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Abstract

We study a competitive stochastic growth model called chase-escape in which red
particles spread to adjacent uncolored sites and blue particles only to adjacent red
sites. Red particles are killed when blue occupies the same site. If blue has rate-1
passage times and red rate-λ, a phase transition occurs for the probability red escapes
to infinity on Zd, d-ary trees, and the ladder graph Z× {0, 1}. The result on the tree
was known, but we provide a new, simpler calculation of the critical value, and observe
that it is a lower bound for a variety of graphs. We conclude by showing that red can
be stochastically slower than blue, but still escape with positive probability for large
enough d on oriented Zd with passage times that resemble Bernoulli bond percolation.
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1 Introduction

First-passage percolation is a stochastic growth model that can be used to describe
the spread of species. The classic first passage percolation model on a connected graph
G = (V,E) assumes that each edge e is assigned a random variable te independently
drawn from a common nonnegative distribution F , and these random variables represent
the passage time needed to traverse the edges. Specifically, for any edge e = (x, y) ∈ E,
if at time t0, a particle occupies site x, then after time tx,y, the particle at x places a copy
of itself at y, provided y is empty at time t0 + t−x,y.

For any two vertices x, y ∈ V , define T (x, y) = infγ:x→y
∑
e∈γ te to be the shortest time

needed for a particle at x to reach y. When G = Zd, the ball Dt := {x ∈ Rd : T (0, bxc) ≤
t} has a limit shape [9], where bxc ∈ Zd is the nearest lower-left lattice point for x ∈ R.
Specifically, under a mild moment condition on F , there exists a convex, axis-symmetric
set DF ⊆ Rd such that for any ε > 0,

P

(
(1− ε)DF ⊆

Dt

t
⊆ (1 + ε)DF , for all t sufficiently large

)
= 1. (1.1)

Understanding DF and the boundary fluctuations of Dt remains a challenging area of
research [5]. The Markovian setting—in which the passage times are unit exponential
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Coexistence in chase-escape

random variables (F (x) = 1 − e−x) known as the Richardson growth model [24]—is
understood about as well as the setting with general edge weights.

There are various extensions of the first-passage percolation model to allow two
types of particles (say, red and blue) to spread and interact [14, 15, 21, 16, 18]. In these
extensions, each edge e is assigned two passage times (tRe , t

B
e ), one for red and one for

blue. A rule is imposed to define the interaction of the two types. For example, we
may declare that the first color to reach a site occupies it for all time and blocks the
other type from expanding through the site. In this case, if one color is surrounded by
the other, then it cannot grow any further. Coexistence in this setting means that red
and blue particles can both reach infinity. Häggström and Pemantle [16] demonstrated
that this occurs with positive probability on Z2 for the special case where tRe and tBe
are both exponential random variables with equal rates. Hoffman [19] extended this
to the four-color setting. Coexistence in the competitive Richardson growth process
is especially relevant, because it implies the existence of at least as many geodesics
in ordinary first passage percolation as coexisting types. This is discussed in detail by
Ahlberg in [2]. It is known for all but countable many spreading rates that coexistence
cannot occur if the red and blue rates are different [17].

We consider a two-type spatial growth process called chase-escape. In this process,
red particles only spread over the empty sites using the passage times tRe , and blue
particles take over the red sites using the passage time tBe . More precisely, for any edge
(x, y) ∈ E, (i) if there is some t0 ≥ 0 so that site x is red and site y is empty during time
period [t0, t0 + tRx,y), then y turns red at time t0 + tRx,y; (ii) if there is some t0 ≥ 0 so that
site x is blue and site y is red during time period [t0, t0 + tBx,y), then y turns blue at time
t0 + tBx,y.

We learned of this process from Lalley. It is inspired by the spread of two species—host
and parasite—through an environment. For example, brush may spread to neighboring
empty patches of soil while an infection transmits among the roots. It is interesting to ask
how the environment (graph) and spreading rates affect the coexistence of both species.
A closely related variant of chase-escape was studied by Kordzakhia on trees [20]. Later,
Kortchemski considered the process on trees and the complete graph [23, 22]. Chase-
escape can also be viewed as scotching a rumor. This interpretation was studied by
Bordenave in [7]. The continuous limit of rumor scotching is known as the assassination
process and was considered many years earlier by Aldous and Krebs [4].

