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Abstract. Estimation of microorganism concentration in ballast water tanks
is important to evaluate and possibly to prevent the introduction of invasive
species in stable ecosystems. For such purpose, the number of organisms in
ballast water aliquots must be counted and used to estimate their concentra-
tion with some precision requirement. Poisson and negative binomial models
have been employed to describe the organism distribution in the tank, but de-
termination of sample sizes required to generate estimates with pre-specified
precision is still not well established. A Bayesian approach is a flexible alter-
native to accommodate adequate models that account for the heterogeneous
distribution of the organisms and may provide a sequential way of enhancing
the estimation procedure by updating the prior distribution along the ballast
water discharging process. We adopt such an approach to compute sample
sizes required to construct credible intervals obtained via two optimality cri-
teria that have not been employed in this context. Such intervals may be used
in the decision with respect to compliance with the D-2 standard of the Bal-
last Water Management Convention. We also conduct a simulation study to
verify whether the credible intervals obtained with the proposed sample sizes
satisfy the precision criteria.

1 Introduction

Evaluation of ballast water discharges from ships is a topic of current interest because the
possible introduction of invasive species in stable ecosystems may bring serious environmen-
tal and economic consequences. Estimates of damage costs of invasive species may vary from
0.4 to 220 billion USD per year in 2008 prices (Marbuah, Gren and McKie, 2014, Table 1).
Among other requirements, the D-2 standard of the Ballast Water Management (BWM) Con-
vention requires that deballasted water should contain less than 10 viable organisms (referred
to simply as organisms in the remainder) per mL, sized ≥ 10 and < 50 μm in minimum di-
mension (IMO, 2004). This class of organisms comprise zooplankton and phytoplankton. An
overview of research in ballast water in the last thirty years is presented in Bailey (2015).

Given the large amount of ballast water (up to thousands of tons) transported by big ves-
sels, one has to rely on sampling methods to verify whether the standard is satisfied. This is
a difficult task, especially for organisms sized ≥ 10 and < 50 μm in minimum dimension.
Recently, Jang, Kim and Choi (2019) mention that there is no established sampling method-
ology for such microorganisms. Although this topic has attracted the attention of many re-
searchers, very few papers deal with sample sizes required to verify compliance with the D-2
norm. Exceptions are Basurko and Mesbahi (2011), Miller et al. (2011) and Frazier et al.
(2013), who discuss the problem but do not provide a formal solution. Costa, Lopes and
Singer (2015, 2016) attacked the problem with a more formal approach, defining the sample
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as a set of n aliquots (sub-samples) in each of which the number of organisms is counted. The
volume of each sample, say w, depends on the specific counting procedure (Casas-Monroy,
Rajakaruna and Bailey, 2020). The sampling process is based on a probabilistic model and
on a criterion according to which one must compute the number of aliquots of ballast water
with volume w mL needed to decide with a certain margin of error whether the D-2 standard
is complied with. One of the difficulties with this approach relates to the heterogeneous na-
ture of the organism concentration in the ballast water tank (Murphy, Ritz and Hewitt, 2002,
Carney et al., 2013, Casas-Monroy, Rajakaruna and Bailey, 2020). Based on frequentist meth-
ods, Costa, Lopes and Singer (2015, 2016) adopted models that take this heterogeneity into
account. In particular, Costa, Lopes and Singer (2015) consider Poisson and negative bino-
mial distributions and specify probabilities for Type I and II errors to test the hypothesis that
the mean organism concentration in the tank is smaller than 10 organisms per mL. Costa,
Lopes and Singer (2016), on the other hand, consider the same probability distributions and
specify a lower bound to the probability that the difference between the mean concentration
and its estimate be less than a fixed value. Costa (2017) suggests the adoption of more flex-
ible models that may possibly incorporate knowledge acquired over time. Bayesian models
are excellent candidates to incorporate such characteristics because that information may be
considered in the prior distribution which may also be updated when more data is obtained.

Two criteria are widely used in the Bayesian literature, but not in the setup under inves-
tigation for sample size determination, namely, the average coverage and the average length
of credible intervals (ACC and ALC, respectively). In both cases, we choose the smallest
sample size that satisfies the condition imposed on some specified average characteristic of
the posterior distribution of the parameter of interest.

For the ACC we compute the posterior probability of a highest posterior density (HPD) in-
terval with fixed length for each sample xn of size n and weigh it by the marginal distribution
of the data. This average probability must be not smaller than a specified lower bound. For
the ALC, on the other hand, we compute the length of an interval with fixed credible degree
for each (xn, n) and weigh it by the same marginal distribution. The average length must not
be larger than a specified upper bound.

