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Covariances and spectral density functions play a fundamental role in the
theory of time series. There is a well-developed asymptotic theory for their es-
timates for low-dimensional stationary processes. For high-dimensional non-
stationary processes, however, many important problems on their asymptotic
behaviors are still unanswered. This paper presents a systematic asymptotic
theory for the estimates of time-varying second-order statistics for a general
class of high-dimensional locally stationary processes. Using the framework
of functional dependence measure, we derive convergence rates of the es-
timates which depend on the sample size T , the dimension p, the moment
condition and the dependence of the underlying processes.

1. Introduction. During the past several decades, there has been a well-developed the-
ory for stationary processes. However, the assumption of stationarity may not be valid in
many applications. Nonstationary time series analysis has gained popularity in finance, sig-
nal processing, neuroscience, meteorology, seismology and many other areas.

As an important class of nonstationary processes, locally stationary processes have at-
tracted considerable attention in the past few years. Different approaches for modelling
locally stationary processes have been developed. For example, Dahlhaus (1997, 2000a)
adopted a time-varying spectral representation; see also Priestley (1981, 1988). Mallat, Pa-
panicolaou and Zhang (1998) considered processes whose covariance operators are time-
varying convolutions. Another method of modelling nonstationarity is to approximate non-
stationary processes by piecewise stationary processes; see Adak (1998) and Ombao, von
Sachs and Guo (2005). Other notable work includes Nason, von Sachs and Kroisandt (2000),
Moulines, Priouret and Roueff (2005) and more recently Zhou (2010) and Vogt (2012); see
Dahlhaus (2012) for a comprehensive overview.

Parametric locally stationary processes with time-varying coefficients have been largely
studied; see, for example, time-varying AR models (Subba Rao (1970), Dahlhaus (1997),
Moulines, Priouret and Roueff (2005)), ARMA models (Grenier (1983), Dahlhaus and
Polonik (2009)), ARCH and GARCH models (Dahlhaus and Subba Rao (2006), Dahlhaus
and Subba Rao (2007), Hafner and Linton (2010), Fryzlewicz and Subba Rao (2011)). In this
paper, we consider nonparametric locally stationary processes. Let (Xt,T )Tt=1 be the observed
sequence generated from the model

Xt,T = Xt(t/T ) = G(t/T ,Ft ) = (Xt1,T , . . . ,Xtp,T )�,(1.1)

where Ft = (. . . , εt−1, εt ), εt , t ∈ Z, are i.i.d. random elements, G(·, ·) = (g1(·, ·), . . . ,
gp(·, ·))� is a R

p-valued measurable function such that Xt(u) = G(u,Ft ) is a well-defined
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random vector and the uniform stochastic Lipschitz continuity holds: there exists some con-
stant K > 0 for which

max
1≤j≤p

∥∥gj (u,Ft ) − gj (v,Ft )
∥∥ ≤ K|u − v| for all u, v ∈ [0,1],(1.2)

where, for a random variable X, the L2 norm ‖X‖ = (EX2)1/2. In the scalar case with p =
1, Zhou (2010) performed nonparametric specification tests for quantile curves under the
framework of (1.1). If G(u, ·) does not depend on u, then (1.1) becomes Xt = G(Ft ), which
defines a large class of stationary processes. Under this framework, Chen, Xu and Wu (2013)
quantified the convergence rates in covariance and precision matrix estimation. Zhang and
Wu (2017) derived a Gaussian approximation result for the maximum of the sample mean
vector of high-dimensional stationary processes. It is still an open problem on whether an
asymptotic theory for the estimates of second-order characteristics including covariance and
spectral density matrices can be developed for high-dimensional nonstationary processes via
such a general data-generating mechanism.

Estimating second-order characteristics is of fundamental importance in many aspects of
statistics. During the past decades, estimation of various cases of second-order statistics has
been studied for dependent and nonstationary processes. For example, in finance, Jacquier,
Polson and Rossi (2004) concerned multivariate stochastic volatility models parameterized
by time-varying covariance matrices with fat tails and correlated errors. In environmental
science, Wikle and Hooten (2010) proposed nonlinear spatiotemporal dynamic models to ac-
commodate quadratic interactions between processes which are critical for many geophysical
(Kondrashov et al. (2005), Majda, Abramov and Grote (2005)) and ecological (Hooten and
Wikle (2008)) processes. In electroencephalographic (EEG) studies, Prado, West and Krystal
(2001) considered dynamic regression models with time-varying lag-lead structure to analyze
multichannel EEG recordings of scalp electrical potential activity, and Park, Eckley and Om-
bao (2014) developed multivariate locally stationary wavelet processes to capture the time-
evolving scale-specific cross-dependence between components of the nonstationary signals.
In essence, researchers face a number of challenges in solving these real-world problems: (i)
nonlinear dynamics of data generating systems, (ii) temporally dependent and nonstationary
observations, (iii) non-Gaussian distributions and/or (iv) high-dimensional data.

