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Nonparametric estimation of the cumulative distribution function and the
probability density of a lifetime X modified by a current status censoring
(CSC), including cases of right and left missing data, is a classical ill-posed
problem with biased data. The biased nature of CSC data may preclude us
from consistent estimation unless the biasing function is known or may be
estimated, and its ill-posed nature slows down rates of convergence. Under a
traditionally studied CSC, we observe a sample from (Z,�) where a contin-
uous monitoring time Z is independent of X, � := I (X ≤ Z) is the status,
and the bias of observations is created by the density of Z which is estimable.
In presence of right or left missing, we observe corresponding samples from
(�Z,�) or ((1 − �)Z,�); the data are again biased but now the density of
Z cannot be estimated from the data. As a result, to solve the estimation prob-
lem, either the density of Z must be known (like in a controlled study) or an
extra cross-sectional sampling of Z, which is typically simpler than an under-
lying CSC study, be conducted. The main aim of the paper is to develop for
this biased and ill-posed problem the theory of efficient (sharp-minimax) esti-
mation which is inspired by known results for the case of directly observed X.
Among interesting aspects of the developed theory: (i) While sharp-minimax
analysis of missing CSC may follow the classical Pinsker’s methodology,
analysis of CSC requires a more complicated estimation procedure based on
a special smoothing in both frequency and time domains; (ii) Efficient esti-
mation requires solving an old-standing problem of approximating aperiodic
Sobolev functions; (iii) If smoothness of the cdf of X is known, then its rate-
minimax estimation is possible even if the density of Z is rougher. Real and
simulated examples, as well as extensions of the core models to dependent X

and Z and case-control CSC, are presented.

1. Introduction. Current status censoring (CSC) is a well-known problem in survival
analysis; see a discussion in books Sun (2007), Chen, Sun and Peace (2012), Sun and Zhao
(2013), Groeneboom and Jongbloed (2014), Klein et al. (2014), Efromovich (2018), and in
more recent papers Becker, Braun and White (2017), Li et al. (2017), van Es and Graafland
(2017), Diao and Yuan (2019), Groeneboom and Hendrickx (2018), Li et al. (2019) and
Malov (2019) where further references may be found.

We want to estimate the distribution of a time X when an event of interest occurs but can-
not constantly monitor the time. Instead, there is a possibility to check status of the event at
some random moment of time Z, called the monitoring time. Then the available observation
is a pair of random variables (Z,�) where Z is the monitoring time and � := I (X ≤ Z) is
the status of the event of interest, namely the status (indicator) is equal to 1 if the event of
interest already occurred at moment Z and 0 otherwise. Note that we never observe time X

when the event occurred, and only know that the event occurred before or after the monitor-
ing time Z (this is a dramatic difference with a classical censoring). A sample from (Z,�)
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is called current status censored. It is also a typical situation when CSC observations are
missing. Two particular missing CSC (MCSC) settings considered in the paper are: (i) Right
MCSC (RMCSC) when a realization of (Z,�) is observed only when � = 1 and otherwise
Z is missed, that is, we observe a sample from (�Z,�); (ii) Left MCSC (LMCSC) when a
realization of (Z,�) is observed only when � = 0 and otherwise Z is missed, that is, we ob-
serve a sample from ((1−�)Z,�). As we shall see shortly, the missing is destructive and no
consistent estimation of the distribution of X is possible unless the distribution of Z is known
or an extra sample from Z is collected. In a classical CSC model, the lifetime of interest X

and the monitoring time Z are independent, and this is the core model explored in the paper.
The model of dependent CSC, when X and Z are dependent, will be considered as an exten-
sion of the developed independent CSC theory and then be explored via real and simulated
examples. It will be also explained what estimators, suggested for independent CSC, exhibit
if X and Z are dependent. A critical aspect of dependent CSC is that even without missing no
consistent estimation is possible based solely on dependent CSC data, and a possible remedy
will be explored. Moreover, as we will see shortly, consistent estimation based solely on CSC
data is the exception rather than the rule.

Another possible extension of the core model is presented in the following remark.

REMARK 1.1 (Case-, control- and case-control CSC). A CSC sampling is binomial and
this implies that the number of observed monitoring times with a particular status is random
and may be small. To avoid this randomness, another well-known CSC sampling procedure
may be used when a fixed number of monitoring times is collected from one or both sup-
plementary (created by the status) subpopulations of monitoring times. To shed light on the
sampling and relate it to already discussed CSC models, we are considering three possible
scenarios in turn. In a case-CSC, we collect m “cases” from the subpopulation of monitoring
times with � = 1, that is, the case is a monitoring time with already occurred event of inter-
est. In a control-CSC, we collect cm (here c is a factor) “controls” from the subpopulation of
monitoring times with � = 0, that is, the control is a monitoring time with not yet occurred
event of interest. Finally, in a case-control CSC the both above-defined samples are avail-
able. Let us note that we may refer to an observation in the above-introduced RMCSC data
as the case and to an observation in LMCSC data as the control; this familiar terminology
sheds additional light on the missing CSC. We also may conclude that the difference between
RMCSC and case-CSC (or between LMCSC and control-CSC) is in how the corresponding
data are collected, namely a binomial sampling with missing not at random (MNAR) versus
a deterministic sampling from the subpopulation of monitoring times with status 1 (or corre-
spondingly with status 0). A nice discussion of this setting may be found in Jewell and van
der Laan (2004a, 2004b), Vandenbroucke and Pearce (2014), Keogh and Cox (2014), Klein
et al. (2014), Hsu, Gorfine and Zucker (2018).

Now let us present a general example, motivated by the above-mentioned literature, that
will help us to understand considered models, proposed extra samplings and assumptions.

GENERAL EXAMPLE. Suppose that we are interested in a population of single men ages
25 to 54 and working in the transportation industry. For this population, we would like to es-
timate the distribution of age at incidence of an occult nonfatal disease for which an accurate
diagnostic test is available. A doctor may conduct such a test for a cross-sectional sample of
size n and then, if required, submit files with information about sick individuals to agency
“S” and about healthy individuals to agency “H.” In the example, X is the (unknown, hidden
and of primary interest) age of an individual at the disease incidence, Z is the individual’s age
at the time of medical testing, the status � = 1 if the disease is present and � = 0 otherwise.
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If the statistician has access to the doctor’s files, then the available data are CSC without
missing, if the statistician knows the sample size n and has access only to files of agency “S”
then the available data are RMCSC, if the statistician knows n and has access only to files of
agency “H,” then the available data are LMCSC. Further, if the statistician has access only
to m files of agency “S,” then the available data are case-CSC, if the statistician has access
only to cm files of agency “H,” then the available data are control-CSC, and if the statistician
can get these files from the both agencies, then we are dealing with the case-control CSC. As
we will see shortly, in a number of possible scenarios knowing only CSC data is not enough
for consistent estimation. For instance, RMCSC data are biased by the distribution of Z, and
hence this distribution either must be known or estimated via an extra cross-sectional study
of Z which yields a sample ZE1, . . . ,ZEm. In our example, this means that either distribution
of the age of working men at the time of medical testing is known, or it may be estimated
via sampling the age and note that the sampling of Z does not involve a medical testing; it is
not related to the disease, not related to the status � of monitoring time. As a result, a typical
cross-sectional sampling of monitoring times is dramatically simpler than an underlying CSC
sampling. The methodology of extra sampling of a monitoring time, which does not involve
a lifetime of interest, will be analyzed and then recommended because it is a relatively inex-
pensive remedy against the complete loss of information about X caused by a missing CSC.
Now let us comment on possible assumptions. In many applications, it is reasonable to as-
sume that Z and X are independent, and this is a typical assumption in the literature. Because
X is not observed, it is not a trivial (and in many cases impossible) problem to justify this as-
sumption, and nonetheless it is a traditional one. For our example, it is well known that some
diseases are age-related (think about cardiovascular diseases or prostate cancer), then Z and
X are depended and we are dealing with so-called dependent CSC. As we will see shortly, in
this case consistent estimation, based solely on CSC data, is impossible and then a remedy
will be suggested and analyzed both theoretically and via examples. Next, it is well known
that consistent estimation of the distribution of X is possible only if its support is a subset
of the support of Z. In some applications the latter may not be the case, for instance, in our
example the doctor may not have access to individuals from specific age groups. It will be
explained what can be estimated in this case. Finally, lifetimes are typically bounded (in the
example by 54 years), and hence without loss of generality we may assume that the lifetimes
take values from [0,1]. All other used assumptions are technical and will be explained after
their introduction.

