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Bayesian Multiple Quantile Regression
for Linear Models Using a Score Likelihood∗

Teng Wu† and Naveen N. Narisetty‡

Abstract. We propose the use of a score based working likelihood function for
quantile regression which can perform inference for multiple conditional quantiles
of an arbitrary number. We show that the proposed likelihood can be used in a
Bayesian framework leading to valid frequentist inference, whereas the commonly
used asymmetric Laplace working likelihood leads to invalid interval estimations
and requires further correction. For computation, we propose a novel adaptive
importance sampling algorithm to compute important posterior summaries such
as the posterior mean and the covariance matrix. Our proposed approach makes it
feasible to perform valid inference for parameters such as the slope differences at
different quantile levels, which is either not possible or cumbersome using existing
Bayesian approaches. Empirical results demonstrate that the proposed likelihood
has good estimation and inferential properties and that the proposed computa-
tional algorithm is more efficient than its competitors.

Keywords: Bayesian quantile regression, multiple quantile regression, working
likelihood, adaptive importance sampling.

1 Introduction

Quantile regression (QR), first introduced by Koenker and Bassett (1978), provides a
more comprehensive description of the relationship between an outcome and a set of
covariates of interest compared to the more commonly used conditional mean regression.
Moreover, it is also more robust against outliers. Suppose Y denotes the continuous
response variable of interest and X denotes the p-dimensional covariate vector, with
its first element equals to 1. For a given quantile level τ ∈ (0, 1), the linear quantile
regression model assumes the τth conditional quantile function of Y given X to be

QY (τ | X = x) = xTβ(τ),

where β(τ) is the regression quantile vector of length p which depends on the quantile
level of interest τ . By allowing the slopes to change with τ , quantile regression allows
for a much more general conditional relationship between Y and X (Koenker, 2005).

For a given sample {(yi,xi)}i=1...,n, the standard quantile regression estimator
(Koenker and Bassett, 1978) is given by

β̂(τ) = argmin
β

n∑
i=1

ρτ (yi − xT
i β), (1.1)
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where ρτ (u) = u(τ − I(u < 0)) is the asymmetric check loss function. Inference on the
quantile regression parameter can be carried out based on the asymptotic normality
results in Koenker and Bassett (1978); Koenker (2005). This requires estimating the
joint covariance matrix of two quantile levels which involves density estimation that can
be sensitive to bandwidth selection. Bayesian approaches have an advantage as they can
automatically estimate the variance and more generally the posterior distribution of the
parameters without having to estimate densities based on which credible intervals can
be constructed (Yu and Moyeed, 2001; Yang and He, 2012; Yang et al., 2016).

The main challenge for Bayesian methods is that the quantile regression model does
not specify a parametric likelihood, which is required in the Bayesian framework. Yu and
Moyeed (2001) proposed to use a working likelihood based on the Asymmetric Laplace
Distribution (ALD) given by

ALD(Y | X, β) =
τn(1− τ)n

σn
exp

{
−
∑n

i=1 ρτ (yi − xi
Tβ)

σ

}
,

where σ is a fixed scale parameter. The intuition behind this likelihood is that it in-
corporates the check loss into the likelihood function and is maximized at the standard
QR estimator β̂(τ). This is called a working likelihood since quantile regression problem
does not specify any particular data generating process and there is no “true” likelihood
function. Computation of the posterior with the ALD likelihood is easy to implement us-
ing Gibbs sampling (Kozumi and Kobayashi, 2011) or Metropolis-Hastings algorithms.
Sriram et al. (2013) showed that the resultant posterior exhibits posterior consistency
properties. However, Sriram (2015); Yang et al. (2016) noticed that the asymptotic
variance of the posterior distribution based on ALD likelihood is incorrect, implying
invalidity of inference from a frequentist viewpoint. To remedy this, the authors pro-
posed a correction to the posterior variance to make valid inference. It is worth noting
that if one takes a subjective Bayesian perspective and truly believes that the data is
generated from a Laplace distribution, the inference using the ALD likelihood will be
valid. However, that is a very strong assumption and is likely to be violated in most
applications where quantile regression is of interest. Therefore, we take an objective
Bayesian perspective where it is desirable to have valid frequentist properties for the
Bayesian procedures.

Estimation and especially inference for regression quantiles at multiple quantile levels
is more challenging. For two different quantile levels τ1, τ2 and τ1 > τ2, suppose we are
interested in testing the following hypothesis,

H0 : β1(τ1) = β1(τ2) vs H1 : β1(τ1) �= β1(τ2),

i.e. whether the first covariate X1 has a different effects on Y at quantiles τ1 and τ2. In
the frequentist context, hypothesis testing can be performed based on the asymptotic
normality results for multiple quantiles as in Koenker and Bassett (1978); Koenker
(2005) or several other simultaneous estimation approaches proposed in the literature
such as He (1997); Liu and Wu (2009); Zou et al. (2008); Bondell et al. (2010).

To test this in the Bayesian framework, we can reparametrize the quantile regression
model with θ = β1(τ1) − β1(τ2) after which testing the slope difference is transformed
to testing whether θ = 0. If zero is not included in the credible interval based on the
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posterior distribution for θ, we would reject the null hypothesis. For this procedure,
we require a valid posterior distribution that can automatically capture the joint un-
certainty of the regression quantiles at multiple levels. Sriram et al. (2016) proposed a
working likelihood to model multiple quantile levels as an extension of the ALD likeli-
hood and showed it provides consistent estimation of the regression quantiles. However,
it cannot quantify the joint uncertainty for multiple quantile levels and the inference
based on this posterior is not valid as discussed earlier. Although the correction pro-
posed by Yang et al. (2016) can be generalized for this case, it requires fitting two
different likelihoods that are not compatible with each other and is not preferable also
since it would not utilize the information between two nearby quantile levels.

Bayesian methods for simultaneously modeling conditional quantiles at multiple
levels τ1, τ2, . . . , τm have also been considered. For estimating multiple unconditional
quantiles in a Bayesian framework, Lavine (1995) proposed a multinomial substitution
likelihood. Dunson and Taylor (2005) extended Lavine (1995)’s idea and proposed a
generalization of this substitution likelihood for the regression case with categorical
covariates having a limited number of categories. However, this likelihood does not
generalize to the usual quantile regression setting with continuous predictors. There
are several existing Bayesian approaches which accommodate continuous predictors but
a majority of them have computational or inferential challenges in modeling a finite
collection of quantile levels which forms a major motivation for our current work.

Lancaster and Jae Jun (2010) used Bayesian exponentially tilted empirical likelihood
and provided an explicit form for the posterior density. Yang and He (2012) proposed
a Bayesian empirical likelihood method which also allows a simultaneous estimation
of multiple quantiles. This approach provides valid posterior inference unlike the ALD
likelihood based approach and it is applicable to model quantile slope differences. How-
ever, the empirical likelihood based methods are computationally demanding even under
modest dimensions. Feng et al. (2015) proposed an approximation likelihood based on
linearly interpolated density targeting multiple quantile regression but they require the
number of quantiles to go to infinity which is not efficient when we are only interested
in a finite collection of quantile levels. If quantile regression model is assumed for all
the quantile levels, a global likelihood for all the regression quantiles can be specified
because the conditional density can be written as a function of the conditional quan-
tiles (Reich et al., 2011; Yang and Tokdar, 2017). Reich et al. (2011) proposed a model
based spatial quantile regression method within the Bayesian framework by assuming
a global quantile regression model at all the quantile levels. Using a Bernstein basis
polynomial representation, their approach is to simultaneously estimate the regression
quantile process, which is computationally expensive especially when we are only in-
terested in estimating a few quantile levels. Moreover, unlike our proposed approach
in the paper, this approach does not ensure validity of the coverage based on credible
intervals. Yang and Tokdar (2017) proposed a semiparametric Bayesian quantile re-
gression method by using a Gaussian process prior distributions on the function-valued
parameters. However, the resultant estimators are not necessarily