Adcock (1987, 1988) uses the ACC (with a different label) to determine sample sizes
required to estimate multinomial probabilities under Dirichlet prior distributions as well as to
estimate the mean and the variance of normal distributions with prior normal or chi-squared
distributions for the cases where the variance is known or unknown, respectively. Joseph,
Wolfson and Berger (1995) and Joseph, Berger and Bélisle (1997) use both the ACC and the
ALC, among other Bayesian criteria for estimating the proportion and the difference between
two proportions under binomial distributions with beta prior distributions.

Wang and Gelfand (2002) use the same criteria to determine the sample size for the es-
timation of parameters of distributions belonging to the exponential family, of parameters
in Weibull survival models as well as of parameters in logistic regression models. M’Lan,
Joseph and Wolfson (2006) use the ACC and ALC criteria in the context of case-control
studies; Stamey, Young and Bratcher (2006) also consider these criteria to estimate the pa-
rameters of Poisson distributions as well to estimate the difference or the ratio of the param-
eters of two Poisson distributions. We may also cite Joseph and Bélisle (1997), Joseph and
Wolfson (1997), Rahme, Joseph and Gyorkos (2000), De Santis (2007), M’Lan, Joseph and
Wolfson (2008) for related work.

We consider a Bayesian approach to compute minimum sample sizes required to obtain
lower and upper limits of credible intervals for the mean organism concentration in a ballast
water tank with specified average coverage or average length. Letting xn denote a sample of
size n determined according to the proposed approach, the credible intervals defined by the
lower [say, a(xn)] and upper [say, b(xn)] limits will have in average, the specified coverage
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or length. Given this interval, the ship from which the sample was collected is declared not
compliant with the D-2 standard if a(xn) ≥ 10 or compliant, if b(xn) < 10. Otherwise, if
a(xn) < 10 ≤ b(xn), more data are needed to make a decision.

In Section 2, we describe the adopted Bayesian models. Sample size determination under
both the ACC and the ALC criteria is discussed and implemented in Section 3. A simulation
study to evaluate whether HPD intervals constructed with the proposed sample sizes satisfy
the adopted optimality criteria is presented in Section 4. The last section discusses the results
obtained from the computation of the minimum sample sizes as well as from the simulation
study. Algorithms for sample size computations, written with the R language (R Core Team,
2016), are presented in the Supplementary Material (Costa, Paulino and Singer, 2020).

2 Bayesian models

2.1 Poisson model with a gamma prior distribution

Given that the expected organism concentration (per unit of volume) in the tank is λ, let X

be the number of organisms in an aliquot of volume w; in this aliquot, we expect to find
E[X|λ] = wλ organisms. Suppose that the organisms are homogeneously distributed in the
ballast water tank, and that, given λ, X follows a Poisson distribution with mean wλ.

The natural (conjugate) choice for the prior distribution is a gamma distribution with pa-
rameters θ0 and λ0, namely λ ∼ G(θ0, θ0/λ0), for which the kernel of the probability density
function is

h(λ) ∝ λθ0−1 exp(−θ0λ/λ0).

This implies that E[λ] = λ0 and Var[λ] = λ2
0/θ0. In this context, λ0 represents a prior ex-

pected concentration and θ0 controls the variability of λ around λ0. The gamma distribution
provides ample flexibility to model the shape of the prior knowledge on the mean concen-
tration λ. In Figure S1 of the Supplementary Material, we present gamma density functions
with different shapes.

Consider a random sample xn = (x1, . . . , xn) of size n of X|λ and a gamma prior distribu-
tion for λ. We may write the model hierarchically as follows

Xi |λ iid∼ Poi(wλ), i = 1,2, . . . , n; (1)

λ ∼ G(θ0, θ0/λ0). (2)

The posterior distribution of λ is also gamma, with parameters θ0 + sn and nw + θ0/λ0,
where sn = ∑n

i=1 xi , that is, λ|xn ∼ G(θ0 + sn, nw + θ0/λ0). An example of prior and poste-
rior densities is presented in Figure 1. The effect of the observed data is clearly observed to
lead to a posterior distribution more concentrated than the prior distribution.

2.2 Negative binomial model with a Pearson type VI prior distribution

In contrast with the homogeneity assumption for the organism distribution in the tank inherent
to the Poisson model, consider a more realistic situation where the organisms are distributed
heterogeneously. A reasonable model for the organism distribution in this case is the negative
binomial distribution, which may be motivated as follows.

