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Fast Exact Bayesian Inference for Sparse
Signals in the Normal Sequence Model

Tim van Erven∗,† and Botond Szabó∗,†

Abstract. We consider exact algorithms for Bayesian inference with model selec-
tion priors (including spike-and-slab priors) in the sparse normal sequence model.
Because the best existing exact algorithm becomes numerically unstable for sam-
ple sizes over n = 500, there has been much attention for alternative approaches
like approximate algorithms (Gibbs sampling, variational Bayes, etc.), shrink-
age priors (e.g. the Horseshoe prior and the Spike-and-Slab LASSO) or empirical
Bayesian methods. However, by introducing algorithmic ideas from online sequen-
tial prediction, we show that exact calculations are feasible for much larger sample
sizes: for general model selection priors we reach n = 25 000, and for certain spike-
and-slab priors we can easily reach n = 100 000. We further prove a de Finetti-
like result for finite sample sizes that characterizes exactly which model selection
priors can be expressed as spike-and-slab priors. The computational speed and
numerical accuracy of the proposed methods are demonstrated in experiments on
simulated data, on a differential gene expression data set, and to compare the
effect of multiple hyper-parameter settings in the beta-binomial prior. In our ex-
perimental evaluation we compute guaranteed bounds on the numerical accuracy
of all new algorithms, which shows that the proposed methods are numerically
reliable whereas an alternative based on long division is not.

AMS 2000 subject classifications: Primary 62G05; secondary 62F15.
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1 Introduction

In the sparse normal sequence model we observe a sequence Y = (Y1, . . . , Yn) that
satisfies

Yi = θi + εi, i = 1, . . . , n, (1)

for independent standard normal random variables εi, where θ = (θ1, . . . , θn) is the un-
known signal of interest. It is assumed that the number of non-zero signal components s
in θ is small compared to the size of the whole sample (i.e. s = o(n)). Applications of this
model include detecting differentially expressed genes [45, 36, 39, 56, 23], bankruptcy
prediction for publicly traded companies using Altman’s Z-score in finance [2, 3], separa-
tion of the background and source in astronomical images [18, 28], and wavelet analysis
[1, 31]. The model is further of interest to sanity check (approximate) inference meth-
ods for the more general sparse linear regression model (see [15] and references therein),
which reduces to the normal sequence model when the design is the identity matrix.
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The sparse normal sequence model, which is also called the sparse normal means
model, has been extensively studied from a frequentist perspective (see, for instance,
[27, 7, 1]), but here we consider Bayesian approaches, which endow θ with a prior dis-
tribution. This prior serves as a natural way to introduce sparsity into the model and
the corresponding posterior can be used for model comparison and uncertainty quan-
tification (see [24, 53, 37, 5] and references therein). One natural and well-understood
class of priors are model selection priors that take the following hierarchical form:

i.) First a sparsity level s is chosen from a prior πn on {0, 1, . . . , n}.

ii.) Then, given s, a subset of nonzero coordinates S ⊂ {0, 1, . . . , n} of size |S| = s is
selected uniformly at random.

iii.) Finally, given s and S, the means θS = (θi)i∈S corresponding to the nonzero
coordinates in S are endowed with a prior GS , while the remaining coefficients
θSc = (θi)i/∈S are set to zero.

As is common, we will choose the prior GS on the nonzero coordinates in a factorized
form; i.e. θi ∼ G for all i ∈ S, where G is a fixed one-dimensional prior, which we assume
to have a density g (with respect to the Lebesgue measure). Under suitable conditions
on πn and G, the posterior has good frequentist properties and contracts around the true
parameter at the minimax rate, as shown by Castillo and Van der Vaart [17]. Notably,
they require the prior πn to decrease at an exponential rate.

A special case of the model selection priors are the spike-and-slab priors developed
by Mitchell and Beauchamp [42], George and McCulloch [26], where the coefficients of
θ are assigned prior probabilities

θi | α ∼ (1− α)δ0 + αG, i = 1, . . . , n,

α ∼ Λn,
(2)

with δ0 the Dirac-delta measure at 0 (a spike) and G the same one-dimensional prior
as above (called the slab in this context). The a priori likelihood of nonzero coeffi-
cients is controlled by the mixing parameter α ∈ [0, 1], and finally Λn is a hyper-
prior on α. A typical choice for Λn is the beta distribution: α ∼ Beta(κ, λ). In this
case the prior on the sparsity level in the model selection formulation takes the form

πn(s) =
(
n
s

)B(κ+s,λ+n−s)
B(κ,λ) , where B(κ, λ) denotes the beta function with parameters κ

and λ. The resulting prior is called the beta-binomial prior. A natural choice is κ = λ = 1
[54], which corresponds to a uniform prior on α, but this choice does not satisfy the ex-
ponential decrease condition on πn. Castillo and Van der Vaart therefore propose κ = 1
and λ = n+1, which does satisfy their exponential decrease condition [17, Example 2.2],
and in Section 5 we confirm empirically that the latter indeed leads to better posterior
estimates for θ.

Model selection priors set certain signal components to zero, which is desirable for
model selection, but makes computation of the posterior difficult since the number of
possible sets S is exponentially large (i.e. 2n). Castillo and Van der Vaart [17] do provide
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an exact algorithm, based on multiplication of polynomials (see Appendix A), but this
algorithm runs into numerical problems for sample sizes over n = 250 or sometimes
n = 500 (see Section 3) and it also requires O(n3) computation steps, which makes it
too slow to handle large n.

The computational difficulty of model selection priors has given rise to a variety of
alternative priors based on shrinkage. These include the horseshoe prior [11], for which
multiple scalable implementations are available [58, 30]. The corresponding posterior
achieves the minimax contraction rate and, under mild conditions, also provides reli-
able uncertainty quantification [61, 60, 59]. The posterior median and draws from the
horseshoe posterior are not sparse, but one can use it for model selection after post-
processing the posterior. An alternative is to replace the spike in the spike-and-slab
prior with a Laplace distribution with very small variance, as in the Spike-and-Slab
LASSO [48]. One can efficiently compute the maximum a posteriori (MAP) estimator
of the corresponding posterior distribution by convex optimization.

Another way to deal with the computational problems for model selection priors is
to consider approximations. The available options include Stochastic Search Variable
Selection (SSVS) [26], variational Bayes approximation [65], Langevin Markov Chain
Monte Carlo [44], Expectation Maximization [50], Hamiltonian Monte Carlo [53] or
empirical Bayes methods [31, 40, 6].

In this paper we return to the goal of exactly computing the posterior for model
selection priors, without changing the prior or introducing approximations. In Section 2
we propose a new approach based on a representation of model selection priors by
a Hidden Markov Model (HMM) that comes from the literature on online sequential
prediction and data compression [64], for which we can apply the standard Forward-
Backward algorithm [46]. The computational complexity of this algorithm is O(n2). To
appreciate the speed-up compared to O(n3) run time, see Section 4, where this method
runs in under 15 minutes while the previous algorithm of Castillo and Van der Vaart
would take approximately 20 days. Furthermore, in Section 2.2 we specialize to spike-
and-slab priors and introduce an even faster algorithm based on a discretization of the α
hyper-parameter, which has only O(n3/2) run time. Using results from online sequential
prediction [20], we show that this discretization provides an accurate approximation of
the posterior that can be made exact to arbitrary precision, provided that the density
of Λn varies sufficiently slowly. Our conditions do not directly allow κ or λ to depend
on n in the beta-binomial prior, so we provide an extra result to cover the important
case that κ = 1 and λ = n+ 1.

Our two new approaches allow us to easily handle data sets of size n = 25 000 for
general model selection priors and n = 100 000 for the subclass of spike-and-slab priors
with sufficiently regular Λn, which both substantially exceed the earlier limit of n = 500.
These results are obtained on a standard laptop within a maximum time limit of half an
hour. Run times for larger sample sizes can be estimated by extrapolating from Figure 2.