√
n− consistent due

to the semiparametric nature of the priors. The likelihood evaluation is computationally
intensive and not suitable if the interest lies in only a few quantile levels. Also, it does
not guarantee the frequentist validity of the resultant posterior intervals.
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In this paper, we propose the use of a working likelihood based on the score function
for implementing quantile regression at multiple quantile levels and propose a new adap-
tive importance sampling algorithm for its computation. The proposed likelihood can
be used for Bayesian settings and we provide theoretical justification for this approach
by showing that the posterior corresponding to the proposed likelihood provides valid
frequentist inference for multiple quantile levels. With the ability to incorporate mul-
tiple quantiles into one single likelihood, we can perform inference on parameters such
as the slope differences directly, which is not easy to perform using existing Bayesian
approaches. Compared to the frequentist approaches, our formulation allows automatic
quantification of uncertainty of multiple regression quantiles, the flexibility of incorpo-
rating prior information, additional shrinkage or smoothness in the regression quantile
parameters by using an appropriate prior distribution. Computationally, we propose an
adaptive importance sampling algorithm, which does not require any optimization steps
and is suitable for estimating multiple quantile levels together efficiently. Our empirical
results show that the proposed importance sampling algorithm is very efficient and is
more efficient than the computational algorithms typically used for the ALD likelihood.

For the purpose of computing generalized method of moment (GMM) estimators,
Chernozhukov and Hong (2003) proposed using Markov Chain Monte Carlo (MCMC)
algorithms based on likelihoods constructed by exponentiation of the objective function
of interest. While the score likelihood advocated in this paper is considered by Cher-
nozhukov and Hong (2003), the focus of our current work is to generalize the score
likelihood to perform valid inference for parameters involving multiple quantile levels
which is not feasible using existing Bayesian approaches and to demonstrate that our
proposed computational algorithm is more efficient in terms of effective sample size
than the Metropolis-Hasting algorithm proposed by Chernozhukov and Hong (2003) for
generic likelihoods.

The rest of the paper is structured as follows: Section 2 will first present the for-
mulation of our likelihood. Section 3 provides our proposed computational methods
which can be used to compute the posterior and make inference based on the proposed
likelihood. Section 4 demonstrates the performance of the proposed method and com-
putational algorithms via simulation studies. Section 5 provides an application to a real
dataset. Finally, Section 6 provides a conclusion.

2 Methodology and Theoretical Results

2.1 Score Based Likelihood for Quantile Regression

We first focus on the case for modeling a single quantile level. The score function for
the quantile regression objective function given in (1.1) is a p dimensional vector, which
takes the following form:

sτ (β) =
n∑

i=1

xiψτ

(
yi − xT

i β
)
,
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where ψτ (u) = τ − I(u < 0). Since the quantile regression estimator β̂(τ) minimizes the

quantile loss function, sτ (β̂(τ)) ≈ 0. Consider the following working likelihood:

L(Y | X, β) = C exp

{
− 1

2n
sτ (β)

TWsτ (β)

}
, (2.1)

where W is a p × p positive definite weight matrix, and C is a constant free of β. We
shall also use the short notation L(β) for L(Y | X,β) as it is viewed as a function of β.
Since the exponent in the posterior is a quadratic form, values of β for which sτ (β) is
close to zero will correspond to high posterior density. As the expectation of the score
function equals zero uniquely at the true regression quantile β0(τ), we expect that this
leads to posterior concentration around the truth. Our Theorem 1 makes this intuition
more formal under regularity conditions. Quasi-posteriors for Bayesian inference have
been considered in the literature, for example, we refer to Li and Jiang (2016) for quasi-
posterior inference based on Bayesian generalized method of moments. Chernozhukov
and Hong (2003) considered such working likelihoods in the context of computation of
frequentist estimators using MCMC algorithms.

The weight matrix we use in the likelihood is:

W =
n

τ(1− τ)

(
n∑

i=1

xix
T
i

)−1

.

Our theoretical results from Section 2.4 show that this choice for W will lead to valid
inference based on the posterior. Compared with the ALD likelihood, this will allow us to
carry out posterior inference directly without having to correct the posterior covariance
as suggested by (Sriram, 2015; Yang et al., 2016).

The likelihood (2.1) does not arise from a distributional specification for Y given
(X, β). Therefore, this can be viewed as a working likelihood. To visualize the score
likelihood in (2.1), we provide a simple illustration using the univariate case without
covariates. We generate samples from N(0, 1) and plot the score likelihood for the
median in Figure 1. In Figure 1, we take numerical integration of the likelihood over
the interval [−0.5, 0.5], which is large enough, to obtain a good approximation the
normalizing constant C. The ALD likelihood with σ = 1 is also provided for comparison.
The dashed black curve in Figure 1 is the true asymptotic distribution for the median.
Since all the likelihoods provide consistent estimation, we centered all of them to zero
to provide a better comparison of their variances. It can be seen that the variance of
the ALD likelihood is different from the true asymptotic distribution as it is affected by
the scale parameter σ. On the other hand, the score based likelihood is quite close to
the asymptotic normal distribution, especially as the sample size increases.

The score likelihood (2.1) can also be generalized to model multiple conditional
quantiles. Consider modeling m quantiles τ1, τ2, . . . , τm at the same time, with the true
quantile regression parameters β0 = (β(τ1),β(τ2), . . . ,β(τm)). For any vector β =
(β1,β2, . . . ,βm), define the score function to be

s(β) = (sτ1(β1), sτ2(β2), . . . , sτm(βm)),
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Figure 1: Comparison of the score based likelihood (solid red) and the asymmetric
Laplace (ALD) likelihood (solid black) with the asymptotic distribution (dashed black).
All the likelihoods are centered at zero.

where sτi(·) is the score function correspond to the quantile level τi for i = 1, . . . ,m.
The score based likelihood for multiple quantile levels takes the following form:

L(β) ∝ exp

{
− 1

2n
s(β)TWs(β)

}
, (2.2)

where W is an mp×mp positive definite weight matrix. The weight matrix in this case
is given by

W = (Q⊗G)−1, where Q = (τi ∧ τj − τiτj)ij , G =
1

n

n∑
i=1

xix
T
i ,

⊗ denotes the Kronecker product, and x ∧ y = min(x, y). Our theoretical results show
that this W will lead to correct posterior inference. It is also natural to incorporate
monotonicity of the conditional quantiles so that the proposed likelihood becomes:

L(β) ∝ exp

{
− 1

2n
s(β)TWs(β)

}
1 {xiβ1 ≤ xiβ2 . . . ≤ xiβm for all i} . (2.3)

We place the monotonicity constraints on the estimated quantiles only at the observed x-
values. This implies monotonicity of the conditional quantiles at all the covariate values
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belonging to the convex hull formed by the observed x’s. In the literature, alternative
approaches for achieving monotone quantile curves in the Bayesian context have been
considered. For example, Rodrigues and Fan (2017) used a two stage approach where
posterior samples from Bayesian quantile regression are made to be monotone using
a post-hoc adjustment procedure. Yang and Tokdar (2017) proposed a more elegant
way to impose monotonicity for all the quantile levels τ ∈ (0, 1) by reparametrizing
the quantile regression model. Both these approaches, however, can be too restrictive
in terms of their constraints if we are only interested in a few quantile levels.