Motivated by those real-world applications, we shall study properties of estimates of
second-order characteristics of a general class of locally stationary processes which can be
high-dimensional and non-Gaussian, and lay a theoretical foundation for estimation consis-
tency. In Section 2, we shall introduce the framework of high-dimensional locally stationary
processes and some concepts about functional dependence measures that are useful for es-
tablishing an asymptotic theory. Section 3 concerns the estimation of time-varying autoco-
variance matrix functions. Section 4 introduces the nonparametric estimation of time-varying
spectral density and coherence matrices. In Section 5, we use the constrained �1 minimiza-
tion approach to estimate the inverse of the spectral density matrix which can be used to
identify the graphical structure for high-dimensional locally stationary processes. Section 6
provides Hanson–Wright-type inequalities for tail probabilities for nonstationary processes
with finite polynomial moments. Proofs are given in the Supplementary Material (Zhang and
Wu (2020)).

We now introduce some notation. For a random variable X and q ≥ 1, we define ‖X‖q =
(E|X|q)1/q . Denote ‖X‖ = ‖X‖2 and the operator E0 with E0(X) := X − EX. Define
the projection operator Pt · = E(·|Ft ) − E(·|Ft−1) where Ft = (. . . , εt−1, εt ). For a vector
v = (v1, . . . , vp)� and q ≥ 1, we define |v|q = (

∑p
j=1 |vj |q)1/q and |v|∞ = maxj |vj |. For

a matrix A = (aij )
p
i,j=1, define the element-wise �∞ norm |A|∞ = maxi,j |aij | and the ma-

trix �1 norm |A|�1 = maxj

∑
i |aij |. Write the p × p identity matrix as Ip . For an interval
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I ⊂ R, denote by CiI , i ∈ N, be the collection of functions that have i-th order continuous
derivatives on I . For two real numbers, set x ∨ y = max(x, y) and x ∧ y = min(x, y). We
use C,C1,C2, . . . to denote positive constants whose values may differ from place to place.
A constant with a symbolic subscript is used to emphasize the dependence of the value on the
subscript. Throughout the paper, we use r, s, t to denote time indexes and use i, j to denote
dimension indexes.

2. High-dimensional locally stationary processes. Consider the p-dimensional pro-
cess (Xt,T ) generated from the model (1.1). For convenience of notation, we shall abbreviate
Xt,T and (Xt1,T , . . . ,Xtp,T )� as Xt and (Xt1, . . . ,Xtp)�, respectively. The stochastic conti-
nuity condition (1.2) indicates that Xtj (u) = gj (u,Ft ) changes smoothly in u. One has local
stationarity in the sense that, for a fixed u, the nonstationary process (Xtj ) for t over the win-
dow T (u − b) ≤ t ≤ T (u + b) with a small b can be approximated by the stationary process
Xtj (u) = gj (u,Ft ) in view of

∥∥Xtj − Xtj (u)
∥∥ ≤ K

∣∣∣∣ t

T
− u

∣∣∣∣,
which converges to 0 if t/T −u → 0. In the stationary case in which G(·, ·) does not depend
on u, one can let K = 0 in (1.2). With condition (1.2), the form (1.1) provides a convenient
framework for studying locally stationary processes and covers a large range of nonstationary
time series models. In the scalar case with p = 1, Wiener (1958) studied stationary processes
that can be coded by using i.i.d. random variables εt via a possibly nonlinear function G; see
also Rosenblatt (1971), Priestley (1988), Tong (1990), Wu (2005), Tsay (2005)) for classes
of processes of this form. The representation Xt = G(Ft ) also includes recursive model of
the form Xt = G(Xt−1, εt ), which includes Markov chain models and nonlinear autoregres-
sive models such as threshold autoregressive models, autoregressive models with conditional
heteroscedasticity and exponential autoregressive models. By allowing the data-generating
function G to change flexibly over time u, it extends a large number of existing stationary
processes into their nonstationary counterparts in a natural way.