In Section 2.3 we further derive sufficient and necessary conditions to decide whether
a model selection prior can be written in the more efficient spike-and-slab form. Since
the distribution of the binary indicators for whether θi = 0 or not is exchangeable
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under the model selection priors, this amounts to a finite sample de Finetti result for a
restricted class of exchangeable distributions.

In Section 3, we demonstrate the scalability and numerical accuracy of the proposed
methods on simulated data. We also show there that our deterministic algorithm can be
used as a benchmark to test the accuracy of approximation methods: we compare the
approximate posterior from Gibbs sampling and variational Bayes to the exact posterior
computed by our algorithm, which shows the surprisingly limited number of decimal
places to which their answers are reliable. Then, in Section 4, we compare our methods
to other approaches suggested in the literature in an application to differential gene
expression for Ulcerative Colitis and Crohn’s Disease. In Section 5 we further use our
new algorithms to empirically investigate the importance of the exponential decrease
condition on πn by varying the hyper-parameters κ and λ of the beta-binomial prior. We
find that exponential decrease is not just a sufficient condition for minimax posterior
contraction, but it also leads to better posterior estimates of θ. The paper is concluded
by Section 6, where we discuss possible extensions of our algorithms.

In addition to the main paper, we provide an accompanying R package that imple-
ments our new methods [62], and supplementary material with several appendices [63].
In Appendix A we first recall the exact algorithm by Castillo and Van der Vaart [17].
We show how to resolve its numerical stability issues by performing all intermediate
computations in a logarithmic representation. The bottleneck then becomes its compu-
tational complexity, because it requires O(n3) steps, which is prohibitive for large n.
Two natural ideas to speed up the algorithm have been proposed by [17, 12], one based
on fast polynomial multiplication and one based on long division. Surprisingly, although
both approaches look very promising in theory, it turns out that neither of them works
well in practice: the theoretical speed-ups for fast polynomial multiplication turn out
to be so asymptotic that they do not provide significant gains for any reasonable n;
and the long division approach becomes numerically unstable again. In Appendix B we
provide an additional variation on an experiment from Section 5. Finally, Appendix C
contains all proofs.

2 Exact Algorithms for Model Selection Priors

In this section we propose novel, exact algorithms for computing (marginal statistics of)
the posterior distribution corresponding to model selection priors. For general model
selection priors we propose a model selection HMM algorithm, and for spike-and-slab
priors we introduce a faster method based on discretization of the α hyper-parameter.
The section is concluded with a characterization of the subclass of model selection priors
that can be expressed in the more efficient spike-and-slab form.

Marginal Statistics We are interested in computing the marginal posterior probabili-
ties that the coordinates of θ are nonzero:

qn,i := Πn(θi �= 0 | Y ) for i = 1, . . . , n.
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These are sufficient to compute any other marginal statistics of interest, because, con-
ditionally on whether θi is 0 or not, the pair (Yi, θi) is independent of all other pairs
(Yj , θj)j �=i. For instance, the marginal posterior means can be expressed as

E[θi | Y ] = qn,i E[θi | Yi, θi �= 0] = qn,i
ζ(Yi)

ψ(Yi)
,

where ψ(y) =
∫
φ(y − t)g(t) dt is the slab density and ζ(y) =

∫
tφ(y − t)g(t) dt, with φ

the standard normal density. We may also obtain marginal quantiles by inverting the
marginal posterior distribution functions

Πn(θi ≤ u | Y ) = (1− qn,i)1u≥0 + qn,i
ψ(Yi, u)

ψ(Yi)
,

where ψ(y, u) =
∫ u

−∞ φ(y− t)g(t) dt. In particular, the marginal medians correspond to

θ̂med
i =

[
H−1

n,i

( 1

2qn,i

)
∧ 0

]
+

[
H−1

n,i

(
1− 1

2qn,i

)
∨ 0

]
,

where H−1
n,i is the inverse of the function Hn,i(u) =

ψ(Yi,u)
ψ(Yi)

and we use the conventions

that H−1
n,i (v) = −∞ for v ≤ 0 and H−1

n,i (v) = ∞ for v ≥ 1, see [17].

2.1 The Model Selection HMM Algorithm

Our first computationally efficient approach is based on a Hidden Markov Model (HMM)
that comes from the literature on online sequential prediction and data compression [64].
This approach makes it possible to reliably compute all marginal posterior probabilities
qn,i in only O(n2) operations for any model selection prior.

To define the HMM, we will encode the subset of nonzero coordinates S ⊂
{0, 1, . . . , n} as a binary vector B = (B1, . . . , Bn), where Bi = 1 if i ∈ S and Bi = 0
otherwise. The crucial observation is that the conditional probabilities of the model
selection prior

Πn(Bi+1 | B1, . . . , Bi) = Πn(Bi+1 | Mi) (3)

only depend on the total number of nonzeros Mi =
∑i

j=1 Bj ∈ {0, . . . , i} in the first i
coordinates and not on the locations of these coordinates. We can use this observation
to interpret the model selection prior as the model selection HMM shown in Figure 1,
where each hidden state Hi = (Bi,Mi) contains sufficient information to compute both
the transition probabilities

P (Hi+1 | Hi) =

{
Πn(Bi+1 | Mi) if Mi+1 = Mi +Bi+1,

0 otherwise,

and the conditional distribution of θi given Hi:

θi = 0 (a.s.) if Bi = 0,

θi ∼ G if Bi = 1.
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Figure 1: The model selection prior as a Hidden Markov Model.

In fact, in our implementation we will integrate out θi to directly obtain the conditional
density

p(Yi | Hi) =

{
φ(Yi) if Bi = 0,

ψ(Yi) if Bi = 1.

(Note that ψ(Yi) is the conditional density of observation Yi for slabs, while φ(Yi) is the
density of Yi for spikes.) Finally, the initial probabilities of H1 are

P (H1) =

{
Πn(B1) if M1 = B1,

0 otherwise.

We note that the sequence of hidden states H1, . . . , Hn is in one-to-one correspondence
with S. Consequently, since the model selection HMM expresses the same joint distri-
bution on H1, . . . , Hn as the model selection prior, and the conditional distribution of
θ and Y given H1, . . . , Hn is also the same, it follows that the model selection HMM is
equivalent to the corresponding model selection prior.

What we gain is that, for HMMs, standard efficient algorithms are available, whose
run times depend on the number of state transitions with nonzero probabilities P (Hi+1 |
Hi) [46]. For our purposes, we will use the Forward-Backward algorithm to compute
Πn(Hi | Y ) for all i in O(n2) steps, from which we can obtain qn,i = Πn(Bi = 1 | Y )
for all i in another O(n2) steps by marginalizing. For numerical accuracy, we perform
all calculations using the logarithmic representation discussed in Appendix A.2.

Let Y b
a = (Ya, . . . , Yb). Then the Forward phase in this algorithm computes the

densities p(Y i
1 , Hi = hi) from p(Y i−1

1 , Hi−1 = hi−1) for all i = 1, . . . , n and all values hi

of the hidden states using the recursion

p(Y i
1 , hi) =

⎧⎨
⎩
p(Y1 | h1)P (h1) for i = 1,

p(Yi | hi)
∑
hi−1

p(Y i−1
1 , hi−1)P (hi | hi−1) for 1 < i ≤ n.
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After the Forward phase, the Forward-Backward algorithm performs the Backward
phase, which computes p(Y n

i+1 | Hi = hi) from p(Y n
i+2 | Hi+1 = hi+1) for all i = n, . . . , 1

using the recursion

p(Y n
i+1 | hi) =

⎧⎨
⎩
1 for i = n,∑
hi+1

p(Y n
i+2 | hi+1)p(Yi+1 | hi+1)P (hi+1 | hi) for 1 ≤ i < n.

