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Abstract. In this paper, we introduce the random deterioration rate model
with measurement error in order to incorporate the variability among dif-
ferent components. The motivation behind the random variable model is to
capture the randomness in the individual differences across the population.
This model incorporates only sample uncertainty of the degradation, and no
temporal variability is included. The measurement error models appear to
overcome this problem. The random rate analysis is based on repeated mea-
surements of failure sizes generated by a degradation process over time in a
components population. Some characteristics of the random deterioration rate
model based on the inverse Gaussian distribution and subject to measurement
error, are examined. We carry out simulation studies to (i) assess the perfor-
mance of the maximum likelihood estimates obtained through the Gaussian
quadrature along with Quasi-Newton optimization method; and (ii) examine
the effects of model misspecification on the model selection criteria’s perfor-
mance, as well as on the lifetime prediction’s accuracy and precision. The
potentiality of the proposed model is illustrated through two real data sets.

1 Introduction

There has been a renewed interest in the development of new lifetime techniques to make reli-
ability assessments. Freitas et al. (2010) pointed out that the reliability assessment of devices
is usually based on (accelerated) life tests that register only time-to-failure. Nevertheless, for
highly reliable products that exhibit a few or no failures, little information on their reliability
is given by such traditional tests. Once most failures occur due to a degradation mechanism at
work, for which some features change/degrade over time, one possibility is to monitor the de-
vice for some time and estimate its reliability from the changes in performance (degradation)
observed during that period.

The random deterioration rate model is a specific stochastic approach commonly applied
to corrosion and wear phenomena; see Fenyvesi, Lu and Jack (2004), EPRI (2006) and Huyse
and Roodselaar (2010). The motivation behind the random variable model is to capture the
randomness in the individual differences across a population. This model incorporates only
sample uncertainty of the degradation, and no temporal variability is included. The mea-
surement error models appear to work around this issue. Pandey and Lu (2013) developed a
methodology for the estimation of the growth rate parameters in noisy degradation measure-
ment data, whose random sizing error arises due to inspection tools. The authors assigned the
exponential and gamma distributions to the deterioration rate, and normal distribution to the
measurement errors.
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The primary goal of this paper is to propose a random deterioration rate model based
on the inverse Gaussian (IG) distribution and subject to measurement error, in order to ac-
count for both sampling and temporal variability associated with a deterioration process.
The most commonly used classes of the stochastic process are the gamma and Wiener pro-
cesses. These two classes have been widely studied and applied in the literature (Peng et al.,
2014). Recently, the IG process has been reported as an attractive and flexible stochastic pro-
cess for degradation modeling by Wang and Xu (2010). Compared with the gamma process,
the IG process is more flexible for incorporating random effects and explanatory variables,
and is mathematically tractable, especially for certain degradation data (see Wang and Xu,
2010). Alternatively to the above-mentioned stochastic processes, the random deterioration
rate model with measurement error based on the IG distribution (instead of the gamma dis-
tribution) can be an exciting and useful approach for analyzing real degradation data.

Further, the maximum likelihood estimators are discussed to obtain the estimates for the
parameters of the new model. Since the integral involved in the likelihood function does not
have a closed-form expression, we considered the Gaussian quadrature method to overcome
this problem. Intensive simulation studies are presented under different setups to (i) check the
efficiency of our proposed estimators; and (ii) evaluate the effects of model misspecification
on the chosen model selection criteria’s performance, as well as on the lifetime prediction’s
accuracy and precision. In the end, we illustrate our proposed methodology to describe the
degradation over time of LASER data and locomotive wheels data.

The paper is organized as follows. In Section 2, we review the degradation model. In
Section 3, we present the random deterioration rate model. In Section 4, we introduce the
random deterioration rate model with measurement error based on the IG distribution and
discuss some of its features as well as inference. In Section 5, we show the simulation studies,
and in Section 6, we provide the application with two real data sets in the literature. Finally,
in Section 7, we give some concluding remarks.

2 The degradation model

In this work, the degradation path of a particular quality characteristic of a product is repre-
sented by D(t), and it is a continuous-time stochastic process {D(t), t ≥ 0}, i.e., D(t) is a
random quantity ∀t ≥ 0.

Typically, degradation exhibits an increasing behavior over time, then the product’s life-
time T is appropriately defined as the first passage time when D(t) surpasses a threshold ρ,
which needs to be fixed in general, that is,

T = inf
{
t ≥ 0|D(t) ≥ ρ

}
. (1)

The expression (1) is referred to as the first passage time distribution, which plays a vital
role in predicting the remaining useful life as well as in determining optimal maintenance
strategies (van Noortwijk, 2009).

The random uncertainties of a degradation process can be featured using different kinds
of probabilistic models. In the setting of stochastic processes, we can mention the random
deterioration rate model, which is described in the following section.

3 The random deterioration rate model

The simplest stochastic process is defined as a time-dependent function for which the average
rate of deterioration per unit time is a random quantity (van Noortwijk, 2009). The random
deterioration rate model (or simply, the random rate model) describes the deterioration growth
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in a group of components using a linear function and a random parameter. Many other more
complicated nonlinear models can be transformed into a linear random deterioration rate
model using a time-transformation. In this work, we consider a simple random deterioration
rate model as

D(t) = Rt ≥ 0, with R > 0, (2)

where R is randomly distributed and reflects the uncertain nature of deterioration in a popu-
lation of identical components.

