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Multiple testing of a single hypothesis and testing multiple hypotheses
are usually done in terms of p-values. In this paper, we replace p-values with
their natural competitor, e-values, which are closely related to betting, Bayes
factors and likelihood ratios. We demonstrate that e-values are often mathe-
matically more tractable; in particular, in multiple testing of a single hypoth-
esis, e-values can be merged simply by averaging them. This allows us to
develop efficient procedures using e-values for testing multiple hypotheses.

1. Introduction. The problem of multiple testing of a single hypothesis (also known as
testing a global null) is usually formalized as that of combining a set of p-values. The notion
of p-values, however, has a strong competitor, which we refer to as e-values in this paper.
E-values can be traced back to various old ideas, but they have started being widely discussed
in their pure form only recently: see, for example, Shafer (2019), who uses the term “betting
score” in the sense very similar to our “e-value”, Shafer and Vovk (2019, Section 11.5), who
use “Skeptic’s capital”, and Grünwald, de Heide and Koolen (2020). The power and intuitive
appeal of e-values stem from their interpretation as results of bets against the null hypothesis
(Shafer (2019, Section 1)).

Formally, an e-variable is a nonnegative extended random variable whose expected value
under the null hypothesis is at most 1, and an e-value is a value taken by an e-variable.
Whereas p-values are defined in terms of probabilities, e-values are defined in terms of ex-
pectations. As we regard an e-variable E as a bet against the null hypothesis, its realized
value e := E(ω) shows how successful our bet is (it is successful if it multiplies the money it
risks by a large factor). Under the null hypothesis, it can be larger than a constant c > 1 with
probability at most 1/c (by Markov’s inequality). If we are very successful (i.e., e is very
large), we have reasons to doubt that the null hypothesis is true, and e can be interpreted as
the amount of evidence we have found against it. In textbook statistics, e-variables typically
appear under the guise of likelihood ratios and Bayes factors.

The main focus of this paper is on combining e-values and multiple hypothesis testing
using e-values. The picture that arises for these two fields is remarkably different from, and
much simpler than, its counterpart for p-values. To clarify connections between e-values and
p-values, we discuss how to transform p-values into e-values, or calibrate them, and how to
move in the opposite direction.

We start the main part of the paper by defining the notion of e-values in Section 2 and
reviewing known results about connections between e-values and p-values; we will discuss
how the former can be turned into the latter and vice versa (with very different domination
structures for the two directions). In Section 3, we show that the problem of merging e-
values is more or less trivial: a convex mixture of e-values is an e-value, and symmetric
merging functions are essentially dominated by the arithmetic mean. For example, when
several analyses are conducted on a common (e.g., public) dataset each reporting an e-value,
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it is natural to summarize them as a single e-value equal to their weighted average (the same
cannot be said for p-values). In Section 4 we assume, additionally, that the e-variables being
merged are independent and show that the domination structure is much richer; for example,
now the product of e-values is an e-value. The assumption of independence can be replaced by
the weaker assumption of being sequential, and we discuss connections with the popular topic
of using martingales in statistical hypothesis testing: see, for example, Duan et al. (2019) and
Shafer and Vovk (2019). In Section 5, we apply these results to multiple hypothesis testing.
In the next section, Section 6, we briefly review known results on merging p-values (e.g.,
the two classes of merging methods in Rüger (1978) and Vovk and Wang (2020)) and draw
parallels with merging e-values; in the last subsection we discuss the case where p-values
are independent. Section 7 is devoted to experimental results; one finding in this section is
that, for multiple testing of a single hypothesis in independent experiments, a simple method
based on e-values outperforms standard methods based on p-values. Section 8 concludes.
The Supplementary Material to this paper (Vovk and Wang (2021)) consists of a series of
appendices.

2. Definition of e-values and connections with p-values. For a probability space
(�,A,Q), an e-variable is an extended random variable E : � → [0,∞] satisfying E

Q[E] ≤
1; we refer to it as “extended” since its values are allowed to be ∞, and we let EQ[X] (or
E[X] when Q is clear from context) stand for

∫
X dQ for any extended random variable X.

The values taken by e-variables will be referred to as e-values, and we denote the set of e-
variables by EQ. It is important to allow E to take value ∞; in the context of testing Q,
observing E = ∞ for an a priori chosen e-variable E means that we are entitled to reject Q

as null hypothesis.
Until Section 5, we will concentrate on the case of a simple null hypothesis Q. A composite

null hypothesis Q is a set of probability measures on (�,A) and an e-variable for Q is defined
as an extended nonnegative random variable that integrates to at most 1 under any probability
measure in Q. The main results that we state for simple null hypotheses remain true for
composite null hypotheses; see Appendix D.

Our emphasis in this paper is on e-values, but we start from discussing their connections
with the familiar notion of p-values. A p-variable is a random variable P : � → [0,1] satis-
fying

∀ε ∈ (0,1) : Q(P ≤ ε) ≤ ε.

The set of all p-variables is denoted by PQ.
A calibrator is a function transforming p-values to e-values. Formally, a decreasing func-

tion f : [0,1] → [0,∞] is a calibrator (or, more fully, p-to-e calibrator) if, for any prob-
ability space (�,A,Q) and any p-variable P ∈ PQ, f (P ) ∈ EQ. A calibrator f is said to
dominate a calibrator g if f ≥ g, and the domination is strict if f �= g. A calibrator is admis-
sible if it is not strictly dominated by any other calibrator.

The following proposition says that a calibrator is a nonnegative decreasing function inte-
grating to at most 1 over the uniform probability measure.

PROPOSITION 2.1. A decreasing function f : [0,1] → [0,∞] is a calibrator if and
only if

∫ 1
0 f ≤ 1. It is admissible if and only if f is upper semicontinuous, f (0) = ∞, and∫ 1

0 f = 1.

Of course, in the context of this proposition, being upper semicontinuous is equivalent to
being left-continuous.
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PROOF. Proofs of similar statements are given in, for example, Vovk (1993), Theorem 7,
Shafer et al. (2011), Theorem 3 and Shafer and Vovk (2019), Proposition 11.7, but we will
give an independent short proof using our definitions. The first “only if” statement is obvious.
To show the first “if” statement, suppose that

∫ 1
0 f ≤ 1, P is a p-variable, and P ′ is uniformly

distributed on [0,1]. Since Q(P < x) ≤ Q(P ′ < x) for all x ≥ 0 and f is decreasing, we
have

Q
(
f (P ) > y

) ≤ Q
(
f

(
P ′) > y

)
for all y ≥ 0, which implies

E
[
f (P )

] ≤ E
[
f

(
P ′)] =

∫ 1

0
f (p)dp ≤ 1.

The second statement in Proposition 2.1 is obvious. �

The following is a simple family of calibrators. Since
∫ 1

0 κpκ−1 dp = 1, the functions

(1) fκ(p) := κpκ−1

are calibrators, where κ ∈ (0,1). To solve the problem of choosing the parameter κ , some-
times the maximum

VS(p) := max
κ∈[0,1]fκ(p) =

{− exp(−1)/(p lnp) if p ≤ exp(−1),

1 otherwise

is used (see, e.g., Benjamin and Berger (2019), Recommendations 2 and 3); we will refer to
it as the VS bound (abbreviating “Vovk–Sellke bound”, as used in, e.g., the JASP package). It
is important to remember that VS(p) is not a valid e-value, but just an overoptimistic upper
bound on what is achievable with the class (1). Another way to get rid of κ is to integrate
over it, which gives

(2) F(p) :=
∫ 1

0
κpκ−1 dκ = 1 − p + p lnp

p(− lnp)2 .