Combining the results from the Forward and Backward phases, we can compute

Πn(hi | Y ) ∝ p(Y i
1 , hi)p(Y

n
i+1 | hi)

for all i and hi as desired.

The HMM described here was introduced by [64] for the Beta(1/2, 1/2)-binomial
prior (i.e. the spike-and-slab prior with Λn = Beta(1/2, 1/2)) in the context of the
Switching Method for data compression. See [35] for an overview of many variations on
this HMM. Indeed, for any Beta(κ, λ)-binomial prior this HMM is particularly natural,
because the transition probabilities of the hidden states have a closed-form expression:

Πn(Bi+1 = 1 | B1, . . . , Bi) = Πn(Bi+1 = 1 | Mi) =
κ+Mi

κ+ λ+ i
.

Here we add the observations that, even when the conditional probabilities Πn(Bi+1 |
B1, . . . , Bi) are not available in closed form for a given model selection prior, they still
satisfy (3) and can be efficiently obtained from

Πn(Bi+1 | B1, . . . , Bi) =
vi+1(Mi +Bi+1)

vi(Mi)
,

where vi(m) = Πn(B1 = b1, . . . , Bi = bi) is the joint probability of any sequence
b1, . . . , bi with m ones. These joint probabilities can be pre-computed for i = n, . . . , 1
in O(n2) steps using the recursion

vi(m) =

{
πn(m)/

(
n
m

)
for i = n,

vi+1(m) + vi+1(m+ 1) for 1 ≤ i < n.

Thus we can calculate the marginal posterior probabilities in O(n2) steps for any model
selection prior, not just for beta-binomial priors. The numerical accuracy of this algo-
rithm is demonstrated in Section 3.

2.2 A Faster Algorithm for Spike-and-Slab Priors

In this section we restrict our attention to the spike-and-slab subclass of model selection
priors, for which we propose further speed-ups. It is intuitively clear that the mixing
hyper-parameter α plays a key role in the behavior of the prior distribution. The optimal
choice of α heavily depends on the sparsity parameter s of the model. For instance in
case of Cauchy slabs the optimal oracle choice α = (s/n)

√
log(n/s) results in minimax
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posterior contraction [17] and reliable uncertainty quantification [16] in �2-norm. How-
ever, in practice the sparsity level s is (typically) not known in advance. Therefore one
cannot use the optimal oracle choice for α. In [17] it was also shown that by choosing
α = 1/n the posterior contracts around the truth at the nearly optimal rate s log(n).
This seemingly solves the problem of choosing the tuning hyper-parameter. However,
a related simulation study in [17] shows that hard-thresholding at the corresponding√
2 log(n) level pairs up with substantially worse practical performance; see Tables 1

and 2 in [17]. Furthermore, in view of [16] the choice of α = 1/n imposes too strong
prior assumptions, resulting in overly small posterior spread which leads to unreliable
Bayesian uncertainty quantification, i.e. the frequentist coverage of the �2-credible set
will tend to zero.

Therefore in practice one has to consider a data driven (adaptive) choice of the hyper-
parameter α. A computationally appealing approach is the empirical Bayes method,
where the maximum marginal likelihood estimator is plugged into the posterior. The
corresponding posterior mean achieves a (nearly) minimax convergence rate [31], and for
slab distributions with polynomial tails the corresponding posterior contracts around
the truth at the optimal rate [13]. However for light-tailed slabs (e.g. Laplace) the
empirical Bayes posterior distribution will achieve a highly suboptimal contraction rate
around the truth; see again [13].

Another standard (and from a Bayesian perspective more natural) approach is to
endow the hyper-parameter α with another layer of prior Λn. However, computational
problems may arise using standard Gibbs sampling techniques for sampling from the
posterior; see Section 3.2 for a demonstration of this problem on a simulated data
set. In the literature various speed-ups were proposed. One can for instance focus on
relevant sub-sequences of the sequential parameter θ and apply the Gibbs sampler only
on them. Another approach is to apply the Hamiltonian Monte Carlo method, see for
instance [53]. However, none of these approaches provides an easy way to quantify their
approximation error when run for a finite number of iterations. In the next section we
propose a deterministic algorithm to approximate the marginal posterior probabilities
qn,i for spike-and-slab priors, with a guaranteed bound on its approximation error that
can be made arbitrarily close to zero.

Approximation via Discretization of the Mixing Parameter

For general model selection priors the fast HMM algorithm from Section 2.1 requires
O(n2) steps. However, for the special case of spike-and-slab priors we can do even
better: we can approximate the corresponding posterior to arbitrary precision using
only O(n3/2) steps, provided that the density λn of the mixing distribution Λn on α
satisfies certain regularity conditions.

The Algorithm Our approach is to approximate the prior Λn by a prior Λ̃n that is
supported on k = O(n1/2) discretization points α1, . . . , αk. Then let Πn be the original
spike-and-slab prior corresponding to a given choice of Λn, and let Π̃n be the prior
corresponding to Λ̃n. Conditional on α, the pairs (θi, Yi) are independent. Computing
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the likelihood
n∏

i=1

(
(1− α)φ(Yi) + αψ(Yi)

)
for a single α therefore takes O(n) steps, and consequently we can obtain the posterior
probabilities Π̃n(αj | Y ) of all k discretization points in O(kn) steps. We can then
compute

q̃n,i := Π̃n(θi �= 0 | Y ) =
k∑

j=1

Π̃n(αj | Y )
αjψ(Yi)

(1− αj)φ(Yi) + αjψ(Yi)

in another O(k) steps independently for each i, leading to a total run time of O(kn) =
O(n3/2) steps. We again perform all calculations using the logarithmic representation
from Appendix A.2.

Choice of Discretization Points As in Section 2.1, let B = (B1, . . . , Bn) be latent
binary random variables such that Bi = 0 if θi = 0 and Bi = 1 otherwise. We will
choose discretization points α1, . . . , αk and the discretized prior Λ̃n such that the ratio
Πn(B = b)/Π̃n(B = b) is in [1− ε, 1 + ε] for all realizations b of B, where ε > 0 can be
made arbitrarily small. Since, conditional on B, the discretized model is the same as
the original model, this implies that the posterior probabilities Πn(θ | Y ) and Π̃n(θ | Y )
must also be within a factor of (1 + ε)/(1− ε) ≈ 1.

Conditional on the mixing hyper-parameter α, the sequence B consists of indepen-
dent, identically distributed Bernoulli random variables, and Πn and Π̃n respectively
assign hyperpriors Λn and Λ̃n to the success probability α. To discretize α, we will follow
an approach introduced by [20] in the context of online sequential prediction with ad-
versarial data. They observe that it is more convenient to reparametrize the Bernoulli
model using the arcsine transformation [4, 25], which makes the Fisher information
constant:

β(α) = arcsin
√
α, α(β) = sin2 β for β ∈ [0, π/2].

We will use a uniform discretization of β with k discretization points spaced δk =
π/(2k) ∝ 1/

√
n apart, which in the α-parametrization maps to a spacing that is pro-

portional to 1/
√
n around α = 1/2 but behaves like 1/n for α near 0 or 1. Specifically,

let αj = α(βj) with

β1 =
1

2
δk, β2 =

3

2
δk, β3 =

5

2
δk, . . . , βk =

π

2
− 1

2
δk.