To develop an asymptotic theory for estimators of time-varying second-order characteris-
tics, we need to introduce appropriate dependence measures. Assume that
max1≤j≤p supu∈[0,1] ‖gj (u,F0)‖q < ∞ for some q ≥ 1. Let ε′

s, εt , s, t ∈ Z, be i.i.d. ran-
dom variables. For t ≥ 0 and 1 ≤ j ≤ p, we define the element-wise functional dependence
measures

δt,q,j = sup
u∈[0,1]

∥∥gj (u,Ft ) − gj (u,Ft,{0})
∥∥
q,(2.1)

where Ft,{l} = (. . . , εl−1, ε
′
l , εl+1, . . . , εt ) is a coupled version of Ft with εl in Ft replaced

by ε′
l , and the uniform or L∞ functional dependence measure

ωt,q = sup
u∈[0,1]

∥∥∣∣G(u,Ft ) − G(u,Ft,{0})
∣∣∞∥∥

q .(2.2)

Note that Ft,{0} = Ft if t < 0. Hence, δt,q,j = 0 and ωt,q = 0 for t < 0. Wu (2005) introduced
a functional dependence measure for stationary processes in which the data-generating mech-
anism gj does not vary with time u. In our setting, the quantity δt,q,j measures the depen-
dence of gj (u,Ft ) on the single input ε0 over u ∈ [0,1], which can be viewed as the uniform
dependence measure with lag t for locally stationary processes.

Equipped with the dependence measures in (2.1) and (2.2), we define in the following the
dependence adjusted norms (d.a.n.):

‖X·j‖q,α = sup
m≥0

(m + 1)α�m,q,j , α ≥ 0 where �m,q,j =
∞∑

t=m

δt,q,j ,(2.3)
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∥∥|X·|∞
∥∥
q,α = sup

m≥0
(m + 1)α�m,q,α ≥ 0 where �m,q =

∞∑
t=m

ωt,q .(2.4)

We use α to depict the decay rate of the cumulative (tail) dependence measure �m,q,j =∑∞
t=m δt,q,j by noting that �m,q,j ≤ ‖X·j‖q,α(m + 1)−α for all m ∈N. In this sense, it quan-

tifies the strength of temporal dependence: larger α implies faster decay of tail dependence
measures, and thus weaker temporal dependence. We can interpret the quantity ‖X·j‖q,α as
the qth moment by taking dependence into account. Elementary calculations show if Xtj ,
t ∈ Z, are i.i.d., then ‖Xij‖q ≤ ‖X·j‖q,α ≤ 2‖Xij‖q , suggesting that the dependence ad-
justed norm is equivalent to the classical Lq norm. Due to temporal dependence, it may
happen that maxt ‖Xtj‖q < ∞ while ‖X·j‖q,α = ∞. For example, if δt,q,j  t−β , β > 1,
then ‖X·j‖q,α = ∞ if α > β − 1 and ‖X·j‖q,α < ∞ if α ≤ β − 1.

The d.a.n. ‖X·j‖q,α accounts for temporal dependence for the component process
(Xtj )t∈Z. To adjust for dimensionality, we further define respectively the overall and the
uniform dependence adjusted norms


q,α =
( p∑

j=1

‖X·j‖q/2
q,α

)2/q

, �q,α = max
1≤j≤p

‖X·j‖q,α.(2.5)

The quantities ‖|X·|∞‖q,α , 
q,α and �q,α provide a concise and natural measure of depen-
dence which can effectively account for high dimensionality and temporal dependence. They
will be imposed in our theorems. It can be easily seen that �q,α ≤ ‖|X·|∞‖q,α ≤ 
q,α . They
may be unbounded functions in terms of the dimension p.