The random rate model has advantages when the experiment is based on a couple of in-
spections with no measurement error due to its natural interpretation. Nevertheless, when the
number of inspections is large, the individual deterioration rate certainly changes with time,
and the inferences for the parameters are inadequate.

4 The random deterioration rate model with measurement error

In engineering problems, generally, data can neither be collected nor registered precisely due
to a variety of uncertainties, like human errors, machine errors, or incomplete information
(Xiao et al., 2012). Therefore, a source of variability may be added due to measurement
errors. The random deterioration rate model is studied following the proposal by Pandey and
Lu (2013), in which a measurement error is added to the deterministic model (2) in order to
elucidate the source of variability between the measurements from the same individual path.
This model is an extension of (2), in which the degradation path of the ith unit at time t is
given by

Di(t) = ri t + εi, (3)

for i = 1,2, . . . , n, where ri is the random deterioration rate and εi is the measurement error.
The model (3) has the same formulation as the general path model (Meeker, Escobar and

Lu, 1998), in which the main feature is the randomness between units. Lu and Meeker (1993)
presented an approach to analyze noisy degradation data based on the nonlinear mixed-effects
regression model assuming a normal distribution with zero mean and positive variance for
the measurement error. In this work, εi belongs to a normal distribution with real mean and
positive variance, that is, εi ∼ N(με,σ

2
ε ), with −∞ < με < ∞ and σ 2

ε > 0.

4.1 Inference for the unknown parameters of the random deterioration rate model

Consider n units being observed at the inspection times ti0 = 0, ti1, . . . , tini
, then we have

ni degradation measurements for the ith unit: Di(tij ) = dij , where i = 1,2, . . . , n and j =
0,1, . . . , ni . Then, the model (3) can be rewritten as

Di(tij ) = dij = ri tij + εij , (4)

where εij ∼ N(με,σ
2
ε ), with με ∈ R and σ 2

ε > 0.
The analysis is based on a hierarchical modeling used in the Bayesian literature (Kass

and Steffey, 1989), which consists of two stages. In the first stage, the deterioration rate ri
is viewed as a latent parameter whose distribution is modeled in the second stage with a
hyperparameter vector β . These stages are described below.

• Stage 1: The vector d i = (di1, di2, . . . , dini
) is conditioned on a given ri , which is regarded

as a latent parameter for unit i, with distribution f (d i |ri);
• Stage 2: Conditionally on β , the ri’s constitute an independent and identically distributed

(i.i.d.) sample from f (ri |β), and ri and β are referred to as “random” and “fixed” effects,
respectively.
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Thus, from conditional independence, the joint density of the data from all units, d =
(d1, . . . ,dn), is a product of specified densities:

f (d|β) =
n∏

i=1

f (d i |β),

where the unit specific density is a marginal distribution as follows:

f (d i |β) =
∫
Ri

f (d i |ri)f (ri |β)dri .

The hierarchical procedure is coherent for analyzing noisy data and is not restricted to
linear degradation law.

Considering (4) and ri fixed, the degradation measure Dij ∼ N(με + ri tij , σ
2
ε ). Hence, the

probability density function (p.d.f.) of a measured degradation is given as

f (dij |ri) = 1√
2πσε

exp
[
− 1

2σ 2
ε

(dij − με − ri tij )
2
]
.

From the concept of the hierarchical modeling, the degradation measures d i (i =
1,2, . . . , n) are normally distributed with the deterioration rate ri as a parameter, while ri
itself has the p.d.f. f (ri |β).

By using the theorem of total probability, the marginal likelihood function for measure-
ments of an unit i can be written as

Li

(
με,σ

2
ε ,β

) =
∫ ∞

0

ni∏
j=1

{
1√

2πσε

exp
[
− 1

2σ 2
ε

(dij − με − ri tij )
2
]}

f (ri |β)dri

= L1i × L2i , (5)

where the first term L1i = ( 1√
2πσε

)ni does not depend on β , and the second term L2i =∫ ∞
0 exp[− 1

2σ 2
ε

∑ni

j=1(dij −με − ri tij )
2]f (ri |β)dri depends on β through the integral over ri .

The likelihood function for a sample of n independent units is the product of the terms
L1(με, σ

2
ε ,β), . . . ,Ln(με, σ

2
ε ,β):

L
(
με,σ

2
ε ,β

) =
n∏

i=1

Li

(
με,σ

2
ε ,β

) =
n∏

i=1

L1i × L2i .

Hence, the corresponding log-likelihood function is

�
(
με,σ

2
ε ,β

) =
n∑

i=1

log(L1i ) +
n∑

i=1

log(L2i ). (6)

4.2 Lifetime distribution

Considering (1) and (2), the lifetime cumulative distribution function (c.d.f.) is given by

FT (t) = P
(
D(t) ≥ ρ

) = P(Rt ≥ ρ) = 1 − FR

(
ρ

t

)
, (7)

where FR(·) is the deterioration rate c.d.f.
The corresponding lifetime p.d.f. is obtained by differentiating (7):

fT (t) = ∂FT (t)

∂t
. (8)

The quantiles tp , 0 < p < 1, are obtained from the equation FT (t) = p.
From the nature of degradation data, one may assume a positive-valued distribution for the

deterioration rate, r . In this work, we assume an IG distribution for r .
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Figure 1 Degradation paths from IG random rate model under different scenarios.