(See Appendix B in the Supplementary Material for more general results and references.
We are grateful to Aaditya Ramdas for pointing out the calibrator (2).) An advantage of this
method is that it produces a bona fide e-value, unlike the VS bound. As p → 0, F(p) ∼
p−1(− lnp)−2, so that F(p) is closer to the ideal (but unachievable) 1/p (cf. Remark 2.3
below) than any of (1).

In the opposite direction, an e-to-p calibrator is a function transforming e-values to p-
values. Formally, a decreasing function f : [0,∞] → [0,1] is an e-to-p calibrator if, for
any probability space (�,A,Q) and any e-variable E ∈ EQ, f (E) ∈ PQ. The following
proposition, which is the analogue of Proposition 2.1 for e-to-p calibrators, says that there is,
essentially, only one e-to-p calibrator, f (t) := min(1,1/t).

PROPOSITION 2.2. The function f : [0,∞] → [0,1] defined by f (t) := min(1,1/t) is
an e-to-p calibrator. It dominates every other e-to-p calibrator. In particular, it is the only
admissible e-to-p calibrator.

PROOF. The fact that f (t) := min(1,1/t) is an e-to-p calibrator follows from Markov’s
inequality: if E ∈ EQ and ε ∈ (0,1),

Q
(
f (E) ≤ ε

) = Q(E ≥ 1/ε) ≤ E
Q[E]
1/ε

≤ ε.

On the other hand, suppose that f is another e-to-p calibrator. It suffices to check that f

is dominated by min(1,1/t). Suppose f (t) < min(1,1/t) for some t ∈ [0,∞]. Consider two
cases:
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• If f (t) < min(1,1/t) = 1/t for some t > 1, fix such t and consider an e-variable E that
is t with probability 1/t and 0 otherwise. Then f (E) is f (t) < 1/t with probability 1/t ,
whereas it would have satisfied P(f (E) ≤ f (t)) ≤ f (t) < 1/t had it been a p-variable.

• If f (t) < min(1,1/t) = 1 for some t ∈ [0,1], fix such t and consider an e-variable E that
is 1 a.s. Then f (E) is f (t) < 1 a.s., and so it is not a p-variable. �

Proposition 2.1 implies that the domination structure of calibrators is very rich, whereas
Proposition 2.2 implies that the domination structure of e-to-p calibrators is trivial.

REMARK 2.3. A possible interpretation of this section’s results is that e-variables and
p-variables are connected via a rough relation 1/e ∼ p. In one direction, the statement is
precise: the reciprocal (truncated to 1 if needed) of an e-variable is a p-variable by Proposi-
tion 2.2. On the other hand, using a calibrator (1) with a small κ > 0 and ignoring positive
constant factors (as customary in the algorithmic theory of randomness, discussed in Sec-
tion A.2), we can see that the reciprocal of a p-variable is approximately an e-variable. In
fact, f (p) ≤ 1/p for all p when f is a calibrator; this follows from Proposition 2.1. How-
ever, f (p) = 1/p is only possible in the extreme case f = 1[0,p]/p.

3. Merging e-values. An important advantage of e-values over p-values is that they are
easy to combine. This is the topic of this section, in which we consider the general case, with-
out any assumptions on the joint distribution of the input e-variables. The case of independent
e-variables is considered in the next section.

Let K ≥ 2 be a positive integer (fixed throughout the paper apart from Section 7). An e-
merging function of K e-values is an increasing Borel function F : [0,∞]K → [0,∞] such
that, for any probability space (�,A,Q) and random variables E1, . . . ,EK on it,

(3) E1, . . . ,EK ∈ EQ =⇒ F(E1, . . . ,EK) ∈ EQ

(in other words, F transforms e-values into an e-value). In this paper we will also refer to
increasing Borel functions F : [0,∞)K → [0,∞) satisfying (3) for all probability spaces and
all e-variables E1, . . . ,EK taking values in [0,∞) as e-merging functions; such functions are
canonically extended to e-merging functions F : [0,∞]K → [0,∞] by setting them to ∞ on
[0,∞]K \ [0,∞)K (see Proposition C.1 in the Supplementary Material).

An e-merging function F dominates an e-merging function G if F ≥ G (i.e., F(e) ≥ G(e)
for all e ∈ [0,∞)K ). The domination is strict (and we say that F strictly dominates G) if F ≥
G and F(e) > G(e) for some e ∈ [0,∞)K . We say that an e-merging function F is admissible
if it is not strictly dominated by any e-merging function; in other words, admissibility means
being maximal in the partial order of domination.

A fundamental fact about admissibility is proved in Appendix E (Proposition E.5): any
e-merging function is dominated by an admissible e-merging function.

Merging e-values via averaging. In this paper, we are mostly interested in symmetric
merging functions (i.e., those invariant w.r. to permutations of their arguments). The main
message of this section is that the most useful (and the only useful, in a natural sense) sym-
metric e-merging function is the arithmetic mean

(4) MK(e1, . . . , eK) := e1 + · · · + eK

K
, e1, . . . , eK ∈ [0,∞).

In Theorem 3.2 below we will see that MK is admissible (this is also a consequence of Propo-
sition 4.1). But first we state formally the vague claim that MK is the only useful symmetric
e-merging function.
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An e-merging function F essentially dominates an e-merging function G if, for all e ∈
[0,∞)K ,

G(e) > 1 =⇒ F(e) ≥ G(e).

This weakens the notion of domination in a natural way: now we require that F is not worse
than G only in cases where G is not useless; we are not trying to compare degrees of use-
lessness. The following proposition can be interpreted as saying that MK is at least as good
as any other symmetric e-merging function.

PROPOSITION 3.1. The arithmetic mean MK essentially dominates any symmetric e-
merging function.

In particular, if F is an e-merging function that is symmetric and positively homogeneous
(i.e., F(λe) = λF(e) for all λ > 0), then F is dominated by MK . This includes the e-merging
functions discussed later in Section 6.

PROOF OF PROPOSITION 3.1. Let F be a symmetric e-merging function. Suppose for
the purpose of contradiction that there exists (e1, . . . , eK) ∈ [0,∞)K such that

(5) b := F(e1, . . . , eK) > max
(

e1 + · · · + eK

K
,1

)
=: a.

Let �K be the set of all permutations of {1, . . . ,K}, π be randomly and uniformly
drawn from �K , and (D1, . . . ,DK) := (eπ(1), . . . , eπ(K)). Further, let (D′

1, . . . ,D
′
K) :=

(D1, . . . ,DK)1A, where A is an event independent of π and satisfying P(A) = 1/a (the
existence of such random π and A is guaranteed for any atomless probability space by
Lemma D.1 in the Supplementary Material).

