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A note on costs minimization with stochastic target
constraints
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Abstract

We study the minimization of the expected costs under stochastic constraint at the
terminal time. The first and the main result says that for a power type of costs, the
value function is the minimal positive solution of a second order semi-linear ordinary
differential equation (ODE). Moreover, we establish the optimal control. In the second
example we show that the case of exponential costs leads to a trivial optimal control.
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1 Introduction and main results

This note was inspired by a series of papers which dealt with stochastic tracking
problems; see, e.g., [1, 2, 3, 4, 5, 6, 7, 8, 10] and the references therein.

Consider a complete probability space (2, F, P) together with a standard one-dimen-
sional Brownian motion W;,t* > 0 and the Brownian filtration 7}V := o{W, : u < t}
completed by the null sets.

For any (T, z) € (0,00) x R and a progressively measurable processes u = {u;}7_,

which satisfies the integrability condition fOT |ug|dt < oo a.s. we denote
t
XM= x—l—/ usds, t€[0,T].
0

For any (T, z,c) € (0,00) x R? let U(T, z, c) be the set of all progressively measurable
processes u = {u;};_, (with the above integrability condition) which satisfy X7" > Iy~
a.s. As usual, we set I = 1 if an event ) occurs and Iy = 0 if not.

For a given p > 1 introduce the stochastic control problem

T
/ |ut|pdt] . (1.1)
0

For a given (T,xz,c) € (0,00) x [0,1] x R we say that u € U(T,z,c) is optimal if
]E[fOT |ug|Pdt] = (T, x,c). Let U (T, x,¢) C U(T,x,c) be the set of all u € U(T, z, c) such
thatu > 0dt ® P a.s. and X;7“ < 1a.s.

o(T,z,c) = Ul(an )E
ue ,X,C
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Costs minimization with stochastic target constraints

Lemma 1.1. For any (T,z,c) € (0,00) x [0,1] xR

o(T,z,c) = inf &
weUT(T,z,c)

T
/ |Uf|pdt .
0

Proof. Letu € U(T, z,c). Define
@y := max(0,u), t € [0,T],

0 :=T Ninf{t: X;;’ﬂ =1},

and
Uy = Ully<p, t€[0,77].

Observe that,
X§" > IAXE" > Tygse

T T
/ \ﬂt\pdt / |Ut‘pdt .
0 0

This completes the proof. O

and

E <E

The following Proposition will be crucial for deriving the main results.

Proposition 1.2. For any (T, z,c) € (0,00) x [0,1] x R

Mﬂzmy_ﬂjfv<LQv%).

Proof. The statement is obvious for x = 1. Thus assume that = < 1.
We use the scaling property of Brownian motion. Define the Brownian motion

B; = V\%T t > 0. Let FP := o{B, : u < t} be the filtration generated by B completed

with the null sets. Clearly, 77 = F/%, t > 0. Let U be the set of all stochastic processes
@ = {@;}{_, which are non negative, progressively measurable with respect to 77 and
satisfy

1
]IBl>\/c:17., S\/O atdt S ].
We notice that there is a bijection Ut (T, z, ¢) <+ U which is given by

(1—-2)u

=", 1€ [0,7].

Thus, from Lemma 1.1

U(Ta z, C) = miIlu€U+(T,m,c) I |:f0T ufdt}

. 1—z)P 1~ 1—z)P c
= mlnﬂeg (Tpi—)l]E |:f0 U]todt:| = (T‘T—)lv (1,0, 7T) . d

2
Next, let ®(-) = ﬁ [ e~ "= dy be the cumulative distribution function of the stan-
dard normal distribution. For any 7" > 0 and ¢ € R consider the martingale {MtT ’c}tT:O
given by

c— W,
Mgﬁc = ]IWT<C3 M);T’C — ]P(WT < C‘ftvv) = <I) <\/777tt> 9 t S [O,T) (12)
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Define the function g : (0,1) — R4 by
g(z) = v (1,0, <I>*1(z))

where &~ is the inverse function. From Proposition 1.2 we have

(1;7731:)”9 (<I> (\2)) = ﬂ;%y?g(Mg’c), Y(t,z,c) € (0,00) x [0,1] x R. (1.3)

Now, we are ready to state the main results which will be proved in Section 2.

v(t, @, c) =

Theorem 1.3.