Unless stated otherwise, we always assume that tRe is sampled from a rate-λ expo-
nential distribution (denoted Exp(λ)), with tBe from a rate-1 exponential distribution. We
let Pλ(·) be the probability measure on chase-escape with these passage times. Let
A = A(G) be the event that red and blue particles coexist at all times on the graph G.
For simplicity, we always assume that G is rooted at a vertex ρ and consider the initial
configuration, where a red particle is at ρ and a blue particle is at an auxiliary vertex
b /∈ G attached to ρ by an edge e. We say that coexistence occurs if Pλ(A) > 0. Figure 1
shows three realizations of chase-escape on Z2. On a given graph, it is natural to ask
how λ affects coexistence. Define

λc(G) := sup{λ : Pλ(A) = 0}

to be the fastest red expansion rate for which coexistence does not occur. Note that it is
not obvious how to prove that Pλ(A) is monotonic in λ, thus it is not clear if λc(G) is also
equal to inf{λ : Pλ(A) > 0}. This is discussed in more detail at the end of this section.

As mentioned earlier, a similar model called escape was studied first by Kordzakhia
on homogeneous trees [20]. In the escape model, blue can also spread to empty sites.
Note that when the underlying graph is a tree, the survival of red is equivalent in either
escape or chase-escape. Kordzakhia gave an explicit formula for λc(Td), but did not work
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Figure 1: Chase-escape on Z2 with λ = 1 (left), λ = 0.75 (middle) and λ = 0.5 (right).
Simulations suggest that red can survive despite being slower.

out whether survival occurs when λ = λc(Td). This was answered later by Bordenave [8]
in the more general setting of Galton-Watson trees. He proved that red does not survive
on any tree with branching number d ∈ (0,∞) at criticality. Kortchemski also studied the
process on trees and made some progress at describing the number of surviving particles
at each level [23]. A recent paper by Beckman, Cooke, Eikmeier, Hernandez-Torres, and
Junge [6] studies chase-escape in which red particles die on regular trees. They find the
expected number of sites occupied by blue is different at criticality than for chase-escape
without death. In this work, we provide a much simpler calculation of λc(Td) in Theorem
1.1 that includes the behavior at criticality. Our main interest, however, is in the process
on graphs with cycles, which are a more realistic environment for these dynamics and
for which much less is known about chase-escape.

The shape theorem at (1.1) implies that for G = Zd and ρ = 0 := (0, . . . , 0)

λc(Z
d) ≤ 1, for all d ≥ 1.

To see this, suppose λ > 1 and let D1 be the limit shape of the one-type Richardson
growth model [24]. If red and blue were to grow over the empty sites on two Zd lattices
separately, starting from 0 and at rates λ and 1, respectively, then, for ε = (λ − 1)/3,
there exists some T such that

B(t) ⊆ (1 + ε)tD1 ( (1 + 2ε)tD1 ⊆ R(t), for all t > T, (1.2)

where R(t) (resp. B(t)) denote the sites that can be reached by red (resp. blue) particles
by time t. Recall that in the chase-escape model, we always assume that at time t = 0, a
blue particle is attached to the red particle at 0 by a special edge e. Thus, red survives
whenever tBe > T , where T is the special time such that (1.2) holds, and the event
{tBe > T} occurs with positive probability.

By comparing to a nearest-neighbor random walk, it is straightforward to prove that
λc(Z) = 1 (see Lemma 2.1). The discussion at the end of [22] credits James Martin with
the conjecture that λc(Z2) < 1. Simulations in [25] suggest that red can survive for λ < 1

and that λc(Z2) = 1/2 (see Figures 1 and 2). This is surprising, because, if true, red can
still survive even when it spreads significantly slower than blue. One “advantage” red
has is that if blue reaches the red boundary it gets slowed down. Another is that the
optimal routes for blue are unlikely to coincide with those for red. So, blue might have
to travel at a suboptimal rate. Using these advantages to form a rigorous proof seems
closely related to understanding the boundary fluctuation of the Richardson growth
model, and geodesics in first passage percolation. Despite some recent progress from
Damron and Hanson as well as Ahlberg and Hoffman [11, 3], both of these objects are
notoriously difficult to describe [5].

ECP 25 (2020), paper 22.
Page 3/14

http://www.imstat.org/ecp/

https://doi.org/10.1214/20-ECP302
http://www.imstat.org/ecp/


Coexistence in chase-escape

Figure 2: Chase-escape on Z2 at the conjectured critical value λ = 0.5 (left). The right
image shows that there are still surviving red buds at the boundary of the fractal-like
blue region.