2.2 Prior Distributions

An advantage of the proposed Bayesian framework for quantile regression is that prior
information or smoothness in the regression quantiles can be induced with appropriately
specified prior distributions. When there is no additional information available on the
regression quantile parameters, a bounded uniform prior such as β ∈ [−n, n]mp can be
used. Such a prior is imposed to ensure a proper posterior distribution. In practice, an
improper uniform prior may also be used for simplicity. If the regression quantiles are
expected to vary smoothly as a function of the quantile level τ , this can be induced
by using prior distributions with high correlations between regression parameters cor-
responding to nearby quantile levels. For example, we can use a multivariate normal
distribution with the covariance between β1(τ1) and β1(τ2) to be a smooth covariance
kernel function such as the squared exponential kernel given by

k(τ1, τ2) = σ2 exp

{
− 1

2b2
(τ1 − τ2)

2

}
, (2.4)

where σ2 and b are hyperparameters. For simplicity, the prior covariance between pa-
rameters of different predictors can be assumed to be zero as is common in the linear re-
gression context (George and McCulloch, 1993; Narisetty and He, 2014). Such Gaussian
priors have been used in quantile regression settings (Yang and Tokdar, 2017; Rodrigues
and Fan, 2017) to induce smooth conditional quantiles. With the non-informative uni-
form prior or the Gaussian prior, the posterior will be a proper distribution and can be
used for inference.

2.3 Estimation of Contrasts in Quantile Regression

Using scored-based likelihood and a prior distribution of β, we can obtain the posterior
distribution of any linear combination of the quantile regression parameters, and in
particular for any contrasts. For simplicity, consider a simple quantile regression model

QY (τ | X = x) = β0(τ) + β1(τ)x,

and we are interested in testing slope differences θ = β1(τ1) − β1(τ2). If we assume an
bounded uniform prior, the posterior of θ can be simply calculated from the posterior
samples of β1(τ1) and β1(τ2). In general, if prior information is available only on the
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parameter θ, we can place a prior π(θ) on θ and uniform prior on the other parameters,
the posterior distribution of θ would take the following form:

f(θ, β1(τ2), β0(τ1), β0(τ2) | Y,X) ∝ L(β0(τ1), θ + β1(τ2), β0(τ2), β1(τ2))π(θ).

Similarly, the proposed framework can be used for obtaining posterior samples for any
linear combinations of the quantile regression coefficients across multiple quantile levels.

2.4 Posterior Concentration Results

In this section, we shall show that the score-based likelihood together with either of
the priors discussed will lead to a posterior that is asymptotically similar to a normal
distribution with the posterior variance matching the frequentist variance of the quantile
regression estimator. Before we state the assumption and theorems, we define some
notations used in this paper.

Notation. For a sequence of random variable Xn and sequence of constant an, the
notation Xn = Op(an) is defined by: For any ε > 0, there exist an M > 0 and N > 0,
such that

P (|Xn/an| > M) < ε, when n > N,

and Xn = op(an) is defined by: For any ε > 0,

lim
n→∞

P (|Xn/an| > ε) = 0.

Xn = op(an) is equivalent to |Xn/an|
p−→ 0, where

p−→ denotes convergence in probability.

To obtain the asymptotic result, the following assumptions are made.

Assumption 1 (On the distribution of X). max ‖xi‖ = Op(n
1/4

(
logn)−1/2

)
and

E
(
‖xi‖4

)
< B for all i and some constant B.

Assumption 2 (On the data generation mechanism). The conditional quantile function
of Y given X is linear,

QY (τ | X = x) = xTβ(τ).

Furthermore, the conditional distribution of Yi given xi, Fi(· | xi), is absolutely con-
tinuous with continuous density fi(· | xi) bounded away from 0, and uniformly bounded
away from ∞ in a neighborhood of ξi(τ) = QYi(τ | xi), for i = 1, . . . , n. In addition,
the first derivative of fi(·) is uniformly bounded in a neighborhood of ξi(τ).

Assumption 3 (On the existence of asymptotic limits).

lim
n→∞

n−1
n∑

i=1

E
(
xix

T
i

)
= D0

for some matrix D0 and

lim
n→∞

n−1
n∑

i=1

E
(
fi
(
xT
i β(τj)

)
xix

T
i

)
= D1(τj),
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for some matrix D1(τj), for j = 1, 2, . . . ,m. The sample version of D0 converges,∣∣∣∣∣
∣∣∣∣∣n−1

(
n∑

i=1

xix
T
i

)
−D0

∣∣∣∣∣
∣∣∣∣∣ p−→ .

We would like to point out that these are standard assumptions for quantile regres-
sion and for instance similar conditions have been used by He et al. (1996). We slightly
modify the last two assumptions to accommodate our random design setting.

We further impose the following additional assumptions which appeared in Example
3 in Chernozhukov and Hong (2003).

Assumption A1. The expectation of score function is uniquely minimized at β0, i.e.
E[sτ (β)] = 0 if and only if β = β0.

Assumption A2. The function xi(τ − I(Yi ≤ xT
i β)) is a Donsker class as a function

in β, E[supβ ‖xi(τ − I(Yi < xT
i β))‖2] < ∞.

Assumption A3. G(β)=�βE[xi(τ−I(yi < xT
i β))] is continuous in β. G(β)TWG(β)

is positive definite and continuous in an open ball at β0.

Assumptions A1–A3 are technical assumptions to ensure posterior concentration for
score likelihood. Assumption A1 is regarding the identifiability of β0 and Assumptions
A2–A3 guarantee regularity of the score function as a function of β. Heuristically speak-
ing, these conditions will be satisfied if the underlying conditional distribution of the
response is sufficiently smooth which is usually the case in most practical applications.

The following theorem shows that our proposed likelihood leads to asymptotically
valid frequentist inference for multiple quantile levels τ1, . . . , τm at the same time.

Theorem 1. a) (Asymptotic Normality of Posterior Distribution) Under Assumptions
1–3, consider the proposed likelihood in (2.2) with the bounded uniform prior and the
following weight matrix

W = (Q⊗G)−1, where Q = (τi ∧ τj − τiτj)ij and, G =
1

n

n∑
i=1

xix
T
i .

Consider β such that ‖β − β0‖ = O(n−1/2). The posterior density for β satisfies

pn(β | D) ∝ exp

{
− 1

2
n(β − β0)

TΣ−1(β − β0) + op(1)

}
, (2.5)

where Σ is an mp×mp matrix with the ijth block Σij =(τi∧τj−τiτj)D1(τi)
−1D0D1(τj)

−1.
b) (Posterior concentration) Assume the true parameter β0 belongs to the interior of a
compact convex set Θ, and the prior distribution restricted to Θ. Under the additional
Assumptions A1–A3, the posterior distribution of β satisfies

Π(‖β − β0‖ > Mnn
−1/2 | D)

p−→ 0

where Mn is any sequence diverging to infinity with n.
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The first part of the Theorem is regarding the shape of the posterior around the
true parameter. This result is analogous to the asymptotic results for the frequentist
quantile regression estimators (Koenker and Bassett, 1978; Koenker, 2005). The second
part of the theorem ensures posterior concentration, which requires stronger technical
conditions as indicated by the results of Chernozhukov and Hong (2003) which are the
basis for this part of the theorem. We defer those assumptions to the supplementary
material (Wu and Narisetty, 2020). For the second part, the prior needs to be supported
on a fixed compact set, which is for instance satisfied by a Uniform prior on a large
fixed interval. One possibility to ensure this condition is to truncate any prior on a
compact set. While we expect that this is not a necessary condition, we require it for
our theoretical results. In practice, priors with unbounded support such as the Gaussian
prior and a Uniform prior on [−n, n] also work well as observed in our simulation studies.

Notice that since we are in the Bayesian framework, it is possible to impose mono-
tonicity constraints to avoid the crossing problem. Therefore, we only consider βi’s
such that xiβ1 ≤ xiβ2 . . . ≤ xiβm for all xi, i = 1, 2, . . . , n. Heuristically, since the
crossing probability is small, the posterior distribution would not be affected by these
constraints. However, in small samples, our simulation results show that the proposed
joint likelihood leads to smaller mean squared error compared with estimating them
separately using the frequentist approach.