EXAMPLE 2.1 (Time-varying nonlinear vector autoregressive model). Let εt be i.i.d.
and consider the p-dimensional process X◦

t,T , t = 1, . . . , T , which is generated from the
time-varying recursive model

X◦
t,T = R

(
t/T ,X◦

t−1,T , εt

)
,(2.6)

where sup0≤u≤1 ‖|R(u, x0, ε0)|∞‖q < ∞ for some q ≥ 2 and x0 and it satisfies

χ := sup
u∈[0,1]

sup
x �=y

‖|R(u, x, ε0) − R(u, y, ε0)|∞‖q

|x − y|∞ < 1.(2.7)

The tvVAR(1) model X◦
t,T = A(t/T )X◦

t−1,T + εt for some transition matrix A(·) is a special
case of (2.6). It also includes other time-varying parametric models such as tvVARCH(1) and
tvTAR(1); see, for example, Dahlhaus and Subba Rao (2006) and Zhou and Wu (2009) for
low-dimensional processes. We shall show that the process defined by the recursion (2.6) can
be well approximated by our (1.1). For fixed u ∈ [0,1], the stationary approximation in this
case is given by

Xt(u) = R
(
u,Xt−1(u), εt

)
.(2.8)

By the arguments of Theorem 2 in Wu and Shao (2004), for any u ∈ [0,1], (2.8) admits a
unique stationary solution and iterations of (2.8) lead to Xt(u) = G(u,Ft ). Assume M :=
supu∈[0,1] ‖K(Xt(u))‖q < ∞ where

K(x) = sup
u�=v

‖|R(u, x, ε0) − R(v, x, ε0)|∞‖q

|u − v| .(2.9)

By generalizing Lemma 4.5 in Dahlhaus, Richter and Wu (2019) to the vector case, we can
obtain ‖|Xt(u) − Xt(v)|∞‖q ≤ M|u − v|/(1 − χ) and

sup
t=1,...,T

∥∥∣∣X◦
t,T − Xt(t/T )

∣∣∞∥∥
q ≤M χ

(1 − χ)2 · T −1.(2.10)
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Note that the approximation error in (2.10) cannot be avoided; see equation (49) in
Dahlhaus (2012) for the tvAR(1) case. For the more general version of (2.6), X◦

t,T =
R(t/T ,X◦

t−1,T ,X◦
t−2,T , . . . ,X◦

t−d,T , εt ), d ≥ 2, we can compute the approximation error
similarly, as stated in Lemma A.1.

EXAMPLE 2.2 (Time-varying vector linear processes). Let εtj , t, j ∈ Z, be i.i.d. ran-
dom variables with mean 0, variance 1 and finite qth moment μq := E(|εtj |q) < ∞, q > 2.
Let Am(u) = (am,ij (u))

p
i,j=1 be p × p matrices with real entries such that am,ij (u) ∈

C1[0,1], m ≥ 0, 1 ≤ i, j ≤ p, and supu∈[0,1]
∑∞

m=0 tr[Am(u)Am(u)�] < ∞. Write εt =
(εt1, . . . , εtp)�. By Kolmogorov’s three series theorem, the p-dimensional linear process

Xt(u) =
∞∑

m=0

Am(u)εt−m(2.11)

is well defined and the assumptions on Am(u) ensure the local stationarity of the process
Xt(t/T ). Let Am,j ·(u) and Am,·j (u) be the j th row and j th column of Am(u). By Lemma
D.3, the element-wise and L∞ functional dependence measures can be computed by

δt,q,j = sup
u∈[0,1]

∥∥At,j ·(u)ε0
∥∥
q ≤ Cq sup

u∈[0,1]
∣∣At,j ·(u)

∣∣
2μ

1/q
q ,

ωt,q = sup
u∈[0,1]

∥∥∣∣At(u)ε0
∣∣∞∥∥

q

≤ Cq(1 ∨ logp)1/2 sup
u∈[0,1]

( p∑
j=1

∣∣At,·j (u)
∣∣2∞

)1/2

p1/qμ1/q
q ,

since ‖|ε0|∞‖q ≤ p1/qμ
1/q
q . If there exist c > 1 and K1,K2 > 0, such that for all t ≥ 0

and 1 ≤ j ≤ p, supu∈[0,1] |At,j ·(u)|2 ≤ K(t + 1)−c and supu∈[0,1](
∑p

j=1 |At,·j (u)|2∞)1/2 ≤
K2(t + 1)−c hold, then with α = c − 1, we have


q,α ≤ Cq,αK1p
2/qμ1/q

q , �q,α ≤ Cq,αK1μ
1/q
q ,∥∥|X·|∞

∥∥
q,α ≤ C′

q,αK2(1 ∨ logp)1/2p1/qμ1/q
q ,

where the constants Cq,α,C′
q,α both depend on q and α only. It also applies to the process

with a Lipschitz continuous transform of Xt(u) in (2.11): Yt (u) = (Yt1(u), . . . , Ytp(u))�,
where Ytj (u) = gj (Xtj (u)) and gj (·) are Lipschitz continuous with uniformly bounded Lip-
schitz constants.