Proving coexistence in Zd for some pair (d, λ) with d ≥ 2 and λ ≤ 1 would be very
interesting. We further conjecture that λc(Zd) ↓ 0 as d ↑ ∞. This may be hard to prove
since it is unclear that the process is monotonic in λ or d. Intuitively, Pλ(A) ought to
increase with λ and decrease with d, and this is indeed the case on trees. However, there
is no obvious coupling that establishes this on graphs with cycles. The issue is that when
red spreads faster, then blue also speeds up. It is not even obvious that there is a single
phase transition.

1.1 Results

Establishing a coexistence phase where red is slower than blue is tractable on the
infinite d-ary tree Td (a rooted tree where each vertex has d-children). Our first result is
a new proof that computes λc(Td) and determines the behavior at criticality. Note, as
discussed earlier, this result was already proved in [20, 8]. Our proof is different though
and much shorter.

Theorem 1.1. On the d-ary tree with d ≥ 2,

λc(Td) = 2d− 1− 2
√
d2 − d ∼ 1

4d
,

and Pλc(A) = 0.

The proof that Pλ(A) = 0 for λ ≤ λc uses the fact that, restricted to a ray on Td, the
distance between red and blue is a nearest neighbor random walk on the nonnegative
integers. We can use the setup from Proposition 2.1 and the asymptotic behavior for
the return time to 0 of a random walk to show that the expected number of sites at
distance n to be colored red is summable. This implies coexistence does not occur.
To prove Pλ(A) > 0 for λ > λc we embed a Galton-Watson process that describes the
number of red particles that reach generation kN , k ∈ N. When N is large enough, the
Galton-Watson process is supercritical, and thus Pλ(A) > 0.

Our main interest is studying chase-escape on graphs with cycles. The argument
that proves Pλ(A) = 0 for λ ≤ λc(Td) can be easily extended to any graph on which the
number of length-n paths grows no faster than exponential.
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Corollary 1.2. Fix an integer d ≥ 2 and an infinite, connected graph G. Let Γn be the
number of self-avoiding length-n paths starting from the root. If |Γn| ≤ Cdn for some
C > 0 and all n ≥ 1, then λc(Td) ≤ λc(G).

We initially thought it possible that λc(Z × {0, 1}) was strictly less than 1. This
was because blue is slowed down when it reaches the not-entirely-filled red boundary.
However, this effect is negligible, because the mixed region of red and uncolored sites is
exponentially unlikely to be large.

Theorem 1.3. For G = Z× {0, 1} with the subgraph structure induced by Z2 and ρ = 0,
λc(G) = 1

To prove λc(Z × {0, 1}) ≤ 1, we show that for any λ < 1, there is K < ∞ such that
blue is within a distance K of the red boundary infinity often. Whenever this occurs,
there is a positive probability that blue overtakes all of the surviving red sites. Thus, red
is caught eventually. While we did not work out the details, this result suggests that red
is caught on any strip of a fixed height. Additionally it ought to hold that P1(A) = 0 on
the ladder, however, our proof relies heavily on the fact that blue moves strictly faster
than red and some new ideas are required.

Next, we show that it is possible on the lattice for red to spread slower than blue,
but still have a chance to survive. We consider the chase-escape model on the oriented
lattice ~Zd, in which particles can only occupy their neighboring sites along the oriented
edges {~ex,x+bi}x∈Zd,i=1,...,d, with {b1, . . . , bd} being the standard, positive basis vectors
for Zd. Initially, 0 = (0, . . . , 0) is red and (−1, 0, . . . , 0) is blue. Red and blue passage
times for each directed edge ~e are sampled independently from the two distributions

tR~e ∼ pδ1 + (1− p)δ∞
tB~e ∼ pδ0 + (1− p)δm. (1.3)

With atomic passage times there could be moments that blue arrives at a red site at the
exact time that red would spread to the next site. To make the process well-defined,
we invoke the rule that blue catches red and prevents it from spreading if blue arrives
at or before the time red would move. Similar competitive growth models that mimic
Bernoulli percolation are studied by Garet and Marchand in [14, 15]. The competition
dynamics they consider are not chase-escape, but rather more like the dynamics in [16].

Since edges with ∞ passage times are never used, the collection of all edges for
which red passage time equals one is equivalent to the open clusters in bond percolation,
the random subgraph obtained when each edge in Zd is independently retained (open)
with probability p and removed (closed) with probability 1 − p. Many aspects of bond
percolation are well understood. Letting C be the connected component containing
the origin, it is known that there is a critical value ~pc(d) and if p > ~pc(d) we have
Pp(|C| =∞) > 0 [12].