2.5 Extension to Censored Quantile Regression

For censored data, quantile regression is preferred over conditional mean regression
since the latter is not necessarily identifiable without making stringent distributional
assumptions. Motivated by the Powell’s estimator (Powell, 1984, 1986), the proposed
likelihood can be extended to censored quantile regression with fixed censoring. Consider
a simple case with fixed left censoring at 0,

yi = max
(
0,xT

i β0 + ui

)
, (2.6)

where ui is the error term. The Powell’s estimator is defined as

β̂P = argmin
β

n∑
i=1

ρτ
(
yi −max(xT

i β, 0)
)
. (2.7)

The Powell’s estimator is consistent and has asymptotic normality with covariance ma-
trix τ(1− τ)M−1

1 M0M
−1
1 , where

M0 = lim
n→∞

n−1
n∑

i=1

E
(
xix

T
i I

(
xT
i β0 > 0

))
,

M1 = lim
n→∞

n−1
n∑

i=1

E
(
fi(x

T
i β0)xix

T
i I

(
xT
i β0 > 0

))
.

Define the score function for censored quantile regression to be

cτ (β) =
n∑

i=1

xiψτ

(
yi − xT

i β
)
I
(
xT
i β > 0

)
. (2.8)
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We propose the following likelihood to be used for Bayesian censored quantile regression

cL(β) ∝ exp

{
− 1

2n
cτ (β)

TW (β)cτ (β)

}
, (2.9)

where the weight matrix W (β) is given by

W (β) =

(
τ(1− τ)n−1

n∑
i=1

xix
T
i I

(
xT
i β > 0

))−1

. (2.10)

The motivation of our likelihood is that the likelihood is maximized at β̂P because
cτ (β̂P ) = op(

√
n), as discussed in Powell (1984) so that the posterior is consistent.

We shall also show that with our choice of the weight matrix, the resultant posterior
is approximately normal with the correct variance. Unlike the uncensored case, notice
that the weight matrix now depends on the parameter β which makes the theoretical
analysis more challenging. To obtain the asymptotic posterior concentration results for
censored quantile regression, we need the following assumptions similar to the ones used
by Powell (1986).

Assumption 4. For r = 0, 1, 2 and ‖β − β0‖ = O(n−1/2),

E
(
I(|xT

i β| ≤ ‖xi‖ · ‖β − β0‖)‖xi‖r
)
≤ K‖β − β0‖.

Assumption 5.

lim
n→∞

n−1
n∑

i=1

E
(
xix

T
i I(x

T
i β0 > 0)

)
= M0,

and

lim
n→∞

n−1
n∑

i=1

E
(
fi(x

T
i β0)xix

T
i I(x

T
i β0 > 0)

)
= M1.

We also assume that the finite sample version of M0 converges to the true value.

Assumption 6. ∣∣∣∣∣
∣∣∣∣∣n−1

n∑
i=1

(
xix

T
i I(x

T
i β0 > 0)

)
−M0

∣∣∣∣∣
∣∣∣∣∣ p−→ 0.

We further impose the following technical assumptions, which are also made for
Proposition 1 in Chernozhukov and Hong (2003).

Assumption A4. The expectation of score function is uniquely minimized at β0, i.e.
E[cτ (β)] = 0 if and only if β = β0.

Assumption A5.

sup
β∈Θ

∣∣∣∣∣
∣∣∣∣∣n−1

n∑
i=1

(
xix

T
i I(x

T
i β > 0)

)
−M0(β)

∣∣∣∣∣
∣∣∣∣∣ p−→ 0,

for some M0(β) and M0(β) is continuous uniformly and positive semidefinite for all
β ∈ Θ.
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Assumption A6. G(β) = �βE[xi(τ − I(yi < xT
i β))I(x

T
i β > 0)] is continuous in β,

and

−1/
√
ncτ (β0)

TM0(β0)G(β0)
d−→ N(0, G(β0)M0(β0)G(β0)).

These are technical conditions to ensure the posterior concentration using score
likelihood for censored quantile regression. Assumption A4 is regarding the identifiability
of β0 and Assumptions A5–A6 ensure regularity of the score function. Assumption A6
also imposes a distribution assumption on cτ (β), which is the same as the condition
(iii) in Proposition 1 of Chernozhukov and Hong (2003).

The following theorem shows that our proposed likelihood asymptotically leads to
valid frequentist inference for censored quantile regression.

Theorem 2. a) (Asymptotic Normality of Posterior Distribution) Consider the pro-
posed likelihood in (2.9) with the bounded uniform prior and the following weight matrix

W (β) =

(
τ(1− τ)n−1

n∑
i=1

xix
T
i I

(
xT
i β > 0

))−1

.

Under Assumptions 1, 2, and 4–6, for β such that ‖β − β0‖ = O(n−1/2), the posterior
of β satisfies

pn(β | D) ∝ exp

{
− 1

2
n(β − β0)

TΣ−1
c (β − β0) + op(1)

}
,

where Σc = τ(1− τ)M−1
1 M0M

−1
1 .

b) (Posterior concentration) Assume the true parameter β0 belongs to the interior of
a compact convex set Θ, and the prior distribution restricted to Θ. Under the additional
Assumptions A4–A6, the posterior distribution of β satisfies

Π(‖β − β0‖ > Mnn
−1/2 | D)

p−→ 0,

where Mn is any sequence diverging to infinity with n.

For the censored case as well, the posterior distribution concentrates and is asymp-
totically normal, centered at the true regression parameter β0, with the correct co-
variance matrix Σc = τ(1 − τ)M−1

1 M0M
−1
1 . The asymptotic normal expansion of the

posterior distribution is same as the asymptotic distribution of the Powell’s estimator.
While both approaches result in similar behavior asymptotically, the score likelihood
based approach is better suited for computations since the Powell’s objective function is
highly non-convex (Womersley, 1986; Chernozhukov and Hong, 2003). Note that Cher-
nozhukov and Hong (2003)’s approach is different from ours as they used the Powell’s
objective function in place of the score function in the likelihood we proposed. In the
next section, we will discuss our proposed computational strategies.
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3 Computational Methods

We propose an efficient computational method for computing the posterior correspond-
ing to the proposed likelihood function. Since the posterior distribution is asymptotically
normal, the mean and the variance of the posterior provide a good description of the
distribution. We propose an adaptive importance sampling algorithm for computing the
posterior mean and the variance and the same approach can be used if higher moments
of the posterior distribution need to be obtained. To ensure efficiency in terms of a
good effective sample size, we propose an adaptive approach to update the proposal
distribution of the importance sampling algorithm in an iterative manner. Importance
sampling has been widely used as an alternative to Markov Chain Monte Carlo and the
performance of the importance sampling algorithm relies on a good proposal distribu-
tion (Robert and Casella, 2013). The essential idea of adaptive importance sampling
is to update the proposal distribution based on an iterative process to gain efficiency
(Bugallo et al., 2017; Cornuet et al., 2012). Adaptive importance sampling methods are
often used for computation in the contexts of mixture models (Cappé et al., 2008) and
missing data models (Celeux et al., 2006).

3.1 Adaptive Importance Sampling Algorithm (Ada-IS) for a Single
Quantile Level

We now describe our algorithm to compute the posterior mean and the covariance
matrix. As the posterior distribution is asymptotically normal, it is reasonable to use
a normal distribution as the proposal distribution. We use the results from a linear
regression (or median regression) as an initialization, and use importance sampling to
update the mean and the covariance matrix of the proposal distribution. The resultant
estimators are expected to be better than the initialization and will be used as the
new proposal to improve the efficiency of the algorithm. Updating the proposal just a
few times turns out to be helpful in making the final proposal closer to the posterior
distribution. The details of the algorithm are stated as follows.

Ada-IS Algorithm for a single quantile level:

(1) Fit a linear mean (or median) regression model, and use a1 to denote the fitted
slope parameter. Let a0(τ) be the τth sample quantile of yi − xT

i a1, i = 1, 2, . . . , n

and a = (a0(τ),a1). Use q(b) = N(a, Σ̂) as the initial proposal, where

Σ̂ = cτ(1− τ)

(
n∑

i=1

xix
T
i /n

)−1

,

and c is a constant to be selected.