Suppose that the organism concentration varies in the tank according to a gamma distri-
bution with parameters φ and φ/λ. Consider n aliquots with volume w randomly selected
from the tank and let λi denote the corresponding organism concentration, i = 1, . . . , n. As-
sume that given λi , the corresponding number of organisms, Xi , follows a Poisson distribu-
tion with mean wλi . Thus, given λ and φ, Xi follows a negative binomial distribution with
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Figure 1 Prior gamma distribution G(θ0, θ/λ0) and posterior gamma distribution G(θ0 + sn, nw+θ0/λ0) with
w = 1, λ0 = 10, θ0 = 12, n = 20 and sn = 240.

E[Xi |λ,φ] = wλ and Var[Xi |λ,φ] = wλ + (wλ)2/φ, where φ is a shape (or agglomera-
tion) parameter. This is denoted as Xi |λ,φ ∼ NB(wλ,φ) and the probability function can be
written as

f (xi |λ,φ) = �(φ + xi)

�(xi + 1)�(φ)

(
w

φ
λ

)xi
(

1 + w

φ
λ

)−φ−xi

.

For inferences on the parameter of interest λ, we consider φ fixed (taking on several values
in the following analysis). A natural conjugate prior distribution for the parameter λ of the
negative binomial distribution is a Pearson Type VI distribution (Johnson, Kotz and Balakr-
ishnan, 1994a, 1994b), also known as a generalized beta prime distribution with a further
scale factor φ/w, for which the kernel of the probability density function is

h(λ) ∝ w

φ

(
w

φ
λ

)θ0−1(
1 + w

φ
λ

)−θ0−(θ0/λ0+1)

,

with location parameter 0, scale parameter φ/w and shape parameters θ0 and θ0/λ0 + 1,
where λ0 and θ0 are known positive fixed constants (hyperparameters). We use the notation
λ ∼ PVI(0, φ/w, θ0, θ0/λ0 +1). In this case, E[λ] = (φ/w)λ0 and Var[λ] = (λ2

0/θ0)[φ2(λ0 +
1)/(w2(1 − λ0/θ0))], for λ0 < θ0.

In the Poisson model with gamma prior distribution, we have E[X] = E[E[X|λ]] =
E[wλ] = wλ0, that is, the expected number of organisms when collecting an aliquot depends
only on the hyperparameter λ0. This makes sense since we are assuming homogeneity for the
concentration, and regardless of the location where we collect an aliquot in the ballast water
tank, we expect to find the same number of organisms. On the other hand, if we consider the
negative binomial model with a Pearson Type VI prior distribution, we have E[X] = φλ0 so
that the expected number of organisms in an aliquot depends on the parameter φ that controls
the heterogeneity of the organisms in the tank. Note that φ is also a scale parameter for the
prior distribution and the larger its value, the more spread out is the distribution with the other
parameters fixed, indicating a vague prior knowledge about the parameter of interest. Further-
more, we can set the other parameters in such a way that the prior distribution may represent
cases where there is high probability associated to an interval even when the value of φ in-
creases. When λ0 and θ0 are fixed and φ increases, we have distributions representing cases
with large variability. Examples are presented in Figures S2 and S3 of the Supplementary
Material.
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Consider a random sample of size n from X|λ,φ, and a Pearson Type VI prior distribution
for λ. We may write the model hierarchically as follows

Xi |λ,φ
iid∼ NB(wλ,φ), i = 1,2, . . . , n; (3)

λ ∼ PVI(0, φ/w, θ0, θ0/λ0 + 1). (4)

The posterior distribution of λ is Pearson Type VI, with the same location and scale pa-
rameters as the prior distribution, and shape parameters θ0 + sn and θ0/λ0 + nφ + 1, that is,
λ|xn ∼ PVI(0, φ/w, θ0 + sn, θ0/λ0 + nφ + 1).

We must emphasize that φ plays two roles in model (3)–(4). In (3), it plays the role of a
dispersion (or agglomeration) parameter. The larger is φ, the more homogeneous is the organ-
ism concentration in the tank. In the prior distribution (4), φ plays the role of scale parameter.
Keeping the other parameters fixed, the larger is φ, the less precise is the prior knowledge
about the parameter of interest (see Figure S2 of the Supplementary Material). This does not
mean that if φ (previously known) is large we may only assign prior distributions with large
variability, because we may specify the parameters λ0 and θ0 to adjust the precision of the
prior knowledge even with large values of φ (see Figure S3 of the Supplementary Material).

3 Sample size determination

We consider two criteria to determine the minimum sample size, that is, minimum number of
aliquots, required to estimate λ with a pre-specified precision.