Red particles never use edges with∞ passage times to expand. However, blue can
still “jump” across such an edge if the other endpoint was colored red along some other
path with no infinite red passage time. Uninhibited, blue would spread much faster than
red. However, the presence of sufficiently many “dead ends”—places where red has∞
passage times in all directions—cuts blue off from spreading and makes it possible for
red to escape for small p and large d and m. Let A = A(d, p,m) be the event that there
are always surviving red particles in the percolation-like chase-escape model on ~Zd. We
show that if d and p are chosen appropriately, and m is made large then red can survive.

Theorem 1.4. For G = ~Zd and ρ = 0, there is a choice of d and p > ~pc(d) such that

lim
m→∞

Pp,m(A) = (1− p)Pp(|C| =∞).

In particular, Pp,m(A) > 0 for some choice of d, p, and m.
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It is slightly unsatisfying to require that d be large. The reasoning in the proof of
Corollary 1.2 can also be used to show that for p > ~pc(2), and small values of m, that
Pp,m(A(~Z2)) = 0. Thus, if

Pp0,m0
(A(~Z2)) > 0 for some p0 and m0,

then there is a phase transition in Pp0,m(A(~Z2)) as we increase m. As before there is
no obvious monotonicity in m, so we cannot rule out the possibility of multiple phase
transitions.

2 The path, tree, and ladder

2.1 The path

Proposition 2.1. λc(Z) = 1 and P1(A) = 0.

Proof. Since the process evolves independently in the positive and negative directions,
it suffices to prove that red survives on {−1, 0, 1, 2, . . .} with a blue particle at −1 and
a red particle at 0 initially. Let Rt be the number of sites ever occupied by the red
particles up to time t and let Bt be the corresponding quantity for blue particles. Define
τn = inf{t : Rt + Bt = n + 2}, and τn = ∞ if there is no such t. Let Dt be the distance
between the rightmost red and blue sites at time t and Sn = Dτn . Notice that (Sn)

is a nearest-neighbor random walk on the integers, starting at S0 = 1, where 0 is an
absorbing state. Due to the independence of red and blue passage times, we have

p := Pλ(Sn+1 = Sn + 1) = P (Exp(λ) ≤ Exp(1)) =
λ

λ+ 1
. (2.1)

When λ ≤ 1, the extinction of red is equivalent to the above p-biased random walk
visiting zero. This is well known to be a.s. finite. On the other hand, when λ > 1, there is
a positive probability that Sn never visits 0 and thus Pλ(A) > 0 for such λ.

2.2 The tree

To study the process on the tree we need an asymptotically precise estimate for the
probability that red can reach a site at distance n in the G = Z case. We prove it here.

Lemma 2.2. Let An = An(λ) be the event that site n is ever colored red in the chase-
escape model on Z, and set an = [4p(1−p)]n

n3/2 , where p = λ/(λ+ 1).

(i) For some c > 0 and all n ≥ 1, Pλ(An) ≥ c an
(ii) If λ < 1, then for some Cλ > 0 and all n ≥ 1, Pλ(An) ≤ Cλ an;

Proof. Let (Sk) be the nearest-neighbor p-biased random walk as in (2.1). Note that the
event An is equivalent to the event that Sk remains strictly positive for the first 2n steps,
i.e.,

Pλ(An) = Pλ(Sk ≥ 1, k ≤ 2n|S0 = 1) =

n∑
a=0

Pλ(Sk ≥ 1, k ≤ 2n;S2n = 2a+ 1|S0 = 1).

Since S2n must have the same parity as S0, we only considered the cases where S2n

is odd. For any random walk path of length 2n from 1 to 2a + 1 that does not hit zero,
there must be (n+ a) steps to the right and (n− a) steps to the left. Using the reflection
principle (see [13, Theorem 4.3.2]), the total number of such paths is(

2n

n+ a

)
−
(

2n

n+ a+ 1

)
.
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We then have

Pλ(An) = p2n +

n−1∑
a=0

[(
2n

n+ a

)
−
(

2n

n+ a+ 1

)]
pn+a(1− p)n−a

= p2n + pn(1− p)n
n−1∑
a=0

(
2n

n+ a

)
2a+ 1

n+ a+ 1

(
p

1− p

)a
(2.2)

≤ p2n +
pn(1− p)n

n+ 1

(
2n

n

) ∞∑
a=0

(2a+ 1)

(
p

1− p

)a
.

When λ < 1, we have p < 1
2 < 1− p, the summation above is finite. Moreover, 1

n+1

(
2n
n

)
is the n-th Catalan number, which is known to be of order 4n

n3/2 for large n. Putting

Cλ =
∑∞
a=0(2a + 1)

(
p

1−p

)a
, we have the desired upper bound. The lower bound is

obtained by looking at the a = 0 term in (2.2) and using the asymptotic behavior of
Catalan numbers.