A large number of interesting CSC examples can be found in the above-mentioned lit-
erature, and the online Supplementary Material (Efromovich (2021)) present eight real and
simulated examples that shed additional light on the topic.

Now let us formulate core CSC problems and assumptions. There is an underlying (hidden)
sample X1, . . . ,Xn from a random variable of interest (lifetime) X. There is also a sample
Z1, . . . ,Zn from an independent monitoring variable Z. Then three possible scenarios for
available data are considered: (i) We observe CSC sample (Z1,�1), . . . , (Zn,�n) where
�l := I (Xl ≤ Zl); (ii) We observe RMCSC sample (�1Z1,�1), . . . , (�nZn,�n); (iii) We
observe LMCSC sample ((1 − �1)Z1,�1), . . . , ((1 − �n)Zn,�n). For these three models,
we would like to explore sharp minimax estimation of the cumulative distribution function
FX(x) and the density f X(x) := dFX(x)/dx of the lifetime of interest X under the mean
integrated squared error (MISE) criterion.

ASSUMPTION 1. The lifetime of interest X and the monitoring time Z are independent
continuous random variables, P(X ∈ [0,1]) = 1, a known density f Z(z) of the monitoring
time is continuous on [0,1], ∫ 1

0 f Z(z) dz = 1 and minz∈[0,1] f Z(z) ≥ c∗ > 0.
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The made assumption about independence of X and Z is standard (it will be relaxed in
Section 6). The independence implies that the joint (mixed) density of the pair (Z,�) is

(1.1) f Z,�(z, δ) = f Z(z)
[
FX(z)

]δ[1 − FX(z))
]1−δ

, δ ∈ {0,1}.
This formula shows that consistent estimation of the distribution of X is possible if and only
if the support of X is a subset of the support of Z. Further, note that CSC observations are
biased by f Z . Density f Z can be estimated using CSC data but not missing CSC data. In
the latter case, f Z must be either known or estimated using an extra sample from Z, and
the latter approach will be discussed in Section 3 and via examples in the Supplementary
Material (Efromovich (2021)).

Our next assumption allows us to develop local minimax lower bounds for the mean inte-
grated squared error of estimation of cdf FX(x) and density f X(x) of the lifetime of interest
X. Introduce a Sobolev class of α-fold differentiable functions on [0,1] (here and in what
follows g(α)(x) or (g(x))(α) denote the αth derivative)

(1.2)

F(α,Q) :=
{
g : g(α)(x) exists and finite on [0,1],

and
∫ 1

0

[
g(α)(x)

]2
dx ≤ Q < ∞

}
.

Under a local minimax approach, we are assuming that an underlying cdf FX(x) is close
in L∞-norm to a pivotal cdf F0(x) and similarly density f X(x) is close in L∞-norm to the
pivotal density F

(1)
0 (x).

ASSUMPTION 2. Let F0(x) be the cdf of a random variable (lifetime) supported on
[0,1]. Introduce a class of cumulative distribution functions supported on [0,1] and created
by a perturbation of F0,

F(F0, α,Q, c0, c1, ρ) :=
{
F : F(x) = F0(x) + g(x)I (0 ≤ x ≤ 1),

F (0) = 0,F (1) = 1,F (1)(x) ≥ 0, x ∈ [0,1],
g ∈ F(α,Q), max

x∈[0,1] max
(∣∣g(x)

∣∣, ∣∣g(1)(x)
∣∣) ≤ ρ,(1.3)

F0(0) = 0,F0(1) = 1, min
x∈[0,1]F

(1)
0 (x) ≥ c0,

max
x∈[0,1]F

(1)
0 (x) ≤ c1

}
.

It is assumed that an underlying cdf FX(x) belongs to this class.

Note that the second line in (1.3) implies that the class (1.3) contains only bona fide cu-
mulative distribution functions F(x) supported on [0,1].

Assumption 2, with the Sobolev class (1.2) being replaced by a Sobolev ellipsoid of
Fourier coefficients of g(x), is a classical assumption in sharp-minimax literature whose ori-
gin goes back to the pioneering approach of Pinsker (1980); see a discussion in Efromovich
(1999, 2018), Tsybakov (2009) and Cai (2012). A Sobolev class is larger than a correspond-
ing Sobolev ellipsoid due to boundary conditions, and this creates new issues that will be
resolved via using a special sequence of orthonormal bases. The last two inequalities in (1.3)
add a restriction on the pivot F0(x) which allows us to introduce feasible additive permuta-
tions g(x) that preserve bona fide properties of the cdf and the density.
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The context of the paper is as follows. We begin with exploring the problem of cdf estima-
tion. Lower minimax bounds for RMCSC, LMCSC and CSC data are presented in Section 2.
In Section 3, oracle-estimators (they know more than data) of the cdf are presented whose
MISEs attain the corresponding three lower bounds. One outcome to point upon is that for
CSC data the oracle-estimator uses a special smoothing in both frequency and time domains
(typically smoothing in frequency domain is sufficient for sharp-minimax estimation). An-
other interesting part of the solution is using a polynomial-cosine basis that depends on the
sample size. Adaptive estimators of the cdf are considered in Section 4. Density estimation is
considered in Section 5. Section 6 presents several extensions including dependent CSC and
case-control CSC. Proofs can be found in the online Supplementary Material (Efromovich
(2021)) that also contain real and simulated examples as well as additional references.

Let us finish the Introduction by describing the terminology of a minimax approach used
in the paper. The minimax is a game with four participants being the dealer, the nature, the
oracle and the statistician. The dealer defines a class of underlying distributions (here (1.3)),
a risk (here the MISE), the sample size n (which can be as large as desired because only
asymptotic in n is of interest in the game), and then presents this information to the nature
and the oracle. The nature chooses the most difficult distribution for estimation, informs
the dealer about the choice and then generates a sample of size n which is known to all
four participants. Then the dealer proposes a lower bound for the minimax MISE, informs
the oracle about it and also provides the oracle with some restricted information about the
distribution chosen by the nature. Based on this information, the oracle tries to find an oracle-
estimator whose MISE matches the lower bound, and if the latter is possible then the lower
bound is announced to be sharp-minimax for the oracle. Otherwise, the game between the
dealer and the oracle continues and either the dealer increases the lower bound or the oracle
gets more information from the dealer to match the lower bound. When the dealer-oracle
game is finished, the dealer informs the statistician about the lower bound and, to benefit the
statistician, about the sharp-minimax oracle-estimator. Then the statistician tries to propose
a data-driven (adaptive) estimator that matches MISE of the oracle-estimator. If the latter is
possible, then the game is over, the lower bound and the adaptive estimator are announced to
be sharp-minimax, and the estimator may be referred to as efficient.

In what follows, on(1) is a traditional notation for vanishing sequences in n, s := sn :=
3+�ln(ln(n+3))�, and �a� denotes the smallest integer larger or equal to a. To make propo-
sitions shorter, we may use notation (FX(x))(β) with β = 0 and β = 1 corresponding to the
cdf and the density, respectively. In the paper, the parameter β is used solely for this purpose.

2. Dealer’s lower minimax bounds for CDF and density. Given Assumptions 1 and
2, we would like to estimate the cdf FX(x) ∈ F of the lifetime of interest X as well as its
density f X(x). Set

(2.1)
J (α,Q,d,β)

:= [(
Q(2α + 1)

)− 2β+1
2(α−β) (2β + 1)

2α+1
2(α−β) π(α + 1 + β)(α − β)−1]α/(α−β)

/d.

Here, d is a functional of FX and f Z which depends on an underlying sampling model.
Recall that we simultaneously consider three models of collected data: (i) RMCSC if we
observe a sample from (�Z,�); (ii) LMCSC if we observe a sample from ((1 − �)Z,�);
(iii) CSC if no missing occurs and we observe a sample from (Z,�). Then for the RMCSC,
LMCSC and CSC models the corresponding functionals d are

(2.2)

dRM :=
∫ 1

0

FX(x)

f Z(x)
dx, dLM :=

∫ 1

0

1 − FX(x)

f Z(x)
dx,

dCSC :=
∫ 1

0

FX(x)(1 − FX(x))

f Z(x)
dx.
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It will be explained shortly that J and d may be referred to as the nonparametric Fisher
information and the coefficient of difficulty, respectively. Also recall that (FX(x))(β) with
β = 0 and β = 1 denotes the cdf and the density, respectively, and that parameter β is used
solely to indicate the estimand of interest.