(I) Let h: (0,1) — R4 be given by h(y) =
is a non increasing solution of the ODE

h(y)g"(y) + (p —1) (g(y) - gﬁ(y)) =0, ye(0,1) (1.4)

with the boundary conditions

exp(=[¢~' ()]?)

e . The function g : (0,1) — Ry

lim g(y) =1 and lim g(y) = 0. (1.5)
y—0 y—1

Moreover, the following minimality holds. If § : (0,1) — R is another solution to
(1.4) (§(yo) # g(yo) for some yy) and satisfies

lim g(y) >0 (1.6)
y—0
then §(y) > g(y) forally € (0,1).
(II) Let (T,xz,c) € (0,00) x [0,1] x R. The optimal control is given by

it T,c t o7 T,c
L B gr—1 (Mt ) _/ gr-1 (Ms’)
iy = (1 x)iT—t exp  T—s ds|, te][0,T).

Namely, for the optimal control we have the ODE:

axpt 1= XD
Lt gt (MP) 2 e [0,T).
dt g ( t ) T —t ) S [07 )
(III) LetT > 0 and c € R. Then the pair (Y, Z) given by
g(MTe) g (MTe)e™ 57
Y, = 2t 2 <, Zp == ! , t€10,T)
(T —t)r 21 (T — t)2P—1

is the minimal solution of the backward stochastic differential equation (BSDE)
P
dY;g = (p— 1)}/tp71dt+thWt, te [O,T) (17)
with the singular terminal condition Y = oollyy, .. This terminal condition means
that lim;_,7 Y; = ocolly,.~. a.s. where we use the convention oo - 0 := 0.

Remark 1.4. It is easy to see that the optimal control is unique. Indeed, if by contradic-
tion u, @ € U(T,z,c) are optimal controls and dt ® P(u # @) > 0. Then, the process “%*
satisfies “£* € U(T, z,c) and from the strict convexity of the function z — |z|’ we have

T P 1 T T
/ it| <1 (® / g Pt / ardt| | = o(T, 2, 0)
0 2 0 0

which is a contradiction.

Remark 1.5. A natural question is whether there exists a unique positive, non increasing
solution to the ODE (1.4) with the boundary conditions (1.5). Due to the fact that h takes
the value 0 at the end points {0,1} the uniqueness seems to be far from obvious and we
leave it for future research.

ut—i-zlt

E +E
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2 Proof of the main results

We start with the following regularity result.
Lemma 2.1. The function g : (0,1) — R4 is concave, non increasing and satisfies

Proof. The fact that g is non increasing is obvious.
Next, we establish the equality lim,_,o g(y) = 1. From the Jensen inequality it follows
that for any v € U(1,0,¢)

B Uol |ut|pdt} > (P(W1 > ) = (1— B(c))P.

Thus, g(y) = v(1,0,®!(y)) > (1 — y)? and we conclude that lim, , g(y) = 1.
It remains to prove concavity. Fix a; < a < as. Let us show that

ag — a a — ay

2 .
az — ax az — ay

Let c = ® !(a). Choose ¢ > 0. There exists u € U7 (1,0, ¢) such that

1
g(a) > E [/ ut|pdt} — €. (2.1)
0

Consider the martingale M := M !¢ given by (1.2). Observe that My = a. Define the
stopping time
T=1inf{t: M; ¢ (a1,a2)}.