3. Estimation of autocovariance matrix functions. Autocovariances play an impor-
tant role in almost every aspect of time series analysis. For zero-mean stationary processes
Xt = G(Ft ) where the function G(u, ·) in (1.1) does not depend on u, we shall estimate the
autocovariance matrices l = E(X0X

�
l ) based on the observations X1, . . . ,XT by

̂l = 1

T

T∑
t=l+1

Xt−lX
�
t for l ≥ 0,(3.1)

and ̂l = ̂�−l for l < 0. For the locally stationary process (1.1) of mean zero, the time-varying
autocovariance matrix with lag l is defined by

l(u) = E
(
X0(u)Xl(u)�

)
where Xt(u) = G(u,Ft ).(3.2)
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For fixed u ∈ (0,1), by local stationarity, Xtj ≈ gj (u,Ft ) for t close to T u. Thus we can use
observations Xt with t close to T u to construct the estimator ̂l(u). Specifically, let bT be
the bandwidth

T1(u) = �T u� − �T bT � + 1, T2(u) = �T u� + �T bT �
and M = 2�T bT � be the window width. For u ∈ [bT ,1 − bT ] and 0 ≤ l < M , a natural
estimator of l(u) from the sample {Xt , t = T1(u), . . . , T2(u)} is

̂l(u) = 1

M

T2(u)∑
r=l+T1(u)

Xr−lX
�
r ,(3.3)

and ̂l(u) = ̂�−l(u) for l < 0.
We shall study the maximum deviation over the range 0 ≤ l < m with m ≤ �Mβ� for some

0 ≤ β < 1, that is,

ψ�
T := max

0≤l<m
sup

u∈[bT ,1−bT ]
∣∣̂l(u) − l(u)

∣∣∞,(3.4)

or in the stationary case

ψ̃�
T := max

0≤l<m
|̂l − l|∞.

For univariate stationary processes with p = 1, uniform convergence of autocovariance es-
timates is closely related to the estimation of orders of ARMA processes or linear systems
in general. The pioneering works in this direction were given by E. J. Hannan and his col-
laborators; see, for example, Hannan (1974) and An, Chen and Hannan (1982). Readers can
find a summary of those works and references in Section 5.3 of Hannan and Deistler (1988).
Giurcanu and Spokoiny (2004) obtained an upper bound of max0≤l<m |̂l − l| for Gaussian
stationary processes and also extended to the locally stationary case (cf. Propositions 2.3 and
3.5 therein). More recently, Xiao and Wu (2014) considered maximum deviations for sample
autocovariances of univariate stationary processes.

Since the process Xt can be nonlinear, nonstationary, non-Gaussian and high-dimensional,
it can be quite involved to derive an upper bound for ψ�

T or ψ̃�
T . Theorem 3.1 below provides

a nonasymptotic bound of the stochastic part for locally stationary processes

ψT := max
0≤l<m

sup
u∈[bT ,1−bT ]

∣∣̂l(u) −Êl(u)
∣∣∞(3.5)

with the existence of finite qth moment of the underlying process, while Theorem 3.2 con-
cerns Gaussian processes. In our setting, with the framework of functional dependence mea-
sures, it turns out that we can have a close form of the upper bound in the form of (3.6) or
(3.7). The convergence rate depends in a subtle way on the temporal dependence character-
ized by α [cf. (2.3) and (2.4)], the dependence adjusted norms ‖|X·|∞‖q , 
q,α and �q,α ,
the sample size T and the dimension p. We present the results for the stationary case in
Proposition 3.3.

THEOREM 3.1. Assume that E(Xt) = 0 and 
q,α < ∞ for some q > 4 and α > 0. Let
bT be the bandwidth and M = 2�T bT �. Assume M ≤ T and m ≤ �Mβ� for some 0 ≤ β < 1.
Let � = 1 ∨ logp. Then there exist an absolute constant C, constant Cα only depending on α

and constant Cq,α only depending on q and α such that for any x > 0,

P(ψT ≥ x) ≤ Cq,αT HM,m(�‖|X·|∞‖q,α ∧ 
q,α)q

(Mx)q/2

+ CTp2 exp
(
− Mx2

Cα�4
4,α

)
,

(3.6)
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where HM,m = mq/4(logM)q+1 + Mq/4−αq/2−1m for α < 1/2 − 2/q , and HM,m =
mq/4(logM)q+1 for α > 1/2 − 2/q .