4.3 IG distribution for the random deterioration rate

We shall assume that the ri’s are an i.i.d. sample from an IG distribution, then we have

Di(tij ) = ri tij + εij , where ri ∼ IG(μ,λ), (9)

with μ > 0 being the mean and λ > 0 is the shape parameter (see Seshadri (2012)). In what
follows, we will refer to this model as the IG random deterioration rate model (or simply, the
IG random rate model).

Figure 1 shows some degradation paths from the IG random rate model (9). Each plot
consists of 10 units being evaluated from 0 up to 4 time units with 8 equidistant intervals.
The parameter values are displayed in the graphs. We can see that a decrease in λ leads to
an increase in the variability between the paths. While an increase in σ 2

ε leads to an increase
in the variability within the paths. Although the paths have increasing behavior, the model
formulation allows ups and downs due to measurement error.

4.3.1 Inference. We can rewrite the second term in (5) as

L2i =
∫ ∞

0
exp

{
− 1

2σ 2
ε

ni∑
j=1

(dij − με − ri tij )
2

}√
λ

2πr3
i

exp
{
−λ(ri − μ)2

2μ2ri

}
dri, (10)
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which is intractable analytically due to the fact that the integral has no closed-form expres-
sion.

The Gaussian quadrature method arises to solve this problem. Such method aims to ap-
proximate an integral of a continuous function with respect to a quantity x on X as a weighted
sum of this function evaluated at a set of nodes (also called quadrature points):∫

X
f (x)dx ≈

Q∑
q=1

wqf (xq),

where the coefficients w1, . . . ,wQ are the weights and x1, . . . , xQ ∈ X are the nodes.
Some works concerning the use of Gaussian quadrature methods in the regression model-

ing with random effects include Pinheiro and Bates (1995), Lesaffre and Spiessens (2001),
Carrasco, Ferrari and Arellano-Valle (2014), Crowther et al. (2016).

Monte Carlo integration is another alternative method to solve integrals, although one may
rewrite (10) so that the integral becomes over another distribution with known parameters.
Thus, one can also use the probability integral transform (Nelson et al., 2006) or the refor-
mulation likelihood method (Liu and Yu, 2008).

The Gaussian quadrature is faster than the Monte Carlo method in computing numeric
integrals. In this work, we obtained the approximation of the integral in (10) by the one-
dimensional globally adaptive integrator 15-points Gauss–Kronrod with extrapolation over
infinite intervals, which is an extension of the Gaussian quadrature.

Once one has obtained the numerical result for the cited integral, the maximum likelihood
estimates (MLEs) can be found by direct maximization of (6) concerning the parameters.
Besides, interval estimates and hypothesis tests can be obtained asymptotically.

4.3.2 Lifetime distribution. Considering an IG distribution for the deterioration rate r , the
lifetime c.d.f. (7) becomes

FT (t) = 	

(
−

√
λt

ρ

[
ρ

tμ
− 1

])
− exp

{
2λ

μ

}
	

(
−

√
λt

ρ

[
ρ

tμ
+ 1

])
, (11)

where 	(·) is the standard normal c.d.f.
Moreover, the lifetime p.d.f. in (8) becomes

fT (t) = exp
{
−λ(−μt + ρ)2

2μ2tρ

}√
λ

2πρt
.

Therefore, the meantime to failure (MTTF) is given by

MTTF = ρ(μ + λ)

μλ
.

Peng and Tseng (2009) gave special attention to the MTTF estimation, which can be sig-
nificantly affected by model misspecification in the degradation analysis.

Finally, the quantiles of (11) have no analytical form, so we resort to numerical root-finding
methods to find approximate solutions.

5 Simulation studies

In this section, we present the main results obtained from simulation studies aimed at (i)
verifying properties of the MLEs of the model parameters (Section 5.1); and (ii) investigating
the effects of model misspecification on the appropriateness of the chosen model selection
criteria, as well as on the accuracy and precision of the lifetime prediction (Section 5.2).

All the computations and simulations were done using the Ox programming language
(Doornik, 2009).
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Table 1 MLEs, 95% CPs and MSEs under different σ 2
ε values

σ 2
ε = 0.05 σ 2

ε = 0.5

n Parameter MLE 95% CP MSE MLE 95% CP MSE

10 μ(2) 1.9988 0.9130 0.0153 1.9997 0.9230 0.0184
λ(50) 73.8300 0.9620 2946.0000 78.7930 0.9550 5627.0000
με(0) 0.0001 0.9370 0.0024 0.0008 0.9380 0.0234
σ 2
ε 0.0495 0.9300 0.0001 0.4951 0.9300 0.0055

20 μ(2) 2.0022 0.9300 0.0080 1.9992 0.9230 0.0101
λ(50) 59.8800 0.9670 630.8600 61.4230 0.9700 802.8100
με(0) 0.0006 0.9520 0.0012 0.0002 0.9500 0.0113
σ 2
ε 0.0499 0.9530 2 × 10−5 0.4981 0.9400 0.0028