The prior mass of each α under Λn is then reassigned to its closest discretization point
in the β-parametrization. If Λn has no point-masses exactly half-way between discretiza-
tion points, then this means that

Λ̃n(αj) = Λn

(
[α(βj − δk/2), α(βj + δk/2)]

)
. (4)

Otherwise, if Λn does have such point-masses, their masses may be divided arbitrarily
over their neighboring discretization points.
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Approximation Guarantees For simplicity we will assume that Λn has a Lebesgue-
density λn(α) = dΛn(α)/dα. It will also be convenient to let α0 = 0 and αk+1 = 1, and
to define

Pα(n, α̂) = αα̂n(1− α)(1−α̂)n, for α̂ ∈ [0, 1], n ∈ R
+,

which may be interpreted as the Bernoulli(α) likelihood of a binary sequence with
maximum likelihood parameter α̂. In particular, if α̂ = s/n with s the number of ones
in b ∈ {0, 1}n for integer n, then

Πn(B = b) =

∫ 1

0

Pα(n, α̂)λn(α)dα, Π̃n(B = b) =
k∑

j=1

Pαj (n, α̂)Λ̃n(αj).

There is no reason to restrict the definition of Pα(n, α̂) to integer n or to the discrete
set of α̂ that can be maximum likelihood parameters at sample size n, however, and
following [20] we extend the definition to all α̂ ∈ [0, 1] and all real n > 0, which will be
useful below to handle the Beta(1, n+ 1) prior.

Theorem 2.1. Take k = 2(m+1)�√n �+1 for any integer m, and suppose there exists
a constant L ≥ 0 (which is allowed to depend on n) such that

supα∈[αj ,αj+1] λn(α)
√

α(1− α)

infα∈[αj ,αj+1] λn(α)
√

α(1− α)
≤ eL

√
nδk , for all j = 0, . . . , k. (5)

Then there exists a constant CL > 0 that depends only on L, such that, if m > CL, we
have, for ε = CL/m,

(1− ε) ≤
∫ 1

0
Pα(n, α̂)λn(α)dα∑k

j=1 Pαj (n, α̂)Λ̃n(αj)
≤ (1 + ε), for all α̂ ∈ [0, 1], (6)

and consequently

1− ε

1 + ε
≤ Πn(θ | Y )

Π̃n(θ | Y )
≤ 1 + ε

1− ε
almost surely. (7)

The result (6) holds even for non-integer n, but (7) implicitly assumes that n is
the number of observations in Y and must therefore be integer. The proof is deferred
to Appendix C.1 in the supplementary material. We note already that condition (5) is
essentially a Lipschitz condition on the log of the density of Λn in the β-parametrization
(see (5) in Appendix C.1). Under this condition, the theorem shows that, by increas-
ing m, we can approximate Πn(θ | Y ) to any desired accuracy, at the cost of increasing
our computation time, which scales linearly with m.

Remark 1. For given m and (integer) n, the tightest possible value of ε in (7) may be
determined numerically, by maximizing and minimizing the ratio in (6) over α̂ = s/n
for s = 0, . . . , n.
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Extension to Arbitrary Beta Priors The Lipschitz condition (5) excludes the impor-
tant Beta(1, n + 1) prior, because its density varies too rapidly. We therefore describe
an extension that can handle any Beta(κ, λ) prior with κ, λ ≥ 1/2, even when κ or λ
grows linearly with n.

To this end, we interpret Beta(κ, λ) as the posterior of a Beta(1/2, 1/2) prior after
observing κ−1/2 fake ones and λ−1/2 fake zeros. Our effective sample size for the fake
observations and the real data together is then n′ = n+κ+λ−1 (which need not be an
integer). Since Beta(1/2, 1/2) is uniform in the β-parametrization, it satisfies (5) with
the best possible constant: L = 0, so applying Theorem 2.1 we find that (6) holds for
sample size n′ with ε as in the theorem. We then take the discretization points for sample
size n′ with corresponding discrete prior Λ̃n′ defined by (4) (which is actually uniform,
with probabilities 1/k, because Beta(1/2, 1/2) is uniform in the β-parametrization), and
we compute a new prior Λ̃n on these discretization points as the posterior from Λ̃n′ after
observing κ− 1/2 fake ones and λ− 1/2 fake zeros:

Λ̃n(αj) =
1
k α

κ−1/2
j (1− αj)

λ−1/2∑k
j′=1

1
k α

κ−1/2
j′ (1− αj′)λ−1/2

for j = 1, . . . , k. (8)

Corollary 2.2. For any κ ≥ 1/2, λ ≥ 1/2 and positive integer n, let k = 2(m +
1)�

√
n′ � + 1, where n′ = n + κ + λ − 1 and m > C0 is any integer that exceeds the

constant CL from Theorem 2.1 for L = 0. Let Λn be the Beta(κ, λ) prior and let Λ̃n be
as in (8). Then (6) and (7) hold with ε′ = 2ε/(1− ε) instead of ε = C0/m.

Proof. Since the joint distributions on n′ observations satisfy (6), the corresponding
posteriors after conditioning these distributions on κ− 1/2 fake ones and λ− 1/2 fake
zeros must be within factors 1−ε

1+ε = 1− 2ε
1+ε ≥ 1− ε′ and 1+ε

1−ε = 1 + ε′.

2.3 Which Model Selection Priors Are Spike-and-Slab Priors?

As described in the introduction, it is clear that spike-and-slab priors are a special
case of model selection priors. However, to the best of our knowledge, it is not known
when a model selection prior has a spike-and-slab representation. One advantage of the
spike-and-slab formulation is that we can construct algorithms with O(n3/2) run time
(Section 2.2), while for a general model selection prior the computational complexity is
O(n2) (Section 2.1). In this section we give sufficient and necessary conditions for when
a model selection prior can be expressed in spike-and-slab form.

To characterize the exact relationship between the priors we introduce the following
notation. For μ = (μ0, μ1, . . . , μm) with m ≥ 2n, define the (n + 1) × (n + 1) Hankel
matrix Hn(μ) = [μi+j ]i,j=0,...,n and let Fμ = (μ1, . . . , μm) denote the projection that
drops the first coordinate. Furthermore, for A ∈ R

n×m, let range(A) be the column
space of A and let A � 0 denote that A is positive semi-definite.

Theorem 2.3. For odd n = 2k+1, the model selection prior (with factorizing GS) can
be given in the form (2) if and only if there exists a cn ∈ [0, πn(n)] such that

Hk(μ) � 0, Hk(Fμ) � 0, and (μk+1, μk+2, . . . , μ2k+1)
	 ∈ range

(
Hk(μ)

)
,
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with μ =
((

n
0

)−1
πn(0), . . . ,

(
n

n−1

)−1
πn(n− 1), cn

)
∈ [0, 1]n+1.

For even n = 2k, the model selection prior (with factorizing GS) can be given in the
form (2) if and only if there exists a cn ∈ [0, πn(n)] such that

Hk(μ) � 0, Hk−1(Fμ) � 0, and (μk+1, μk+2, . . . , μ2k)
	 ∈ range

(
Hk−1(Fμ)

)
,

with the same μ as above.

The proof, which is given in Appendix C.2, shows that establishing this theorem
amounts to proving a version of de Finetti’s theorem for finite sequences.

Next we give several examples of priors πn that satisfy (or fail) the conditions of
Theorem 2.3, which implies that the model selection prior can (or cannot) be given in
spike-and-slab form (2). The proofs for the examples are in Appendix C.3.

First we consider binomial πn, for which it is already known that there exists a spike-
and-slab representation [17, Example 2.1]. Nevertheless, to illustrate the applicability
of our results, we show that this choice of πn satisfies the conditions of Theorem 2.3.

Example 1. The binomial prior πn(s) ∝
(
n
s

)
ps(1 − p)n−s, p ∈ [0, 1], satisfies the

conditions of Theorem 2.3 and therefore the corresponding model selection prior can be
given in the spike-and-slab form (2) for some appropriate probability measure Λn on
[0, 1].

The next example treats the Poisson prior as a choice for πn. To the best of our
knowledge there are no results in the literature that establish whether the corresponding
model selection prior can be given in the spike-and-slab form (2).

Example 2. For any λ > 0, the Poisson prior πn(s) ∝ e−λλs/s! restricted to s ∈
{0, 1, . . . , n} satisfies the conditions of Theorem 2.3 and therefore the corresponding
model selection prior can be given in the form (2) for some appropriate probability
measure Λn on [0, 1].