Despite the complicated nature of our problem which involves temporal dependencies,
cross-sectional dependencies and possibly nonstationarity, one essentially only needs to deal
with quantities ‖|X·|∞‖q,α , 
q,α and �4,α in our nonasymptotic bound in Theorem 3.1. They
concisely quantify measure of dependence which can naturally account for high dimension-
ality. They are also used in other theorems in the following sections.

For the term �‖|X·|∞‖q,α ∧ 
q,α in (3.6), consider the case in which each compo-
nent process is balanced with a similar order of d.a.n., that is, there exist constants
C1,C2 > 0 such that C1 ≤ ‖X·j‖q,α ≤ C2 for all j . Then 
q,α  p2/q . Since ‖|X·|∞‖q,α ≤
(
∑p

j=1 ‖X·j‖q
q,α)1/q  p1/q , the order of �‖|X·|∞‖q,α is smaller than that of 
q,α . Then the

term �‖|X·|∞‖q,α ∧ 
q,α  �p1/q .

THEOREM 3.2. Let (Xt) be a Gaussian process of form (1.1), which satisfies E(Xt) = 0
and �2,0 < ∞. Let bT be the bandwidth and M = 2�T bT �. Assume M ≤ T and m ≤ �Mβ�
for some 0 ≤ β < 1. Then there exists an absolute constant C > 0 such that for any x > 0,

P(ψT > x) ≤ 2T mp2 exp
[
−C min

(
Mx2

�4
2,0

,
Mx

�2
2,0

)]
.(3.7)

PROPOSITION 3.3. Consider the zero-mean stationary process Xt = G(Ft ). Let ̂l be
the autocovariance matrix estimator given in (3.1). Define

ψ̃T = max
0≤l<m

|̂l −Êl|∞.(3.8)

(i) Under the assumptions of Theorem 3.1, we have

P(ψ̃T ≥ x) ≤ Cq,αT H ∗
T ,m(�‖|X·|∞‖q,α ∧ 
q,α)q

(T x)q/2

+ Cmp2 exp
(
− T x2

Cα�4
4,α

)
,

(3.9)

where H ∗
T ,m = mq/4 for α > 1/2 − 2/q and H ∗

T ,m = mq/4 + T q/4−αq/2−1m for α < 1/2 −
2/q . (ii) Under the assumptions of Theorem 3.2, we have

P(ψ̃T > x) ≤ 2mp2 exp
[
−C min

(
T x2

�4
2,0

,
T x

�2
2,0

)]
.(3.10)

For stationary processes, the bounds of ψ̃T in Proposition 3.3 can be useful for nonlinear
spectra estimation (cf. Paparoditis and Politis (2012)). For one-dimensional linear processes,
Jirak (2011) proved the Gumbel convergence of max0≤l<m |̂l −Êl| for m growing at most
logarithmic speed. And Xiao and Wu (2014) considered general stationary processes within
our framework and relaxed the growth speed to be m = O(T β) for some 0 ≤ β < 1. Our
result (3.9) allows the same wide range and the same sharp bound when p = 1 as the latter,
that is,

max
0≤l<m

|̂l −Êl| = OP

(√
logT

T

)

with β < min(1 − 4/q,αq/2) as the requirement.
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We now conduct a detailed discussion about how the different factors take effect on the
convergence rate.

Effect of local stationarity. The stationary case admits a sharper bound than the locally sta-
tionary case, as it does not involve the maximum over the time u. For example, in comparison
with (3.6) by letting M = T , (3.9) excludes the additional (logT )q+1 in the polynomial term
and has a slightly sharper exponential term by multiplying with mp2 instead of Tp2.