30 μ(2) 1.9992 0.9450 0.0052 2.0013 0.9380 0.0067
λ(50) 56.0010 0.9650 269.3100 55.8910 0.9700 292.9000
με(0) 4 × 10−5 0.9570 0.0007 −0.0012 0.9480 0.0078
σ 2
ε 0.0500 0.9490 2 × 10−5 0.4995 0.9490 0.0019

50 μ(2) 1.9997 0.9530 0.0030 2.0008 0.9600 0.0036
λ(50) 53.2550 0.9560 124.8400 53.3090 0.9670 148.6100
με(0) −0.0031 0.9300 0.0007 −0.0012 0.9590 0.0046
σ 2
ε 0.0506 0.9130 3 × 10−5 0.4993 0.9440 0.0012

100 μ(2) 1.9989 0.9470 0.0016 1.9989 0.9590 0.0019
λ(50) 52.0270 0.9600 57.7280 51.7530 0.9520 69.1820
με(0) −0.0023 0.9160 0.0003 0.0013 0.9490 0.0023
σ 2
ε 0.0509 0.8920 2 × 10−5 0.5008 0.9500 0.0005

5.1 Parameter recovery study

The first simulation study was conducted based on the generation of 1000 artificial data sets
from the IG random rate model (9) with five different sample sizes: n = 10,20,30,50 and
100. The components were evaluated from 0 up to 4 time units with 10 equidistant intervals.
The mean parameters were kept fixed: μ = 2 and με = 0, while the shape and scale param-
eters assumed different values: λ = 20 or 50, and σ 2

ε = 0.05 or 0.5. Such parameter values
give degradation paths with similar features to the LASER data set (Meeker and Escobar,
1998), in which the variation of λ and σ 2

ε describes a source of variation among and within
the paths, respectively.

The MLEs of the model parameters, the coverage probabilities at level 95% (95% CPs),
and the mean square errors of the MLEs (MSEs) under different λ and σ 2

ε values are dis-
cussed.

Table 1 displays the MLEs, 95% CPs and MSEs under σ 2
ε = 0.05 and σ 2

ε = 0.5, from
which we conclude that, in general, the MLEs are close to the corresponding true values.
Regarding the 95% CPs, we notice that, when σ 2

ε = 0.05 and n increases, the 95% CPs for
μ and λ are closer to 95% and the 95% CPs for με and σ 2

ε are closer to 90%, which is
acceptable; and when σ 2

ε = 0.5 and n increases, all 95% CPs are closer to the nominal value
(95%). Moreover, the MSEs are lower as n increases, for different σ 2

ε values.
Still, regarding the 95% CP values close to 90% for σ 2

ε = 0.05, we can see that the lower
the σ 2

ε , the smaller the variability within the paths; meanwhile, the larger the sample size, the
higher the variability among the paths. Therefore, the MLEs of με and σ 2

ε have a small bias
even for large sample sizes.

Table 2 exhibits the MLEs, 95% CPs and MSEs under λ = 20 and λ = 50, from which
we conclude that the MLEs are close to the corresponding true values for different λ values.
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Table 2 MLEs, 95% CPs and MSEs under different λ values

λ = 20 λ = 50

n Parameter MLE 95% CP MSE MLE 95% CP MSE

10 μ(2) 2.0016 0.9240 0.0396 1.9997 0.9230 0.0184
λ 29.8610 0.9610 567.2100 78.7930 0.9550 5627.0000

με(0) 0.0011 0.9400 0.0236 0.0008 0.9380 0.0234
σ 2
ε (0.5) 0.4951 0.9290 0.0055 0.4951 0.9300 0.0055

20 μ(2) 1.9977 0.9160 0.0222 1.9992 0.9230 0.0101
λ 24.3220 0.9690 114.4200 61.4230 0.9700 802.8100

με(0) 0.0003 0.9510 0.0113 0.0002 0.9500 0.0113
σ 2
ε (0.5) 0.4981 0.9400 0.0028 0.4981 0.9400 0.0028

30 μ(2) 2.0021 0.9400 0.0145 2.0013 0.9380 0.0067
λ 22.2440 0.9660 44.0760 55.8910 0.9700 292.9000

με(0) −0.0011 0.9480 0.0078 −0.0012 0.9480 0.0078
σ 2
ε (0.5) 0.4995 0.9510 0.0017 0.4995 0.9490 0.0019

50 μ(2) 2.0008 0.9500 0.0081 2.0008 0.9600 0.0036
λ 21.2260 0.9650 21.5060 53.3090 0.9670 148.6100

με(0) −0.0011 0.9570 0.0046 −0.0012 0.9590 0.0046

σ 2
ε (0.5) 0.4993 0.9440 0.0012 0.4993 0.9440 0.0012

100 μ(2) 1.9981 0.9640 0.0041 1.9989 0.9590 0.0019
λ 20.6555 0.9530 10.4000 51.7530 0.9520 69.1820

με(0) 0.0013 0.9470 0.0023 0.0013 0.9490 0.0023
σ 2
ε (0.5) 0.5008 0.9510 0.0005 0.5008 0.9500 0.0005

Furthermore, as n increases, the 95% CPs are closer to the nominal value and the MSEs are
lower.