3.1 Average coverage criterion (ACC)

The objective is to obtain the minimum sample size n such that the credible interval R(xn)

for λ has a pre-specified length with posterior probability at least equal to 1 − ρ, that is,∫
R(xn)

h(λ|xn) dλ ≥ 1 − ρ,

where xn is a sample of size n and R(xn) is a subset (an interval in our case) of the parameter
space. Since the sample size determination precedes the actual sampling, we must consider
all possible outcomes for xn to achieve the objective. In this direction, we may weigh each
outcome by its probability, that is,∫

X n

[∫
R(xn)

h(λ|xn) dλ

]
g(xn) dxn ≥ 1 − ρ,

where X n is the sample space associated to xn and g(xn) is the marginal probability function
of the outcomes.

For models (1)–(2) and (3)–(4), the credible region in general is an interval and in this case,
we consider the highest posterior density (HPD) interval to define R(xn) = [a(xn), b(xn)].
We fix the length � > 0 of the desired HPD intervals for λ, specify the minimum Bayesian
coverage probability, 1 − ρ and determine the minimum sample size as well as the bounds
a(xn) and b(xn) = a(xn) + � such that

∫
X n

[∫ b(xn)

a(xn)
h(λ|xn) dλ

]
g(xn) dxn ≥ 1 − ρ. (5)

Given a(xn), b(xn) and the parameters of the posterior distribution, the inner integral in
(5) may be obtained computationally; the outer integral may be estimated via Monte Carlo
simulation. An algorithm to obtain the minimum sample size satisfying the criterion is out-
lined in the Supplementary Material.
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Table 1 ACC (5) based minimum sample size (n) computed under
the Poisson/gamma model (1)–(2) with λ0 = 10, ρ = 0.05 and � = 2

Aliquot
volume (w)

Shape parameter (θ0)

1.0 2.5 5.0 7.5 10.0

0.5 77 77 76 76 75
1.0 39 39 38 38 38

Table 2 ACC (5) based minimum sample size (n) computed un-
der the negative binomial/Pearson Type VI model (3)–(4) with λ0 =
10(w/φ), ρ = 0.05 and � = 2

Aliquot
volume (w)

Shape parameter (θ0)

φ 11 25 50 75

0.5

1 663 558 517 480
8 134 126 118 111

13 113 106 99 93
22 97 92 86 80
30 92 86 82 76

1.0

1 598 559 515 486
8 97 92 86 81

13 76 71 65 62
22 61 56 53 50
30 53 51 47 44

In Tables 1 and 2, we present sample sizes computed via ACC (5) setting the length of
the required credible interval � = 2 for models (1)–(2) and (3)–(4), respectively. In Tables
S1 and S2 of the Supplementary Material, we present the same scenario for � = 4. Note that
for model (3)–(4) we consider λ0 = 10(w/φ) to make the prior expected value equal to 10
in order to allow a comparison with model (1)–(2) for which we fixed λ0 = 10. The values
considered for the parameter φ were chosen to cover the range of estimates obtained from real
data and reported in Casas-Monroy, Rajakaruna and Bailey (2020) as well as more extreme
cases to mimic low and high aggregation of the organisms in the ballast water tank. For
the Poisson/gamma model, the values considered for θ0 were chosen to cover its parameter
space in such a way that large and small prior variances were contemplated. For the negative
binomial/Pearson Type VI model the values for θ0 were chosen according to the constraint
imposed by the prior variance, λ0 < θ0.

3.2 Average length criterion (ALC)

An alternative criterion used to determine sample sizes is based on the average length of
the posterior credible intervals. The rationale here is to set the minimum Bayesian coverage
probability 1 − ρ and obtain the minimum sample size n by requiring that the length of the
posterior credible region �′(xn, n) = b(xn) − a(xn) be such that∫

X n
�′(xn, n)g(xn) dxn ≤ �max, (6)

where �max is the maximum admissible length for the posterior credible region. The lower
and upper bounds of the desired HPD interval may be obtained via numerical methods and
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Table 3 ALC (6) based minimum sample size (n) computed under
the Poisson/gamma model (1)–(2) (and also using Theorem 1) with
λ0 = 10, ρ = 0.05 and �max = 2

Aliquot
volume (w)

Shape parameter (θ0)

1.0 2.5 5.0 7.5 10.0

0.5 77 (61) 77 (70) 76 (73) 76 (73) 75 (73)
1.0 38 (31) 38 (35) 38 (37) 38 (37) 38 (37)

Table 4 ALC (6) based minimum sample size (n) computed un-
der the negative binomial/Pearson Type VI model (3)–(4) with λ0 =
10(w/φ), ρ = 0.05 and �max = 2

Aliquot
volume (w)

Shape parameter (θ0)

φ 11 25 50 75

0.5

1 434 437 441 432
8 122 117 114 110

13 101 100 95 91
22 91 90 84 79
30 87 85 79 75

1.0

1 358 383 403 397
8 84 84 82 80

13 66 65 62 61
22 54 55 51 48
30 50 48 47 44

the integral by Monte Carlo simulation. An algorithm to obtain the minimum sample size
satisfying this criterion is outlined in the Supplementary Material.