(2) Generate samples b(1), b(2), . . . , b(M) from q(b) for some large M and calculate the
importance weights w(r) = L(b(r))π(b(r))/q(b(r)), where π is the prior distribution
for β. Effective sample size (ESS) is calculated based on

ESS =
M

1 + cv2
, where cv2 =

(M − 1)−1
∑M

r=1(w
(r) − w̄)2

w̄2
, and w̄ =

1

n

M∑
r=1

w(r).
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(3) The posterior mean can be estimated as

μ̂ = (μ̂1, . . . , μ̂p) =

∑M
i=1 w

(r)b(r)∑M
i=1 w

(r)
,

and the jkth entry of the posterior covariance matrix can be estimated by

σ̂jk =

∑M
r=1 w

(r)b
(r)
j b

(r)
k∑M

r=1 w
(r)

− μ̂j μ̂k,

where b
(r)
j is the jth coordinate of b(r).

(4) Use the mean and the covariance matrix from Step 3 to form a new normal proposal
distribution and repeat Steps 2–4 for a pre-specified number of times.

(5) Estimate the posterior mean and the covariance matrix by using importance sam-
pling from the final proposal distribution obtained from Step 4.

In Step 1, the motivation for the initialization for the covariance matrix is that when the
densities f(xiβ(τ)) are approximately equal to the constant k, then the true covariance
matrix would take the following form

τ(1− τ)D1(τ)
−1D0D1(τ)

−1 ≈ 1

k2
τ(1− τ)

(
n∑

i=1

xix
T
i /n

)−1

.

This is equivalent to find a proper constant c. A larger value of c will inflate the variance
and make the tails of the proposal distribution heavy, while a smaller c will make the tail
lighter. In our empirical studies, we used a common value of c = 1 and did not optimize
it. However, it is possible to try a few different values on a pilot run and choose the
one providing the largest effective sample size in practice. It is also possible to use the
estimates from quantreg as initialization, which is expected to perform better than
the least squares initialization. However, even using the least squares initialization, in
most cases, the proposed method performs well in terms of obtaining a good effective
sample size. For Step 4, it is also possible to make the algorithm adaptive by continuing
to update the proposal until a desired amount of effective sample size is reached. In our
implementation, we will update the proposal for a pre-specified number of times rather
than aiming for a target effective sample size.

For small sample sizes, the posterior distribution could be heavy tailed, causing the
posterior variance to be potentially over-estimated. To improve the finite sample perfor-
mance, we can estimate the posterior variance based on the posterior interquartile range,
which is more robust. Simulation examples show that the finite sample performance of
the estimation based on the posterior interquartile range is slightly better compared to
the one based on the posterior variance. The importance sampling algorithm can be
used to estimate the posterior quantiles and the interquartile range. We now present
the algorithm to estimate the standard deviation σ1 of the first slope coefficient β1 after
obtaining samples from the proposal.



T. Wu and N. N. Narisetty 889

• Sort the samples corresponding to the parameter β1 obtained from the importance

sampling algorithm b
(1)
1 , b

(2)
1 , . . . , b

(M)
1 in increasing order. For simplicity, denote

the resultant values by b(1) < b(2) < . . . < b(M) and the corresponding importance
weights by w(1), . . . , w(M).

• Let k1 = inf{k |
∑k

i=1 w(i) ≥ 0.25} and k2 = inf{k |
∑k

i=1 w(i) ≥ 0.75}. Then,
an estimator of σ1 by matching the estimated interquartile range (IQR) with the
asymptotic interquartile range is given by

σ̂1 = (b(k2) − b(k1))/1.349,

where the factor 1.349 is the interquartile range of the standard normal distribu-
tion.

As suggested by a reviewer, another possibility to improve the effective sample size of the
importance sampling algorithm in finite samples is to utilize a heavy tailed distribution
such as the t distribution as proposal. We have observed that this strategy also works
equally well in practice and difference between these two strategies is not substantial as
the Ada-IS algorithm updates the proposal distribution along the path.

3.2 Ada-IS Algorithm for Multiple Quantile Levels

For multiple quantile regression, it is more challenging to devise a proposal distribution
which will yield good effective sample size. The difficulty is that it is not straightforward
to obtain a good initialization for the joint covariance matrix of the multiple regression
quantiles. To address this, we first obtain good estimators of the mean and the covariance
matrix for each of the individual quantile levels using the Ada-IS algorithm for a single
quantile level. This will give a good estimation for the block diagonal part for the
joint covariance matrix. We propose a way to impute the off-diagonal blocks, which
correspond to the covariances at different quantile levels, based on the diagonal blocks
as described in the following algorithm.

Ada-IS Algorithm for multiple quantiles:

(1) For each individual quantile level in {τ1, τ2, . . . , τm}, implement the Ada-IS Algo-
rithm for a single quantile level separately. Use (μ̂1, . . . , μ̂m) to denote the estimated
means, and (Σ̂1, . . . , Σ̂m) to denote the estimated covariance matrices.

(2) Use an mp-dimensional multivariate normal proposal, with μ̂ = (μ̂1, . . . , μ̂m) as the
initialization for the mean and (Σ̂1, . . . , Σ̂m) as the block diagonal part for the joint
covariance matrix. For the covariance matrix between the quantile levels τi, τj , we
use

Σ̂ij = γ(τi ∧ τj − τiτj)
(
(τi(1− τi)Σ̂

−1
i + τj(1− τj)Σ̂

−1
j )/2

)−1

, (3.1)

where γ ≤ 1 is a value close to 1 chosen to make the covariance matrix Σ positive
definite.
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(3) Generate samples from the proposal distribution and estimate the mean and covari-
ance matrix as described in the Ada-IS Algorithm for a single quantile. Use these
estimates to form a new normal proposal distribution as described in as described
in Step 3 of the Ada-IS Algorithm for a single quantile.

(4) Update the proposal for a pre-specified number of times. Estimate the posterior
mean and the covariance matrix using importance samples from the final proposal
distribution from Step 3.

We will now provide a heuristic intuition behind the imputation of the off-diagonal
blocks of the covariance matrix in Step 2. Ideally, we would like to have

Σ̂ij ≈ (τi ∧ τj − τiτj)D1(τi)
−1D0D1(τj)

−1.

We aim to approximate D1(τi)
−1D0D1(τj)

−1 based on the approximation of the diag-
onal blocks:

Σ̂i ≈ τi(1− τi)D1(τi)
−1D0D1(τi)

−1 and Σ̂j ≈ τj(1− τj)D1(τj)
−1D0D1(τj)

−1.

If two quantile levels are close, we would assume that ‖D1(τi)−D1(τj)‖ is small. Then

‖D1(τi)D
−1
0 D1(τi) +D1(τj)D

−1
0 D1(τj)− 2D1(τj)D

−1
0 D1(τi)‖

= ‖ (D1(τi)−D1(τj))D
−1
0 (D1(τi)−D1(τj)) ‖ ≈ 0.

Therefore, we can obtain the following approximation,

1

2

(
τi(1− τi)Σ̂

−1
i + τj(1− τj)Σ̂

−1
j

)
≈

(
D1(τi)D

−1
0 D1(τi) +D1(τj)D

−1
0 D1(τj)

)
/2

≈ D1(τj)D
−1
0 D1(τi).

The proposed imputation for Σij given by (3.1) follows from this approximation. Notice
that for modeling multiple quantile levels, if a sample from the normal proposal does not
satisfy the monotonicity constraint, its weight will be set to zero. This will make sure
that the conditional quantiles are monotone. However, this may cause the algorithm to
be less efficient, especially when m × p, the number of coefficients to be estimated, is
large and the quantile levels are very close to each other. This constraint can be easily
removed from the algorithm if higher efficiency is desired.