THEOREM 2.1. RMCSC, LMCSC and CSC models and estimation of the cdf or the den-
sity (FX(x))(β), β ∈ {0,1} are considered. Suppose that Assumptions 1 and 2 hold, α ≥ 1+β ,
and a sample of size n is available. Then the following dealer’s lower bound holds:

(2.3)

inf
�̃β

sup
FX

EFX

{[
nJ (α,Q,d,β)

]2(α−β)/(2α+1)

×
∫ 1

0

[
�̃β(x) − (

FX(x)
)(β)]2

dx

}
≥ (

1 + on(1)
)
.

Here, d is defined in (2.2) for an underlying sampling model, the supremum is over FX ∈
F(F0, α,Q,1/sn, s

1/2
n ,1/sn) defined in (1.3), the infimum is taken over all possible dealer-

estimators �̃β knowing the sample, density f Z(x) of the monitoring time Z and everything
about the class (1.3), namely the dealer knows F0, α, Q and sn.

Let us comment on the lower bound (2.3). First of all, it will be shown shortly that it is
sharp. Second, sequence sn → ∞ as n → ∞ (it is introduced at the end of the Introduction)
and in Theorem 2.1 it is used to consider a local Sobolev function class where all cumu-
lative distribution functions FX converge in L∞-norm to the pivot F0 which, in its turn, is
allowed to have a larger derivative as n increases. In other words, in (2.3) we are considering
a shrinking minimax with a pivot that may change with n. Third, let us compare the CSC non-
parametric lower bound (2.3) with a known sharp lower bound for a classical nonparametric
regression Y = m(V ) + σ(V )ξ , where Y is the response, V is the predictor with density f V

supported on [0,1], ξ is a standard normal error independent of V , m(v) = E{Y |V = v} is the
nonparametric regression of interest and σ(v) is a nuisance scale function. For this regression
and the estimand m(v) ∈F(α,Q), a corresponding regression minimax lower bound is iden-
tical to (2.3) where we use β = 0 and J (α,Q,dR,0) with dR := ∫ 1

0 [σ 2(v)/f V (v)]dv. In
nonparametric regression literature, it is a tradition to refer to J and dR as the nonparametric
Fisher information and the coefficient of difficulty, respectively, and this terminology may be
also used for CSC models. Note that in the theory of efficient estimation of a parameter, in
a lower bound like (2.3) in place of factor [nJ (α,Q,d,β)]2(α−β)/(2α+1) we would see nJ∗
with J∗ being a classical Fisher information. The latter explains the terminology. Further,
the interested reader may compare the regression coefficient of difficulty dR with the CSC
coefficients of difficulty (2.2), and then realize a striking similarity between the coefficients
of difficulty. Fourth, in the dealer’s lower bound only the coefficient of difficulty d reflects
an underlying sampling model. Fifth, because we are assuming that the density f Z(z) is
bounded below from zero on [0,1], the coefficients of difficulty are finite and also bounded
below from zero (see the proof in the Supplementary Material (Efromovich (2021))). Sixth,
we can realize via analysis of (2.2) how the missing mechanisms affect the accuracy of es-
timation of FX , and how the effect depends on FX and f Z . Finally, note that the rate of
estimating the cdf is not n−1 but n−2α/(2α+1) which is traditional for estimating α-fold differ-
entiable densities based on direct observations of X; see Efromovich (1999). The latter could
be expected because when f Z is known then estimation of FX is converted into estimation
of f Z,�(x,1) for RMCSC data or f Z,�(x,0) for LMCSC data. This remark sheds light on
why the considered CSC problem is often referred to as ill-posed.
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REMARK 2.1. The obtained expressions (2.2) for coefficients of difficulty point upon op-
timal monitoring times Z that minimize them. It is directly verified by the Cauchy–Schwarz
inequality that the corresponding optimal monitoring densities are

f Z
RM(z) = [FX(z)]1/2∫ 1

0 [FX(x)]1/2 dx
I
(
z ∈ [0,1]),(2.4)

f Z
LM(z) = [1 − FX(z)]1/2∫ 1

0 [1 − FX(x)]1/2 dx
I
(
z ∈ [0,1]),(2.5)

and

(2.6) f Z
CSC(z) = [FX(z)(1 − FX(z))]1/2∫ 1

0 [FX(x)(1 − FX(x))]1/2 dx
I
(
z ∈ [0,1]).

3. Oracle-estimator for CDF. We begin with several new notations. Denote by
ϕj (x) := 21/2 cos(πjx), j = 1,2, . . . elements of the cosine basis on [0,1], and by
L0(x), . . . ,Ls−1(x) denote the first s elements of the so-called “shifted” Legendre or-
thonormal polynomials on [0,1] (recall that s := sn is defined at the end of the Intro-
duction). In particular, L0(x) = 1, L1(x) = 31/2(2x − 1), L2(x) = 51/2(6x2 − 6x + 1),
L3(x) = 71/2(20x3 − 30x2 + 12x − 1), and we also have the recurrence relation

(3.1)
Lk+1(x) = (2k + 3)1/2

[
(2k + 1)1/2

k + 1
(2x − 1)Lk(x)

− k

(k + 1)(2k − 1)1/2 Lk−1(x)

]
.

Then we apply Gram–Schmidt orthonormalization to {L0(x), . . . ,Ls−1(x), ϕ1(x), ϕ2(x), . . .}
and get a new polynomial-cosine basis {L0(x), . . . ,Ls−1(x),ψ1(x),ψ2(x), . . .}. Note that the
basis depends on n via sequence s := sn. Further, introduce two sequences

(3.2) J (n, d,α,Q) := ⌈
(n/d)1/(2α+1)[Qπ−2α(α + 1)(2α + 1)/α

]1/(2α+1)⌉
and J ′(n, d,α,Q) := �J (n, d,α,Q)/ ln(n + 20)� where d > 0 is a coefficient of difficulty
defined in (2.2) for a particular underlying model.

We begin with the case of CSC in presence of missing data. The oracle uses unbiased
estimators of Fourier coefficients κi := ∫ 1

0 FX(x)Li(x) dx and θj := ∫ 1
0 FX(x)ψj (x) dx. For

the RMCSC model, the corresponding Fourier estimators are

(3.3) κ̃Ri := n−1
n∑

l=1

�lLi(�lZl)

f Z(�lZl)
, θ̃Rj := n−1

n∑
l=1

�lψj (�lZl)

f Z(�lZl)
.

REMARK 3.1. The support of Z may be larger than a known support of X. Let
the support of X be still [0,1]. Then the only required change in the Fourier estimators
is to use extra factors I (�lZl ∈ [0,1]). For instance, in (3.3) the modified κ̃Ri will be
n−1 ∑n

l=1[�lLi(�lZl)I (�lZl ∈ [0,1])/f Z(�lZl)].
Fourier estimators for the LMCSC model are constructed similarly with the underlying

idea that in this model the natural estimand is the survival function 1 − FX(x). Keeping in
mind that L0(x) = 1 and orthonormality of the polynomial-cosine basis, we write

(3.4)

κ̃Li := I (i = 0) − n−1
n∑

l=1

(1 − �l)Li((1 − �l)Zl)

f Z((1 − �l)Zl)
,

θ̃Lj := −
n∑

l=1

(1 − �l)ψj ((1 − �l)Zl)

f Z((1 − �l)Zl)
.
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The oracle’s cdf estimator for RMCSC and LMCSC models is

(3.5)

F̃ X∗ (x) :=
s−1∑
i=0

κ̃iLi(x) +
J ′(n,d,α,Q)∑

j=1

θ̃jψj (x)

+
J (n,d,α,Q)∑

j=J ′(n,d,α,Q)+1

[
1 − (

j/J (n, d,α,Q)
)α]

θ̃jψj (x).

