = Y2 ∼ Exp(2),
and (8.4) becomes

p(t) = e−2t + 2e−2t

∫ t

0

e2sg(s)3 ds. (8.5)

It follows from (8.3) and (8.5) by induction that g(t) and p(t) are infinitely differentiable
on [0,∞), and differentiation yields

g′(t) = 1− g(t)− p(t), (8.6)

p′(t) = −2p(t) + 2g(t)3. (8.7)

These equations can (as far as we know) only be solved numerically, and then ν can be
computed numerically by (3.3), with the Malthusian parameter α = 1 [8]. We obtain

ν =

∫ ∞
0

e−tp(t) dt = 0.58705155 . . . (8.8)

(Actually, we consider the system {(8.7), ν′(t) = e−tp(t)} with p(0) = 1 and ν(0) = 0, and
use Maple to find ν = ν(∞).)

Remark 8.1. Extended m-ary search trees may be considered similarly as the case
m = 2 in Section 7, see [8, Section 7.1]. We leave this case to the reader.
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