5.2 Misspecification study

In this subsection, we perform a second simulation study to demonstrate the robustness of
the proposed model under model misspecification. Mainly, 1000 simulations were carried
out using the QUADPACK routine (Piessens et al., 2012) along with the Quasi-Newton opti-
mization method via BFGS algorithm available in Ox software (Doornik, 2009).

Firstly, we consider a special case of the IG random rate model (9), where samples of size
n = 10,20,30,50 and 100, for the deterioration rate ri (i = 1,2, . . . , n), are simulated from
an IG distribution with parameters μ = 2 and λ = 50, but we will also assume that the data
come from a random deterioration rate model based on the gamma distribution (Pandey and
Lu, 2013), referred to as the gamma random rate model along the section, which is given by

Di(tij ) = ri tij + εij , where ri ∼ Gamma(ϕ,υ), (12)

with ϕ > 0 being the shape parameter, υ > 0 is the scale parameter, and the p.d.f. of ri is

f (ri |ϕ,υ) = r
ϕ−1
i

�(ϕ)υϕ exp{− ri
υ
}.

Secondly, we consider a particular case of the gamma random rate model (12), where
samples of size n = 10, 20, 30, 50 and 100, for ri (i = 1,2, . . . , n), are drawn from a gamma
distribution with parameters ϕ = 26.5760 and υ = 0.0767, but again, we will also suppose
that the data come from an IG random rate model with parameters μ and λ.

It is worth noting that the parameters of both models were set so that their observed mean
and variance values are approximately the same (2 and 0.16, respectively).

In both cases, the model chosen as the best fit was the one which provided the lower
AIC (Akaike information criterion) (Sakamoto, Ishiguro and Kitagawa, 1986) value. We also



The random deterioration rate model with IG distribution 195

Table 3 The percentage (%) of times each random rate model is selected as the best one according to the AIC
statistic, for different σ 2

ε values

True model n σ 2
ε = 0.05 σ 2

ε = 0.5

IG random rate 10 58.50 58.10
20 54.90 58.30
30 57.70 55.70
50 60.40 59.10

100 66.30 60.70

Gamma random rate 10 52.50 51.70
20 53.30 54.20
30 58.40 58.30
50 58.90 57.80

100 62.30 64.80

consider two different scenarios for the data dispersion: σ 2
ε = 0.05 and σ 2

ε = 0.5, which
describe, respectively, low and large sources of variability within the paths.

The obtained results are displayed in Table 3, revealing that model selection/discrimination
with AIC showed a high percentage of correctly classified samples (for both models, this
percentage is higher than 50%). Observe also that the AIC performance is still better for the
IG random rate model in the presence of small samples (i.e., when n ≤ 20).

We also performed the present simulation study by considering the BIC (Bayesian or
Schwarz information criterion) (Schwarz, 1978). Nevertheless, since both models have the
same number of parameters, the results led to similar conclusions and were omitted here.

Finally, the estimation results shown in Table 4 indicate that both IG and gamma random
rate models are equally robust to model misspecification, with quite similar MLEs, MSEs and
95% CIs of the lifetime 10th, 50th and 80th percentiles and MTTF. Note that in order to save
space, we only present the results for σ 2

ε = 0.05 (in fact, σ 2
ε = 0.5 led to the same findings).

6 Application

For the analysis and comparison purposes, we bring forward the gamma random rate model
(12).

In the application with the LASER data (Section 6.1) and locomotive wheels data (Sec-
tion 6.2), the MLEs were obtained by the Quasi-Newton optimization method via Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm (Broyden, 1970). The values used to initialize
this algorithm in the IG random rate model were achieved by the following steps:

1. Let μ(0), λ(0), μ
(0)
ε and σ

2(0)
ε be the starting values of μ, λ, με and σ 2

ε , respectively;
2. For each degradation path, fit the model (9) using the method of least squares, thus

obtaining the observed degradation rates r̂1, r̂2, . . . , r̂n of r1, r2, . . . , rn, respectively;

3. Suppose that r̂1, r̂2, . . . , r̂n
iid∼ IG(μ,λ), then μ(0) and λ(0) are taken as the MLEs of μ

and λ, respectively;
4. Obtain the residuals eij = Di(tij )− r̂i tij (i = 1,2, . . . , n and j = 1,2, . . . , ni), then μ

(0)
ε

and σ
2(0)
ε are taken, respectively, as the sample mean and sample variance of the residuals.

The starting values for the gamma random rate model can be obtained analogously.
Although the Ox software was used to conduct almost all these real data analyses, and the

R software (R Core Team R, 2018) was also considered to perform specific tasks, such as
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Table 4 MLEs, 95% CPs and MSEs of the lifetime percentiles and MTTF under model misspecification and
considering true parameter values in Gamma random rate model as t0.1 = 3.9091, t0.5 = 4.9691, t0.8 = 5.8824
and MTTF=5.0988, and true parameter values in IG random rate model as t0.1 = 3.9536, t0.5 = 5.0997, t0.8 =
6.0278 and MTTF=5.2

Gamma random rate IG random rate

Fitted model/True model n Quantity MLE 95% CP MSE MLE 95% CP MSE

IG random rate 10 t0.1 3.9944 0.9120 0.1025 4.0496 0.8950 0.1202
t0.5 5.0348 0.9020 0.1131 5.1114 0.9190 0.1026
t0.8 5.8714 0.8820 0.2294 5.9667 0.8750 0.2045