Here, the used {κ̃i , θ̃j , d} are either {κ̃Ri, θ̃Rj , dRM} for RMCSC data or {κ̃Li, θ̃Lj , dLM} for
LMCSC data. The reader familiar with Pinsker (1980) could notice that (3.5) is a modified
Pinsker’s oracle-estimator which recommends using smoothing coefficients for all Fourier
coefficients.

For CSC data with no missing, the oracle proposes a more complicated estimator whose
construction involves several steps. First, the support of X is divided into s consecutive subin-
tervals [br, br+1), br := (r − 1)/s, r = 1, . . . , s. In what follows, to simplify formulas, it
is assumed that the last right interval is [bs, bs+1] and not [bs, bs+1). Second, for an r th
subinterval we introduce its own polynomial-cosine basis {Lri := s1/2Li(s(x − br))I (x ∈
[br, br+1]), i = 0, . . . , s − 1,ψrj (x) := s1/2ψj(s(x − br))I (x ∈ [br, br+1]), j = 1,2, . . .}.
Third, the oracle defines a Fourier estimator

(3.6)

θ̌rj := λrn
−1

n∑
l=1

I (Zl ∈ [br, br+1))�lψrj (�lZl)

f Z(�lZl)

+ (1 − λr)(−1)n−1
n∑

l=1

I (Zl ∈ [br, br+1))(1 − �l)ψrj ((1 − �l)Zl)

f Z((1 − �l)Zl)
,

where

(3.7) λr :=
∫ br+1
br

[(1 − FX(x))/f Z(x)]dx∫ br+1
br

[1/f Z(x)]dx
.

Note how RMCSC and LMCSC observations are aggregated in (3.6) and that the aggrega-
tion is time-depending.

The final oracle’s step for CSC data is to calculate the following nonparametric estimator
of the cdf FX(x):

F̂ X∗ (x) =
s−1∑
i=0

n−1[
Nκ̃Ri + (n − N)κ̃Li

]
Li(x)(3.8)

+
s∑

r=1

[
J ′(n,dr ,α,Qr)∑

j=1

θ̌rjψrj (x)I
(
x ∈ [br, br+1)

)]
(3.9)

+
s∑

r=1

[
J (n,dr ,α,Qr)∑

j=J ′(n,dr ,α,Qr)+1

[
1 − (

j/J (n, dr, α,Qr)
)α]

(3.10)

× θ̌rjψrj (x)I
(
x ∈ [br, br+1)

)]
.

Here, N := ∑n
l=1 �l is the number of “cases” in the CSC sample,

(3.11) dr :=
∫ br+1

br

[
FX(x)

(
1 − FX(x)

)
/f Z(x)

]
dx,
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and

(3.12) Qr :=
∫ br+1

br

[(
FX(x) − F0(x)

)(α)]2
dx.

The main component of the estimator, that defines the rate and constant of the MISE con-
vergence, is (3.10). In (3.10), smoothing weights [1 − (j/J (n, dr, α,Qr))

α] resemble classi-
cal Pinsker’s weights but the difference is that Pinsker’s weights change only in the frequency
domain (depend solely on j ) while weights in (3.10) change in frequency and time domains.
As a result, the oracle uses a rather complicated aggregation of RMCSC and LMCSC data
to construct efficient estimator for CSC data. Further, the smoothing weights in (3.10) are
based on rather detailed information about F0(x), FX(x) and their derivatives. Also, note
that the oracle does not aggregate estimators (3.5) for RMCSC and LMCSC data, while the
latter looks like a reasonable approach for CSC data and indeed it is often recommended in
the literature.

Another important remark is that, while the oracle knows the pivot F0, the proposed oracle-
estimators directly estimate an underlying cdf FX(x) = F0(x) + g(x) and not g(x). The
reason is that the oracle’s aim is to guide the statistician who does not know the pivot F0(x).
This remark explains why in the following theorem it is assumed that F0(x) is smoother than
g(x), and hence does not affect the minimax MISE.

THEOREM 3.1. RMCSC, LMCSC and CSC models are considered simultaneously. Sup-
pose that Assumptions 1 and 2 hold, α ≥ 1, and additionally assume that F0 ∈ F(α + 1,Q′)
where Q′ < ∞. Then MISEs of the above-defined oracle-estimators attain the lower bound
(2.3), namely

(3.13)

sup
FX∈F(F0,α,Q,0,∞,∞)

EFX

{[
nJ (α,Q,d,0)

]2α/(2α+1)

×
∫ 1

0

(
F̄∗(x) − FX(x)

)2
dx

}
= (

1 + on(1)
)
,

where F̄∗(x) and d are the corresponding oracle-estimator and coefficient of difficulty for an
underlying model. In other words, the oracle-estimators are sharp minimax and attain the
lower bound of Theorem 2.1.

Note that in (3.13) the considered class of underlying cdfs is larger than the one used in
the lower bound of Theorem 2.1.

Theorem 3.1 ends the first stage of the minimax game when the dealer suggests a lower
bound and the oracle finds a corresponding oracle-estimator whose MISE attains this lower
bound. In other words, the lower bound (2.3) is sharp for the oracle and the proposed oracle-
estimators are efficient.

Before considering a data-driven estimator mimicking the oracle, it is prudent to explore
the case when the oracle does not know density f Z of the monitoring time Z. It can be
estimated for a CSC without missing but not for a missing CSC. Indeed, consider RMCSC
model when we observe Z only if � = 1, then

(3.14) f Z,�(z,1) = f Z(z)FX(z).

We see that RMCSC data are biased by f Z(z) and we need to either know or estimate f Z(z)

for consistent estimation of FX . Suppose that we may conduct a cross-sectional study of
the monitoring time Z and get an extra sample ZE1, . . . ,ZEm of size m from Z. Here, the
subscript E stresses that this is an extra sample from Z and it is unrelated to the lifetime of
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interest X. For instance, in the Introduction’s example X is the age of a worker at incidence
of a nonfatal disease and Z is the age of the worker at the time of study, and hence a cross-
sectional study of Z does not require getting information about the disease. Furthermore,
information about distribution of the age of workers may be already available. Overall, an
extra sampling of Z is less difficult and expansive than an underlying CSC sampling because
no information about the lifetime of interest X is collected.

For missing CSC, using an extra sample ZE1, . . . ,ZEm from Z we may estimate f Z(z)

by a data-driven (adaptive) estimate f̂ Z(z) (a particular example is the estimate (A.58) in the
Supplementary Material (Efromovich (2021))) and then plug it in (3.5). Denote this plug-in
oracle-estimator as F̌ X∗ (x). The same approach may be used for CSC without missing, but
instead we may use the available sample Z1, . . . ,Zn to construct the plug-in estimate f̂ Z and
use it in (3.8). The presented below proposition explores the both possibilities in parts A and
B, respectively.

THEOREM 3.2. Suppose that assumptions of Theorem 3.1 hold only now density f Z(z)

of the monitoring time is unknown, and f Z ∈ F(αz,Qz), αz ≥ 1, Qz < ∞.

A: Assume that an extra sample ZE1, . . . ,ZEm from Z is available, and an underlying
model is either RMCSC or LMCSC. Then

(3.15)
sup

FX∈F(F0,α,Q,0,∞,∞),f Z∈F(αz,Qz)

EFX

{∫ 1

0

(
F̌ X∗ (x) − FX(x)

)2
dx

}

≤ C max
(
n−2α/(2α+1),m−2αz/(2αz+1)), C < ∞.

If additionally

(3.16) m−αz/(2αz+1) = on(1)n−α/(2α+1),

then

(3.17)

sup
FX∈F(F0,α,Q,0,∞,∞),f Z∈F(αz,Qz)

EFX

{[
nJ (α,Q,d,0)

]2α/(2α+1)

×
∫ 1

0

(
F̌ X∗ (x) − FX(x)

)2
dx

}
= (

1 + on(1)
)
,

and the plug-in oracle-estimator is sharp minimax and attains the lower bound of Theo-
rem 2.1.

Also, consider the case when αz = 1, α is known, and m > c∗n, c∗ > 0. Then there exists
a cdf estimator F̄ (x,α) whose MISE decreases with the optimal rate, that is,

(3.18)
sup

FX∈F(F0,α,Q,0,∞,∞),f Z∈F(1,Qz)

EFX

{∫ 1

0

(
F̄ (x,α) − FX(x)

)2
dx

}

≤ Cn−2α/(2α+1).