Based on the ideas of M’Lan, Joseph and Wolfson (2008), who used a binomial model
with a beta prior distribution, we may obtain the sample size using the ALC under the model
(1)–(2) with no need for numerical methods via the following result.

Theorem 1. Consider the Poisson/gamma model (1)–(2) and the average length criterion
(6). Based on large sample approximation, the minimum n, to guarantee that the posterior
credible interval average length is smaller than �max, is the smallest integer such that

n ≥ θ0

wλ0

{[
λ0

θ0

2zρ/2

�max

�(θ0 + 1/2)

�(θ0)

]2
− 1

}
,

where zρ/2 is the quantile of order 1 − ρ/2 of the standard normal distribution.

The proof of Theorem 1 is presented in the Supplementary Material. In Tables 3 and 4 we
present sample sizes computed using ALC (6) setting �max = 2 for models (1)–(2) and (3)–
(4); in Table 3 (and S3 of the Supplementary Material) we present corresponding sample sizes
(within parentheses) computed using Theorem 1. In Tables S3 and S4 of the Supplementary
Material we present the same scenario for �max = 4.

The results displayed in both subsections of Section 3 are commented in Section 5.
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Table 5 ACC based Bayesian coverage probability of HPD intervals estimated via simulation for some scenarios
under the Poisson/gamma model (1)–(2) using sample sizes displayed in Table 1 for � = 2

Aliquot
volume (w)

Probability quantile used to fix λ

θ0 n 1/6 2/6 3/6 4/6 5/6

0.5

1.0 77 1.00 1.00 0.98 0.94 0.85
2.5 77 0.99 0.99 0.97 0.95 0.88
5.0 76 0.99 0.98 0.95 0.94 0.92
7.5 76 0.98 0.97 0.96 0.94 0.91

10.0 75 0.97 0.98 0.95 0.95 0.93

1.0

1.0 39 1.00 1.00 0.98 0.95 0.86
2.5 39 0.99 0.99 0.97 0.93 0.88
5.0 38 0.99 0.98 0.97 0.94 0.90
7.5 38 0.98 0.98 0.95 0.94 0.90

10.0 38 0.98 0.96 0.95 0.96 0.92

4 Simulation study

We conduct a simulation study to verify whether the credible intervals obtained with the
sample sizes proposed in Section 3 satisfy the precision criteria.

For each (prior distribution) scenario and sample size obtained via the ACC (5) displayed
in Table 1 (and S1 of the Supplementary Material) we drew 1000 samples from a Pois-
son/gamma model (1)–(2) with values of λ fixed at the quantiles of order 1/6, 2/6, 3/6. 4/6
and 5/6 of the corresponding prior distribution. Then, for each sample we obtained the lower
[a(xn)] and upper [b(xn)] limits of the HPD credible interval for the mean organism concen-
tration in a ballast water tank with pre-specified average coverage probability (1 − ρ = 0.95)
and computed the proportion of intervals containing the fixed value of λ. The results are
displayed in Tables 5 and S5. We expect that the estimates of the HPD Bayesian coverage
probability to be at least 0.95.

Under the same model, but using sample sizes displayed in Tables 3 and S3, obtained via
the ALC (6), we conducted a similar simulation study, the results of which are displayed in
Tables 6 and S6. In this case, we expect that the estimates of length of the HPD intervals to
be at most 2 (or 4).

The same strategy was conducted for data obtained via the negative binomial/Pearson Type
VI model (3)–(4) using the sample sizes provided in Tables 2, 4, S2 and S4. The results are
provided in Table 7, 8 and in Tables S7–S10 of the Supplementary Material.

For illustrative purposes, we consider two sets of hypothetical data and obtain the cor-
responding HPD intervals under both proposed models. The first set mimics a case with
extreme heterogeneity in the organism concentration and the second, a case with where the
organisms are homogeneously distributed. This kind of severe aggregation occurs when indi-
viduals of the same species are physically attached to each other forming colonies as indicated
in Rajakaruna et al. (2018).