For each k, since Dk takes the values e1, . . . , eK with equal probability, we have E[Dk] =
(e1 +· · ·+ eK)/K , which implies E[D′

k] = (e1 +· · ·+ eK)/(Ka) ≤ 1. Together with the fact
that D′

k is nonnegative, we know D′
k ∈ EQ. Moreover, by symmetry,

E
[
F

(
D′

1, . . . ,D
′
K

)] = Q(A)F(e1, . . . , eK) + (
1 − Q(A)

)
F(0, . . . ,0) ≥ b/a > 1,

a contradiction. Therefore, we conclude that there is no (e1, . . . , eK) such that (5) holds. �

It is clear that the arithmetic mean MK does not dominate every symmetric e-merging
function; for example, the convex mixtures

(6) λ + (1 − λ)MK, λ ∈ [0,1],
of the trivial e-merging function 1 and MK are pairwise noncomparable (with respect to
the relation of domination). In the theorem below, we show that each of these mixtures is
admissible and that the class (6) is, in the terminology of statistical decision theory (Wald
(1950), Section 1.3), a complete class of symmetric e-merging functions: every symmetric
e-merging function is dominated by one of (6). In other words, (6) is the minimal complete
class of symmetric e-merging functions.

THEOREM 3.2. Suppose that F is a symmetric e-merging function. Then F is dominated
by the function λ + (1 − λ)MK for some λ ∈ [0,1]. In particular, F is admissible if and only
if F = λ + (1 − λ)MK , where λ = F(0) ∈ [0,1].

The proof of Theorem 3.2 is put in Appendix E as it requires several other technical results
in the Supplementary Material. Finally, we note that, for λ �= 1, the functions in the class (6)
carry the same statistical information.
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4. Merging independent e-values. In this section, we consider merging functions for
independent e-values. An ie-merging function of K e-values is an increasing Borel function
F : [0,∞)K → [0,∞) such that F(E1, . . . ,EK) ∈ EQ for all independent E1, . . . ,EK ∈ EQ

in any probability space (�,A,Q). As for e-merging functions, this definition is essentially
equivalent to the definition involving [0,∞] rather than [0,∞) (by Proposition C.1 in the
Supplementary Material, which is still applicable in the context of merging independent e-
values). The definitions of domination, strict domination and admissibility are obtained from
the definitions of the previous section by replacing “e-merging” with “ie-merging”.

Let iEK
Q ⊆ EK

Q be the set of (component-wise) independent random vectors in EK
Q , and

1 := (1, . . . ,1) be the all-1 vector in R
K . The following proposition has already been used in

Section 3 (in particular, it implies that the arithmetic mean MK is an admissible e-merging
function).

PROPOSITION 4.1. For an increasing Borel function F : [0,∞)K → [0,∞), if
E[F(E)] = 1 for all E ∈ EK

Q with E[E] = 1 (resp., for all E ∈ iEK
Q with E[E] = 1), then

F is an admissible e-merging function (resp., an admissible ie-merging function).

PROOF. It is obvious that F is an e-merging function (resp., ie-merging function). Next,
we show that F is admissible. Suppose for the purpose of contradiction that there exists
an ie-merging function G such that G ≥ F and G(e1, . . . , eK) > F(e1, . . . , eK) for some
(e1, . . . , eK) ∈ [0,∞)K . Take (E1, . . . ,EK) ∈ iEK

Q with E[(E1, . . . ,EK)] = 1 such that
Q((E1, . . . ,EK) = (e1, . . . , eK)) > 0. Such a random vector is easy to construct by con-
sidering any distribution with a positive mass on each of e1, . . . , eK . Then we have

Q
(
G(E1, . . . ,EK) > F(E1, . . . ,EK)

)
> 0,

which implies

E
[
G(E1, . . . ,EK)

]
> E

[
G(E1, . . . ,EK)

] = 1,

contradicting the assumption that G is an ie-merging function. Therefore, no ie-merging func-
tion strictly dominates F . Noting that an e-merging function is also an ie-merging function,
admissibility of F is guaranteed under both settings. �

If E1, . . . ,EK are independent e-variables, their product E1 . . .EK will also be an e-
variable. This is the analogue of Fisher’s (1932) method for p-values (according to the rough
relation e ∼ 1/p mentioned in Remark 2.3; Fisher’s method is discussed at the end of Sec-
tion 6). The ie-merging function

(7) (e1, . . . , eK) → e1 . . . eK

is admissible by Proposition 4.1. It will be referred to as the product (or multiplication) ie-
merging function. The betting interpretation of (7) is obvious: it is the result of K successive
bets using the e-variables E1, . . . ,EK (starting with initial capital 1 and betting the full cur-
rent capital E1 . . .Ek−1 on each Ek).

More generally, we can see that the U-statistics

(8) Un(e1, . . . , eK) := 1(K
n

) ∑
{k1,...,kn}⊆{1,...,K}

ek1 . . . ekn, n ∈ {0,1, . . . ,K},

and their convex mixtures are ie-merging functions. Notice that this class includes product
(for n = K), arithmetic average MK (for n = 1), and constant 1 (for n = 0). Proposition 4.1
implies that the U-statistics (8) and their convex mixtures are admissible ie-merging func-
tions.
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The betting interpretation of a U-statistic (8) or a convex mixture of U-statistics is im-
plied by the betting interpretation of each component ek1 . . . ekn . Assuming that k1, . . . , kn

are sorted in the increasing order, ek1 . . . ekn is the result of n successive bets using the e-
variables Ek1, . . . ,Ekn ; and a convex mixture of bets corresponds to investing the appropriate
fractions of the initial capital into those bets.

Let us now establish a very weak counterpart of Proposition 3.1 for independent e-values
(on the positive side it will not require the assumption of symmetry). An ie-merging function
F weakly dominates an ie-merging function G if, for all e1, . . . , eK ,

(e1, . . . , eK) ∈ [1,∞)K =⇒ F(e1, . . . , eK) ≥ G(e1, . . . , eK).

In other words, we require that F is not worse than G if all input e-values are useful (and
this requirement is weak because, especially for a large K , we are also interested in the case
where some of the input e-values are useless).

PROPOSITION 4.2. The product (e1, . . . , eK) → e1 . . . eK weakly dominates any ie-
merging function.

PROOF. Indeed, suppose that there exists (e1, . . . , eK) ∈ [1,∞)K such that

F(e1, . . . , eK) > e1 . . . eK.

Let E1, . . . ,EK be independent random variables such that each Ek for k ∈ {1, . . . ,K} takes
values in the two-element set {0, ek} and Ek = ek with probability 1/ek . Then each Ek is an
e-variable but

E
[
F(E1, . . . ,EK)

] ≥ F(e1, . . . , eK)Q(E1 = e1, . . . ,EK = eK)

> e1 . . . eK(1/e1) . . . (1/eK) = 1,

which contradicts F being an ie-merging function. �

REMARK 4.3. A natural question is whether the convex mixtures of (8) form a complete
class. They do not: Proposition 4.1 implies that

f (e1, e2) := 1

2

(
e1

1 + e1
+ e2

1 + e2

)
(1 + e1e2)

is an admissible ie-merging function, and it is easy to check that it is different from any
convex mixture of (8).