Clearly, 7 < 1 a.s. and so from the equality E[M,] = M, we conclude that

ags — a — ap

P(M, = a) = ? and P(M, = ay) = . (2.2)
a2 — ax a2 — ay
Next, let D = [ uydt. From the Holder inequality
T Dp
/ |ug[Pdt > T a.s. (2.3)
0 T

From (1.3), the fact that {W,,, — W,}2°, is a Brownian motion independent of F, and
the inequality D + le urdt > Iy, —w,>c—w, (notice that D € [0,1]) we get

E {ff |ut|pdt|fTW} >o(l—71,D,c—W,)
_ a-py —w. )\ _ _(a-D)y
=19 (‘I) (C\/ﬁ)) = (177)12719(MT)~

E [/Tl ut”dt] >E [((1D)pg(MT)} . (2.4)

1—7)p-1

Thus,

By combining (2.1)~(2.4), the fact that g < 1 and the simple inequality -2+ + 1=2 > 1

R (e
for 0 < y,z < 1 we obtain

o [ ] [+ ) o)
> Elg(M;)] = gla1) ;2= + glaz) ;=

az—aq az2—aq :

Since € > 0 was arbitrary we complete the proof. O
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The proof of the main results will be based on the theory developed in [8]. We start
with preparations. For any (T, z,c¢) € (0,00) x [0,1] x R introduce the optimal position
targeting problem

(T, z,c) == infE

T
| upat+ £|X%’“|p]
0
where the infimum is taken over all progressively measurable processes u = {u;}7_,,
£ := ool . and as before, we use the convention co - 0 := 0.
Using same arguments as in Lemma 1.1 gives that
p‘|
where U~ (T, z,c) is the set of all progressively measurable processes u = {u;}7_, such
thatu <0 dt ® P a.s., X7°" > 0 a.s. and X7 = 0 on the event {Wr > c}.

Clearly, there is a bijection UV (T, z,¢) < U‘(T, 1 —x,c¢) given by u <> —u. Moreover,
for any u € U~ (T,1 — z,c¢) we have

o(T,z,c)= inf E
weU— (T,z,c)

T
/ P + €[ X5
0

T T
E / | —w|Pdt| = E / |us [Pdt + §|X%_w’“|p] . (2.5)
0 0
Thus, from Lemma 1.1 we conclude that
v(t,z,c) =0(t, 1 —x,¢), VY(tx,c) € (0,00) x[0,1] x R. (2.6)

This brings us to the following corollary.
Corollary 2.2. Let T > 0 and c € R. There exists a progressively measurable process

T,c
{Zi}o<t<T such that the pair (%,

Definition 1 in [8]) to the BSDE given by (1.7) with the singular terminal condition
YT = OOHWT>C.

Zt> is the minimal supersolution (see
0<t<T

Proof. From Theorem 3 in [8] it follows that there exists a minimal supersoution (Y, Z)

to the above BSDE. Moreover, by combining Theorem 3 in [8] together with the Markov
g(M[°)

property of Brownian motion, (1.3) and (2.6) we obtain that Y; = T==1- te0, 7). O
Remark 2.3. A priori we do not know that ¢ is continuously differentiable and so we
can not apply the Ito formula and find Z. In the proof of Theorem 1.3 we will show that
g satisfies the ODE (1.4) and then we will find Z.

Now, we are ready to prove Theorem 1.3.

Proof. Proof of Theorem 1.3.

First step: Proving that the minimal supersolution is a solution.

Fix T > 0 and ¢ € R. Let £ := ool ~.. Let us show that the supersolution (Y, Z)
from Corollary 2.2 is actually a solution. To that end, we need to establish the inequality
limsup,_,,Y; <&

We wish to apply Theorem 4 in [9]. There is a technical problem that the indicator
function is not continuous and so condition (4) in [9] does not hold. Still, this issue can
be simply solved by the following density argument. Define a sequence of functions
¢ R — RU{x}, neNby

1
¢(n) (Z) = < - n) ]Ic—igz<c + OO]IZZC'

ECP 25 (2020), paper 11. http://www.imstat.org/ecp/
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Observe that for any n, gb(") satisfies condition (4) in [9]. Hence, from Theorem 4 in [9]
there exists a pair (Y (™), Z(")) which satisfies the BSDE (1.7) with the terminal constraint
Yiﬁn) = ¢ (Wr). Since ¢(™ (Wr) > £, then from the minimality property of (Y, Z) we
obtain that for any n, ¥; < Y;(") a.s. forany ¢t € [0,T). Thus,

lim sup Y; < lim 1nf Y( ) = lim qb(")(WT) &,

t—T =00
as required.

