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Abstract

In 2018, Kahle and Stump raised the following problem: identify sequences of finite
Coxeter groups Wn for which the two-sided descent statistics on a uniform random
element of Wn is asymptotically normal. Recently, Brück and Röttger provided an
almost-complete answer, assuming some regularity condition on the sequence Wn.
In this note, we provide a shorter proof of their result, which does not require
any regularity condition. The main new proof ingredient is the use of the second
Wasserstein distance on probability distributions, based on the work of Mallows (Ann.
Math. Statist., 1972).
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We recall that a sequence of random variables (Xn)n≥0 is said to be asymptotically

normal if Xn−E[Xn]√
Var(Xn)

converges in distribution to a standard random variable Z ∼ N (0, 1).

Asymptotic normality of permutation statistics is a vast topic in discrete probability,
dating back at least to Goncharov [Gon44] and Hoeffding [Hoe51]; we refer also to
[Vat96, Ful04, CD17, Özd19] for more recent works on the descent and two-sided descent
statistics. Recently, there has been some interest into generalizing such asymptotic
normality results to statistics of Coxeter group elements1. In particular, Kahle and
Stump [KS20] have given sufficient and necessary conditions on a sequence Wn of finite
Coxeter groups so that the number of inversions (resp. of descents) of a uniform random
element in Wn is asymptotically normal. They then asked for a similar characterization
for the two sided descent statistics t defined as follows: for an element w of a Coxeter
group W , we set t(w) = des(w) + des(w−1), where des(w) is the number of descents of w.
Unlike for inversions and descents, the two sided-descent statistics on a uniform random
element does not decompose as a sum of independent Bernoulli variable, making the
problem more difficult. For further background on the topic, we refer to [KS20] and
[BR19].

The main result of this note is a complete answer to the Kahle–Stump question.

Theorem 1. Let (Wn)n≥1 be a sequence of finite Coxeter groups. For each n, we let wn

be a uniform random element in Wn. Then the following assertions are equivalent:
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CLT for two-sided descents

a) The sequence t(wn) is asymptotically normal;

b) Var
[
t(wn)

]
tends to +∞.

This had been previously proved by Brück and Röttger in [BR19] under a regularity
assumption on the sequence (Wn)n≥1 (the sequence should be well-behaved in the
terminology of [BR19]). In addition to not requiring any regularity assumption, the
proof that we provide here is shorter. In particular, we do not need any fourth moment
estimates.

As in [BR19], we will take as granted that asymptotic normality holds when (Wn)n≥1
is one of the infinite families An, Bn and Dn; this was proved previously in [Vat96, CD17,
Röt18, Özd19]. In addition to the fact that t(w) is bounded by 2 rk(W ), this is the only
specific information we will need on the two-sided descent statistics. All other arguments
are of probabilistic nature. In particular, we shall use characteristic function analysis,
and Lindeberg type arguments to prove the asymptotic normality (as in [BR19]). We
also introduce a new proof ingredient: the second Wasserstein metric for probabilistic
distributions.

We first recall the definition of this Wasserstein metric, and some useful properties of
it, and then proceed to the proof of the main theorem.

A (real-valued) random variable X is square integrable if E[X2] < +∞. A probabil-
ity distribution (on R) is square integrable if a random variable with that probability
distribution is.

Definition 2 (see Lemma 2 in [Mal72]). Let µ and ν be square integrable probability
distributions on R. Then we define

d2(µ, ν) = inf
X∼µ,Y∼ν

‖X − Y ‖2,

where the infimum is taken over all pairs (X,Y ) of random variables defined on the same
probability space and with distributions µ and ν, respectively.

As usual in probability theory, we sometimes identify a random variable and its distri-
bution: namely for random variables Z and T (not necessarily on the same probability
space), we write d2(Z, T ) = d2(PZ ,PT ), where PZ and PT are the distributions of Z
and T .