Testing with martingales. The assumption of the independence of e-variables E1, . . . ,EK

is not necessary for the product E1 . . .EK to be an e-variable. Below, we say that the
e-variables E1, . . . ,EK are sequential if E[Ek | E1, . . . ,Ek−1] ≤ 1 almost surely for all
k ∈ {1, . . . ,K}. Equivalently, the sequence of the partial products (E1 . . .Ek)k=0,1,...,K is a
supermartingale in the filtration generated by E1, . . . ,EK (or a test supermartingale, in the
terminology of Grünwald, de Heide and Koolen (2020), Howard et al. (2020), Shafer et al.
(2011), meaning a nonnegative supermartingale with initial value 1). A possible interpretation
of this test supermartingale is that the e-values e1, e2, . . . are obtained by laboratories 1,2, . . .

in this order, and laboratory k makes sure that its result ek is a valid e-value given the previous
results e1, . . . , ek−1. The test supermartingale is a test martingale if E[Ek | E1, . . . ,Ek−1] = 1
almost surely for all k (intuitively, it is not wasteful).

It is straightforward to check that all convex mixtures of (8) (including the product func-
tion) produce a valid e-value from sequential e-values. On the other hand, independent e-
variables are sequential, and hence merging functions for sequential e-values form a subset
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of ie-merging functions. In this class of merging functions, the convex mixtures of (8) are
admissible, as they are admissible in the larger class of ie-merging functions (by Proposi-
tion 4.1). For the same reason (and by Proposition 4.2), the product function in (7) weakly
dominates every other merging function for sequential e-variables. This gives a (weak) the-
oretical justification for us to use the product function as a canonical merging method in
Sections 5 and 7 for e-values as long as they are sequential. Finally, we note that it suffices
for E1, . . . ,EK to be sequential in any order for these merging methods (such as Algorithm 2
in Section 5) to be valid.

5. Application to testing multiple hypotheses. As in Vovk and Wang (2020), we will
apply results for multiple testing of a single hypothesis (combining e-values in the context of
Sections 3 and 4) to testing multiple hypotheses. As we explain in Appendix A (Section A.3),
our algorithms just spell out the application of the closure principle (Goeman and Solari
(2011), Marcus, Peritz and Gabriel (1976)), but our exposition in this section will be self-
contained.

Let (�,A) be our sample space (formally, a measurable space) and P(�) be the family
of all probability measures on it. Remember that E is an e-variable w.r. to a composite null
hypothesis H ⊆ P(�) if EQ[Ek] ≤ 1 for any Q ∈ Hk .

In multiple hypothesis testing, we are given a set of composite null hypotheses Hk ,
k = 1, . . . ,K . Suppose that, for each k, we are also given an e-variable Ek w.r. to Hk . Our
multiple testing procedure is presented as Algorithm 1. The procedure adjusts the e-values
e1, . . . , eK , perhaps obtained in K experiments (not necessarily independent), to new e-values
e∗

1, . . . , e
∗
K ; the adjustment is downward in that e∗

k ≤ ek for all k. Applying the procedure to
the e-values e1, . . . , eK produced by the e-variables E1, . . . ,EK , we obtain extended random
variables E∗

1 , . . . ,E∗
K taking values e∗

1, . . . , e
∗
K . The output E∗

1 , . . . ,E∗
K of Algorithm 1 satis-

fies a property of validity which we will refer to as family-wise validity (FWV); in Section A.3
we will explain its analogy with the standard family-wise error rate (FWER).

A conditional e-variable is a family of extended nonnegative random variables EQ, Q ∈
P(�), that satisfies

∀Q ∈P(�) : E
Q[EQ] ≤ 1

(i.e., each EQ is in EQ). We regard it as a system of bets against each potential data-generating
distribution Q.

Algorithm 1 Adjusting e-values for multiple hypothesis testing
Require: A sequence of e-values e1, . . . , eK .

1: Find a permutation π : {1, . . . ,K} → {1, . . . ,K} such that eπ(1) ≤ · · · ≤ eπ(K).
2: Set e(k) := eπ(k), k ∈ {1, . . . ,K} (these are the order statistics).
3: S0 := 0
4: for i = 1, . . . ,K do
5: Si := Si−1 + e(i)

6: for k = 1, . . . ,K do
7: e∗

π(k) := eπ(k)

8: for i = 1, . . . , k − 1 do
9: e := eπ(k)+Si

i+1
10: if e < e∗

π(k) then
11: e∗

π(k) := e
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Algorithm 2 Adjusting sequential e-values for multiple hypothesis testing
Require: A sequence of e-values e1, . . . , eK .

1: Let a be the product of all ek < 1, k = 1, . . . ,K (and a := 1 if there are no such k).
2: for k = 1, . . . ,K do
3: e∗

k := aek

Extended random variables E∗
1 , . . . ,E∗

K taking values in [0,∞] are family-wise valid
(FWV) for testing H1, . . . ,HK if there exists a conditional e-variable (EQ)Q∈P(�) such that

(9) ∀k ∈ {1, . . . ,K} ∀Q ∈ Hk : EQ ≥ E∗
k

(where EQ ≥ E∗
k means, as usual, that EQ(ω) ≥ E∗

k (ω) for all ω ∈ �). We can say that such
(EQ)Q∈P(�) witnesses the FWV property of E∗

1 , . . . ,E∗
K .

The interpretation of family-wise validity is based on our interpretation of e-values. Sup-
pose we observe an outcome ω ∈ �. If EQ(ω) is very large, we may reject Q as the data-
generating distribution. Therefore, if E∗

k (ω) is very large, we may reject the whole of Hk

(i.e., each Q ∈ Hk). In betting terms, we have made at least $E∗
k (ω) risking at most $1 when

gambling against any Q ∈ Hk .
Notice that we can rewrite (9) as

∀Q ∈ P(�) : E
Q

[
max

k:Q∈Hk

E∗
k

]
≤ 1.

In other words, we require joint validity of the e-variables E∗
k .

We first state the validity of Algorithm 1 (as well as Algorithm 2), and our justification
follows.

THEOREM 5.1. Algorithms 1 and 2 are family-wise valid.

Let us check that the output E∗
1 , . . . ,E∗

K of Algorithm 1 is FWV. For I ⊆ {1, . . . ,K}, the
composite hypothesis HI is defined by

(10) HI :=
(⋂

k∈I

Hk

)
∩

( ⋂
k∈{1,...,K}\I

H c
k

)
,

where H c
k is the complement of Hk . The conditional e-variable witnessing that E∗

1 , . . . ,E∗
K

are FWV is the arithmetic mean

(11) EQ := 1

|IQ|
∑
k∈IQ

Ek,

where IQ := {k | Q ∈ Hk} and EQ is defined arbitrarily (say, as 1) when IQ = ∅. The optimal
adjusted e-variables E′

k can be defined as

(12) E′
k := min

Q∈Hk

EQ ≥ min
I⊆{1,...,K}:k∈I

1

|I |
∑
i∈I

Ei,

but for computational efficiency we use the conservative definition

(13) E∗
k := min

I⊆{1,...,K}:k∈I

1

|I |
∑
i∈I

Ei.
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REMARK 5.2. The inequality “≥” in (12) holds as the equality “=” if all the inter-
sections (10) are nonempty. If some of these intersections are empty, we can have a strict
inequality. Algorithm 1 implements the definition (13). Therefore, it is valid regardless of
whether some of the intersections (10) are empty; however, if they are, it may be possible
to improve the adjusted e-values. According to Holm’s (1979) terminology, we allow “free
combinations”. Shaffer (1986) pioneered methods that take account of the logical relations
between the base hypotheses Hk .