Proof of Theorem 1.1. We consider the initial configuration in which the root is red and
a special vertex b attached to the root is blue. First note that if λ > 1, then the distance
between red and blue along an arbitrary path to∞ is equivalent to chase escape on Z.
By Lemma 2.1 we have Pλ(A) > 0 in this case.

Now, suppose that λ ≤ 1. Let Rn be the number of sites at distance n that are ever
colored red and R =

∑∞
n=1Rn be the total number of sites of colored red. Notice that

red survives a.s. if and only if it occupies infinitely many sites. Thus, Pλ(A) = Pλ(R =∞).
We show that Pλ(R =∞) = 0 for λ small enough by proving ER <∞.

For any vertex v ∈ Td, let |v| denote its graph distance from the root. Let A(v) be the
event that v is ever colored red. Since the tree has no cycles, we have Pλ(A(v)) = Pλ(An)

for any v ∈ Td with |v| = n, with An the event that red reaches a distance n on a fixed
path as in Lemma 2.2. Linearity of expectation and the bound from Lemma 2.2 gives

ERn = E
∑
|v|=n

1A(v) =
∑
|v|=n

Pλ(A(v)) ≤ Cλ
dn(4p(1− p))n

n3/2
.

Observe that λc(d) is the smallest solution of

4p(1− p)d =
4dλ

(1 + λ)2
= 1.

It is straightforward to verify that 4dp(1− p) ≤ 1 for λ ≤ λc(d), and in this case ERn is
summable, and thus ER <∞.

To prove that Pλ(A) > 0 for λ > λc(d), observe that the lower bound in Lemma 2.2
ensures that for some fixed, large N we have dNPλ(AN ) > 1. Thus, the expected number
of sites at distance N that are ever colored red is strictly greater than 1. When first
occupied by red, the distance from each of these sites to the nearest blue particle is
at least one. Since the tree has no cycles, the survival probability of chase-escape is
monotonic on a tree; both respect to λ and the initial distance blue starts from red. This
means that moving the chasing blue particles to distance 1 from each of red site at
distance N will result in fewer surviving red particles at distance 2N . Thus, the number
of sites colored red at distances N, 2N, . . . dominates a Galton-Watson process with
mean dNPλ(AN ) > 1. This expression for the mean comes from linearity of expectation
applied to the dN sites at distance N from the root. This is supercritical, and thus
Pλ(R =∞) > 0.
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We can quickly deduce that the critical speed for any graph with less than dn self-
avoiding paths of length n is no smaller that of a d-ary tree.

Proof of Corollary 1.2. Let Gn be the event that there is a length-n self-avoiding path
started at the root that red reaches the terminal vertex of. It is easy to see that red
survives only if Gn occurs for infinitely many n. A union bound and our hypothesis
|Γn| ≤ Cdn gives P (Gn) ≤ CdnP (An) with An as in Lemma 2.2. As in the proof of
Theorem 1.1, we have λ ≤ λc(Td) implies that

∑
n≥1 P (Gn) < ∞. The Borel-Cantelli

lemma implies that almost surely finitely many Gn occur, and thus Pλ(A) = 0 for
such λ.

2.3 The ladder

Proof of Theorem 1.3. As with the path, it suffices to consider the one-sided ladder. Note
that λc(Z+×{0, 1}) ≤ 1, following a similar shape argument as in the introduction and the
shape theorem for first passage percolation on one-dimensional graphs [1, Theorem 1.1].
For the lower bound, we start by considering ordinary first-passage percolation with
only one-type, that is, red particles spread at rate λ and blue particles are absent. We
will say that empty sites have state 0 and red sites have state 1. Let ξt(m,n) denote the
state of site (m,n) at time t:

ξt(m,n) =

{
1, if (m,n) is red at time t
0, if (m,n) is empty at time t

.

Let ηt(m) = ξt(m, 0) + ξt(m, 1). If ηt(m) = 1 then we say that there is a hole at distance
m at time t. Define Ht := |{m : ηt(m) = 1}| to be the number of holes at time t. The
process (Ht)t≥0 is dominated by a time-homogeneous Markov chain with jump rates

q(k − 1, k) = 2λ

q(k, k − 1) = kλ

for all k ≥ 1. This is because holes can be filled in by any neighbor and new holes can
only be created at the front. A comparison with an asymmetric random walk, in which
k → k − 1 happens at rate 3λ for all k ≥ 3 and all other transition rates are held the
same, shows that the first time to return to 0 (denoted by T0) satisfies that for all n,
P1(T0 ≥ n) ≤ ce−γn for some c, γ > 0.