The introduction of the Wasserstein metric (using L1 norm instead of L2 norm, and
for general metric space) is usually attributed to Wasserstein (sometimes also spelled
Vasershtein), though it seems that it appeared in several earlier works [EOM11]. The
L2 case and its relation with asymptotic normality were studied by Mallows [Mal72]. In
particular, he established the following lemmas (Lemmas 1 and 3 in [Mal72]):

Lemma 3. Let Xn and X be square integrable random variables. Then d2(Xn, X) tends
to 0 if and only if Xn → X in distribution and E[X2

n]→ E[X2].

Lemma 4. Let k > 0 be an integer and Z be standard normal random variable. If
X1, · · · , Xk are independent random variables and (aj)j≤k are real coefficients with∑
j≤k a

2
j = 1, then

d2

∑
j≤k

ajXj , Z

 ≤∑
j≤k

a2j d2(Xj , Z).

We can now prove the main result of this note.

Proof of Theorem 1. The implication a)⇒ b) is immediate: since t(wn) is integer valued,
it cannot tend to a continuous distribution without a renormalization factor tending
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to +∞; see [KS20, Proposition 6.15] for details. We focus on b)⇒ a) and assume that
Var

[
t(wn)

]
tends to +∞.

For each n ≥ 1, we can decompose the group Wn as a direct product of irreducible
factors Wn =

∏
j≤rn Wn,j . For each j ≤ rn, we denote by wn,j uniform random elements

in Wn,j and by tn,j = t(wn,j) the associated two-sided descent statistics. Setting tn =

t(wn), we have the following decomposition:

tn =

rn∑
j=1

tn,j , (1)

where the tn,j in the right-hand side are independent; see [BR19, Lemma 2.2]. We denote
s2n,j = Var

[
t(wn,j)

]
and s2n =

∑
j≤rn s

2
n,j = Var

[
t(wn)

]
. Introducing the renormalized

random variables

t̃n :=
tn − E[tn]

sn
, t̃n,j :=

tn,j − E[tn,j ]
sn,j

,

the decomposition (1) writes as

t̃n =

rn∑
j=1

sn,j

sn
t̃n,j .

Here and in the following, all tilde variables are centered with variance 1.
We recall that irreducible finite Coxeter groups are of the following types: Ap (p ≥ 1),

Bp (p ≥ 2), Dp (p ≥ 4), I2(m) (m ≥ 3) or one of the exceptional types (H3, H4, E6, E7,
E8) [Cox35]. We write ap, bp and dp for uniform random elements in Ap, Bp and Dp

respectively. As mentioned above, from previous results [Vat96, CD17, Röt18, Özd19],
we know that the three sequences

ãp :=
ap − E[ap]√

Var(ap)
, b̃p :=

bp − E[bp]√
Var(bp)

, d̃p :=
dp − E[dp]√

Var(dp)

converge in distribution to a standard normal random variable Z. In addition, their
second moment is equal to 1 for all p, so we also have convergence of second moments.
From Lemma 3, the distributions of ãp, b̃p and d̃p converge to that of Z for the d2 metric.

Fix ε > 0 (everything below, including the definitions of large and small components,
depends on ε). We can find p0 = p0(ε) such that for p ≥ p0, we have

d2
(
ãp, Z

)
≤ ε, d2

(
b̃p, Z

)
≤ ε, d2

(
d̃p, Z

)
≤ ε. (2)

We now split the irreducible components (Wn,j)j≤rn into two groups: those of type Ap,
Bp or Dp for some p ≥ p0, which we call large and those of other types to which we will
refer to as small. Up to reordering, we can assume that there is an index qn = qn(ε) such
that large components are exactly those with j ≤ qn.

We further write s2n,+ =
∑qn
j=1 s

2
n,j and s2n,− =

∑rn
j=qn+1 s

2
n,j . We also introduce

t̃n,+ =

qn∑
j=1

sn,j

sn,+
t̃n,j , t̃n,− =

rn∑
j=qn+1

sn,j

sn,−
t̃n,j ,

so that the renormalized two-sided descent statistics decomposes into a large component
part and a small component part

t̃n =
sn,+

sn
t̃n,+ +

sn,−
sn

t̃n,−.