To obtain Algorithm 1, we rewrite the definitions (13) as

E∗
π(k) = min

i∈{0,...,k−1}
Eπ(k) + E(1) + · · · + E(i)

i + 1

= min
i∈{1,...,k−1}

Eπ(k) + E(1) + · · · + E(i)

i + 1

for k ∈ {1, . . . ,K}, where π is the ordering permutation and E(j) = Eπ(j) is the j th order
statistic among E1, . . . ,EK , as in Algorithm 1. In lines 3–5 of Algorithm 1, we precompute
the sums

Si := e(1) + · · · + e(i), i = 1, . . . ,K,

in lines 8–9 we compute

ek,i := eπ(k) + e(1) + · · · + e(i)

i + 1

for i = 1, . . . , k − 1, and as result of executing lines 6–11 we will have

e∗
π(k) = min

i∈{1,...,k−1} ek,i = min
i∈{1,...,k−1}

eπ(k) + e(1) + · · · + e(i)

i + 1
,

which shows that Algorithm 1 is an implementation of (13).
The computational complexity of Algorithm 1 is O(K2).
In the case of sequential e-variables, we have Algorithm 2. This algorithm assumes that,

under any Q ∈ P(�), the base e-variables Ek , k ∈ IQ, are sequential (remember that IQ is
defined by (11) and that independence implies being sequential). The conditional e-variable
witnessing that the output of Algorithm 2 is FWV is the one given by the product ie-merging
function,

EQ := ∏
k∈IQ

Ek,

where the adjusted e-variables are defined by

(14) E∗
k := min

I⊆{1,...,K}:k∈I

∏
i∈I

Ei.

A remark similar to Remark 5.2 can also be made about Algorithm 2. The computational
complexity of Algorithm 2 is O(K) (unusually, the algorithm does not require sorting the
base e-values).

6. Merging p-values and comparisons. Merging p-values is a much more difficult topic
than merging e-values, but it is very well explored. First, we review merging p-values without
any assumptions, and then we move on to merging independent p-values.

A p-merging function of K p-values is an increasing Borel function F : [0,1]K → [0,1]
such that F(P1, . . . ,PK) ∈PQ whenever P1, . . . ,PK ∈ PQ.
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For merging p-values without the assumption of independence, we will concentrate on
two natural families of p-merging functions. The older family is the one introduced by Rüger
(1978), and the newer one was introduced in our paper Vovk and Wang (2020). Rüger’s
family is parameterized by k ∈ {1, . . . ,K}, and its kth element is the function (shown by
Rüger (1978) to be a p-merging function)

(15) (p1, . . . , pK) → K

k
p(k) ∧ 1,

where p(k) := pπ(k) and π is a permutation of {1, . . . ,K} ordering the p-values in the as-
cending order: pπ(1) ≤ · · · ≤ pπ(K). The other family (Vovk and Wang (2020)), which we
will refer to as the M-family, is parameterized by r ∈ [−∞,∞], and its element with index
r has the form ar,KMr,K ∧ 1, where

(16) Mr,K(p1, . . . , pK) :=
(

pr
1 + · · · + pr

K

K

)1/r

and ar,K ≥ 1 is a suitable constant. We also define Mr,K for r ∈ {0,∞,−∞} as the limiting
cases of (16), which correspond to the geometric average, the maximum, and the minimum,
respectively.

The initial and final elements of both families coincide: the initial element is the Bonferroni
p-merging function

(17) (p1, . . . , pK) → K min(p1, . . . , pK) ∧ 1,

and the final element is the maximum p-merging function

(p1, . . . , pK) → max(p1, . . . , pK).

Similarly to the case of e-merging functions, we say that a p-merging function F dominates
a p-merging function G if F ≤ G. The domination is strict if, in addition, F(p) < G(p) for
at least one p ∈ [0,1]K . We say that a p-merging function F is admissible if it is not strictly
dominated by any p-merging function G.

The domination structure of p-merging functions is much richer than that of e-merging
functions. The maximum p-merging function is clearly inadmissible (e.g., (p1, . . . , pK) →
max(p1, . . . , pK) is strictly dominated by (p1, . . . , pK) → p1) while the Bonferroni p-
merging function (17) is admissible, as the following proposition (proved in Appendix H
in the Supplementary Material) shows.

PROPOSITION 6.1. The Bonferroni p-merging function is admissible.

The general domination structure of p-merging functions appears to be very complicated,
and is the subject of future planned work.

Connections to e-merging functions. The domination structure of the class of e-merging
functions is very simple, according to Theorem 3.2. It makes it very easy to understand what
the e-merging analogues of Rüger’s family and the M-family are; when stating the analogues
we will use the rough relation 1/e ∼ p between e-values and p-values (see Remark 2.3). Let
us say that an e-merging function F is precise if cF is not an e-merging function for any
c > 1.

For a sequence e1, . . . , eK , let e[k] := eπ(k) be the order statistics numbered from the largest
to the smallest; here π is a permutation of {1, . . . ,K} ordering ek in the descending order:
eπ(1) ≥ · · · ≥ eπ(K). Let us check that the Rüger-type function (e1, . . . , eK) → (k/K)e[k] is a
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precise e-merging function. It is an e-merging function since it is dominated by the arithmetic
mean: indeed, the condition of domination

(18)
k

K
e[k] ≤ e1 + · · · + eK

K
,

can be rewritten as

ke[k] ≤ e1 + · · · + eK

and so is obvious. As sometimes we have a strict inequality, the e-merging function is inad-
missible (remember that we assume K ≥ 2). The e-merging function is precise because (18)
holds as equality when the k largest ei , i ∈ {1, . . . ,K}, are all equal and greater than 1 and all
the other ei are 0.

In the case of the M-family, let us check that the function

(19) F := (
K1/r−1 ∧ 1

)
Mr,K

is a precise e-merging function, for any r ∈ [−∞,∞]. For r ≤ 1, Mr,K is increasing in r

(Hardy, Littlewood and Pólya (1952), Theorem 16), and so F = Mr,K is dominated by the
arithmetic mean MK ; therefore, it is an e-merging function. For r > 1, we can rewrite the
function F = K1/r−1Mr,K as

F(e1, . . . , eK) = K1/r−1Mr,K(e1, . . . , eK) = K−1(
er

1 + · · · + er
K

)1/r
,

and we know that the last expression is a decreasing function of r (Hardy, Littlewood and
Pólya (1952), Theorem 19); therefore, F is also dominated by MK and so is a merging
function. The e-merging function F is precise (for any r) since

r ≤ 1 =⇒ F(e, . . . , e) = MK(e, . . . , e) = e,

r > 1 =⇒ F(0, . . . ,0, e) = MK(0, . . . ,0, e) = e/K,

and so by Proposition 3.1 (applied to a sufficiently large e) cF is not an e-merging function
for any c > 1. But F is admissible if and only if r = 1 as shown by Theorem 3.2.