MTTF 5.1126 0.8970 0.1206 5.2018 0.9120 0.1098

20 t0.1 3.9390 0.9330 0.0511 4.0015 0.9230 0.0579
t0.5 5.0172 0.9250 0.0540 5.1014 0.9190 0.0550
t0.8 5.8865 0.9190 0.1052 5.9885 0.9020 0.1045

MTTF 5.1094 0.9160 0.0563 5.1956 0.91700 0.0586

30 t0.1 3.9158 0.9530 0.0295 3.9895 0.9240 0.0377
t0.5 5.0025 0.9360 0.0326 5.1024 0.9310 0.0326
t0.8 5.8791 0.9100 0.0702 6.0008 0.9340 0.0624

MTTF 5.0957 0.9330 0.0350 5.1982 0.9340 0.0345

50 t0.1 3.9012 0.955 0.0191 3.9727 0.9440 0.0223
t0.5 4.9985 0.9350 0.0209 5.1006 0.9570 0.0198
t0.8 5.8844 0.9190 0.0430 6.0123 0.9530 0.0356

MTTF 5.0930 0.9320 0.0221 5.1984 0.9550 0.0207

100 t0.1 3.9001 0.9490 0.0100 3.9587 0.9220 0.0128
t0.5 5.0013 0.9270 0.0109 5.0981 0.9270 0.0116
t0.8 5.8899 0.9310 0.0199 6.0206 0.9390 0.0202

MTTF 5.0959 0.93700 0.0107 5.1978 0.9350 0.0121

Gamma random rate 10 t0.1 4.0109 0.8900 0.1038 4.0632 0.8680 0.1212
t0.5 5.0045 0.8940 0.1070 5.0807 0.9140 0.1012
t0.8 5.8555 0.8940 0.2228 5.9552 0.8830 0.2026

MTTF 5.1235 0.9020 0.1207 5.2046 0.9200 0.1103

20 t0.1 3.9570 0.9080 0.0510 4.0161 0.9060 0.0587
t0.5 4.9853 0.9250 0.0508 5.0694 0.9150 0.0551
t0.8 5.8689 0.9270 0.1020 5.9763 0.9100 0.1038

MTTF 5.1099 0.9240 0.0564 5.1982 0.9250 0.0588

30 t0.1 3.9350 0.9420 0.0290 4.0047 0.9030 0.0384
t0.5 4.9701 0.9430 0.0306 5.0699 0.9310 0.0332
t0.8 5.8600 0.9140 0.0678 5.9879 0.9420 0.0623

MTTF 5.0957 0.9350 0.0350 5.2006 0.9420 0.0347

50 t0.1 3.9215 0.9430 0.0183 3.9878 0.9270 0.0229
t0.5 4.9672 0.9380 0.0200 5.0677 0.9440 0.0205
t0.8 5.8672 0.9260 0.0434 6.0004 0.9600 0.0353

MTTF 5.0947 0.9390 0.0228 5.2014 0.9600 0.0205

100 t0.1 3.9192 0.9380 0.0094 3.9747 0.9030 0.0128
t0.5 4.9698 0.9500 0.0093 5.0657 0.9240 0.0125
t0.8 5.8736 0.9470 0.0187 6.0101 0.9530 0.0201

MTTF 5.0975 0.9490 0.0103 5.2020 0.9490 0.0119

the construction of the probability-probability (P–P) plots and the Anderson–Darling (AD)
goodness-of-fit (GOF) tests of the observed degradation rates.

The Ox and R codes that we have developed for the complete analysis of the LASER data
are available as Supplemental Material ((Morita et al., 2020)).
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Figure 2 Degradation paths from the LASER data.

6.1 The LASER data

Some gadgets for light amplification by stimulated emission of radiation, named LASER,
exhibit degradation over time, which results in a reduction of the emitted light. This light-
ness can be kept quite constant with an increase in the operating current. When this current
achieves a very high value, it is considered that the unit has failed. Meeker and Escobar
(1998) showed a study with degradation data of 15 LASER units from Gallium arsenide
(GaAs) kind, with observations made at 4000 hours of operation, with 16 equidistant time
intervals. The degradation measure for each LASER unit is the percent increase in the cur-
rent overtime, concerning the nominal current, and a unit is considered to have failed when
its degradation measure achieves 10%. Figure 2 displays the degradation paths, indicating
the critical value associated with the failure. It is worth pointing out that Meeker and Escobar
(1998) first analyzed these LASER data under an approximate degradation analysis. The au-
thors first fitted straight lines through the origin for each degradation path, then obtained the
pseudo times to failure. Thereby, they proceeded with a likelihood analysis under a Weibull
distribution for the failure times and made inferences on the time-to-failure distribution.

Table 5 displays the MLEs, the standard errors of the MLEs (SEs) and the 95% confidence
intervals (95% CIs) of the parameters under the IG random rate model (9) and the gamma
random rate model (12), based on the LASER data. From this table, we conclude that the
MLEs of με and σ 2

ε are the same in both models, as well as their SEs and 95% CIs. Moreover,
the measurement errors are slightly shifted to the right, assuming more positive than negative
values. For illustrative purposes, each unit time stands for 1000 hours of operation, so the
MLEs of μ and λ in model (9), as well as the MLE of υ in model (12), have to be divided by
1000 for practical interpretation.