We first determined the sample size required to satisfy the ACC with � = 2 assuming a
Poisson/gamma model with a prior distribution having λ0 = 10 and θ0 = 0.01. This choice
corresponds to a large prior variance. Setting w = 1 and ρ = 0.01, the required sample size is
nP = 104. We then generated 104 observations from a negative binomial model with λ = 9,
φ = 0.1 and w = 1. The generated counts are displayed in Table 9 where the heterogeneity
induced by the negative binomial model is evident.

The sum of the counts is snP = s104 = 1173 so that the corresponding HPD intervals (ob-
tained via the algorithms described described in Sections 1.1.1 and 1.2.1 of the Supplemen-
tary Material) are, respectively, (10.3, 12.3) for the Poisson/gamma model setting λ0 = 10 and
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Table 6 ALC based length of HPD intervals estimated via simulation for some scenarios under the Pois-
son/gamma model (1)–(2) using sample sizes displayed in Table 3 for �max = 2

Aliquot
volume (w)

Probability quantile used to fix λ

θ0 n 1/6 2/6 3/6 4/6 5/6

0.5

1.0 77 0.85 1.27 1.66 2.09 2.66
2.5 77 1.30 1.60 1.86 2.13 2.49
5.0 76 1.52 1.75 1.93 2.12 2.37
7.5 76 1.61 1.79 1.94 2.10 2.30

10.0 75 1.67 1.83 1.96 2.10 2.27

1.0

1.0 38 0.86 1.28 1.67 2.10 2.68
2.5 38 1.31 1.61 1.87 2.14 2.50
5.0 38 1.52 1.74 1.93 2.12 2.37
7.5 38 1.61 1.80 1.95 2.10 2.30

10.0 38 1.66 1.82 1.95 2.08 2.26

Table 7 ACC based Bayesian coverage probability of HPD intervals estimated via simulation for some scenarios
under the negative binomial/Pearson Type VI model (3)–(4) using sample sizes displayed in Table 2 for w = 0.5
and � = 2

Probability quantile used to fix λ

φ θ0 n 1/6 2/6 3/6 4/6 5/6

1

11 663 1.000 0.999 0.997 0.985 0.893
25 558 0.999 0.998 0.986 0.955 0.919
50 517 0.994 0.988 0.974 0.958 0.913
75 480 0.992 0.974 0.976 0.940 0.902

8

11 134 0.993 0.985 0.972 0.948 0.917
25 126 0.977 0.976 0.952 0.942 0.928
50 118 0.964 0.971 0.974 0.947 0.931
75 111 0.959 0.978 0.954 0.967 0.924

13

11 113 0.987 0.982 0.974 0.949 0.909
25 106 0.982 0.977 0.963 0.967 0.921
50 99 0.978 0.961 0.963 0.953 0.929
75 93 0.963 0.973 0.966 0.947 0.935

22

11 97 0.990 0.975 0.958 0.948 0.920
25 92 0.977 0.961 0.969 0.953 0.924
50 86 0.964 0.959 0.975 0.958 0.927
75 80 0.965 0.973 0.974 0.967 0.942

30

11 92 0.980 0.968 0.975 0.950 0.900
25 86 0.972 0.967 0.967 0.949 0.947
50 82 0.967 0.963 0.965 0.961 0.936
75 76 0.961 0.964 0.971 0.969 0.943

θ0 = 0.01, and (8.81, 10.81) for the negative binomial/Pearson Type VI model [for which we
set φ ≈ 0.1213 (obtained via maximum likelihood), λ0 = 10(w/φ) ≈ 82.4 and θ0 = λ0 + 1,
in order to obtain a large variance]. The first interval does not contain the organism concentra-
tion (λ = 9) used to generate the data and suggest (erroneously) non-compliance with the D-2
regulation. The second interval, on the other hand, contains the value λ = 9 (even with the
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Table 8 ALC based length of HPD intervals estimated via simulation for some scenarios under the negative
binomial/Pearson Type VI model (3)–(4) using the sample sizes in Table 4 for w = 0.5 and �max = 2

Probability quantile used to fix λ

φ θ0 n 1/6 2/6 3/6 4/6 5/6

1

11 434 0.934 1.232 1.570 2.048 2.931
25 437 1.233 1.515 1.797 2.168 2.771
50 441 1.438 1.668 1.897 2.158 2.578
75 432 1.547 1.752 1.950 2.168 2.497

8

11 122 1.494 1.714 1.916 2.141 2.476
25 117 1.686 1.841 1.983 2.135 2.339
50 114 1.775 1.890 1.988 2.088 2.228
75 110 1.818 1.908 1.983 2.067 2.175