4 Simulation Study

In this section, we use simulated datasets to study the performance of our proposed
approach. The following model is used for generating the data. For i = 1, · · · , n:

yi = 5 + 2xi + εi, εi ∼ N
(
0, (1 + 0.5xi)

2
)
, (4.1)

where εi’s are independent and the xi’s are n grid points equally spaced between 0
and 20. The conditions assumed for the theoretical results are satisfied by this data
generating process used for our simulation studies. We choose n = 2000 to evaluate the
asymptotic behavior while n = 100 and 200 are used to evaluate the small sample size
performance. Each simulation study uses 1000 Monte Carlo replications to aggregate
the results.
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4.1 Single Quantile Regression

We consider the median quantile regression with τ = 0.5. We consider the following
methods for comparing their performance in terms of parameter estimation and com-
putational efficiency.

(1) Importance sampling algorithm (IS): Use the initialization described in Step
(1) of Ada-IS Algorithm for single quantile with c = 1. In principle, one can choose
a better c by searching over a small grid of values but we use this as a default.
Implement an importance sampling algorithm without updating the proposal.

(2) Adaptive importance sampling algorithm (Ada-IS): Implement the Ada-IS
algorithm for single quantile. Start with the same initialization in (IS) and update
the proposal three times with 2000 samples generated each time to get an informa-
tive proposal.

(3) Metropolis-Hastings algorithm (MH): This is an Metropolis-Hastings algo-
rithm as proposed by Chernozhukov and Hong (2003) and with a good proposal
distribution already obtained from the Ada-IS algorithm. That is, use a multivariate
normal distribution with mean and covariance matrix the same as the informative
proposal in (2) as the proposal distribution.

(4) Asymmetric Laplace Likelihood (ALD): This one uses the asymmetric Laplace
likelihood and implements a Metropolis-Hastings Algorithm using the same proposal
distribution as in (3). For estimating the variance, the correction proposed by Yang
et al. (2016) is used.

We first consider the case with n = 2000 observations generated from the above model.
For each of the algorithms, 10000 final samples are obtained to estimate the parameters
and the variances. In Table 1, we report the mean squared error (MSE), bias, and
variance of the estimators for different methods mentioned above. The bias is calculated
based on the average of the 1000 Monte Carlo replications. The average of the estimated
variances σ̂ is compared with the true asymptotic variance, which is given by τ(1 −
τ)D−1

1 D0D
−1
1 . We also report the coverage of the 90% credible/confidence intervals,

the effective sample size for all the methods. Quantile regression estimators using the
R package quantreg are also provided here for comparison.

The simulation results in Table 1 demonstrate the asymptotic validity of the score
based likelihood and efficiency of the proposed algorithm. The proposed score based
likelihood provides good point estimation and has better mean squared error compared
with the other methods. However, the estimated variances tend to be slightly larger than
the asymptotic variance of the estimator, which also causes the coverage to be slightly
larger than the nominal level. In terms of the effective sample size, the proposed adaptive
importance sampling algorithm has a clearly superior performance with an effective
sample size of 9485 which substantially improves upon the one-step importance sampling
algorithm which has an effective sample size of 1089. Moreover, the Ada-IS algorithm
for the score likelihood has much better efficiency even compared to the commonly
used Metropolis-Hastings algorithm with the ALD likelihood. Also, since importance
sampling is a non-stochastic algorithm, it does not suffer from the potential convergence
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Quantreg IS MH Ada-IS ALD
β0 β1 β0 β1 β0 β1 β0 β1 β0 β1

MSE(10−2) 2.059 0.067 1.901 0.063 1.900 0.062 1.895 0.062 1.970 0.065
Bias(102) −0.217 0.057 −0.032 0.053 −0.041 0.054 −0.044 0.055 −0.113 0.061

Var(β̂)(10−2) 2.059 0.067 1.901 0.063 1.900 0.062 1.895 0.062 1.970 0.065
n× σ̂2 41.400 1.387 43.317 1.424 43.237 1.421 43.235 1.422 41.934 1.392
Asym Var 40.731 1.368 40.731 1.368 40.731 1.368 40.731 1.368 40.731 1.368
Coverage 0.902 0.901 0.921 0.915 0.922 0.914 0.922 0.919 0.910 0.892
ESS – – 1089 1089 5447 5447 9485 9485 3376 3376
1 Quantreg corresponds to the quantile regression estimator using R package
quantreg.

2 σ̂ is average of the estimated variance. For the Bayesian approach, this is the pos-
terior variance. For Quantreg, this is computed based on a Huber’s sandwich esti-
mator.

3 Var(β̂) is the variance of the estimator and is calculated by the sample variance of
the estimators in 1000 Monte Carlo replications.

4 Asym Var is the true asymptotic variance calculated based on the underlying model.
5 Coverage is the empirical coverage for 90% confidence/credible interval.

Table 1: Single quantile regression (τ = 0.5).

issues associated with the Metropolis-Hastings algorithm. In the later simulation studies,
we use the adaptive importance sampling algorithm as the default algorithm for the
proposed score likelihood.

We investigate the finite sample performance of the proposed algorithm for smaller
sample sizes n = 100 and n = 200. As mentioned earlier, the posterior distribution
could be heavy tailed for small sample sizes so we use the interquartile range approach
discussed in Section 3.1 to estimate the posterior variance. Table 2 compares the finite
sample performance of our approach with the frequentist approach and the corrected
ALD likelihood approach. The performance of the estimated variances and the corre-
sponding coverage probabilities are reported. Notice that for small sample sizes, our
score likelihood based approach tends to have coverage probabilities larger than the
nominal level without the finite sample correction while quantreg and the corrected
ALD likelihood tend to have under-coverage. With the finite sample correction, the score
likelihood provides better empirical coverage compared to the ALD likelihood. We pro-
vided further simulation results in the supplementary material(Wu and Narisetty, 2020)
based on heavy tailed t distributions as proposals which also perform well for small sam-
ple sizes (see the results presented in Table A1 in the supplementary material).

4.2 Multiple Quantile Regression

To evaluate the performance of our method for multiple quantile regression, we choose
five quantile levels which are relatively close to each other, τ1 = 0.4, τ2 = 0.45, τ3 =
0.5, τ4 = 0.55 and τ5 = 0.6. This will help us evaluate if the imposed monotonicity
constraint will result in higher efficiency. We use the same model given by (4.1) to
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n = 100 Quantreg Ada-IS ALD
β0 β1 β0 β1 β0 β1

MSE 0.404 0.014 0.384 0.012 0.391 0.013
Bias 0.002 −0.002 −0.005 0.001 0.009 −0.002

V ar(β̂) 0.404 0.013 0.384 0.012 0.391 0.013
n× σ̂2 43.396 1.438 58.070 1.695 43.678 1.512
n× σ̂2

FS – – 43.383 1.437 – –
Asym Var 40.731 1.368 40.731 1.368 40.731 1.368
Coverage (90%) 0.859 0.897 0.944 0.926 0.829 0.840
Coverage-σ̂FS (90%) – – 0.869 0.906 – –

n = 200 Quantreg Ada-IS ALD
β0 β1 β0 β1 β0 β1

MSE 0.196 0.007 0.181 0.006 0.185 0.006
Bias −0.016 0.004 −0.014 0.003 −0.009 0.003

Var(β̂) 0.196 0.007 0.181 0.006 0.184 0.006
n× σ̂2 41.541 1.409 50.317 1.563 43.759 1.533
n× σ̂2

FS – – 41.439 1.403 – –
Asym Var 40.731 1.368 40.731 1.368 40.731 1.368
Coverage 90% 0.863 0.902 0.930 0.916 0.873 0.869
Coverage-σ̂FS (90%) – – 0.873 0.914 – –
1 σ̂2

FS is the average posterior variance computed based on the IQR approach
described in Section 3.1.