We proceed to give two natural choices for πn where the corresponding model se-
lection prior cannot be expressed in the form (2). In the first example, πn has a heavy
(polynomial) tail, while in the second it has a light (sub-exponential) tail.

Example 3. Let us consider the prior πn(0) ∝ 1, πn(s) ∝ s−λ, s = 1, . . . , n, for
any λ > 1. For n > 2λ−1/(2λ−1 − 1) this prior does not satisfy the conditions of
Theorem 2.3 and therefore the corresponding model selection prior cannot be represented
in the form (2).

Example 4. We consider the sub-exponential prior πn(s) ∝ e−sλ , s = 0, 1, . . . , n for

any λ > log2(2 + ln 2). For n > c/(c − 1) with c = e2
λ−2/2 > 1 this prior does not

satisfy the conditions of Theorem 2.3 and therefore the corresponding model selection
prior cannot be represented in the form (2).
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Figure 2: Run time and numerical accuracy for the exact algorithms from Section 2 in
calculating qn,i for i = 1, . . . , n. A numerical error of 10−a means that the algorithm is
able to calculate the mathematically exact answer up to a decimal places.

3 Simulation Study: Reliability of Algorithms

3.1 Comparing the Proposed Algorithms

In this section we investigate the speed and numerical accuracy of our new algorithms to
the previously proposed methods for exact computation of the posterior. We consider a
sequence of sample sizes n = 50, 100, 250, 500, 1 000, 2 500, . . . , 50 000, 100 000 and con-
struct the true signal θ0 to have 20% non-zero signal components of value 4

√
2 lnn,

while the rest of the signal coefficients are set to be zero. For fair comparison we run all
algorithms for the spike-and-slab prior with Laplace slab g(x) = a

2e
−a|x|, with a = 1,

and mixing hyper-prior Λn = Beta(1, n+ 1). We have set up the experiments in R, but
all algorithms were implemented as subroutines in C++. Since numerical instability is
a major concern, we have tracked the numerical accuracy of all methods using interval
arithmetic as implemented in the C++ Boost library [8] (with cr-libm as a back-end to
compute transcendental functions [21]), which replaces all floating point numbers by
intervals that are guaranteed to contain the mathematically exact answer. The lower
end-point of each interval corresponds to always rounding down in the calculations, and
the upper end-point corresponds to always rounding up. The width of the interval for the
final answer therefore measures the numerical error. All experiments were performed on
a MacBook Pro laptop with 2.9 GHz Intel Core i5 processor, 8 GB (1867 MHz DDR3)
memory, and a solid-state hard drive.

Results The results are summarized in Figure 2, which shows the run time of the
algorithms on the left, and their numerical error on the right. The reported numerical
error is the maximum numerical error in calculating qn,i over i = 1, . . . , n. To avoid
overly long computations we have terminated the algorithms if they became numeri-
cally unstable or if their run time exceeded half an hour. One can see that the original
Castillo-Van der Vaart algorithm was terminated for n ≥ 250, which was due to numer-
ical inaccuracy. This problem was resolved by applying the logarithmic representation
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from Appendix A.2 which made the algorithm numerically stable up to n ≤ 2500; how-
ever, due to the long O(n3) run time the algorithm was terminated for larger values
as it reached the half-hour limit. The natural speed-up idea of applying long division
(see Appendix A.3) was not successful for this data as even for small sample sizes the
numerical accuracy was poor. We observe that the model selection HMM and the algo-
rithm based on discretization performed superior to the preceding methods: the model
selection HMM algorithm has run time O(n2) and the largest sample size it managed
to complete within half an hour was n = 25 000, while the algorithm with discretized
mixing parameter in the spike-and-slab prior (initialized according to Corollary 2.2
with parameter m = 20) has run time O(n3/2) and reached the time limit after sample
size n = 100 000. We also note that both algorithms were numerically accurate, giving
answers that were reliable up to between 5 and 11 decimal places, depending on n.
For sample size n = 2500, we have further verified empirically that indeed the model
selection HMM algorithm computes the same numbers as the Castillo-Van der Vaart
algorithm, as was already shown in Section 2.1.

3.2 Approximation Errors for Several Standard Methods

In this section we measure the approximation error of a selection of approximation
algorithms by comparing them to the exact model selection HMM algorithm, which
serves as a benchmark for the correct answer. We again consider the spike-and-slab
prior with Λn = Beta(1, n + 1), but for simplicity we use standard Gaussian slabs

g(x) = 1√
2π

e−x2

, since the approximation methods are typically designed for this choice

of slab distribution. Our first approximation method is the discretization algorithm from
Section 2.2, which uses a deterministic approximation. The discretization algorithm was
again initialized according to Corollary 2.2 with m = 20. We further consider a standard
Gibbs sampler (with number of iterations it = 103, 104, 105, half of which are used as
burn-in) and a variational Bayes approximation. We consider the same test data as
in the preceding section. The only difference is that we stop at n = 10 000 to limit
the run times for the exact HMM algorithm and the Gibbs sampler with it=105. Both
the Gibbs sampler and variational Bayes algorithm were implemented in R. For the
latter we used the component-wise variational Bayes algorithm [38, 57, 10, 47]. We
measure approximation error by computing maxi |qn,i − q̃n,i|, where qn,i is the exact
slab probability computed by the model selection HMM and q̃n,i is the slab probability
computed by the approximation. We run each non-deterministic approximation method
5 times and report the average approximation error along with the average run time of
the algorithms. The results are plotted in Figure 3 and shown numerically in Table 1.

One can see that the discretized version of the algorithm is very accurate, with at
least seven decimal places of precision throughout. It approximately loses two decimal
places of precision for every ten-fold increase of n, so we can still expect it to be accurate
up to five decimal places for n = 100 000. We point out that its approximation error
includes both the mathematical approximation from Section 2.2 and the numerical error
already studied separately in Figure 2. Since the approximation error in Figure 3 is of
the same order as the numerical error in Figure 2, we conclude that the numerical error
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Figure 3: Run times and approximation errors for approximate algorithms. An approx-
imation error of 10−a means that the algorithm is able to calculate the correct answer
up to a decimal places.

Method \ n 100 250 500 1 000 2 500 5 000 10 000

Discretized 6.37×10−11 4.89×10−10 1.67×10−9 5.89×10−9 4.69×10−8 1.74×10−7 6.56×10−7

Gibbs (it = 103) 4.58×10−2 4.76×10−2 5.03×10−2 5.41×10−2 6.15×10−2 6.28×10−2 6.96×10−2

Gibbs (it = 104) 1.23×10−2 1.46×10−2 1.63×10−2 1.75×10−2 2.03×10−2 2.07×10−2 2.25×10−2

Gibbs (it = 105) 4.55×10−3 5.05×10−3 5.46×10−3 5.63×10−3 5.71×10−3 6.86×10−3 6.88×10−3

Variational Bayes 1.90×10−1 2.48×10−1 2.93×10−1 3.33×10−1 3.91×10−1 4.40×10−1 4.81×10−1

Table 1: Approximation errors compared to the exact HMM algorithm.

dominates the mathematical approximation error, so the discretization algorithm may
be considered an exact method for all practical purposes.

At the same time the Gibbs sampler and the variational Bayes method both provide
approximations of the posterior that are far less accurate. Variational Bayes is only
accurate up to one decimal place, although in further investigations we did find that
it provides a better approximation if we look only at the non-zero coefficients, with an
approximation error of order O(10−4). For the Gibbs sampler there is no theory that
tells us how many iterations we have to take to achieve a certain degree of accuracy.
We see here that the precision strongly depends on the number of iterations, ranging
from one to three decimal places, but remains approximately constant with increasing
n. However, the run time for it = 105 iterations would become prohibitive for sample
sizes much larger than the n = 10 000 we consider.