B: Consider a setting when the assumption of part A about availability of an extra sample
from Z is not valid. Then for CSC without missing the above-presented results hold with the
estimator f̂ Z being based on the available monitoring times Z1, . . . ,Zn and with formally
setting m = n. No consistent estimation of FX is possible for RMCSC and LMCSC.

Let us comment on the presented in Theorem 3.2 results. To shed light on (3.15), let us
note that the cdf of interest FX(z) = f Z,�(z,1)/f Z(z) is the ratio. As a result, it is natural
to expect that the ratio may be estimated with the lower rate among the two. If (3.16) holds,
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then there is no effect of the nuisance function f Z(z) on the cdf estimation and even sharp-
minimax estimation is possible. F̄ (x,α) is correctly referred to as an estimator because it
is assumed that we know parameter α but not all other characteristics like Q or F0. The
latter is a traditional assumption when a practitioner is sure that an underlying cdf is, for
instance, at least twice differentiable and then α = 2 can be used. The upper bound (3.18)
shows that even if the nuisance density f Z(z) is rougher than the cdf, the cdf still can be
estimated with the optimal rate corresponding to its known smoothness. Keeping in mind
that we essentially estimate the ratio of two unknown densities, this is a nice outcome. Let us
also comment on two main assumptions. The first one is that X and Z are independent. This
is a traditional assumption in the CSC literature as well as in the survival analysis literature.
In some applications, the assumption about independence does not hold, and then the setting
is referred to as dependent CSC. We will consider this setting in Section 6 and in Examples
3–6 of the Supplementary Material (Efromovich (2021)). Here, it is worthwhile to explain
what happens when the proposed estimators are used for dependent CSC. If X and Z are
dependent, then in place of (1.1) we have

(3.19) f Z,�(z, δ) = f Z(z)
[
FX|Z(z|z)]δ[1 − FX|Z(z|z)]1−δ

,

where FX|Z(z|z) = P(X ≤ z|Z = z). Formula (3.19) implies that for dependent CSC the
proposed estimators estimate the univariate function FX|Z(z|z) in place of FX(z). Without
additional information, FX|Z(z|z) is the only characteristic of the lifetime of interest that
can be estimated, and it may be of interest on its own as shown in Example 3. The second
comment is about a possibility that the support of Z is a subset of the support of X. In this
case, we are estimating FX(x) over the support of Z, and the proposed estimators are again
minimax if we define the MISE over the support of Z. Example 7 discusses such a setting.

4. Adaptive estimation of CDF. As soon as an oracle-estimator of Pinsker’s type is
found, there exist data-driven methods; see a discussion in Efromovich (1999). Many promi-
nent methods mimic the oracle directly via using estimates of parameters α and Q that mim-
imize a penalized empirical risk. A more straightforward approach is to use a blockwise-
shrinkage methodology whose attractive theoretical and applied properties are discussed in
Efromovich (1999, 2018), Donoho et al. (1996), Hall, Kerkyacharian and Picard (1998),
Chicken and Cai (2005) and Zhang (2005). The underlying idea is to avoid estimation of
(α,Q) and instead mimic smoothing coefficients (1 − (j/J )α) in (3.5) and (3.10) by corre-
sponding statistics.

We begin with the case of RMCSC data when for mimicking oracle (3.5) our tasks are:

(1) Define blocks;
(2) Define sequences J ′ and J that do not depend on d , α and Q;
(3) Define blockwise-shrinkage statistics that mimic smoothing weights in the third sum

of (3.5).

For the first task, following Efromovich (1985) we introduce an increasing to infinity se-
quence of positive integers 1 = q1 < q2 < · · · that create blocks Bk := {qk, qk +1, . . . , qk+1 −
1} with lengths Tk := qk+1 −qk , k = 1,2, . . . , and let us also introduce a sequence of positive
and finite thresholds tk . To be specific, set Tk = k2 and tk = 1/ ln(ln(20 + k)), and let us also
note that there is a wide choice of possible blocks and thresholds discussed in Efromovich
(1999). For the second task, J ′ is defined as the smallest qK ′ − 1 larger than �n1/s�, and J

as the smallest qK − 1 larger than �sn1/3�. For the third task, we estimate the coefficient of
difficulty dRM by

(4.1) d̃RM := max

(
1/s, n−1

n∑
l=1

�l

[
f Z(�lZl)

]−2

)
,
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and introduce Sobolev statistics

(4.2) �̃k := ∑
j∈Bk

n∑
l1 �=l2=1

�l1�l2ψj(�l1Zl1)ψj (�l2Zl2)

Tkn(n − 1)f Z(�l1Zl1)f
Z(�l2Zl2)

.

The motivation of (4.2) is that E{�̃k} = T −1
k

∑
j∈Bk

θ2
j , and hence Sobolev statistics are

unbiased estimates of the Sobolev functionals; see Giné (1975).
Now we are ready to define an adaptive estimator of the cdf FX which mimics oracle (3.5)

and is based on the same Fourier estimators κ̃Ri and θ̃Rj defined in (3.3),

F̃ X(x) :=
s−1∑
i=0

κ̃RiLi(x) +
J ′∑

j=1

θ̃Rjψj (x)(4.3)

+
K∑

k=K ′

�̃k

�̃k + d̃RMn−1
I
(
�̃k > tkn

−1) ∑
j∈Bk

θ̃Rjψj (x).(4.4)

If bona fide properties are important, then the corresponding L2-projection should be added
(see Efromovich (1999) and Example 8 in the Supplementary Material (Efromovich (2021))).
Estimator for LMCSC data is constructed similarly.

For CSC data, estimator of spatial coefficients of difficulty dr is defined as

(4.5)

d̂r := [
n(n − 1)

]−1

×
n∑

l1 �=l2=1

�l1[1 − �l2]I (Zl1 ∈ [br, br+1))I (Zl2 ∈ [br, br+1))

[f Z(Zl1)f
Z(Zl2)]2 ,

estimator of spatial Sobolev functionals is

(4.6)

�̂rk := T −1
k

[
n(n − 1)

]−1 ∑
j∈Bk

n∑
l1 �=l2=1

�l1�l2

× ψrj (Zl1)ψrj (Zl2)I (Zl1 ∈ [br, br+1))I (Zl2 ∈ [br, br+1))

f Z(Zl1)f
Z(Zl2)

,

and the spatial Fourier estimator is

(4.7)

θ̂rj := λ̂rn
−1

n∑
l=1

I (Zl ∈ [br, br+1))�lψrj (Zl)

f Z(Zl)

+ (1 − λ̂r )(−1)n−1
n∑

l=1

I (Zl ∈ [br, br+1))(1 − �l)ψrj (Zl)

f Z(Zl)
,

where

(4.8) λ̂r := n−1 ∑n
l=1(1 − �l)I (Zl ∈ [br, br+1))[f Z(Zl)]−2∫ br+1

br
[1/f Z(x)]dx

.
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The adaptive cdf estimator is (compare with (3.8))

(4.9)

F̂ X(x) :=
s−1∑
i=0

n−1[
Nκ̃Ri + (1 − N)κ̃Li

]

+
s∑

r=1

J ′∑
j=1

θ̂rjψrj (x)I
(
x ∈ [br, br+1)

)

+
s∑

r=1

K∑
k=K ′

�̂rk

�̂rk + d̂rn−1
I
(
�̂rk > tkn

−1) ∑
j∈Bk

θ̂rjψrj (x)I
(
x ∈ [br, br+1)

)
.

THEOREM 4.1. RMCSC, LMCSC and CSC models are considered simultaneously. Sup-
pose that Assumptions 1 and 2 hold, α ≥ 1 and additionally assume that F0 ∈ F(α + 1,Q′)
where Q′ < ∞. Then MISEs of the above-defined estimators attain the lower bound (2.3),
namely

(4.10)

sup
FX∈F(F0,α,Q,0,∞,∞)

EFX

{[
nJ (α,Q,d,0)

]2α/(2α+1)

×
∫ 1

0

(
F̄ (x) − FX(x)

)2
dx

}
= (

1 + on(1)
)
,

where F̄ (x) and d are the estimator and coefficient of difficulty for an underlying model.