(Summands in the right-hand-side of these equations are independent.)
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Estimates for the large component part Using the definition of large components
and Eq. (2), we have that d2(t̃n,j , Z) ≤ ε for j ≤ qn. From Lemma 4, this implies

d2
(
t̃n,+, Z

)
= d2

 qn∑
j=1

sn,j

sn,+
t̃n,j , Z

 =

qn∑
j=1

s2n,j

s2n,+
d2
(
t̃n,j , Z

)
≤ ε

 qn∑
j=1

s2n,j

s2n,+

 = ε.

In the following equation, we assume that t̃n,+ and Z are defined on the same probability

space in such a way that
∥∥t̃n,+−Z∥∥2 ≤ ε. Using that u 7→ exp(iu) is a 1-Lipschitz function

on R, we have, for ζ in R:∣∣∣E[ exp(iζ sn,+

sn
t̃n,+)

]
− exp(− ζ

2s2n,+

2s2n
)
∣∣∣ ≤ E[∣∣ exp(iζ sn,+

sn
t̃n,+)− exp(iζ

sn,+

sn
Z)
∣∣]

≤ sn,+

sn
|ζ|E

[∣∣t̃n,+ − Z∣∣] ≤ |ζ|∥∥t̃n,+ − Z∥∥2 ≤ |ζ| ε, (3)

where the second to last inequality uses sn,+

sn
≤ 1 and Cauchy-Schwartz inequality.

Estimates for the small component part Here, we will use classical characteristic
function estimates, as used in Lindeberg central limit theorem (see, e.g., [Bil86, Theorem
27.2]). By definition, small components are of some exceptional type, of type I2(m) or of
type Ap, Bp or Dp for p < p0. Their rank is therefore at most max(8, p0) (I2(m) has rank 2,
the largest exceptional group E8 has rank 8 and Ap, Bp or Dp have rank p). But the two
sided-descent statistics on any Coxeter group W cannot exceed 2 rk(W ). We conclude
that there is a uniform bound K = K(ε) = 2max(8, p0) on all the tn,j corresponding to
small components (j > qn). In particular, for j > qn, we have sn,j ≤ K.

Fix ζ in R. Using, the definition of t̃n,−, we have

E
[
exp

(
iζ
sn,−
sn

t̃n,−
)]

=

rn∏
j=qn+1

E
[
exp

(
i ζsn (tn,j − E[tn,j ])

)]
(4)

We assumed lim sn = +∞ and argued above that sn,j is uniformly bounded for j > qn.

Thus, for n sufficiently large and j > qn, we have ζ2

s2n
s2n,j ≤ 1. This implies (see [Bil86,

eqs. (27.11) and (27.15)] that, for j > qn, we have∣∣∣∣∣E[ exp (i ζsn (tn,j − E[tn,j ]))]− exp
(
− ζ2s2n,j

2s2n

)∣∣∣∣∣ ≤ |ζ|3s3n E[|tn,j − E[tn,j ]|3]+ |ζ|4s4n s4n,j (5)

Since tn,j is bounded by K, we have

E
[
|tn,j − E[tn,j ]|3

]
≤ K E

[
|tn,j − E[tn,j ]|2

]
= Ks2n,j .

Using also s4n,j ≤ K2s2n,j and taking n large enough so that |ζ| ≤ sn, we can simplify the
upper bound in (5) to∣∣∣∣∣E[ exp (i ζsn (tn,j − E[tn,j ]))]− exp

(
− ζ2s2n,j

2s2n

)∣∣∣∣∣ ≤ 2K2|ζ|3 s
2
n,j

s3n
. (6)

We now use the following basic inequality: if (ai)i≤t and (bi)i≤t are collections of numbers
of absolute values at most one, then

∣∣∏
i≤t ai −

∏
i≤t bi

∣∣ ≤∑i≤t |ai − bi| (see, e.g., [Bil86,
eq. (27.3)]). Therefore, (6) implies∣∣∣∣∣

rn∏
j=qn+1

E
[
exp

(
i ζsn (tn,j − E[tn,j ])