Second step: Establishing statement (I) in Theorem 1.3.

r1,0
From Corollary 2.2 and the previous step it follows that lim;_, % = 0 on the

event {W; < 0}. Clearly, lim;_,; M;"° = 1 on the event {W; < 0}, and so we conclude
that lim, 1 g(y) = 0. This together with the boundary condition lim,_,, g(y) = 1 (was
established in Lemma 2.1) gives (1.5).

Next, we prove (1.4). Extend the function g to the closed interval [0, 1] by g(0) :=1
and g(1) := 0. Choose a € (0,1). Let c = ®~! (%). Consider the martingale M := M.
From Lemma 2.1 it follows that g : [0,1] — [0,1] is concave and continuous. Thus,
g(My), t € [0,1] is a continuous and uniformly integrable super-martingale. From Doob’s
decomposition

g(M) =N, — Ay, t€][0,1]

where N = {N;}._, is a martingale and A = {4;}}_, is a continuous, non decreasing
process with Ay = 0.

Recall the minimal supersolution ( from Corollary 2.2. From the

(M)
(19‘””_1 ’ Zt)ogt<1
product rule and (1.7) we get

(p— 1)921 ng)dt‘FthWt d((lg_(ii\){:)—l>

= e — w0 - D,
Hence,
dA, g(My) — g7 (M,)
L —1 .
T 1+t
We conclude that,
L g(M,) — g7 (M,
g(Mt):Nt—(p—l)/ 9( )1gs ( )ds vVt €10,1] P a.s. 2.7)
0 _

Next, observe that M, = % and define the function f : [¢,£¢] — R by

fly) =—( 1/a/3/_ p()dadﬂ

Notice that f € C? [¢, %] and f"(y) = —(p — 1)(1/)97)1(1/)’ y e [g, 2]
For any y € (M, 11%) consider the stopping time 7, = inf{t : M, ¢ (
Ty, < T a.s.

We notice that dg\t/[ ) —

2 y)}. Clearly,

2h(M,)
i—t

and so from the Ito Formula and (2.7) we obtain

g(M,) — f(M,,) = Ny, — F(Mo) — / " Py dM.

Hence,
E[g(M-,)] — E[f(M,)] = g(Mo) — f(Mp). (2.8)

ECP 25 (2020), paper 11. http://www.imstat.org/ecp/
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Similarly, to (2.2)

]P(MTy = y) =

My -3 — M,
2 and P (M, = 5) = L0
‘ -

y=3
This together with (2.8) yields that g(y) — f(y) is a linear function on the interval

(Mo, 1£2). In particular

" = (q) = —(p — g(a)—gv%l(a)

Since a € (0, 1) was arbitrary we complete the proof of (1.4).
Finally, we prove minimality. Assume that there exists a positive function § # g which
satisfies (1.4) and (1.6). Define the pair (Y, Z) by

A (L0 o (M0 7%
T -t T 2r(1 — t)2e— 1’ T

From the Ito formula (g satisfies (1.4) and so continuously differentiable) it follows that
the pair (Y, Z) is a supersolution to the BSDE (1.7) with the singular terminal condition

gm0 g(M}%)
a—pr T = (1—gr 1

Yr = oollyy, 0. From Corollary 2.2 we conclude that a.s. for any
t €[0,1). Thus, g(y) > g(y) forall y € (0,1).