Theorem 4.1 ends outlined in the Introduction minimax game for the cdf estimation. We
now know that the lower bound of Theorem 2.1 is sharp and the proposed cdf estimators are
efficient and adaptive to an underlying smoothness of the cdf.

5. Density estimation. There are two possible approaches to the problem of estimation
of the density. The former is to estimate the cdf and then differentiate the estimate. This
approach is absolutely natural for CSC problem and, for instance, it is used in Groeneboom,
Jongbloed and Witte (2010) where derivative of a maximum likelihood cdf estimator is used
to estimate the density. Further, Efromovich (1999) shows that while derivative of a Pinsker’s
oracle is not sharp-minimax estimate of the derivative, derivative of a blockwise-shrinkage
estimate is.

Another approach, which is traditional in the classical density estimation literature, is to
bypass estimation of the cdf and consider density estimation as a self-defined nonparametric
problem. In this case, it is assumed that an underlying density f X(x) belongs to a local
Sobolev function class defined by a pivotal density f0(x) supported on [0,1] (compare with
(1.3))

(5.1)

F ′(f0, ν,Q, c0, ρ) :=
{
f : f (x) = f0(x) + g(x)I (0 ≤ x ≤ 1),

min
x∈[0,1]f (x) ≥ 0, g ∈ F(ν,Q), min

x∈[0,1]f0(x) ≥ c0,

max
x∈[0,1]

∣∣g(x)
∣∣ ≤ ρ,

∫ 1

0
g(x) dx = 0,

∫ 1

0
f0(x) dx = 1

}
.

Note that we need to set ν = α − 1 to get a correspondence between function classes (1.3)
and (5.1), and the latter explains why we use the new parameter ν and not α in (5.1).

For the class (5.1) and the case of directly observed X the minimax rate of MISE conver-
gence is the familiar n−2ν/(2ν+1). For RMCSC, LMCSC and CSC data, the rate slows down
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and, according to Theorem 2.1, it is n−2ν/(2ν+3). Note that the rate is the same as for the
case of estimation of a trivariate density (with ν derivatives in each variable) using direct
observations. This remark sheds additional light on the “curse of CSC.”

Let us explain how to construct a series density estimator for RMCSC model. Suppose
that we use a basis {μj(x), j = 0,1, . . .} on [0,1] whose elements are differentiable on the
interval. We may write down a density of interest as

(5.2) f X(x) =
∞∑

j=0

θ∗
j μj (x), x ∈ [0,1],

where θ∗
j := ∫ 1

0 f X(x)μj (x) dx. Furthermore, it is straightforward to write down a Fourier
coefficient θ∗

j as the expectation of a function of RMCSC data. Namely, using integration by
parts we get

(5.3)

θ∗
j =

∫ 1

0
f X(x)μj (x) dx

= [
μj(1)FX(1) − μj(0)FX(0)

] −
∫ 1

0
μ

(1)
j (x)FX(x) dx

= μj(1) −E

{
�

μ
(1)
j (�Z)

f Z(�Z)

}
.

In the last equality, we used FX(0) = 0 and FX(1) = 1.
Using (5.3) and the same sequences J ′, K ′, K , Bk , Tk and tk as in Section 4, we define a

data-driven density estimator

(5.4)

f̃ X(x) := 1 +
s−1∑
i=1

κ̃ ′
iLi(x) +

J ′∑
j=1

θ̃ ′
jψj (x)

+
K∑

k=K ′

�̃′
k

�̃′
k + d̃RMn−1

I
(
�̃′

k > tkn
−1) ∑

j∈Bk

θ̃ ′
jψj (x).

The used in (5.4) statistics are

κ̃ ′
i = Li(1) − n−1

n∑
l=1

�l

L
(1)
i (�lZl)

f Z(�lZl)
,(5.5)

θ̃ ′
j = ψj(1) − n−1

n∑
l=1

�l

ψ
(1)
j (�lZl)

f Z(�lZl)
,(5.6)

�̃′
k := T −1

k

[
n(n − 1)

]−1 ∑
j∈Bk

n∑
l1 �=l2=1

[
ψj(1) − �l1ψ

(1)
j (�l1Zl1)

f Z(�l1Zl1)

]

×
[
ψj(1) − �l2ψ

(1)
j (�l2Zl2)

f Z(�l2Zl2)

]
,

(5.7)

and d̃RM is defined in (4.1). If bona fide properties are important, then the corresponding
L2-projection should be added (see Efromovich (1999) where R-software is also available).

THEOREM 5.1. Suppose that Assumption 1 holds, the pivotal density f0 ∈ F(ν + 1,Q′),
ν ≥ 1, Q′ < ∞ and data are RMCSC. Then the density estimator (5.4) is sharp minimax,
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attains the lower bound of Theorem 2.1 and

(5.8)

sup
f X

Ef X

{[
nJ (ν + 1,Q,dRM,1)

]2ν/(2ν+3)

×
∫ 1

0

[
f̃ X(x) − f X(x))

]2
dx

}
= (

1 + on(1)
)
,

where the supremum is over f X ∈ F ′(f0, ν,Q,0,∞) defined in (5.1).

Note that the proposed density estimator (5.4) mimics the corresponding cdf estimator
(4.3). Absolutely similarly, following the methodology of Section 4, we define density esti-
mators for LMCSC and CSC cases.

6. Possible extensions.

6.1. Dependent lifetime of interest and monitoring time (dependent CSC). This setting
is referred to as “intriguing” in Jewell and van der Laan (2004a), and see also Wang et al.
(2012), Ma, Hu and Sun (2015) and Li et al. (2017) where further references may be found.
It was explained at the end of Section 3 that even for a CSC with no missing dependence
between X and Z precludes us from consistent estimation of the distribution of X. One of
the possibilities to resolve this issue, motivated by Example 4 in the Supplementary Material
(Efromovich (2021)), is to find an auxiliary variable V such that X and Z are conditionally
independent given V . Then the observed sample of size n is from: (�V,�Z,�) for RMCSC,
((1 − �)V, (1 − �)Z,�) for LMCSC and (V ,Z,�) for CSC. Here, as usual, � := I (X ≤
Z).

Suppose that the above-outlined remedy is feasible and there exists an auxiliary continuous
variable V such that X and Z are conditionally independent given V , and as before let us
assume that each variable is supported on [0,1]. The proposed solution is as follows. First of
all, similar to (1.1) we note that the joint (mixed) density of the triplet (V ,Z,�) is

(6.1)
f V,Z,�(v, z, δ) = f V (v)f Z|V (z|v)

[
FX|V (z|v)

]δ
× [

1 − FX|V (z|v)
]1−δ

, (v, z) ∈ [0,1]2, δ ∈ {0,1}.
Here, FX|V (x|v) := P(X ≤ x|V = v), f V is the density of V , and f Z|V is the conditional
density of Z given V . Formula (6.1) allows us to appreciate complexity of the considered de-
pendent CSC. The key difference between (6.1) and formula (1.1) for independent CSC is that
for dependent CSC we no longer have a direct access to the cdf of interest FX(x); instead, the
conditional cdf FX|V (x|v) is directly accessible. Nonetheless, let us explain how presented
in previous sections methodology may be used for estimating FX(x). Let ϕ0(x) = 1, ϕj (x),
j = 1,2, . . . be elements of a basis on [0,1]. Using formula FX(x) = E{FX|V (x|V )}, we can
write for Fourier coefficients of FX(x),

(6.2)

θj :=
∫ 1

0
FX(x)ϕj (x) dx

=
∫ 1

0
E

{
FX|V (z|V )

}
ϕj (z) dz =

∫ 1

0
E

{
f V,Z,�(V, z,1)

f V (V )f Z|V (z|V )

}
ϕj (z) dz

=
∫
[0,1]2

f V,Z,�(v, z,1)ϕj (z)

f Z|V (z|v)
dv dz = E

{
�ϕj(Z)

f Z|V (Z|V )

}
.

This equation points upon a sample mean Fourier estimator of θj , and hence upon a consistent
series estimator of FX(x) for the model of dependent RMCSC and a known conditional
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density f Z|V (z|v). The conditional density is known in controlled experiments; otherwise an
extra cross-sectional sampling of the pair (V ,Z) may be required, and let us stress that this
sampling does not involve the hidden lifetime of interest X. All other dependent CSC models
are considered similarly.