Table 6 presents the model selection criteria AIC and BIC, which both indicate the IG
random rate model as the best one that fitted the LASER data, as its AIC and BIC values
are the lowest. Nevertheless, the difference between the AIC (BIC) value for the IG ran-
dom rate model and the AIC (BIC) value for the gamma random rate model is 0.825 < 2,
which, according to the rule of thumb suggested by Burnham and Anderson (2002, page 70)
(Raftery, 1995, Table 6), shows weak evidence for the superiority of the proposed model over
the conventional one. Therefore, both IG and gamma random rate models are plausible for
describing this data set.

Additionally, we resort to the P–P plot and the AD test of the observed degradation rates to
evaluate the GOF of the IG and gamma random rate models. The observed degradation rates
are obtained from a simple linear regression model without intercept fitted to each degrada-
tion path. The GOF test is verified according to the proposal of Villaseñor and Gonzalez-
Estrada (2015), which consists in transforming the IG variables into gamma variables and
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Table 5 MLEs, SEs and 95% CIs of the model parameters based on the LASER data

Model Parameter MLE SE 95% CI

IG random rate μ 2.0418 0.1094 [1.8275;2.2562]
λ 47.9760 17.5780 [13.5240;82.4290]
με 0.0131 0.0279 [−0.0416;0.0677]
σ 2
ε 0.0424 0.0040 [0.0346;0.0502]

Gamma random rate ϕ 23.0620 8.3833 [6.6309;39.4930]
υ 0.0885 0.0325 [0.0248;0.1523]
με 0.0130 0.0279 [−0.0416;0.0677]
σ 2
ε 0.0424 0.0040 [0.0346;0.0502]

Table 6 AIC and BIC values based on the LASER data

Model AIC BIC

IG random rate 19.1214 21.9536
Gamma random rate 19.9464 22.7786

Figure 3 IG P–P plot and gamma P–P plot of the observed degradation rates based on the LASER data.

using the AD test for the gamma distribution. 1 According to the authors, this approach has
satisfactory performance even for small sample sizes. Figure 3 exhibits the IG and gamma
P–P plots along with the AD test for the observed degradation rates, from which we con-
clude that both IG and gamma random rate models are appropriate for describing the LASER
degradation data (p-values > 0.05 in both cases).

Table 7 displays the lifetime 10th, 50th, and 80th percentiles and MTTF for the LASER
components, from which we see that the estimated (via MLEs) lifetime percentiles and MTTF
are similar to each other, and about 80% of the LASER components are supposed to have
failed up to 6000 hours of operation. Such results are similar to the analysis from Meeker

1More specifically, the authors state that, if ri ∼ IG(μ,λ), then wi = (ri−μ)2

ri
∼ Gamma( 1

2 , β), where

β = 2 μ2

λ , for i = 1, . . . , n. Hence, testing H0 : r1, . . . , rn ∼ IG(μ,λ) is asymptotically equivalent to testing

H′
0 : w1, . . . ,wn ∼ Gamma( 1

2 , β). In this case, since the parameters are unknown, we can use the transformed

observations: wi = (ri−r̄)2

ri
, for i = 1, . . . ,2, where r̄ = 1

n

∑n
i=1 ri denotes the sample mean. These quantities are

asymptotically independent random variables with Gamma( 1
2 , β) distribution. Finally, the well-known Anderson–

Darling test (Anderson and Darling, 1954) can be applied for testing H′
0.
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Table 7 MLEs and 95% CIs of the lifetime percentiles and MTTF based on the LASER data

IG random rate model Gamma random rate model

Quantity MLE 95% CI MLE 95% CI

t0.1 3.8468 [3.3088;4.3849] 3.8429 [3.3373;4.3486]
t0.5 5.0014 [4.4815;5.5213] 4.9691 [4.4399;5.4984]
t0.8 5.9424 [5.2234;6.6614] 5.9589 [5.1742;6.7435]
MTTF 5.1060 [4.5698;5.6422] 5.1195 [4.5519;5.6871]

Figure 4 Lifetime distribution based on the LASER data: (a) Lifetime p.d.f., (b) Lifetime c.d.f.

and Escobar (1998), in which the 80th percentile of the pseudo lifetimes under a Weibull
distribution is equal to 5932.2250 hours, whereas the MTTF is equal to 5127.8600 hours.
The authors pointed out that the results obtained by the approximate method are satisfactory
when the degradation paths are relatively simple.

Finally, Figure 4 shows the plots of the estimated p.d.f. and c.d.f. under the IG and gamma
random rate models, from which we conclude that the p.d.f. and c.d.f. curves are similar to
each other.

6.2 The locomotive wheels data

Wheel failures are responsible for much of the railroad vehicle accidents, which bring high
costs to private companies and government. The railway maintenance services account for
mechanical repairs of the locomotives and hold some detailed information about preventive or
corrective interventions. The data set considered here is part of a study (presented by Freitas
et al. (2009)) led by a Brazilian railroad company and includes the diameter, in millimeters
(mm), of 14 locomotive wheels obtained from 13 inspections done up to 600,000 kilometers
(km) traveled in equidistant intervals. The degradation measure for each wheel is the wear, in
mm, on the wheel diameter over the traveled distance, more precisely, the difference between
the actual wheel diameter and the diameter of a new wheel (966 mm) over km traveled.
A wheel is considered to be not working when its degradation measure achieves 77 mm,
i.e., when the wheel diameter is distant 77 mm from a new wheel. Figure 5 exhibits similar
degradation paths, indicating the critical value associated with the failure. The wheels that
attain the threshold remain until the next inspection when they are replaced due to preventive
policies.