Let us argue strict inequality. Indeed, assume by contradiction that there is yo € (0,1)
for which g(yo) = ¢g(yo), then clearly yo is a minimum point for the function g — g. Hence,
' (yo) = ¢'(yo). Since h(y) is bounded away from zero if y is bounded away from the end
points {0, 1}, then from standard uniqueness for initial value problems we conclude that

g = g on the interval (0, 1). This is a contradiction and the proof of (I) is completed.

Third step: Completion of the proof.

In this step we complete the proof of statements (II)-(III) in Theorem 1.3. Since g is
continuously differentiable (satisfies (1.4)) then from the Ito formula, Corollary 2.2 and
the first step of the proof we obtain statement (III).

It remains to prove Statement (II). Let (T, z, ¢) € (0,00) x [0, 1] xR and let £ := collyy,~c.
From Theorem 3 in [8] and Corollary 2.2 it follows that the optimal control for the
optimization problem

T
QA)(T, 1-— x, C) = . inf E / |Ut|pdt + §|X;,up‘|
uwelU—(T,1—z,c) 0
is given by
del—:c,u gﬁ(MfTvc) t gﬁ(MT’C)
= =g - U-e) T ) )t e jo,T).
Uy i (1-=x) Tt &P A T s s|, tel0,T]

From (2.5)-(2.6) we obtain that

_1_ T,c t i T.c
g (M) _/ g7 (M)
Gy = —up = (1 x)iT—t exp ; — ds |, te[0,T)

is the optimal control for the optimization problem (1.1), as required. O
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3 The exponential case

Let A > 0 and consider the optimization problem

[ (1) dt] |

Namely, we consider a stochastic target problem with exponential costs z — e**l — 1
and the same stochastic target as in (1.1).

The following result says that for any (7', z, ¢) the optimal control is targeting towards
1 with a constant speed.

Theorem 3.1. Let (T, z,c) € (0,00) x R?. Then

oyt
w(T,z,¢c)=T (emT) - 1) ,

w(T,x,c) = i(nf )IE
uwelU(T,x,c

and the unique optimal control is given by u = % dt @ P a.s.

Proof. Choose (T, z,c) x (0,00) x R2. The statement is obvious for x > 1. Hence, without
loss of generality we assume that 2 < 1. The cost function is strictly convex, and so,
by using the same arguments as in Remark 1.4 we obtain that the optimal control is
unique. Thus, in order to prove the theorem it is sufficient to show that the value function

satisfies the inequality
A(1—=x)

w(T,x,c)zT(e 7 —1). 3.1)

Let C be the set of all adapted, continuous and uniformly bounded processes. Let M
be the set of all strictly positive and uniformly bounded martingales M = {IM;}~_, with
M() =1.

Applying the standard technique of Lagrange multipliers we obtain

w(T,x,c)
> infoee SUPyso SUPpe B [fOT (e/\|ct\ — 1) dt — oMp (x + fOT Cidt — ]IWT>C>}
> SUPy>0 SUPMenm iNfoec E UOT (eMCf‘ — 1) dt — alMr (:17 + fOT Cydt — IIWT>C)}

> SUP4s0 SUPMen infoec B [fOT (eAC‘ — 1) dt —ax — « fOT M, C,dt + ozIMT]IWTN} )

Observe that for a given a > 0 and a martingale IM the minimum of the above expression
is obtained by taking C; = w, t € [0,T). Hence,

w(T,z,c)+T
> SUD, -0 SUPRIE AL []E (aMT]IWT>C + (9, — 2 In(a/A)M, — 1M, In M) dt) - az}

= SUP,~0 SUPe A [ozIE (IMT]IWT>C — % fOT M, ln]Mtdt) + % (I+InA—Ina) — oza:} .