Now let us explain the heuristic of developing a lower minimax bound. Applying the
Gram–Schmidt orthonormalization with weight function f V (x) to the elements ϕ0(x), ϕj (x),
j = 1,2, . . . , we create new elements μj(x) such that

∫ 1
0 μj(x)μi(x)f V (x) dx = I (i = j).

Because
∫ 1

0 f V (x) dx = 1, we get μ0(x) = 1 and
∫ 1

0 μj(x)f V (x) dx = 0 for j ≥ 1. Set
νji := ∫

[0,1]2 f V (v)FX|V (x|v)ϕj (x)μi(v) dx dv. Then θj = ∫ 1
0 FX(x)ϕj (x) dx = νj0 and

(6.3)

FX|V (x|v) =
∞∑

j,i=0

νjiϕj (x)μi(v)

=
[ ∞∑

j=0

θjϕj (x)

]
+

[ ∞∑
j=0

∞∑
i=1

νjiϕj (x)μi(v)

]

=: FX(x) + q(x, v), (v, x) ∈ [0,1]2.

Expression (6.3) for FX|V as the sum of the estimand FX and the nuisance function q(x, v)

is the key in suggesting assumptions that will allow us to establish a lower minimax bound.

ASSUMPTION 3. The lifetime of interest X and the auxiliary variable V are continuous
random variables and each is supported on [0,1]. The density f V (v) of V is continuous and
positive on [0,1]. The lifetime of interest X and the monitoring time Z are conditionally
independent given V . A known conditional density f Z|V (z|v) is continuous on [0,1]2 and
min(z,v)∈[0,1]2 f Z|V (z|v) ≥ c∗ > 0.

ASSUMPTION 4. Let F
X|V
0 (x|v), (x, v) ∈ [0,1]2 be a pivotal conditional cdf satisfying

F
X|V
0 (0|v) = 0, F

X|V
0 (1|v) = 1, ∂F

X|V
0 (x|v)/∂x ≥ c2 > 0 for (x, v) ∈ [0,1]2. Using for-

mula (6.3), we define the corresponding pivotal cdf FX
0 (x) and the pivotal bivariate function

q0(x, v) such that

(6.4)
FX

0 (x) + q0(x, v) := F
X|V
0 (x|v),

FX
0 (x) :=

∫ 1

0
f V (v)F

X|V
0 (x|v) dv, (x, v) ∈ [0,1]2,

and it is assumed that FX
0 can be used as a pivotal cdf F0 for a class F(F0, α,Q, c0, c1, ρ)

defined in (1.3) (in other words, F
X|V
0 is such that the corresponding FX

0 satisfies the re-
strictions outlined in (1.3)). Furthermore, it is assumed that an underlying conditional cdf
FX|V (x|v) belongs to a class

(6.5)

D
(
F

(
FX

0 , α,Q, c0, c1, ρ
)
, q0, f

V , c2
)

:= {
FX|V∗ : FX|V∗ (x|v) = F∗(x) + q0(x, v), (x, v) ∈ [0,1]2;

F∗ ∈ F
(
FX

0 , α,Q, c0, c1, ρ
)}

,

where F
X|V∗ are bona fide conditional cumulative distribution functions, the class F is defined

in line (1.3) of Assumption 2 and the constant c2 is the above-introduced lower bound for the
partial derivative in x of the pivot F

X|V
0 (x|v).
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For dependent RMCSC, LMCSC and CSC models, introduce the corresponding function-
als

(6.6)

bRM :=
∫ 1

0

[∫ 1

0

f V (v)f Z|V (x|v)

FX|V (x|v)
dv

]−1
dx,

bLM :=
∫ 1

0

[∫ 1

0

f V (v)f Z|V (x|v)

(1 − FX|V (x|v))
dv

]−1
dx,

bCSC :=
∫ 1

0

[∫ 1

0

f V (v)f Z|V (x|v)

FX(x|v)(1 − FX|V (x|v))
dv

]−1
dx.

Recall our notation (FX(x))(β) for the cdf and the density of X when β = 0 and β = 1,
respectively.

THEOREM 6.1 (Lower minimax bound). RMCSC, LMCSC and CSC models and estima-
tion of the cdf or the density (FX(x))(β), β ∈ {0,1} are considered. Suppose that Assumptions
3–4 hold, α ≥ 1 + β , and a sample of size n is available. Then the following dealer’s lower
bound holds:

(6.7)

inf
�̃β

sup
FX|V

EFX|V
{[

nJ (α,Q,b,β)
]2(α−β)/(2α+1)

×
∫ 1

0

[
�̃β(x) − (

FX(x)
)(β)]2

dx

}
≥ (

1 + on(1)
)
.

Here, the coefficient b is defined in (6.6) for an underlying sampling model, the supremum
is over FX|V ∈ D(F(FX

0 , α,Q,1/sn, s
1/2
n ,1/sn), q0, f

V ,1/sn) defined in (6.5) and sn is de-
fined at the end of the Introduction; the infimum has taken over all possible dealer-estimators
�̃β that know the sample, densities f V (v) and f Z|V (z|v), and everything else about the class
(6.5), namely the dealer also knows FX

0 (x), q0(x, v), α, Q and sn.

Now we can begin to explore upper bounds for oracle-estimators. Correspondingly, for
dependent RMCSC, LMCSC and CSC models introduce

(6.8)

d∗
RM :=

∫
[0,1]2

f V (v)FX|V (x|v)

f Z|V (x|v)
dx dv,

d∗
LM :=

∫
[0,1]2

f V (v)(1 − FX|V (x|v))

f Z|V (x|v)
dx dv,

d∗
CSC :=

∫
[0,1]2

f V (v)FX|V (x|v)(1 − FX|V (x|v))

f Z|V (x|v)
dx dv.

Following (3.3), (3.4) and (6.2), define for the considered dependent RMCSC model
Fourier estimators

(6.9) κ̃∗
Ri := n−1

n∑
l=1

�lLi(�lZl)

f Z|V (�lZl|�lV )
, θ̃∗

Rj := n−1
n∑

l=1

�lψj (�lZl)

f Z|V (�lZl|�lVl)
,

and for dependent LMCSC

(6.10)

κ̃∗
Li := I (i = 0) − n−1

n∑
l=1

(1 − �l)Li((1 − �l)Zl)

f Z|V ((1 − �l)Zl|(1 − �l)Vl)
,

θ̃∗
Lj := −n−1

n∑
l=1

(1 − �l)ψj ((1 − �l)Zl)

f Z|V ((1 − �l)Zl|(1 − �)Vl)
.
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Then the oracle’s cdf estimator for RMCSC and LMCSC models is

(6.11)

F̃ X∗ (x) :=
s−1∑
i=0

κ̃∗
i Li(x) +

J ′(n,d∗,α,Q)∑
j=1

θ̃∗
j ψj (x)

+
J (n,d∗,α,Q)∑

j=J ′(n,d∗,α,Q)+1

[
1 − (

j/J
(
n,d∗, α,Q

))α]
θ̃∗
j ψj (x).

The used sequences and functions are defined in Section 3, and the used {κ̃∗
i , θ̃∗

j , d∗} are either

{κ̃∗
Ri, θ̃

∗
Rj , d

∗
RM} for RMCSC data or {κ̃∗

Li, θ̃
∗
Lj , d

∗
LM} for LMCSC data. Further, the estimator

for the dependent CSC data is again the aggregated one according to (3.8).

THEOREM 6.2 (Upper bound for CDF). Dependent RMCSC, LMCSC and CSC models
are considered simultaneously. Suppose that Assumptions 3–4 hold, α ≥ 1 and additionally
assume that F0 ∈ F(α + 1,Q′) where Q′ < ∞. Then MISEs of the above-defined oracle-
estimators satisfy the following upper bound:

(6.12)

sup
FX|V

EFX|V
{[

nJ
(
α,Q,d∗,0

)]2α/(2α+1)

×
∫ 1

0

(
F̄∗(x) − FX(x)

)2
dx

}
≤ (

1 + on(1)
)
,

where F̄∗(x) and d∗ are oracle-estimators and coefficients of difficulty for the corresponding
models, and the supremum is over FX|V ∈ D(F(FX

0 , α,Q,0, ∞,∞), q0, f
V ,0).