13

11 101 1.582 1.780 1.960 2.160 2.434
25 100 1.724 1.864 1.982 2.113 2.282
50 95 1.820 1.917 1.999 2.083 2.199
75 91 1.849 1.930 1.993 2.063 2.149

22

11 91 1.621 1.798 1.961 2.127 2.365
25 90 1.740 1.864 1.970 2.079 2.226
50 84 1.833 1.917 1.991 2.065 2.163
75 79 1.874 1.938 1.994 2.055 2.125

30

11 87 1.632 1.808 1.959 2.118 2.330
25 85 1.759 1.874 1.977 2.080 2.211
50 79 1.850 1.932 1.997 2.066 2.155
75 75 1.874 1.938 1.990 2.043 2.111

Table 9 Simulated counts of the example via the negative binomial (NB) model (φ = 0.1, λ = 9 and w = 1) and
via Poisson (P) model (λ = 9 and w = 1)

NB

0 0 2 65 0 0 0 19 0 6 0 1 2 0 10 27 4 0 41 0 53
0 0 0 0 0 0 0 72 6 0 1 1 55 0 12 1 0 0 0 0 0
4 0 3 0 0 248 20 1 0 5 0 0 16 0 0 7 208 0 94 0 0
1 0 0 0 0 13 0 0 0 4 0 2 1 1 2 0 0 0 0 6 0

75 0 50 6 0 0 5 0 8 1 0 0 4 0 0 8 0 2 0 0

P

5 10 10 10 12 10 3 7 10 9 10 9 7 13 7 12 7 7 6 7 7
7 6 4 7 12 9 13 12 4 9 7 7 9 6 11 6 7 17 12 9 10
7 10 8 9 10 9 7 11 5 7 11 9 6 9 9 11 6 12 12 4 7
3 7 11 7 9 4 9 6 13 3 11 5 9 8 5 7 10 14 9 6 9
6 13 8 7 6 13 6 13 6 6 5 9 7 4 7 11 4 9 7 6

sample size obtained under the Poisson/gamma model) and suggests (correctly) compliance
with the D-2 regulation.

For the second scenario, we generated 104 observations via a Poisson model with λ = 9
and w = 1. The generated counts are displayed in Table 9 and shows the more homogeneous
distribution of the organisms. The sum of the corresponding counts is snP = s104 = 859 so
that the associated HPD intervals are (7.29, 9.29) for both the Poisson/gamma model with
parameters λ0 = 10 and θ0 = 0.01 and the negative binomial/Pearson Type VI model with
parameters φ ≈ 233 (obtained via maximum likelihood), λ0 = 10(w/φ) ≈ 0.043 and θ0 =
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λ0 + 0.01. Both intervals contain the organism concentration λ = 9 suggesting (correctly)
compliance with the D-2 regulation.

These examples suggest that the negative binomial/Pearson Type VI model accommodates
both homogeneous and extreme heterogeneous situations while the Poisson/gamma model
fails in the latter case. We must recognize, however, that both models behave quite similarly
when heterogeneity is not extreme. This raises the question of eliciting prior information on
the organism aggregation, but this depends on historical data which is not yet available.

5 Discussion

The results in Tables 1 and S1 obtained under the Poisson/gamma model indicate that the
sample size does not decrease much when θ0 increases, i.e., when the variance of the prior
distribution decreases. This may be explained by the homogeneity assumption for the ex-
pected concentration which is intrinsic to the adopted model. Unless we consider a precise
prior distribution, the sample size required to satisfy the ACC will not change much. This
feature is also visible when we compute the sample size under the same model using the
ALC (see Tables 3 and S3).

On the other hand, under model (3)–(4) using either the ACC or the ALC with a fixed
value for φ, the precision of the prior knowledge, controlled by θ0 here, directly affects the
required sample size. This also happens when we consider a fixed θ0 and vary φ, that plays
the role of a scale parameter in the prior distribution (see Tables 2, 4, S2 and S4).