REMARK 6.2. The rough relation 1/e ∼ p also sheds light on the coefficient, K1/r−1 ∧
1 = K1/r−1 for r > 1, given in (19) in front of Mr,K . The coefficient K1/r−1, r > 1, in
front of Mr,K for averaging e-values corresponds to a coefficient of K1+1/r , r < −1, in front
of Mr,K for averaging p-values. And indeed, by Proposition 5 of Vovk and Wang (2020),
the asymptotically precise coefficient in front of Mr,K , r < −1, for averaging p-values is

r
r+1K1+1/r . The extra factor r

r+1 appears because the reciprocal of a p-variable is only ap-
proximately, but not exactly, an e-variable.

REMARK 6.3. Our formulas for merging e-values are explicit and much simpler than the
formulas for merging p-values given in Vovk and Wang (2020), where the coefficient ar,K is
often not analytically available. Merging e-values does not involve asymptotic approxima-
tions via the theory of robust risk aggregation (e.g., Embrechts, Wang and Wang (2015)), as
used in that paper. This suggests that in some important respects e-values are easier objects
to deal with than p-values.
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Merging independent p-values. In this section, we will discuss ways of combining p-
values p1, . . . , pK under the assumption that the p-values are independent.

One of the oldest and most popular methods for combining p-values is Fisher’s (1932),
Section 21.1, which we already mentioned in Section 4. Fisher’s method is based on the prod-
uct statistic p1 . . . pK (with its low values significant) and uses the fact that −2 ln(p1 . . . pK)

has the χ2 distribution with 2K degrees of freedom when pk are all independent and dis-
tributed uniformly on the interval [0,1]; the p-values are the tails of the χ2 distribution.

Simes (1986) proves a remarkable result for Rüger’s family (15) under the assumption that
the p-values are independent: the minimum

(20) (p1, . . . , pK) → min
k∈{1,...,K}

K

k
p(k)

of Rüger’s family over all k turns out to be a p-merging function. The counterpart of Simes’s
result still holds for e-merging functions; moreover, now the input e-values do not have to be
independent. Namely,

(e1, . . . , eK) → max
k∈{1,...,K}

k

K
e[k]

is an e-merging function. This follows immediately from (18), the left-hand side of which
can be replaced by its maximum over k. And it also follows from (18) that there is no sense
in using this counterpart; it is better to use the arithmetic mean.

7. Experimental results. In this section, we will explore the performance of various
methods of combining e-values and p-values and multiple hypothesis testing, both standard
and introduced in this paper.

In order to be able to judge how significant results of testing using e-values are, Jeffreys’s
(1961), Appendix B, rule of thumb may be useful:

• If the resulting e-value e is below 1, the null hypothesis is supported.
• If e ∈ (1,

√
10) ≈ (1,3.16), the evidence against the null hypothesis is not worth more than

a bare mention.
• If e ∈ (

√
10,10) ≈ (3.16,10), the evidence against the null hypothesis is substantial.

• If e ∈ (10,103/2) ≈ (10,31.6), the evidence against the null hypothesis is strong.
• If e ∈ (103/2,100) ≈ (31.6,100), the evidence against the null hypothesis is very strong.
• If e > 100, the evidence against the null hypothesis is decisive.

Our discussions in this section assume that our main interest is in e-values, and p-values
are just a possible tool for obtaining good e-values (which is, e.g., the case for Bayesian statis-
ticians in their attitude towards Bayes factors and p-values; cf. Section A.1 and Appendix B).
Our conclusions would have been different had our goal been to obtain good p-values.

Combining independent e-values and p-values. First, we explore combining independent
e-values and independent p-values; see Figure 1. The observations are generated from the
Gaussian model N(μ,1) with standard deviation 1 and unknown mean μ. The null hypoth-
esis is μ = 0 and the alternative hypothesis is μ = δ; for Figures 1 and 2 we set δ := −0.1.
The observations are IID. Therefore, one observation does not carry much information about
which hypothesis is true, but repeated observations quickly reveal the truth (with a high prob-
ability).

For Figures 1 and 2, all data are generated from the alternative distribution (an example
with some of the data coming from the null distribution will be given in the Supplementary
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FIG. 1. Combining p-values using Fisher’s method vs combining e-values by multiplication (details in text).

Material, Appendix I). For each observation, the e-value used for testing is the likelihood
ratio

(21) E(x) := e−(x−δ)2/2/e−x2/2 = exδ−δ2/2

of the alternative probability density to the null probability density, where x is the observa-
tion. It is clear that (21) is indeed an e-variable under the null hypothesis: its expected value
is 1. As the p-value we take

(22) P(x) := N(x),

where N is the standard Gaussian distribution function; in other words, the p-value is found
using the most powerful test, namely the likelihood ratio test given by the Neyman–Pearson
lemma.

In Figure 1, we give the results for the product e-merging function (7) and Fisher’s method
described in the last subsection of Section 6. (The other methods that we consider are vastly
less efficient, and we show them in the following figure, Figure 2.) Three of the values plotted
in Figure 1 against each K = 1, . . . ,10,000 are:

• the product e-value E(x1) . . .E(xK); it is shown as the black line;
• the reciprocal 1/p of Fisher’s p-value p obtained by merging the first K p-values

P(x1), . . . ,P (xK); it is shown as the red line;
• the VS bound applied to Fisher’s p-value; it is shown as the orange line.

FIG. 2. Combining p-values using Simes’s and Bonferroni’s methods and combining e-values using averaging
(details in text).
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The plot depends very much on the seed for the random number generator, and so we report
the median of all values over 100 seeds.

The line for the product method is below that for Fisher’s over the first 2000 observations
but then it catches up. If our goal is to have an overall e-value summarizing the results of test-
ing based on the first K observations (as we always assume in this section), the comparison is
unfair, since Fisher’s p-values need to be calibrated. A fairer (albeit still unfair) comparison
is with the VS bound, and the curve for the product method can be seen to be above the curve
for the VS bound. A fortiori, the curve for the product method would be above the curve for
any of the calibrators in the family (1).

It is important to emphasize that the natures of plots for e-values and p-values are very
different. For the red and orange lines in Figure 1, the values shown for different K relate to
different batches of data and cannot be regarded as a trajectory of a natural stochastic process.
In contrast, the values shown by the black line for different K are updated sequentially, the
value at K being equal to the value at K − 1 multiplied by E(xK), and form a trajectory of a
test martingale. Moreover, for the black line we do not need the full force of the assumption
of independence of the p-values. As we discuss at the end of Section 4, it is sufficient to
assume that E(xK) is a valid e-value given x1, . . . , xK−1; the black line in Figure 1 is then
still a trajectory of a test supermartingale.