)]
−

rn∏
j=qn+1

exp
(
− ζ2s2n,j

2s2n

)∣∣∣∣∣
≤

rn∑
j=qn+1

2K2|ζ|3 s
2
n,j

s3n
= 2K2|ζ|3

s2n,−
s3n
≤ 2K2|ζ|3

sn
.
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The first term is the left-hand side is exactly E
[
exp

(
iζ
sn,−
sn

t̃n,−
)]

; see (4). Since sn tends

to +∞, the upper bound in the last display tends to 0. Therefore for n large enough, we
have ∣∣∣∣∣E[ exp (iζ sn,−

sn
t̃n,−

)]
− exp

(
− ζ2s2n,−

2s2n

)∣∣∣∣∣ ≤ ε. (7)

Conclusion of the proof. We recall that s2n = s2n,+ + s2n,− and t̃n =
sn,+

sn
t̃n,+ +

sn,−
sn

t̃n,−.
Using again that |a1a2 − b1b2| ≤ |a1 − b1| + |a2 − b2| for numbers of absolute values at
most 1, Eqs. (3) and (7) imply that, for n large enough,∣∣∣∣∣E[ exp (iζ t̃n)]− exp

(
− ζ2

2

)]∣∣∣∣∣ ≤ (|ζ|+ 1) ε.

Since this holds for any ε and any ζ in R (with a threshold value for n depending on ε and
ζ), we have proved that the characteristic function of t̃n converges pointwise towards

exp
(
− ζ2

2

)
, which is the characteristic function of a Gaussian random variable. By Lévy’s

continuity theorem, this concludes our proof.

Technical comment: a naive characteristic function estimates for the large compo-
nent part would lead to an upper bound in (3) depending on the number qn of large
components. Since we have no control on this number, we would have not been able to
conclude. Using the second Wasserstein distance avoids this problem.

A Coxeter groups

Coxeter groups have been introduced by Coxeter in the ’30s [Cox34, Cox35]. They are
now standard objects in combinatorial geometry; we give here a short introduction to the
topic to make this note self-contained. Classical references are [Hum92, Bou02, BB05].

A Coxeter matrix M = (mij)i,j∈S indexed by some set S is a symmetric matrix with
entries in {1, 2, 3, · · · } ∪ {+∞} such that mij = 1 if and only if i = j. A group W is a
Coxeter group if one can find a set S of generators and a Coxeter matrix M indexed by
S such that W admits the presentation

W '
〈
s ∈ S

∣∣ (st)mst = 1, s, t ∈ S
〉
.

The pair (W,S) is then called a Coxeter system. When we consider a Coxeter group
W , we often also consider a fixed set S such that (W,S) is a Coxeter system. The rank
of a Coxeter group (or rather of a Coxeter system) is the size of S. Apart from this
combinatorial definition, finite Coxeter groups can also be characterized geometrically:
they are finite subgroups of general linear groups generated by reflections.

The direct product of two Coxeter groups is a Coxeter group. A Coxeter group (or
rather a Coxeter system) is irreducible if it cannot be written as a direct product of
two smaller Coxeter groups. Trivially, any finite Coxeter group is a direct product of
irreducible factors. Finite irreducible Coxeter groups have been classified by Coxeter in
1935:

• there are three infinite families of increasing rank, commonly denoted An, Bn and
Dn. the group An is the symmetric group on n + 1 elements, Bn is the group of
permutations of n elements with 2 colors, and Dn is a index 2 subgroup of Bn.

• there is one infinite family I2(m) of groups all of rank 2, called dihedral groups.
These are the groups of symmetry of regular polygons.
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• Finally, there are 6 exceptional groups, commonly denotes E6, E7, E8, F4, H3 and
H4 (the index is always the rank or the group).

This classification and previous results for the infinite families are crucial in this note.
We end this appendix by defining the notion of descent in a Coxeter group studied

in this note. This generalizes the notion of descents in permutations, corresponding to
Coxeter groups of type An. For an element w in a Coxeter group W , we write `(w) for
the minimal number of factors needed to write w as a product of elements of S. Then, by
definition, a generator s in S is a descent of w if `(ws) < `(w).
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