Effect of moment condition. Theorem 3.1 is a Nagaev-type inequality and it indicates two
types of bounds for the tail probability: polynomial tail and sub-Gaussian type tail, which
respectively induce the two orders below

H1 = (T HM,m)2/q

M

(
�
∥∥|X·|∞

∥∥
q,α ∧ 
q,α

)2
, H2 =

√
log(pT )

M
�2

4,α.(3.11)

We have ψT = OP(H1 + H2). For large (resp., small) x, the polynomial (resp., the sub-
Gaussian) tail dominates. As a comparison, Theorem 3.2 admits an exponential bound for
Gaussian processes and it implies ψT = OP(H3) where

H3 =
√

log(pT )

M
�2

2,0 ∨ log(pT )

M
�2

2,0.(3.12)

Looking into the rates in two cases, if log(pT ) � M , �4,α  1 and �2,0  1, it holds that
H2  H3, thus H1 is the additional term characterized by the moment order q if each com-
ponent process only has finite qth moment rather than the Gaussianity.

Effect of dependence. If Xi are i.i.d., then δt,q,j = 0 and ωt,q = 0 for all t ≥ 1, δ0,q,j =
‖X0j − X′

0j‖q and ω0,q = ‖|X0 − X′
0|∞‖q , where X0 and X′

0 are i.i.d. The quantities

‖|X·|∞‖q,α , 
q,α and �q,α in Proposition 3.3 thus reduce to ω0,q , (
∑p

j=1 δ
q/2
0,q,j )

2/q and
maxj≤p δ0,q,j , respectively. To account for temporal dependence, we need to use the depen-
dence adjusted norms ‖|X·|∞‖q,α , 
q,α and �q,α , which are generally larger than the ones
under independence.

COROLLARY 3.4. Let ψ�
T be the maximum deviation defined in (3.4). Let condition (1.2)

be satisfied. Recall H1,H2 defined in (3.11) and H3 defined in (3.12). (i) Under the assump-
tions of Theorem 3.1, we have

ψ�
T = OP(H1 +H2 + �ψ),(3.13)

where

�ψ = KM

T
�2,0 + 1 + m−α+1

M
�2,0�2,α.

(ii) Under the assumptions of Theorem 3.2,

ψ�
T = OP(H3 + �ψ).(3.14)

For the bias max0≤l<m |Êl − l|∞ in the stationary case, the first term in �ψ should
disappear in view of K = 0. Consequently, it follows that max0≤l<m |Êl − l|∞ = O((1 +
m−α+1)�2,0�2,α/T ).

Effect of the dimension p. The terms H1, H2, H3 all involve the dimension p, where the
former depends on p via the dependence norm �‖|X·|∞‖q,α ∧
q,α and the latter two depend
on p logarithmically. We further investigate how p takes effect analytically by examining the
case where β = 0, and thus m = 1. We focus on the sample covariance matrix with lag l = 0
only and consider the case with the existence of finite qth moments. Assume that ‖X·j‖q,α 
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1 and ‖|X·|∞‖q,α  pτ for some τ ≥ 0. In the strongest cross-sectional dependence case with
Xtj = ajXt1 and C1 ≤ |aj | ≤ C2 for some constants C1,C2 > 0, we have τ = 0. We can have

H1  T 2/qH ∗
M�2p2τ

M
, H2 

√
log(pT )

M
,(3.15)

where H ∗
M = (logM)2+2/q if α > 1/2 − 2/q and H ∗

M = M1/2−2/q−α for α < 1/2 − 2/q . If
we choose a relatively small window width, say M ≤ T 4/q , H1 is always the dominant order.
As a natural requirement of consistency, we need M/H ∗

M � T 2/q and

(1 ∨ logp)pτ = o

(
M

T 2/qH ∗
M

)
.

As can be seen, if M/(T 2/qH ∗
M)  T c for some 0 < c < 1 − 2/q , we can allow ultra-high

dimension p with logp = o(T c) for τ = 0 and polynomial increase with T which should
satisfy p = o((T c/ logT )1/τ ) for τ > 0. Furthermore, a wider range of p is allowed if the
temporal dependence is weaker in view of H ∗

M which is nonincreasing with α.
The larger the window width M we choose, the wider the range of p is allowed for consis-

tency of the stochastic part. In view of Corollary 3.4, we need to balance the bias term �ψ .
Below is a discussion on the choice of M .

The choice of the window width M . Regarding the choice of M , there is a trade-off between
the deviation bound H1,H2,H3 and the bias order �ψ . Consider the case where the process
only has finite qth moments, m = 1 and ‖X·j‖q,α  1, and recall the orders of H1 and H2
in (3.15). We examine the strong temporal dependence case α < 1/2 − 2/q . To minimize
H1 +H2 + �ψ , M is chosen to be

M  max
{(

T 2/q�2p2τ / log(pT )
)1/(2/q+α)

,
(
T 2(

log(pT )
))1/3}

,

which is nonincreasing in α, nondecreasing in τ and increasing with p. That is to say, a
larger window width is required if the process has stronger temporal dependence and larger
dimension. For Gaussian processes, we consider the case where log(pT ) � T and �2,0  1.
To minimize H3 + �ψ , the optimal M satisfies

M  (
T 2 log(pT )

)1/3
.