2 Coverage-σ̂2
FS (90%) is the empirical coverage probability based on σ̂2

FS .

Table 2: Comparison of finite sample performance.

generate n = 2000 samples and implement our Ada-IS algorithm for multiple quantiles.
We use γ = 0.9 when imputing the off-diagonal blocks for the joint covariance matrix as
a default but a better choice can be made in practice by choosing from a grid of values.
Results from quantreg obtained separately for different quantile levels and Ada-IS
without monotonicity constraints are also presented.

The simulation results for the multiple quantiles are shown in Table 3. For estimat-
ing the conditional median, the average posterior variance based on the joint estimation
is smaller than the one from Table 1, which is based on the single quantile level. Also,
the MSE’s obtained using the default Ada-IS algorithm are smaller than those without
imposing monotonicity constraints. These provide empirical evidence that estimating
multiple quantile levels jointly is better owing to the monotonicity constraints, at least
when the model is correctly specified. On the other hand, the effective sample size is
1745 out of 10000 samples from the final proposal. The effective sample size loss com-
pared with separate estimation is expected due to the increased dimension and the
monotonicity constraints. However, one should not be discouraged, since when estimat-
ing them separately we still need 5 times the computational time. Moreover, by jointly
modeling multiple quantile levels, the joint covariance matrix at different quantile levels
is obtained which is useful for making inference about parameters such as the slope
differences at different quantile levels as demonstrated in Section 4.4.
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Quantreg 0.4 0.45 0.5 0.55 0.6
β0 β1 β0 β1 β0 β1 β0 β1 β0 β1

MSE(10−2) 2.150 0.067 2.076 0.065 2.059 0.067 2.025 0.069 2.113 0.069
Bias(10−2) 0.211 0.036 −0.314 0.069 −0.217 0.057 0.095 0.051 0.359 0.043

Var(β̂)(10−2) 2.149 0.067 2.075 0.065 2.059 0.067 2.025 0.069 2.112 0.069
n× σ̂2 41.530 1.407 41.236 1.389 41.400 1.387 41.848 1.396 42.248 1.415
Asym Var 41.693 1.401 40.965 1.376 40.731 1.368 40.965 1.376 41.693 1.401
Coverage 0.899 0.907 0.891 0.904 0.902 0.901 0.907 0.900 0.901 0.900

Ada-IS 0.4 0.45 0.5 0.55 0.6
β0 β1 β0 β1 β0 β1 β0 β1 β0 β1

MSE(10−2) 2.073 0.065 1.971 0.064 1.894 0.064 1.953 0.067 2.071 0.068
Bias(10−2) −1.540 0.237 −0.797 0.130 0.068 0.043 1.093 −0.069 2.209 −0.190

Var(β̂)(10−2) 2.049 0.064 1.965 0.063 1.894 0.064 1.941 0.067 2.022 0.067
n× σ̂2 43.142 1.422 41.993 1.404 41.841 1.373 42.366 1.391 43.756 1.431
Asym Var 41.693 1.401 40.965 1.376 40.731 1.368 40.965 1.376 41.693 1.401
Coverage 0.910 0.898 0.914 0.908 0.908 0.902 0.904 0.899 0.899 0.903

Ada-IS No Const 0.4 0.45 0.5 0.55 0.6
β0 β1 β0 β1 β0 β1 β0 β1 β0 β1

MSE(10−2) 2.094 0.067 2.025 0.065 1.943 0.065 1.988 0.069 2.077 0.069
Bias(10−2) −0.086 0.023 −0.153 0.032 0.060 0.039 0.510 0.009 0.921 −0.010

Var(β̂)(10−2) 2.094 0.067 2.024 0.065 1.943 0.065 1.985 0.069 2.068 0.069
n× σ̂2 44.243 1.451 43.344 1.440 43.205 1.403 43.837 1.430 44.970 1.462
Asym Var 41.693 1.401 40.965 1.376 40.731 1.368 40.965 1.376 41.693 1.401
Coverage 0.904 0.896 0.912 0.907 0.915 0.897 0.908 0.895 0.904 0.899

Table 3: Multiple quantile regression (τ = 0.4, 0.45, 0.5, 0.55, 0.6).
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C = 10 Powell Ada-IS
β0 β1 β0 β1

MSE 0.099 0.001 0.092 0.001
Bias −0.017 0.002 −0.040 0.004

Var(β̂) 0.098 0.001 0.091 0.001
n× σ̂2 147.474 2.471 208.812 2.935
Asym Var 190.578 2.766 190.578 2.766
Coverage 0.839 0.876 0.919 0.917

C = 15 Powell Ada-IS
β0 β1 β0 β1

MSE 0.329 0.003 0.309 0.003
Bias −0.026 0.003 −0.089 0.007

Var(β̂) 0.329 0.003 0.301 0.003
n× σ̂2 443.224 4.596 685.547 5.944
Asym Var 617.867 5.522 617.867 5.522
Coverage 0.824 0.854 0.920 0.908

Table 4: Censored quantile regression (τ = 0.5).

4.3 Simulation Results for Censored Quantile Regression

We evaluate the performance of the score based likelihood for censored quantile regres-
sion. Consider median regression with a fixed left censoring for the model (4.1). We
consider a sample size of n = 2000 and censoring times at C = 10 and C = 15 corre-
sponding to censoring rates around 15% and 25%. We implement the Ada-IS algorithm
for censored quantile regression and compare the results with the Powell’s estimator im-
plemented using quantreg. The results are summarized in Table 4. We can see that the
proposed likelihood provides good point estimation with a smaller mean squared error
compared with the Powell’s estimator. Also, the coverage probabilities for the Powell’s
estimator are much lower the nominal 90% level, while the coverage probability us-
ing the score based likelihood is much closer to 90%. This suggests that the proposed
method using the score likelihood has a clear advantage over the Powell’s approach for
censored quantile regression.

4.4 Inference for Slope Differences

One advantage of the proposed likelihood is the ability to provide inference for functions
of quantile regression coefficients corresponding to multiple quantile levels such as the
slope difference θ = β1(0.75)− β1(0.25), which is the difference of the slope at the 75%
and 25% levels. Existing methods based on the ALD likelihood do not provide valid
inference on θ directly. Yang et al. (2016) requires two separate models to be fitted
to estimate D1(0.25) and D1(0.75) which may potentially be used to obtain corrected
inference for θ but this does not allow placing a prior distribution directly on θ. Yang
and Tokdar (2017)’s method may be used for inference on θ but it requires modeling
of all the quantile levels globally which is computationally intensive and also does not
guarantee the frequentist validity of the resultant posterior intervals.
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On the other hand, the score based likelihood we propose provides the flexibility to
place prior distributions on θ directly. This allows both the options of placing a bounded
uniform prior if we do not have any prior information or an informative prior. In our
simulation study, along with the uniform prior we consider two informative priors as
follows: θ ∼ N(μ, σ2) where μ = 0, σ2 = 1 and μ = 1, σ2 = 1. Denote the prior density
of θ by π(θ) and uniform priors on the other parameters β1(0.25), β0(0.75), β0(0.25).
Then the likelihood should be modified with a Jacobian transformation.

f(X | θ, β0(0.75), β1(0.25), β0(0.25)) ∝ L(θ + β1(0.25), β0(0.75), β1(0.25), β0(0.25)).

The posterior distribution of the parameters is given by

f(θ, β0(0.75), β1(0.25), β0(0.25) | X) ∝ L(θ+β1(0.25), β0(0.75), β1(0.25), β0(0.25))π(θ).

For computation, we can still use the Ada-IS algorithm but we only need to focus on
the marginal distribution of θ for performing inference on θ.