Assuming that φ is known may be a disadvantage but we can circumvent this problem in
a practical manner without considering a prior distribution for this parameter. The first and
simpler way is to consider φ as small as possible, for example, φ = 1. Since the sample size
n decreases as φ increases, when we take φ as the minimum, we are being conservative,
in the sense that the corresponding n is enough or more than enough to achieve the pre-
specified criteria settings. The second alternative is to consider a naive sequential procedure
in which samples are selected one by one (or by lots). Observe that sample sizes obtained
under a Poisson/gamma model (nP ) are always smaller than those obtained by a negative
binomial/Pearson VI model (nNB), with respective parameters fixed and write nNB = nP +K ,
where K is a positive integer. For fixed w, � (or �max) and fixed hyperparameters, we may
compute the sample size under a Poisson model, proceed with the sample collection obtaining
nP organism counts (xnP ). Using these nP organism counts we may compute an estimate for
φ by maximum likelihood or by the method of moments (see Ludwig and Reynolds, 1988,
eq. 3.5, for example) and with this estimate we may obtain nNB and consequently K , which is
the required number of additional aliquots. Since the prior distributions used in both models
are different, we must choose the hyperparameters for the Pearson Type VI distribution which
represent “equivalent prior knowledge” to those fixed in the gamma distribution. Given w, λ0
and the estimate of φ, we may choose θ0 such that the plot of the Pearson Type VI distribution
is similar to the plot of the gamma distribution with previous hyperparameters used to obtain
nP.

The standard approach, on the other hand, would be to consider a prior distribution for
φ which implies including at least an additional hyperparameter so that we must deal with
another integral in order to obtain the marginal distribution of λ. This introduces further
computational effort and is object of future research.

As in Inoue, Berry and Parmigiani (2005), we compare sample sizes obtained under dif-
ferent perspectives. Under the Bayesian approach fixing either � or �max (Tables 2, 4, S2 and
S4), the sample sizes are, in general, smaller than those computed under a frequentist ap-
proach with εa (maximum absolute error estimation) equal to 1 or 2 (see Tables 2 and 3 in
Costa, Lopes and Singer, 2016). This may be justified by the additional information provided
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by the prior distribution relatively to that considered in the frequentist approach, where only
lower and upper bounds for the parameter of interest are given.

For the ALC we also present a result (Theorem 1) which allows the computation of sample
sizes under model (1)–(2) without the need for numerical and/or simulation methods. The
corresponding sample sizes are consistently smaller than those obtained via Monte Carlo
replicates, although the differences are not large. Note that since this theorem is based on
large sample approximations, we expect a difference between the corresponding sample sizes
and those obtained directly from the proposed criterion.

The simulation results (Tables 5–7 and Tables S5–S10 of the Supplementary Material)
show similar results to those obtained under the simulation study presented in Costa, Lopes
and Singer (2016). For smaller values of λ, the coverage criterion is attained well above the
limit but the results are reversed for the larger values and the minimum fixed coverage is
not attained. A similar conclusion holds when using the ALC. We also note that for values
of λ smaller or equal to the median, the estimated coverage probability is larger than the
proposed one. This is expected, but may not happen for values of λ greater than the median,
mainly for the quantiles of order 5/6 or higher, i.e., in some cases the posterior interval
does not contain λ, and this happens with estimated coverage probability smaller than the
specified one. To justify this, note that for the Poisson/gamma model, given λ, Sn follows a
sampling Poisson distribution with mean and variance nwλ. When the value of λ (i.e., the
prior quantile) increases, the variance of Sn also increases and consequently the variability
of the posterior expected value increases, generating more HPD intervals that do not contain
the true value of λ. The same happens for the negative binomial/Pearson Type VI model,
where the sampling variance of Sn is nwλ + n(wλ)2/φ. When λ increases we observe the
same behavior as in the Poisson/gamma model, but here, additionally, when φ increases, the
sampling variance of Sn decreases. This may explain the increase (decrease) of the coverage
probability (length) of HPD intervals when λ is fixed at the the 5/6 quantile of the prior
distribution. Also, note that φ is scale and shape parameter of the posterior distribution and
this may explain the reversed behavior for the other quantiles (see Tables 7, 8, S7 and S8).
This suggests that in practice, if the goal is a minimum coverage with probability 1 − ρ, we
should consider a sample size n corresponding to a minimum coverage probability greater
than 1 − ρ in order to prevent or minimize this problem.

Although, for simplicity, we mention only one of the requirements of the D-2 standard, the
proposed procedure is also valid for the requirement that deballasted water should contain
less than 10 viable organisms per m3, sized ≥ 50 μm in minimum dimension, provided the
aliquot volume w is changed accordingly.

Practical issues related to the actual collection of the ballast water aliquots have been ad-
dressed by many authors (Carney et al., 2013, First et al., 2013, Gollasch and David, 2017).
In a recent paper, Casas-Monroy, Rajakaruna and Bailey (2020) compares different meth-
ods for obtaining the sample, concluding that among three available competitors the in-line
method may be the best one. Given that the BWM Convention requires ships to install a sam-
pling port after their ballast water treatment system, the pipes within the required machinery
may be used to collect aliquots along the entire deballasting process. The aliquots (with, say,
10 mL) are then integrated into a single volume from which the organisms are counted and
the corresponding credible interval is computed.
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