What we said in the previous paragraph can be regarded as an advantage of using e-values.
On the negative side, computing good (or even optimal in some sense) e-values often requires
more detailed knowledge. For example, whereas computing the e-value (21) requires the
knowledge of the alternative hypothesis, for computing the p-value (22) it is sufficient to
know that the alternative hypothesis corresponds to μ < 0. Getting μ very wrong will hurt
the performance of methods based on e-values. To get rid of the dependence on μ, we can,
for example, integrate the product e-value over δ ∼ N(0,1) (taking the standard deviation of
1 is somewhat wasteful in this situation, but we take the most standard probability measure).
This gives the “universal” test martingale (see, e.g., Howard et al. (2020))

SK := 1√
2π

∫ ∞
−∞

exp
(−δ2/2

) K∏
k=1

exp
(
xkδ − δ2/2

)
dδ

= 1√
K + 1

exp

(
1

2(K + 1)

(
K∑

k=1

xk

)2)
.

(23)

This test supermartingale is shown in blue in Figure 1. It is below the black line but at the
end of the period it catches up even with the line for Fisher’s method (and beyond that period
it overtakes Fisher’s method more and more convincingly).

Arithmetic average (4) and Simes’s method (20) have very little power in the situation
of Figure 1: see Figure 2, which plots the e-values produced by the averaging method, the
reciprocals 1/p of Simes’s p-values p, the VS bound for Simes’s p-values, and the reciprocals
of the Bonferroni p-values over 1000 observations, all averaged (in the sense of median) over
1000 seeds. They are very far from attaining statistical significance (a p-value of 5% or less)
or collecting substantial evidence against the null hypothesis (an e-value of

√
10 or more

according to Jeffreys).

Multiple hypothesis testing. Next, we discuss multiple hypothesis testing. Figure 3 shows
plots of adjusted e-values and adjusted p-values resulting from various methods for small
numbers of hypotheses, including Algorithms 1 and 2. The observations are again generated
from the statistical model N(μ,1).

We are testing 20 null hypotheses. All of them are μ = 0, and their alternatives are μ = −4.
Each null hypothesis is tested given an observation drawn either from the null or from the
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FIG. 3. Multiple hypothesis testing for 20 hypotheses using p-values and e-values, with some graphs indistin-
guishable (details in text).

alternative. The first 10 null hypotheses are false, and in fact the corresponding observations
are drawn from the alternative distribution. The remaining 10 null hypotheses are true, and
the corresponding observations are drawn from them rather than the alternatives. The vertical
blue line at the centre of Figure 3 separates the false null hypotheses from the true ones: null
hypotheses 0 to 9 are false and 10 to 19 are true. We can see that at least some of the methods
can detect that the first 10 null hypotheses are false.

Since some of the lines are difficult to tell apart, we will describe the plot in words. The
top two horizontal lines to the left of the vertical blue line are indistinguishable but are
those labeled as Simes and Bonferroni in the legend; they correspond to e-values around
2 × 103. The following cluster of horizontal lines to the left of the vertical blue line (with e-
values around 102) are those labeled as average, Simes-VS, and Bonferroni-VS, with average
slightly higher. To the right of the vertical blue line, the upper horizontal lines (with e-values
100) include all methods except for average and product; the last two are visible.

Most of the methods (all except for Bonferroni and Algorithm 1) require the observations
to be independent. The base p-values are (22), and the base e-values are the likelihood ratios

(24) E(x) := 1

2
exδ−δ2/2 + 1

2
(cf. (21)) of the “true” probability density to the null probability density, where the former as-
sumes that the null or alternative distribution for each observation is decided by coin tossing.
Therefore, the knowledge encoded in the “true” distribution is that half of the observations
are generated from the alternative distribution, but it is not known that these observations are
in the first half. We set δ := −4 in (24), keeping in mind that accurate prior knowledge is
essential for the efficiency of methods based on e-values.

A standard way of producing multiple testing procedures is applying the closure principle
described in Appendix A and already implicitly applied in Section 5 to methods of merg-
ing e-values. In Figure 3, we report the results for the closures of five methods, three of
them producing p-values (Simes’s, Bonferroni’s and Fisher’s) and two producing e-values
(average and product); see Section 5 for self-contained descriptions of the last two methods
(Algorithms 1 and 2). For the methods producing p-values we show the reciprocals 1/p of
the resulting p-values p (as solid lines) and the corresponding VS bounds (as dashed lines).
For the closure of Simes’s method, we follow the Appendix of Wright (1992), the closure of
Bonferroni’s method is described in Holm (1979) (albeit not in terms of adjusted p-values),
and for the closure of Fisher’s method we use Dobriban’s (2020) FACT (FAst Closed Testing)
procedure. To make the plot more regular, all values are averaged (in the sense of median)
over 1000 seeds of the Numpy random number generator.
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FIG. 4. The analogue of Figure 3 without the product method, with 200 observations, and with some graphs
indistinguishable (details in text).

According to Figure 3, the performance of Simes’s and Bonferroni’s methods is very sim-
ilar, despite Bonferroni’s method not depending on the assumption of independence of the
p-values. The e-merging method of averaging (i.e., Algorithm 1) produces better e-values
than those obtained by calibrating the closures of Simes’s and Bonferroni’s methods; remem-
ber that the line corresponding to Algorithm 1 should be compared with the VS versions
(blue and green dashed, which almost coincide) of the lines corresponding to the closures of
Simes’s and Bonferroni’s methods, and even that comparison is unfair and works in favour
of those two methods (since the VS bound is not a valid calibrator). The other algorithms
perform poorly.

Figure 4 is an analogue of Figure 3 that does not show results for merging by multiplication
(for large numbers of hypotheses its results are so poor that, when shown, differences between
the other methods become difficult to see). To get more regular and comparable graphs, we
use averaging (in the sense of median) over 100 seeds.

Since some of the graphs coincide, or almost coincide, we will again describe the plot
in words (referring to graphs that are straight or almost straight as lines). To the left of the
vertical blue line (separating the false null hypotheses 0–99 from the true null hypotheses
100–199), we have three groups of graphs: the top graphs (with e-values around 2 × 102) are
those labeled as Simes and Bonferroni in the legend, the middle graphs (with e-values around
101) are those labeled as average, Simes-VS and Bonferroni-VS, and the bottom lines (with
e-values around 100) are those labeled as Fisher and Fisher-VS. To the right of the vertical
blue line, we have two groups of lines: the upper lines (with e-values 100) include all methods
except for average, which is visible.

Now the graph for the averaging method (Algorithm 1) is very close to the graphs for the
VS versions of the closures of Simes’s and Bonferroni’s methods, which is a very good result
(in terms of the quality of e-values that we achieve): the VS bound is a bound on what can be
achieved whereas the averaging method produces a bona fide e-value.

A key advantage of the averaging and Bonferroni’s methods over Simes’s and Fisher’s is
that they are valid regardless of whether the base e-values or p-values are independent.

8. Conclusion. This paper systematically explores the notion of an e-value, which can
be regarded as a betting counterpart of p-values that is much more closely related to Bayes
factors and likelihood ratios. We argue that e-values often are more mathematically conve-
nient than p-values and lead to simpler results. In particular, they are easier to combine: the
average of e-values is an e-value, and the product of independent e-values is an e-value.
We apply e-values in two areas, multiple testing of a single hypothesis and testing multiple



E-VALUES 1753

hypotheses, and obtain promising experimental results. One of our experimental findings is
that, for testing multiple hypotheses, the performance of the most natural method based on
e-values almost attains the Vovk–Sellke bound for the closure of Simes’s method, despite that
bound being overoptimistic and not producing bona fide e-values.