For any x, y ∈ Z+ × {0, 1}, let T (x, y) denote the passage time to travel to site y

starting from x. Define

ν := lim
n→∞

T (0,Hn)

n
,

where Hn = {(n, 0), (n, 1)} and T (0,Hn) represents the minimal passage time to the
set Hn. Notice that the ladder graph is a one-dimensional graph as defined in [1]. Using
the same regenerative structure employed in [1] (especially, Section 2.1 in the arXiv
preprint for the special case of the ladder with exponential passage times), we see that
T (0,Hn) can be approximated by a sum of i.i.d random variables, each dominated by a
sum of Geo(1/2) independent exponential random variables and thus has an exponential
tail. It follows from standard large deviation estimates that, for each ε > 0, there are
constants A,B > 0 (depending on ε) such that for all n ≥ 1,

Pλ( |T (0,Hn)− nν| ≥ nε) < Ae−Bn. (2.3)

Let s0 = 0 and for k ≥ 0, define

τk := inf{t ≥ sk : Ht = 0},
sk+1 := inf{t > τk : Ht > 0}.

ECP 25 (2020), paper 22.
Page 8/14

http://www.imstat.org/ecp/

https://doi.org/10.1214/20-ECP302
http://www.imstat.org/ecp/


Coexistence in chase-escape

At each τk, the red region contains no holes, we call this state a solid red block, and
we call each interval [τk, τk+1) a red cycle. Note that when blue particles are absent,
{τk+1 − τk}k≥0 is stationary. Denote σ := E(τk+1 − τk).

Consider now the chase-escape model, where each site can be in one of the three
states 0 (empty), 1 (red), and 2 (blue). At each time t ≥ 0, let R̃t denote the first
coordinate of the rightmost red particle and B̃t that of the rightmost blue particle. The
definition of a “hole” is the same as above: a hole is present at distance m at time t only
if the two sites at (m, 0) and (m, 1) consist of one red site and one empty site at time t.
Note that this configuration can only appear in the region where blue has not reached
but red has. Specifically, if {(m, 0), (m, 1)} consists of one blue site and one empty site,
we do not count location m as a hole. The sequences, {s̃k}k≥0 and {τ̃k}k≥0, and red
cycles {[τ̃k, τ̃k+1)}k≥0 are defined accordingly in the chase-escape setting.

Red spreads at rate λ with λ < 1 and the blue at rate 1. Suppose the process is in
some configuration at t = 0. It suffices to show that, independent of this configuration,
there are constants K > 0 and δ > 0 such that with probability at least δ at some later
time T <∞, we have R̃T − B̃T ≤ K and that [B̃T + 1, R̃T ]× {0, 1} is a solid red block. It
follows that such desired configuration will occur infinitely many times with probability
one, and if this configuration appears, blue has a positive probability to take over the
entire solid red block before it expands further.

We will make use of a regenerative structure and we will explain the first step in full
detail. Note that whenever blue takes over a red site, it never creates new holes, and by
the same argument as in the red-only case, one can see that Pλ(τ̃0 < ∞) = 1, starting
from any initial configuration. If R̃τ̃0 − B̃τ̃0 ≤ K, then we are done. Now suppose at τ̃0,
we have R̃τ̃0 − B̃τ̃0 = M > K. We run the chase-escape model for another

N1 :=

⌊
M(1− 2ε)λν

σ

⌋
red cycles. Let Rt and τk be defined as above for the one-type case at rate λ, and let Bt
denote the frontier at time t of another independent one-type process of rate-1. These
two one-type models are coupled with the two-type chase-escape model (R̃t, B̃t)t≥0 so
that (i) passage times for (Rt)t≥0 (resp., (Bt)t≥0) are the same as those used by the red
(resp., blue) particles in (R̃t, B̃t)t≥0; (ii) (Bt)t≥0 starts from the same configuration as
B̃τ̃0 and (iii) (Rt)t≥0 starts from a solid red block that spans from H0 to HR̃τ̃0 (and hence
τ0 = 0).
We observe that, due to the memoryless property of exponential random variables,

Pλ(R̃τ̃N1
− B̃τ̃N1

≤Mα | R̃τ̃0 − B̃τ̃0 = M) (2.4)

≥ Pλ(RτN1
−τ0 −BτN1

−τ0 ≤Mα−M, BτN1
−τ0 < M).