4 Differential Gene Expression for Ulcerative Colitis and
Crohn’s Disease

In this section we compare our methods to various other frequently used Bayesian
approaches in the context of differential gene expression data.
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Method Run Time Nr. of Genes Selected

Variational Bayes (varbvs) 20.95 minutes 166
Spike-and-Slab LASSO 0.01 seconds 557
Horseshoe (10 runs) 1.86 minutes 571–583
Empirical Bayes EBSparse (10 runs) 7.28 seconds 592–604
Discretized: Beta(1, n + 1)-binomial prior 24.47 seconds 674
HMM: Beta(1, n + 1)-binomial prior 2.06 minutes 674
Empirical Bayes JS 0.03 seconds 3168
HMM: Beta(1, 1)-binomial prior 2.00 minutes 3169

Table 2: Run time and number of selected genes on gene expression data. The reported
run times for Empirical Bayes EBSparse and the Horseshoe are the averages over their
runs.

Data We consider a data set from Burczynski et al. [9] containing the gene expression
levels of n = 22 283 genes in peripheral blood mononuclear cells, with the raw data pro-
vided by the National Center for Biotechnology Information.1 This is an observational
study, with microarray gene expression data on 26 subjects who suffered from ulcerative
colitis and 59 subjects with Crohn’s disease. We calculate Z-scores to identify differences
in average gene expression levels between the two disease groups following the standard
approach described by Quackenbush [45], which consists of dividing the difference of the
average log-transformed, normalized gene expressions for the two groups by the stan-
dard error. More specifically, let us denote by Ui,j and Ci,j the measured intensities of
the i-th gene and j-th person with ulcerative colitis and Crohn’s disease, respectively. As
a first step we normalize the intensities for each patient, i.e. we take U ′

i,j = Ui,j/
∑

i Ui,j

and C ′
i,j = Ci,j/

∑
i Ci,j for each gene i and patient j. Then the Z-score for the i-th

gene is computed as

Zi =
logU ′

i − logC ′
i√

σ2
U ′,i/26 + σ2

C′,i/59
for i = 1, . . . , 22 283,

where

logU ′
i =

1

26

26∑
j=1

logU ′
i,j , σ2

U ′,i =
1

25

26∑
j=1

(
logU ′

i,j − logU ′
i

)2
,

and logC ′
i and σ2

C′,i are defined accordingly. Since it is assumed that the number of
genes with a different expression level between the two groups is small compared to
the total number of genes n, the data fit into the sparse normal sequence model with
n = 22 283.

Methods We compare the run times and the selected genes for the eight procedures
listed in Table 2. We consider the model selection HMM algorithm for the Beta(1, n+1)-
binomial prior with Laplace slab (with hyper-parameter a = 0.5), and the discretization
algorithm from Corollary 2.2 with m = 20, which is a faster way to compute exactly
the same results. Genes i with marginal posterior probability qn,i ≥ 1/2 are selected.

1Via the Gene Expression Omnibus (GEO) website under dataset record number GDS1615. See
www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS1615.

http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS1615
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For comparison, we also consider the model selection HMM for the Beta(1, 1)-binomial
prior, which corresponds to using a uniform prior Λn on the mixing parameter α. In
this section, we used the implementations of our algorithms from our R package [62],
which is approximately 5 times faster than the implementation from Section 3, because
it does not incur the overhead of tracking numerical accuracy using interval arithmetic.

We compare to the empirical Bayes method of Johnstone and Silverman [31], which
uses a spike-and-slab prior, but estimates the mixing parameter α using empirical Bayes.
The method does not explicitly include a prior on α, but we may interpret it as using a
uniform prior Λn. We again use a Laplace slab (with the default parameter a = 0.5) and
select genes by hard thresholding at marginal posterior probability 1/2, as implemented
in the R package [55].

We also include EBSparse, which is a fractional empirical Bayes procedure proposed
by Martin and Walker [40]. It can be interpreted as using a spike-and-slab prior with
Λn = Beta(1, γn), but with Gaussian slabs Gi = N (Yi, τ

2) whose means depend on the
data. Furthermore, in the formula for the posterior the likelihood is tempered by raising
it to the power κ. We use the authors’ R implementation [41], with the recommended
hyper-parameter settings κ = 0.99, γ = 0.25, τ2 = 100, and M = 1000 Monte Carlo
samples. As the sampler is randomized, we run the algorithm 10 times.

We further consider the Spike-and-Slab LASSO of Ročková [48], which computes the
maximum a posteriori parameters using Laplace distributions both for the spikes and
for the slabs. As in [48, Section 6], we take the slab scale parameter to be λ1 = 0.1, and
estimate the spike scale parameter λ0 via the two-step procedure described there, for
the Beta(1, n + 1) hyper-prior on the mixing parameter. An R implementation called
SSLasso was provided by Ročková [49].

We also add the Horseshoe estimator [11] with the Cauchy hyper-prior on its hyper-
parameter τ , truncated to the interval [1/n, 1], as recommended by Van der Pas et al.
[60]. We use the R package [58], with its default Markov Chain Monte Carlo sampler
settings of 1000 iterations burn-in and 5000 iterations after burn-in. Genes are selected if
their credible sets exclude zero [60]. As the sampler is randomized, we run the algorithm
10 times.

Finally, we compare with the variational Bayes algorithm (varbvs R-package) de-
scribed in [10]. Notably, this method uses Gaussian slabs. The hyper-parameters (e.g.
the variance of the prior and the noise) are automatically fitted to the data. We set the
tolerance and maximum number of iterations to be 10−4 and 1000, respectively.

Results Results are reported in Table 2 and Figure 4. Although we list run times to
illustrate computational feasibility, it is important to keep in mind that the methods in
this section compute different quantities, so their most important difference lies in which
genes they select. On this point, the main conclusion is that the alternative methods
give very different results from using the exact Bayesian posterior for the model selection
prior.

All methods except the Horseshoe and EBSparse select genes in decreasing order of
the absolute values of Zi. Genes are generally selected by the Horseshoe and EBSparse in
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Figure 4: Posterior means/MAP estimates for the 800 genes in the gene expression data
with largest Z-scores (in absolute value).

decreasing order of absolute value of Zi as well, but with some swaps for genes for which
the absolute values are close to each other, so it appears that for all sampling-based
methods the sampler is suffering from limited precision, as we also observed for the
Gibbs samplers in Section 3.2. The methods can be divided into three main categories
based on the number of genes they select: on one extreme is the variational Bayes
(varbvs) method, which provides the sparsest solution; then the majority of methods
select a number of genes between 557 and 674; and finally at the other extreme are
the Empirical Bayes JS procedure and the Beta(1, 1)-binomial prior, which are both
based on the same prior and both select a very large number of genes, making these two
methods the most conservative. The lack of sparsity induced by the Beta(1, 1)-binomial
prior is perhaps not surprising, given that it does not satisfy the exponential decrease
condition of [17]. We study this further in Section 5, where we compare different choices
for the hyper-parameters of the beta-binomial prior in simulations.

We further see that the Spike-and-Slab LASSO and the empirical Bayes JS proce-
dures finish almost instantly. The EBSparse method takes several seconds to run, as does
the discretization algorithm. The Horseshoe and our exact model selection HMM take
approximately two minutes to run, while the variational Bayes varbvs method requires a
little over 20 minutes. Nevertheless, all methods are feasible even for practitioners who
would like to perform multiple similar experiments, for example with different varia-
tions of the prior or slab distributions. By contrast, we do not include the Castillo-Van
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der Vaart algorithm with logarithmic representation, because based on extrapolation of
Figure 2 we expect it to take around 20 days.