Acknowledgments. The authors thank Aaditya Ramdas, Alexander Schied and Glenn
Shafer for helpful suggestions. Thoughtful comments by the Associate Editor and four re-
viewers have led to numerous improvements in presentation and substance.

Funding. The first author was supported by Amazon, Astra Zeneca and Stena Line.
The second author was supported by NSERC grants RGPIN-2018-03823 and RGPAS-

2018-522590.

SUPPLEMENTARY MATERIAL

E-values: Online supplement (DOI: 10.1214/20-AOS2020SUPP; .pdf). The online sup-
plement discusses connections with literature and provides further theoretical results and
simulation studies.

REFERENCES

BENJAMIN, D. J. and BERGER, J. O. (2019). Three recommendations for improving the use of p-values. Amer.
Statist. 73 186–191. MR3925724 https://doi.org/10.1080/00031305.2018.1543135

DOBRIBAN, E. (2020). Fast closed testing for exchangeable local tests. Biometrika 107 761–768. MR4138990
https://doi.org/10.1093/biomet/asz082

DUAN, B., RAMDAS, A., BALAKRISHNAN, S. and WASSERMAN, L. (2019). Interactive martingale tests for the
global null. Technical report. Available at arXiv:1909.07339 [stat.ME].

EMBRECHTS, P., WANG, B. and WANG, R. (2015). Aggregation-robustness and model uncertainty of regulatory
risk measures. Finance Stoch. 19 763–790. MR3413935 https://doi.org/10.1007/s00780-015-0273-z

FISHER, R. A. (1932). Statistical Methods for Research Workers, 4th ed. Oliver and Boyd, Edinburgh. Sec-
tion 21.1 on combining independent p-values first appears in this edition and is present in all subsequent
editions.

GOEMAN, J. J. and SOLARI, A. (2011). Multiple testing for exploratory research. Statist. Sci. 26 584–597.
MR2951390 https://doi.org/10.1214/11-STS356

GRÜNWALD, P., DE HEIDE, R. and KOOLEN, W. M. (2020). Safe testing. Technical report. Available at
arXiv:1906.07801 [math.ST].

HARDY, G. H., LITTLEWOOD, J. E. and PÓLYA, G. (1952). Inequalities, 2nd ed. Cambridge Univ. Press, Cam-
bridge. MR0046395

HOLM, S. (1979). A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6 65–70. MR0538597
HOWARD, S. R., RAMDAS, A., MCAULIFFE, J. and SEKHON, J. (2020). Time-uniform, nonparametric,

nonasymptotic confidence sequences. Technical report. Available at arXiv:1810.08240 [math.ST]. Ann. Statist.
To appear.

JEFFREYS, H. (1961). Theory of Probability, 3rd ed. Clarendon Press, Oxford. MR0187257
MARCUS, R., PERITZ, E. and GABRIEL, K. R. (1976). On closed testing procedures with special reference to

ordered analysis of variance. Biometrika 63 655–660. MR0468056 https://doi.org/10.1093/biomet/63.3.655
RÜGER, B. (1978). Das maximale Signifikanzniveau des Tests: “Lehne H0 ab, wenn k unter n gegebenen Tests

zur Ablehnung führen”. Metrika 25 171–178. MR0526476 https://doi.org/10.1007/BF02204362
SHAFER, G. (2019). The language of betting as a strategy for statistical and scientific communication. Technical

report. Available at arXiv:1903.06991 [math.ST]. J. R. Stat. Soc., A. To appear.
SHAFER, G. and VOVK, V. (2019). Game-Theoretic Foundations for Probability and Finance. Wiley, Hoboken,

NJ.
SHAFER, G., SHEN, A., VERESHCHAGIN, N. and VOVK, V. (2011). Test martingales, Bayes factors and p-

values. Statist. Sci. 26 84–101. MR2849911 https://doi.org/10.1214/10-STS347
SHAFFER, J. P. (1986). Modified sequentially rejective multiple test procedures. J. Amer. Statist. Assoc. 81 826–

831.
SIMES, R. J. (1986). An improved Bonferroni procedure for multiple tests of significance. Biometrika 73 751–

754. MR0897872 https://doi.org/10.1093/biomet/73.3.751

https://doi.org/10.1214/20-AOS2020SUPP
http://www.ams.org/mathscinet-getitem?mr=3925724
https://doi.org/10.1080/00031305.2018.1543135
http://www.ams.org/mathscinet-getitem?mr=4138990
https://doi.org/10.1093/biomet/asz082
http://arxiv.org/abs/arXiv:1909.07339
http://www.ams.org/mathscinet-getitem?mr=3413935
https://doi.org/10.1007/s00780-015-0273-z
http://www.ams.org/mathscinet-getitem?mr=2951390
https://doi.org/10.1214/11-STS356
http://arxiv.org/abs/arXiv:1906.07801
http://www.ams.org/mathscinet-getitem?mr=0046395
http://www.ams.org/mathscinet-getitem?mr=0538597
http://arxiv.org/abs/arXiv:1810.08240
http://www.ams.org/mathscinet-getitem?mr=0187257
http://www.ams.org/mathscinet-getitem?mr=0468056
https://doi.org/10.1093/biomet/63.3.655
http://www.ams.org/mathscinet-getitem?mr=0526476
https://doi.org/10.1007/BF02204362
http://arxiv.org/abs/arXiv:1903.06991
http://www.ams.org/mathscinet-getitem?mr=2849911
https://doi.org/10.1214/10-STS347
http://www.ams.org/mathscinet-getitem?mr=0897872
https://doi.org/10.1093/biomet/73.3.751


1754 V. VOVK AND R. WANG

VOVK, V. G. (1993). A logic of probability, with application to the foundations of statistics. J. Roy. Statist. Soc.
Ser. B 55 317–351. With discussion and a reply by the author. MR1224399

VOVK, V. and WANG, R. (2020). Combining p-values via averaging. Technical report. Available at
arXiv:1212.4966 [math.ST]. Biometrika. To appear. https://doi.org/10.1093/biomet/asaa027.

VOVK, V. and WANG, R. (2021). Supplement to “E-values: Calibration, combination, and applications.”
https://doi.org/10.1214/20-AOS2020SUPP

WALD, A. (1950). Statistical Decision Functions. Wiley, New York, NY. MR0036976
WRIGHT, S. P. (1992). Adjusted p-values for simultaneous inference. Biometrics 48 1005–1013.

http://www.ams.org/mathscinet-getitem?mr=1224399
http://arxiv.org/abs/arXiv:1212.4966
https://doi.org/10.1093/biomet/asaa027
https://doi.org/10.1214/20-AOS2020SUPP
http://www.ams.org/mathscinet-getitem?mr=0036976

	Introduction
	Deﬁnition of e-values and connections with p-values
	Merging e-values
	Merging e-values via averaging

	Merging independent e-values
	Testing with martingales

	Application to testing multiple hypotheses
	Merging p-values and comparisons
	Connections to e-merging functions
	Merging independent p-values

	Experimental results
	Combining independent e-values and p-values
	Multiple hypothesis testing

	Conclusion
	Acknowledgments
	Funding
	Supplementary Material
	References