This is because in the right side of the inequality, {BτN1
−τ0 < M} corresponds to the

event that in the two independent one-type models, (Rt)t≥0 finishes N1 red cycles
before the blue frontier Bt advances for a distance M . Then, choose any ε < 1−λ

4 and
α := 1− 4λε2 ∈ (0, 1) fixed, we have (2.4) is at least

Pλ
(
RτN1

−τ0 < λM(1− 4ε2), M(1− 4ε) ≤ BτN1
−τ0 ≤M

)
.

Since τk − τk−1 has an exponential tail, the total time (τN1
− τ0) satisfies

Pλ(|τN1 − τ0 −N1σ| ≤ εN1σ) ≥ 1− e−CN1 , for some C > 0.

On the event {|τN1
− τ0 − N1σ| < εN1σ}, the blue displacement during a time period

N1(1± ε)σ is within the interval[
N1(1− 2ε)σ

λν
,
N1(1 + 2ε)σ

λν

]
⊆ [M(1− 4ε),M ]
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with probability ≥ 1− C2e
−C3N1 , due to (2.3). We thus have

Pλ
(
RτN1

−τ0 < λM(1− 4ε2), M(1− 4ε) ≤ BτN−τ0 ≤M
)

≥Pλ
(
RN1σ(1+ε) < λM(1− 4ε2), |τN1

− τ0 −N1σ| < εN1σ
)

(1− C2e
−C3N )

According to (2.3), the red frontier extends by a distance at most N1σ(1 + 2ε)/ν with
a probability ≥ 1 − Ae−BN1 . Combining all these estimates above, we have for some
C0 = C0(ε), θ = θ(ε), with probability at least

(1− C2e
−C3N1)(1−Ae−BN1 − e−CN1) = 1− C0e

−θM ,

the distance between the red and blue frontiers after N1 red cycles is less than Mα, and
moreover, at τ̃N1 , the rightmost blue particle is following a solid red block. We iterate
this procedure for sM := min{j : Mαj ≤ K} = dlog1/α(M/K)e times. For any M > K,
after sM iterations, the distance between the red and blue frontiers is no more than K
with probability at least

δ0 := inf
M>K

(1− C0e
−θM )(1− C0e

−θMα) · · · (1− C0e
−θMαsM−1

).

To see δ0 > 0, we note that K ≤MαsM−1 ≤ K/α, and the right side is at least

(1− C0e
−θK(1/α)sM−1

) · · · (1− C0e
−θK) ≥

∞∏
n=0

(1− C0e
−θK(1/α)n) :=

∞∏
n=0

(1− un),

where un = C0e
−θK(1/α)n ∈ (0, 1) if we pick K large enough. The infinite product∏∞

n=0(1− un) converges to a positive number if and only if
∑∞
n=0 un converges, which

can be easily verified using a ratio test:

un+1

un
= e−θK(1/α)n(1/α−1) ≤ e−θK(1/α−1) < 1.

Therefore, we have

P (at some T <∞, R̃T − B̃T ≤ K)

≥
∞∑

M=K+1

P (at some T <∞, R̃T − B̃T ≤ K|R̃τ̃0 − B̃τ̃0 = M)P (R̃τ̃0 − B̃τ̃0 = M)

+ P (R̃τ̃0 − B̃τ̃0 ≤ K)

≥ δ0[1− P (R̃τ̃0 − B̃τ̃0 ≤ K)] + P (R̃τ̃0 − B̃τ̃0 ≤ K) > δ > 0,

and the proof is complete.

3 Percolation-like chase-escape

Before getting to the proof of Theorem 1.4, we discuss the chase-escape dynamics
on the infinite path [−1,∞) ∩ Z with −1 blue and 0 red initially. Suppose that all red
passage times are 1 and that blue chases according to (1.3). Let tBi be the passage time
for blue along the edge (i− 1, i). Define

Tn =

n∑
i=0

tBi .

We will suppress the dependence on p and m during the proof and denote the probability
measure on this process by P (·) = Pp,m(·).
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Lemma 3.1. Let B = {t0 = m}. For any ε > 0, there exists M = M(ε) such that for all
n,m > M ,

P (Tn ≤ n+ 1 | B) ≤ (p+ ε)n.

Proof. If there are more than (n+ 1−m)/m edges with passage time m then Tn > n+ 1

conditional on B. Let an,m = d(n+ 1−m)/me and X
d
= Bin(n, 1− p). It follows from the

previous observation that

P (Tn ≤ n+ 1 | B) ≤ P (X ≤ an,m).

Taking m ≥ 2, it follows from a union bound and that P (X = k) is an increasing function
for k ∈ [0, n/2] that

P (X ≤ (n+ 1)/m) ≤ an,mP (X = an,m) = an,m

(
n

an,m

)
pn−an,m .