In Figure 4 we also plot the posterior means (or, in case of the Spike-and-Slab
LASSO, the MAP estimator) and the 800 largest Z-scores in absolute value. Since the
posterior means for the model selection HMM and the discretization algorithm are the
same, we label both as Beta(1, n+ 1)-binomial in reference to the prior that was used.
We further note that the empirical Bayes JS estimates are invisible behind the data
points. We observe that the varbvs method induces the heaviest shrinkage, followed
first by the Beta(1, n + 1)-binomial prior and the Empirical Bayes EBSparse method,
and then by the Horseshoe and the Beta(1, 1)-binomial prior. The least shrinkage is
applied by the empirical Bayes JS method, which does not shrink the observed Z-scores
very much (if at all). The Spike-and-Slab LASSO is in a category of its own, because
it is a MAP estimator. It applies no shrinkage to the coefficients that are selected, and
sets all other coefficients to zero.

5 Asymptotics of Spike-and-Slab Priors

The choice of the prior Λn on the mixing hyper-parameter α in spike-and-slab priors is
considered to be highly relevant for the behavior of the posterior. Castillo and Van der
Vaart [17] recommend to use Λn = Beta(κ, λ) with parameters κ = 1 and λ = n + 1.
This prior induces heavy penalization for dense models (models with large sparsity
parameter s) and was shown to have optimal theoretical properties. However, it is
unknown whether such heavy penalization is indeed necessary and whether even heavier
penalization will result in suboptimal behavior.

In this section we investigate the asymptotic behavior of the posterior for different
choices of the hyper-parameters κ and λ using our new exact algorithms, which can
scale up to large sample sizes. We consider: i) the uniform prior with κ = 1 and λ = 1,
which is often considered a natural choice [54]; ii) mild shrinkage, κ = 1 and λ =

√
n;

iii) the choice κ = 1 and λ = n + 1 recommended by Castillo and Van der Vaart;
iv) heavy shrinkage, κ = 1 and λ = n2; and finally v) a sparsity-discouraging choice,
κ = n and λ = 1. We consider two experiments: A1 and A2. In both cases the sample
sizes range from n = 50 to n = 20 000. In Experiment A1 we set the true sparsity
level to s = 10 and consider uniformly distributed non-zero signal coefficients between
1 and 10, i.e. θi ∼ U(1, 10) for i ∈ S. In Experiment A2 the true sparsity level is taken
to be s = �n1/3� and the non-zero signal coefficients are set to θi = 2

√
2 logn for i ∈ S,

which is a factor of 2 above the detection threshold. In Appendix B of the supplementary
material we consider an additional experiment A3 that is similar to A1 but with s = 25
and θi ∼ U(5, 10) for i ∈ S, which gives similar results as Experiment A1.

We repeat each experiment 20 times and report the average �2-error between the
posterior mean for θ and the true signal θ in Table 3 and Table 6 for Experiments A1 and
A2, respectively. In Tables 4, 5, 7 and 8 we also report the average false discovery rates
and the average true positive rates. Standard deviations are provided in parentheses in
all cases.
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Method \ n 50 100 200 500 1 000 2 000 5 000 10 000 20 000

i) κ = 1, λ = 1 4.52 (0.64) 4.65 (0.68) 4.84 (0.75) 5.30 (1.01) 5.18 (0.74) 5.63 (0.90) 5.95 (0.77) 6.65 (1.26) 6.38 (0.98)

ii) κ = 1, λ =
√

n 4.28 (0.63) 4.46 (0.69) 4.69 (0.75) 5.20 (1.01) 5.13 (0.73) 5.57 (0.88) 5.92 (0.78) 6.62 (1.27) 6.36 (0.98)

iii)κ=1,λ = n+1 4.09 (0.68) 4.20 (0.82) 4.43 (0.88) 4.95 (1.11) 5.14 (0.89) 5.45 (0.99) 6.18 (0.94) 6.42 (1.67) 6.43 (1.06)

iv) κ = 1, λ = n2 5.04 (1.05) 5.21 (1.42) 6.55 (1.48) 7.09 (1.93) 7.87 (1.21) 8.15 (1.42) 9.45 (1.55) 10.35 (2.24) 10.43 (2.16)

v) κ = n, λ = 1 5.71 (0.59) 7.60 (0.62) 10.63 (0.54) 16.89 (0.61) 23.39 (0.61) 33.43 (0.78) 52.93 (0.52) 74.79 (0.57) 105.84 (0.55)

Table 3: �2 distance of the posterior mean from the true signal in Experiment A1.

Method \ n 50 100 200 500 1 000 2 000 5 000 10 000 20 000

i) κ = 1, λ = 1 0.36 (0.14) 0.23 (0.13) 0.19 (0.11) 0.13 (0.12) 0.05 (0.09) 0.09 (0.12) 0.08 (0.09) 0.12 (0.10) 0.08 (0.09)

ii) κ = 1, λ =
√

n 0.16 (0.10) 0.16 (0.11) 0.17 (0.11) 0.11 (0.11) 0.06 (0.09) 0.09 (0.12) 0.08 (0.08) 0.11 (0.10) 0.08 (0.09)

iii) κ = 1, λ = n + 1 0.05 (0.06) 0.03 (0.05) 0.02 (0.04) 0.02 (0.04) 0.01 (0.03) 0.01 (0.02) 0.00 (0.00) 0.01 (0.03) 0.00 (0.00)

iv) κ = 1, λ = n2 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

v) κ = n, λ = 1 0.80 (0.00) 0.90 (0.00) 0.95 (0.00) 0.98 (0.00) 0.99 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

Table 4: False discovery rate in Experiment A1.

Method \ n 50 100 200 500 1 000 2 000 5 000 10 000 20 000

i) κ = 1, λ = 1 0.91 (0.11) 0.83 (0.15) 0.86 (0.08) 0.80 (0.17) 0.76 (0.13) 0.73 (0.17) 0.73 (0.13) 0.71 (0.14) 0.66 (0.16)

ii) κ = 1, λ =
√

n 0.89 (0.11) 0.83 (0.14) 0.85 (0.09) 0.78 (0.17) 0.75 (0.13) 0.73 (0.17) 0.72 (0.13) 0.71 (0.15) 0.65 (0.16)

iii) κ = 1, λ = n + 1 0.84 (0.12) 0.76 (0.11) 0.80 (0.10) 0.74 (0.18) 0.70 (0.12) 0.68 (0.18) 0.64 (0.12) 0.64 (0.19) 0.59 (0.15)

iv) κ = 1, λ = n2 0.71 (0.14) 0.62 (0.14) 0.59 (0.16) 0.57 (0.17) 0.52 (0.13) 0.48 (0.20) 0.44 (0.15) 0.40 (0.17) 0.38 (0.16)

v) κ = n, λ = 1 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

Table 5: True positive rate in Experiment A1.

Method \ n 50 100 200 500 1 000 2 000 5 000 10 000 20 000

i) κ = 1, λ = 1 3.03 (0.98) 3.77 (0.70) 3.9 (0.58) 4.48 (0.96) 4.68 (0.51) 5.65 (0.84) 7.13 (0.81) 7.70 (1.21) 8.68 (0.82)

ii) κ = 1, λ =
√

n 2.79 (0.91) 3.56 (0.68) 3.80 (0.59) 4.32 (0.93) 4.55 (0.51) 5.53 (0.83) 7.02 (0.81) 7.61 (2.15) 8.59 (1.21)

iii) κ = 1,λ = n + 1 2.41 (0.88) 3.01 (0.68) 3.07 (0.74) 3.48 (0.79) 3.64 (0.62) 4.27 (0.63) 5.33 (0.78) 5.68 (0.94) 6.32 (0.77)

iv) κ = 1, λ = n2 3.43 (1.82) 3.63 (2.06) 3.89 (1.86) 5.13 (2.51) 4.49 (1.90) 5.08 (2.27) 5.62 (1.42) 6.27 (2.15) 6.42 (1.70)

v) κ = n, λ = 1 5.31 (0.84) 7.69 (0.48) 10.67 (0.52) 16.81 (0.71) 23.56 (0.56) 33.59 (0.50) 53.00 (0.44 74.92 (0.53) 105.8 (0.54)

Table 6: �2 distance of the posterior mean from the true signal in Experiment A2.