Three comments about the result are due. First, in a traditional minimax setting a class
of estimands (here FX) is considered. This approach cannot be utilized here because FX

does not define the joint distribution of (V ,Z,�) while the conditional cdf FX|V does. The
second comment is that there is a gap between constants b and d∗ defined in (6.6) and (6.8).
Using the Cauchy–Schwarz inequality, it is straightforward to establish that b ≤ d∗ for each
model. We may conclude that the dependence does not effect rates of the MISE convergence,
and we know the range of possible sharp constants. The last comment is that the proposed
construction of the estimator does not require knowledge of the distribution of the auxiliary
variable V .

We have explained how the more complicated theoretical results may be established for
dependent CSC. Further, the presented Fourier estimators allow us to use the R software of
Efromovich (2018), and the discussion will be continued in Examples 4–6 of the Supplemen-
tary Material (Efromovich (2021)).

6.2. Case-, control- and case-control CSC. This sampling model was explained in Re-
mark 1.1. Recall that two samples with deterministic sample sizes may be available. The first
one, of size m, is a sample of monitoring times (referred to as “cases”) from the subpopulation
of monitoring times with already occurred events of interest, that is, with � = I (X ≤ Z) = 1.
To stress that the distribution of a case is different from the underlying distribution of
the monitoring time Z, let us denote the observed variable (the case) as T , and note that
f T (t) = f Z|�(t |1). The second sample of size cm is a sample of monitoring times (referred
to as “controls”) from the subpopulation of monitoring times with not yet occurred events of
interest, that is, from the subpopulation with � = 0, and we denote the corresponding moni-
toring time (the control) as Y . The distribution of Y is the conditional distribution of Z given
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� = 0, that is, f Y (y) = f Z|�(y|0). Using Assumption 1 and formula (1.1), we conclude that

(6.13)

f T (t) = f Z|�(t |1) = f Z(t)FX(t)

p
,

f Y (y) = f Z|�(y|0) = f Z(y)[1 − FX(y)]
1 − p

, p := P(� = 1).

If we compare (6.13) with (1.1), then it becomes clear that, in terms of the theory of es-
timating the distribution of X, the key difference between case-control and traditional CSC
samples is that the latter, due to employing a binomial sampling, allows us to estimate prob-
ability p = P(� = 1) by the sample mean n−1 ∑n

l=1 �l , while the former precludes us from
estimating p, and hence from consistent estimation of the distribution of X. More discussion
of this issue can be found in Jewell and van der Laan (2004b).

Despite the above-made observation, the developed in Sections 2–5 CSC theory allows us
to present several interesting theoretical results for the considered models. We begin with a
lower minimax bound. Recall that p := P(X ≤ Z) = P(� = 1), constant c is the factor which
defines the size cm of the sample of controls, coefficients of difficulty dRM for RMCSC and
dLM for LMCSC are defined in line (2.2) of Section 2, and introduce a new coefficient of
difficulty

(6.14) dCC :=
∫ 1

0

p(1 − p)FX(x)(1 − FX(x)

f Z(x)[(1 − p)(1 − FX(x)) + cpFX(x)] dx.

THEOREM 6.3 (Lower bound). Models of a case-CSC sampling which collects m cases,
a control-CSC sampling which collects cm controls and a case-control CSC sampling which
collects m cases and cm controls, are considered simultaneously. Suppose that Assumptions
1 and 2 hold and α ≥ 1 + β . Then the lower bound (2.3) is valid with the following modifi-
cations: for the case-CSC replace (n, d) with (m,pdRM); for the control-CSC replace (n, d)

with (cm, (1 − p)dLM); for the case-control CSC replace (n, d) with (m,dCC).

As it was explained earlier, the probability p := P(X ≤ Z) becomes a main player in
constructing a consistent estimator and establishing an upper bound. If p is known (see a
discussion in Jewell and van der Laan (2004b)), then a modification of the corresponding
efficient estimators of Sections 3–5 is straightforward. For instance, for a case-CSC sample
of size m we replace (3.3) by

(6.15) κ̃i := m−1
m∑

l=1

pLi(Tl)

f Z(Tl)
, θ̃j := m−1

m∑
l=1

pψj(Tl)

f Z(Tl)
,

and for a control-CSC sample of size cm we replace (3.4) by

(6.16)

κ̃i := I (i = 0) − (cm)−1
cm∑
l=1

(1 − p)Li(Yl)

f Z(Yl)
,

θ̃j := −(cm)−1
cm∑
l=1

(1 − p)ψj (Yl)

f Z(Yl)
.

To aggregate these two samples of cases and controls and consider a case-control CSC, we
may use the approach of Section 3 with (3.6) being replaced by

(6.17)

θ̌rj := λrm
−1

m∑
l=1

pI (Tl ∈ [br, br+1))ψrj (Tl)

f Z(Tl)

− (1 − λr)(cm)−1
cm∑
l=1

(1 − p)I (Yl ∈ [br, br+1))ψrj (Yl)

f Z(Yl)
,
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and (3.7) being replaced by

(6.18) λr :=
∫ br+1
br

[c(1 − p)(1 − FX
0 (x))/f Z(x)]dx∫ br+1

br
[(pFX

0 (x) + c(1 − p)(1 − FX
0 (x)))/f Z(x)]dx

.

THEOREM 6.4. Let probability p := P(� = 1) of the “case” be known. Consider cdf es-
timators of Section 3 with the proposed Fourier estimators (6.15)–(6.17) and weights (6.18).
Then the assertions of Theorems 3.1–3.2 hold for case-CSC, control-CSC and case-control
CSC samples with corresponding modifications of (n, d) defined in Theorem 6.3.

In an absolutely similar way, all other previously discussed settings may be considered;
in other words, the developed methodology is directly applicable to a case and control CSC
whenever p is known.

Probability p := P(� = 1) is typically unknown, and then in general, additional infor-
mation is needed for consistent estimation of the distribution of X. Nonetheless, the above-
presented estimators shed light on an attractive possibility to estimate the so-called shape of a
curve of interest. Indeed, if for instance we check formula (6.15) then we may notice that all
Fourier coefficients are proportional to p. As a result, even if p is unknown we can estimate
shape of the curve. Of course, similar to missing CSC, we still need to know density f Z . The
interested reader can find continuation of the discussion in Example 7 of the Supplementary
Material (Efromovich (2021)).

6.3. Doubly CSC (DCSC). Consider a CSC sampling when we collect observations from
(Z,�), and here as before � := I (X ≤ Z). If it is additionally known that X = B +T , where
B is a nuisance random lifetime and T (not X) is the lifetime of interest whose distribution
we would like to estimate, then the model is called doubly CSC. Well-understood examples
of T are the time to divorce after marriage at age B , or how long it takes to get sick after
exposure to a virus. More examples and a discussion of DCSC can be found in Jewell and
van der Laan (2004a), Li et al. (2020) and Malov (2019) where further references may be
found. To shed light on DCSC, consider as an example an underlying RMCSC model and
then write down an analog of (1.1),

(6.19)
f Z,�(z,1) = f Z(z)P(B + T ≤ z|Z = z)

= f Z(z)

∫ z

0
FT |Z,B(z − b|z, b) dFB|Z(b|z).

This formula explains complexity of DCSC, and it also sheds light on a possible solution
for some settings considered in the DCSC literature. For instance, consider a DCSC model
where T and Z − B are mutually independent and B is observed. In this case, the induced
monitoring time of T is Z − B and we can get a sample from (Z − B, I (T ≤ Z − B)).
As a result, the DCSC problem becomes the already considered CSC problem with Z − B

being the induced (and observable) monitoring time. If B is not observed but its distribution
is known and (B,T ,Z) are mutually independent, then (6.19) implies that we need to solve
a deconvolution problem. It is known that the deconvolution problem at hand is ill-posed
even if X = B + T is observed directly; see a discussion in Efromovich (1999). The problem
becomes even more challenging when the assumption of independence is relaxed and no
longer nuisance distributions are known. Then extra information is needed for consistent
estimation. Another often considered DCSC model is when a sample from (�′,�,Z) is
available where �′ := I (B ≤ Z) and � := I (X ≤ Z).

It is an open, challenging and practically important problem to develop theory of efficient
estimation for DCSC data with unobserved nuisance variables and unknown nuisance distri-
butions.
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