Stirling’s formula implies that given ε′ > 0, there exists a δ > 0 such that for all n > N(δ)

it holds that

(n+ 1)

(
n

δn

)
≤ (1 + ε′)n.

Let ε′ and δ be small enough so that (1 + ε′)p1−δ < (p+ ε). Take M(δ) large enough so
that, for m > M(δ), we have an,m ≤ δn for all n ≥ N(δ). Setting M = max{N(δ),M(δ)}
gives for n,m > M

P (X ≤ an,m) ≤ [(1 + ε′)p(1−δ))]n ≤ (p+ ε)n.

Since this is also a bound for P (Tn ≤ n+ 1 | B), the proof is complete.

Proof of Theorem 1.4. The idea is to set up and then apply a union bound that uses the
one-dimensional bound in Lemma 3.1 and also an observation that bounds the probability
of a continuous path in the cluster of sites accessible by red via 1-passage times.

First we must choose p and d appropriately. Let p = d−1 + d−2 and d > 3 be large
enough so that p > pc(d) and also

1− (1− p)d < 1− 3d−1. (3.1)

Such a d exists by the main result of [10], which proved pc(d) = d−1 + d−3 + O(d−4).
Furthermore, for this fixed choice of d, let ε = d−2 so that for δ = d−1 + 6d−2 we have

d(d−1 + d−2 + ε)(1− 3d−1) = 1− δ. (3.2)

We describe two events whose occurrence is necessary for red to survive. We must
condition on the event B = {tBe = m} i.e., that the first blue edge has passage time m.
Otherwise, red is instantly caught. Let C be the cluster of vertices connected to 0 via red
edges with passage time 1 and C = {|C| =∞}. Our choice of p is larger than pc(d), thus
P (C) > 0. Since red can only survive if it reaches infinity in the absence of being chased
and B and C are independent, we have

P (A) = P (A | B,C)P (B)P (C).

Recall that A is the event that infinitely sites are at some point colored red. As P (B) =

1− p, our result will follow from proving that P (A | B,C)→ 1 as m→∞.
Let γn be an oriented path started at 0 with n vertices and edges. Define the event

R(γ) that every vertex of γ belongs to C. Let T (γn) be the passage times for blue along
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the edges of γn. If blue never reaches the red boundary, then red spreads as if it is not
being chased and survives on the event C. Since red spreads at unit speed along C, we
can express this idea formally as

P (A | B,C) ≥ 1− P (∪n≥1,γn{T (γn) ≤ n+ 1} ∩R(γn) | B,C).

Using a union bound and independence of red and blue passage times gives

P (A | B,C) ≥ 1−
∑
n≥1

∑
γn

P (T (γn) ≤ n+ 1 | B)P (R(γn) | C).

Noting that P (T (γn) ≤ n+ 1 | B) = 0 for n < m, we then have

P (A | B,C) ≥ 1−
∑
n≥m

∑
γn

P (T (γn) ≤ n+ 1 | B)P (R(γn) | C).

The T (γn) are identically distributed with the same distribution as Tn from Lemma
3.1, and there are dn oriented paths of length n. So, the above line reduces to

P (A | B,C) ≥ 1−
∑
n≥m

dnP (Tn ≤ n+ 1 | B)P (R(γn) | C).

It then follows from the bound in Lemma 3.1 that for any ε > 0 and m sufficiently large
we have

P (A | B,C) ≥ 1−
∑
n≥m

dn(p+ ε)nP (R(γn) | C). (3.3)

A simple way to bound P (R(γn) | C) is to observe that R(γn) can only occur if each
vertex of γn has at least one incident edge with red passage time 1. This occurs with
probability 1− (1− p)d at each of the n vertices of γn. Let c = 1/P (C). Using the trivial
bound P (R(γn) ∩ C) ≤ P (R(γn)) and the formula for conditional probability, it follows
that for ‖x‖1 = n

P (R(γn) | C) ≤ P (R(γn))

P (C)
≤ c(1− (1− p)d)n.

Our choice of d at (3.1) guarantees that 1− (1− p)d < 1− 3d−1. Thus,

P (R(γn) | C) ≤ c(1− 3d−1)n. (3.4)

Applying (3.4) to (3.3) and recalling that p = d−1 + d−3 gives

P (A | B,C) ≥ 1− c
∑
n≥m

[d(d−1 + d−3 + ε)(1− 3d−1)]n.

Our choice of ε at (3.2) yields

P (A | B,C) ≥ 1− c
∑
n≥m

(1− δ)n.

This lower bound converge to 1 as m→∞, which completes the proof.
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