Method \ n 50 100 200 500 1 000 2 000 5 000 10 000 20 000

i) κ = 1, λ = 1 0.25 (0.22) 0.22 (0.17) 0.15 (0.12) 0.12 (0.09) 0.10 (0.08) 0.11 (0.08) 0.11 (0.06) 0.12 (0.06) 0.10 (0.03)

ii) κ = 1, λ =
√

n 0.15 (0.16) 0.18 (0.14) 0.14 (0.11) 0.11 (0.09) 0.08 (0.08) 0.10 (0.08) 0.10 (0.06) 0.11 (0.06) 0.10 (0.03)

iii) κ = 1, λ = n + 1 0.01 (0.04) 0.06 (0.08) 0.03 (0.07) 0.04 (0.06) 0.01 (0.03) 0.02 (0.05) 0.02 (0.03) 0.02 (0.02) 0.01 (0.02)

iv) κ = 1, λ = n2 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

v) κ = n, λ = 1 0.92 (0.00) 0.95 (0.00) 0.97 (0.00) 0.98 (0.00) 0.99 (0.00) 0.99 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

Table 7: False discovery rate in Experiment A2.

Method \ n 50 100 200 500 1 000 2 000 5 000 10 000 20 000

i) κ = 1, λ = 1 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

ii) κ = 1, λ =
√

n 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

iii) κ = 1, λ = n + 1 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

iv) κ = 1, λ = n2 0.89 (0.19) 0.94 (0.09) 0.94 (0.08) 0.95 (0.09) 0.98 (0.05) 0.99 (0.03) 0.99 (0.02) 0.99 (0.02) 1.00 (0.01)

v) κ = n, λ = 1 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.0v0) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

Table 8: True positive rate in Experiment A2.
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In Experiment A1 we see that the �2-error is not very sensitive to the choice of
hyperparameters: the uniform prior i), the mild shrinkage ii), and Castillo and Van
der Vaart’s recommendation iii) all perform comparably. Only the heavy shrinkage iv)
is introducing too high penalization, especially for large models. Unsurprisingly, the
choice of hyper-parameters v) is also substantially worse than the others, because it
expresses exactly the wrong type of prior assumptions by heavily penalizing sparse
models. In Experiment A2 we see that the best hyper-parameters are Castillo and Van
der Vaart’s recommendation iii) and the heavy shrinkage iv), with the latter having
a large variability in performance. Hyper-parameter choices i) and ii) are introducing
no or only mild penalization for large models and indeed are also observed to have
somewhat worse performance than choices iii) and iv), with the difference getting more
pronounced for larger sample sizes. Finally, as in Experiment A1, the hyper-parameter
setting v) is the worst by far.

We also study the false discovery rate (FDR) and true positive rate (TPR) of the
spike-and-slab priors (relatedly, see [14] for the theoretical underpinning of FDR con-
trol with empirical Bayes spike-and-slab priors). Unsurprisingly, the FDR is smallest
in both experiments in case of heavy shrinkage v), but almost equally good rates are
obtained for the recommended choice iii). Mild ii) or no i) shrinkage result in somewhat
worse FDR, while the sparsity discouraging setting v) essentially selects all the noise. In
Experiment A1 the best TPR is obtained, not surprisingly, by setting v), which conser-
vatively selects everything. Hyper-parameter choices i) and ii) perform comparably well,
closely followed by iii), while the heavy shrinkage method iv) is substantially worse. In
Experiment A2 all hyper-parameter settings perform equally well, except for the heavy
shrinkage iv), which is slightly worse. The good performance of the methods is due to
the relatively high value (2

√
2 logn) for the non-zero signal coefficients, which lies above

the detection threshold
√
2 logn.

We conclude that, overall, the recommended choice iii) indeed appears to have an
advantage over the alternatives, and that even heavier penalization as in choice iv) is
harmful.

The above simulation study is just one example of how our exact algorithms can
be used to study asymptotic properties of model selection priors, and more specifically
spike-and-slab priors. Another possible application not considered here would, for in-
stance, be to study the accuracy of Bayesian uncertainty quantification (see [16] for
frequentist coverage of Bayesian credible sets resulting from empirical Bayes spike-and-
slab priors).

6 Discussion

We have proposed fast and exact algorithms for computing the Bayesian posterior dis-
tribution corresponding to model selection priors (including spike-and-slab priors as a
special case) in the sparse normal sequence model. Since the normal sequence model
corresponds to linear regression with identity design, the question arises whether the
derived algorithms can be extended to sparse linear regression with more general de-
signs or other more complex models. We first note that all methods are agnostic about
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where the conditional densities of the spikes p(Yi | Bi = 0) = φ(Yi) and the slabs

p(Yi | Bi = 1) = ψ(Yi) come from. It is therefore trivial to extend them to any model

that replaces the distribution of Yi given S by

Yi | S ∼
{
ψi if i ∈ S,
φi otherwise,

for any densities ψi and φi. (In fact, this is already supported by our R package [62].)

Such extensions make it possible to easily handle other noise models for εi or general

diagonal designs; and, as pointed out by a referee, it also allows incorporating a non-

atomic prior on θi in case i �∈ S. We further anticipate that extensions to general

sparse design matrices may be possible by generalizing the HMM from Section 2.1 to

more general Bayesian networks and applying a corresponding inference algorithm to

compute marginal posterior probabilities. However, for non-sparse design matrices the

extension would be very challenging, if possible at all, because the Bayesian network

of the hidden states could become fully connected. An interesting intermediate case

is studied by Papaspiliopoulos and Rossell [43], who consider best-subset selection for

block-diagonal designs. For the normal sequence model, their assumptions amount to

the requirement that Λn is a point-mass on a single α, and they point out that in this

case “best-subset selection becomes trivial.” For non-diagonal designs their results are

non-trivial, because they are able to integrate over a continuous hyper-prior on the

variance σ2 of the noise εi. In contrast, we assume fixed σ2, which we then take to be

σ2 = 1 without loss of generality. Our methods can be used to calculate the marginal

likelihood p(Y | σ2) without further computational overhead, so it would be possible to

run them multiple times to incorporate a discrete prior on a grid of values for σ2, but it

is not obvious if our results can be extended to continuous priors over σ2. Exploration

of these directions is left for future work.

Even without extending our methods to full linear regression or continuous priors

on σ2, we believe that they are already very useful as a benchmark procedure: any

approximation technique for general linear regression may be applied to the special case

of sparse normal sequences and its approximation error computed as in Section 3.2. If

a method does not work well in this special case, then certainly we cannot trust it for

more general regression. The existence of such a benchmark method is very important,

since, for instance, there are no available diagnostics to determine whether Markov

Chain Monte Carlo samplers have converged to their stationary distribution or if they

have explored a sufficient proportion of the models in the model space.

We have also explored the exact connection between general model selection priors

and the more specific spike-and-slab priors. Since for spike-and-slab priors one can

construct faster algorithms, it is useful to know which model selection priors can be

represented in this form. The proof of our result amounts to a finite sample version of

de Finetti’s theorem for a particular subclass of exchangeable distributions, which may

be of interest in its own right.
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Supplementary Material

Supplement: Fast Exact Bayesian Inference for Sparse Signals in the Normal Sequence
Model (DOI: 10.1214/20-BA1227SUPP; .pdf). The supplement contains a review of the
exact algorithm by Castillo and Van der Vaart and a discussion on how to perform all
computations in a logarithmic representation. It further includes an additional variation
on Experiment A1 from Section 5. Finally, the proofs for all theorems and the examples
from Section 2.3 are also given in the supplement.
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