Table 8 displays the MLEs, SEs, and 95% CIs of the parameters under the IG random
rate model (9) and the gamma random rate model (12), based on the locomotive wheels data.
From this table, we conclude that the MLEs of με and σ 2

ε are similar in both models, as
well as the corresponding SEs and 95% CIs. It is worth noticing that the measurement error
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Figure 5 Degradation paths from the locomotive wheels data.

Table 8 MLEs, SEs and 95% CIs of the model parameters based on the locomotive wheels data

Model Parameter MLE SE 95% CI

IG random rate μ 0.0994 0.0174 [0.0653;0.1334]
λ 0.2324 0.0879 [0.0600;0.4048]
με 1.0331 0.1445 [0.7499;1.3164]
σ 2
ε 0.7151 0.0846 [0.5493;0.8808]

Gamma random rate ϕ 2.7985 1.0016 [0.8353;4.7617]
υ 0.0355 0.0139 [0.0082;0.0628]
με 1.0331 0.1445 [0.7505;1.3171]
σ 2
ε 0.7151 0.0846 [0.5493;0.8808]

Table 9 AIC and BIC values based on the locomotive wheels data

Model AIC BIC

IG random rate 517.9400 520.4970
Gamma random rate 519.7270 522.2840

distribution is offset to the right of zero, which means that the errors tend to assume positive
values. For easy viewing, the distance scale is expressed in 1000 km traveled, then the MLEs
of μ and λ in (9), as well as the MLE of υ in (12), have to be divided by y in practical
situations.

Table 9 shows the AIC and BIC values, which both provide empirical evidence in favor of
the IG random rate model. However, the difference between the AIC (BIC) value for the IG
random rate model and the AIC (BIC) value for the gamma random rate model is less than
two (= 1.787), thus indicating that both candidate models are plausible for the locomotive
wheels data.

Besides, Figure 6 exhibits the IG and gamma P–P plots along with the AD adherence test
of the observed degradation rates, from which we conclude that both IG and gamma random
rate models are appropriate for characterizing the locomotive wheels data (p-values > 0.05
in both cases).

Furthermore, Table 10 displays the lifetime percentiles and MTTF for the locomotive
wheels, and Figure 7 shows the plots of the estimated p.d.f. and c.d.f. under the IG and
gamma random rate models. From Table 10, we see that the estimated lifetime percentiles
and MTTF are similar to each other, and about 80% of the wheels must be switched off up to
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Figure 6 IG P–P plot and gamma P–P plot of the observed degradation rates based on the locomotive wheels
data.

Table 10 MLEs and 95% CIs of the lifetime percentiles and MTTF based on the locomotive wheels data

IG random rate model Gamma random rate model

Quantity MLE 95% CI MLE 95% CI

t0.1 430.19 [279.91;580.48] 423.45 [240.15;606.74]
t0.5 876.86 [591.09;1162.60] 936.55 [645.08;1228.00]
t0.8 1563.80 [848.92;2278.70] 1559.80 [1005.00;2114.60]
MTTF 1205.78 [602.44;1809.10] 1106.24 [744.27;1468.20]

Figure 7 Lifetime distribution based on the locomotive wheels data: (a) Lifetime p.d.f., (b) Lifetime c.d.f.

1,560,000 km traveled. Moreover, from Figure 7, we see that the p.d.f. and c.d.f. curves are
similar to each other.

7 Concluding remarks

In this paper, we proposed a random deterioration rate model with measurement error, in
which the individual random rates follow an IG distribution. The IG random rate model takes
into account the variability in the degradation data coming from different sources: the unit-
varying uncertainty among different units, the temporal variability and the variability due to
measurement error. Since the integrals in the likelihood function and its derivatives are in-
tractable, we proposed to approximate it by a quadrature method and then obtain the MLEs
of the model parameters. The methodology was implemented by the QUADPACK routine
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(Piessens et al., 2012) along with the Quasi-Newton optimization method via the BFGS al-
gorithm available in Ox software (Doornik, 2009). The methods showed convergence in the
simulation study and the application with the real-world data sets. The simulation studies re-
vealed that, in general, the MLEs tend to be unbiased and consistent, even when the data are
perturbed by the variability of the measurement error, which means that the asymptotic inter-
vals are adequate to use in practical situations. Besides, the simulation results demonstrated
that the AIC and BIC metrics are suitable for model selection/discrimination. The application
with the LASER data and the locomotive wheels data showed that the IG and gamma random
rate models gave similar results, but the first one best fitted both data sets.

Future work may include considering the use of flexible measurement error models, such
as the one introduced by Rondon and Bolfarine (2017), where the error term distribution
belongs to the class of scale mixtures of normal distributions, which includes as particular
cases the Student-t, slash, Laplace and symmetric hyperbolic distributions, among others.
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