21
Clearly for a given z; € R and z; > 0 we have max,~o[az; — zoalnal = zpe= 1 we

conclude that
1 T
TE AMT]IWT>C - / Mt In Mtdt
0

and (3.1) follows from the following lemma. O

w(T,z,¢)+T > Te™F sup exp
MeM

ECP 25 (2020), paper 11. http://www.imstat.org/ecp/
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Lemma 3.2. For any € > 0 there exists M € M such that
E[Mrlpy,se >1—¢€ (3.2)

E

T
/ IMt lthdt] < €. (33)
0

Proof. Choose ¢ > 0. First, assume that we found a strictly positive martingale IM
with M, = 1 which satisfy (3.2)-(3.3). Then for any N € IN define M(Y) ¢ M by
MY = Myngy, t € [0,T] where oy := T Ainf{t : M, = N}. Clearly,

MY = E[MJFY ], te0,T].

Thus, from the Jensen inequality for the function z — z1n z and the Fubini theorem

T
/ Mt In Mtdt] < €.
0

Next, from the Fatou Lemma and the fact that o 17 as n — oo

T
E / MM MMt <E

0

E Myl -] < lim jnf E []M;N )]IWTN} .
—o0

We conclude that in order to prove the statement, it is sufficient to find a strictly positive
martingale which satisfy (3.2)-(3.3).
To this end, consider a strictly positive martingale of the form

M, := eJo CudWu—Jo 5¢idu ¢ ¢ [0, T

where {(;}{_, is a continuous deterministic function. There exists a probability measure
Q such that %&]’t = IM;. Moreover, from the Girsanov theorem the process W, :=

Wy — fot Cudu, t € [0,T] is a Brownian motion under Q. Thus,

E [MrIy, ] = Q(Wr > ¢) = Q <WT + /OT Grdt > c> (3.4)
and
E [fo M InMdt| = Eq |y nMdt]
=B [fy (Jy GudWu + 3 [y C2du) at]
=5 [Jy Jy Gauat| = 4 [ (T~ tya. (3.5)

Observe that for the sequence of continuous functions ¢(*) : [0,7] = R, n € IN given by

3 n
i = T t€[0.7]
T+ —t) "
we have
T WA
lim [ ¢™dt > lim n3 (Tn - ) — o0
n—oo Jq n—00 n
and
’ (n)q2 . [T dt
lim [ [T - t)dt < lim n—z/ S —
nreeJo n—oo o (T—-1t)t =
This together with (3.4)-(3.5) yields that for sufficiently large n the martingale given by
t n n)12
M, = elo SWVdWu=3(61Pdu, ¢ ¢ [0, 7] satisfies (3.2)-(3.3). o
ECP 25 (2020), paper 11. http://www.imstat.org/ecp/
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Figure 1: A plot of the function g for the case p = 2.

Figure 2: This simulation corresponds to the case where W; < 0. The Brownian path is
in blue, the optimal control u € U(1,0,0) is in orange and X;"" = fot usds is in red.

4 Numerical results

In this section we focus on the case of quadratic costs (i.e. p = 2) and provide
numerical results for the value function and simulations for the optimal control.

1 1
Z)= inof E 2dt| .
9(2) uEUl?l,O,O) |:/0 e :|

By approximating the Brownian motion with scaled random walks we compute numeri-
cally the right hand side of the above equality. The result is g (%) = 0.88. Then, we apply
the shooting method and look for the correct value of the derivative ¢’ (3). Namely we
look for a real number 7 such that the unique (% # 0 in the interval (0, 1)) solution of the

From (1.3) we have

ECP 25 (2020), paper 11. http://www.imstat.org/ecp/
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Figure 3: This simulation corresponds to the case where W; > 0. The Brownian path is
in blue, the optimal control u € U(1,0,0) is in orange and X" = fot usds is in red.

initial value problem

h(y)g"(y) +9(y) = 5*(y) =0, ¢ (;) —0.8% and ¢ (;) =

will satisfy the boundary conditions ¢(0) = 1 and g(1) = 0. We get (numerically) a unique
value v = —0.21. The result is illustrated in Figure 1.

Next, for T =1 and « = ¢ = 0 we simulate a path of the optimal control u« € U(1,0,0)
and the corresponding strategy X "* = fot usds, t € [0,1]. This is done by simulating a
Brownian path and applying Theorem 1.3 (see Figures 2-3).
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