Table 5 presents the simulation results for our approach using three different prior
choices along with the results for the standard quantile regression using quantreg.
Although practically it is not quite possible to have informative prior such as N(1, 1),
we want to include it in the comparison to see how an informative prior would improve
the performance. From the simulation results, we can see that all the methods provide
reasonably good estimation while the three score based methods have smaller mean
squared error and smaller variance compared with quantreg. We see slightly smaller
mean squared error for the N(1, 1) informative prior but the difference is insignificant
when compared with other prior choices. Our approach provides smaller mean squared
error and larger coverage.

Quantreg Score-Uniform Score-N(0,1) Score-N(1,1)
True θ 0.6745 0.6745 0.6745 0.6745
Estimation 0.6735 0.6733 0.6725 0.6737
Bias(10−2) −0.1000 −0.1180 −0.1957 −0.0804
Variance(10−2) 0.1098 0.0988 0.0985 0.0986
MSE(10−2) 0.1099 0.0989 0.0989 0.0986
Coverage (90%) 0.8880 0.9140 0.9140 0.9160

Table 5: Estimation of θ = β1(0.75)−β1(0.25): The proposed Bayesian score approach is
performed using three different prior distributions on θ: Uniform, N(0, 1), and N(1, 1).

5 Application to Immunoglobulin-G Data

We now apply our methods to an immunoglobulin-G data set analyzed in Yu and
Moyeed (2001). This data set refers to the serum concentration (grams per litre) of
immunoglobulin-G (IgG) in 298 children aged from 6 months to 6 years. Following Yu
and Moyeed (2001), we use IgG concentration as the response variable Y and consider
a quadratic quantile regression model with independent variable x to be the age.

QY (τ | X = x) = β0(τ) + β1(τ)x+ β2(τ)x
2.
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Quantreg Score-Uniform Score-MVN
Estimation Variance Estimation Variance Estimation Variance

τ = 0.25
β0 1.468 0.191 1.566 0.158 1.521 0.147
β1 1.335 0.167 1.334 0.120 1.355 0.110
β2 −0.137 0.005 −0.139 0.004 −0.141 0.004

τ = 0.5
β0 2.801 0.274 3.026 0.304 2.879 0.251
β1 1.159 0.193 0.997 0.223 1.129 0.173
β2 −0.075 0.006 −0.047 0.007 −0.068 0.005

τ = 0.75
β0 4.342 0.222 4.507 0.323 4.004 0.231
β1 0.705 0.167 0.585 0.255 1.007 0.207
β2 0.019 0.005 0.042 0.007 −0.024 0.006

Table 6: Quantile regression inference for the IgG data: The proposed Bayesian score ap-
proach is performed using two different prior distributions on θi: Uniform, Multivariate
Normal(MVN).

We estimate the regression parameters for τ = 0.25, 0.5, 0.75 jointly using bounded

uniform prior and a multivariate normal prior with zero mean and covariance matrix

generated by the squared exponential kernel in expression (2.4), with σ2 = 2 and b = 0.5.

We also compare the results with Quantreg which are summarized in Tables 6 and 7.

The results in Table 6 suggest that while the point estimators based on both the

approaches are quite similar, their variances are different. Our method (Ada-IS) indi-

cates a smaller variance for the quantile level τ = 0.25 but a larger variance for the

other quantile levels compared with quantreg. For the case with multivariate normal

prior, the corresponding parameter for different quantile levels shrink towards similar

values and has smaller variances compared to the uniform prior. The quantile curves

corresponding to the score likelihood approach using the multivariate normal prior and

those from quantreg are plotted in Figure 2 which shows that they are quite similar

to each other.

We also use our proposed score likelihood to test the following hypotheses:

H0 : θi = βi(0.75)− βi(0.25) = 0 vs H1 : θi �= 0,

for i = 1, 2. We try a bounded uniform prior and a N(0, 1) prior for both θ1 and

θ2. The estimated parameters, corresponding standard errors and interval estimation

for the linear and quadratic terms are shown in Table 7. We report the 90% credible

intervals based on the computed posterior distributions for our approach and the 90%

confidence intervals for Quantreg. All the interval estimations for θ1 contain zero while

neither of the intervals for θ2 contain zero, which indicates that there is a significant

difference in the quadratic effect at different quantiles and no significant difference in

the linear effect. This is a simple demonstration that the proposed likelihood can be

used in a natural way to carry out inference for quantities such as the slope differences

in a Bayesian framework while incorporating prior information.
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Quantreg Score-Uniform Score-N(0, 1)
Est SE Cred.Int Est SE Cred.Int Est SE Cred.Int

θ1 −0.630 0.472 (−1.407, 0.147) −0.717 0.524 (−1.580, 0.145) −0.557 0.464 (−1.321, 0.207)
θ2 0.156 0.084 (0.018, 0.294) 0.177 0.090 (0.029, 0.325) 0.150 0.080 (0.018, 0.281)

Table 7: IgG data – Inference for the slope differences θ1 := β1(0.75)−β1(0.25) (for the linear term) and θ2 := β2(0.75)−β2(0.25)
(for the quadratic term). Est denotes the estimated value, SE denotes the standard error of the estimator, Cred.Int denotes
an estimated credible interval.



T. Wu and N. N. Narisetty 899

Figure 2: IgG data – Fitted regression curves using the proposed score likelihood with
multivariate normal prior (dashed red) and Quantreg (solid black) for τ = 0.25, 0.5, 0.75.

6 Conclusion

In this paper, we propose a score based likelihood for quantile regression problems which
particularly targets modeling multiple quantile levels at the same time. We also pro-
pose Ada-IS algorithm for posterior computation which empirically shown to have good
efficiency in terms of effective sample size. The score-based likelihood automatically
and correctly estimates the variance of the regression quantiles and does not require
estimation of the conditional densities as needed by frequentist methods, which is an
extremely challenging task especially when the data are not independent and identically
distributed . While the ALD likelihood also avoids estimation of the conditional den-
sities, the posterior inference provided based on the score likelihood is valid and does
not need further adjustment. The score likelihood can naturally perform inference at
multiple quantile levels and deal with the issue of quantile crossing more naturally com-
pared to frequentist methods, which often resort to adhoc strategies (He, 1997; Liu and
Wu, 2009; Zou et al., 2008; Bondell et al., 2010). Performing valid Bayesian inference
for functions of regression quantiles at multiple quantile levels such as β(τ1)− β(τ2) is
possible based on the proposed score likelihood but it is not clear how the ALD based
inference can be corrected in such situations. For the censored quantile regression case
discussed in Section 2.5, the objective function is highly non-convex. The proposed like-
lihood provides a more efficient computational technique based on importance sampling
to avoid direct optimization of the highly nonconvex objective function that is prone to
be stuck in local solutions (Womersley, 1986; Chernozhukov and Hong, 2003).

For the score based likelihood, the contribution of each observation to the likelihood
is not multiplicative which is the case for the ALD likelihood. However, the multiplica-
tive property of the likelihood is not necessary for valid inference and commonly used
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likelihoods such as empirical likelihood (Owen, 1988, 2001) are also not multiplicative.
Yang et al. (2016) developed a Bayesian quantile regression approach based on empirical
likelihood and showed valid posterior properties.

One potential limitation of the proposed score likelihood is that it is not as straight-
forward to evaluate it in an online manner as stream of data come in as compared to
evaluating the ALD likelihood. However, it is still possible to devise computationally
efficient strategies that keep track of the score function and the weight matrix from the
previous batch to reduce the computational time needed for evaluation of the score like-
lihood in an online manner. Development of such computationally efficient algorithms
that can be used to generalize the proposed importance sampling algorithms to online
settings is an interesting direction for a future study.

It would be another interesting future research direction to investigate if the pro-
posed techniques can be generalized to high dimensional settings so that problems such
as Bayesian variable selection for quantile regression can be addressed using the score
likelihood.

Supplementary Material

Supplementary Material for “Bayesian multiple quantile regression for linear models
using a score likelihood” (DOI: 10.1214/20-BA1217SUPP; .pdf). The online supplement
contains the technical proofs for Theorems 1 and 2, and additional simulation results.
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