REMARK 1. Using the idea of local smoothing, one can consider the following weighted
version of (3.3) with a kernel:

̂l(u) = 1

M

T2(u)∑
r=l+T1(u)

K

(
r − �T u�

M

)
Xr−lX

�
r ,

where K(·) is symmetric, nonnegative and differentiable with bounded derivatives on the
support (−1/2,1/2), and K(0) = 1. A careful check of the proofs of Theorems 3.1 and 3.2
suggests that they still hold accordingly.

REMARK 2. Consider the time-varying recursive model (2.6) in Example 2.1. For ease
of notation, we write X◦

s for X◦
s,T . Assume EX◦

s = 0 and let ◦
s,t = E(X◦

s X
◦
t
�). Since ◦

s,t ≈
◦

s+r,t+r for small r , we can estimate ◦
s,t by a similar form of (3.3)

̂◦
s,t = 1

M

�T bT �∑
r=−�T bT �+1

X◦
s+rX

◦
t+r

�,
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where M = 2�T bT � ≤ T . And we can draw a similar conclusion as Theorem 3.1 for
ψ◦

T = max|s−t |≤m |̂◦
s,t − Ê◦

s,t |. Assume for convenience the starting point X◦
0 = 0 and

U := sup0≤u≤1 ‖|R(u,0, ε0)|∞‖q < ∞. By (2.7), we have ‖|X◦
t − R(t/T ,0, εt )|∞‖p ≤

χ‖|X◦
t−1|∞‖p , implying ‖|X◦

t |∞‖p ≤ U +χ‖|X◦
t−1|∞‖p , and hence ‖|X◦

t |∞‖p ≤ U/(1−χ)

by recursion. We now compute the uniform functional dependence measure. Write X◦
t =

Rt
εt

◦ Rt−1
εt−1

◦ · · · ◦ R1
ε1

(0) =: Ht(Ft ), t ≥ 1, where the map Rt
ε(·) = R(t/T , ·, ε) and Ht is

a measurable function consisting of composites of Rt
ε . Recall (2.1) that Ft,{l} is a coupled

version of Ft with εl in Ft replaced by ε′
l . For k ≥ 0, write X◦

t,{t−k} = Ht(Ft,{t−k}), and L∞
dependence measure for the process (X◦

t )

ω◦
k,q := sup

t

∥∥∣∣Ht(Ft ) − Ht(Ft,{t−k})
∣∣∞∥∥

q ≤ 2χk
∥∥∣∣X◦

t−k

∣∣∞∥∥
q ≤ 2χkU

1 − χ

by recursion (2.7). Since ω◦
k,q decays geometrically in k, we can simply let α = 1.

Then the uniform dependence adjusted norm ‖|X·|∞‖q,α ≤ cχU with cχ = 2 maxm≥0(m +
1)

∑∞
t=m χt/(1 − χ), and �4,α ≤ cχU . By Theorem 3.1, there exists constant C,Cχ,Cq,χ

such that

P
(
ψ◦

T ≥ x
) ≤ Cq,χT mq/4(logM)q+1�qUq

(Mx)q/2 + CTp2 exp
(
− Mx2

CχU4

)
.

4. Spectral density and coherence matrix. Spectral analysis is a fundamental tool to
gain insights into the cyclical behavior of time series. The spectrum provides an adequate
description of the frequency domain characteristics of stationary processes. Estimation of
spectral density has been extensively studied in the univariate stationary case; see, for exam-
ple, Anderson (1971), Priestley (1981), Rosenblatt (1985), among many others. Coherence,
also known as the time series analogue in the frequency domain of the standard correla-
tion coefficient, measures the linear relationship between a pair of time series as a function
of frequency; see, for example, Brillinger (1975) and Brockwell and Davis (1991). Since
nonstationary data with time-varying structural changes are increasingly common in diverse
fields, time-varying spectrum and coherence become a popular tool to reveal the dynamics
of the underlying mechanism. For example, in EEG data analysis, it has been widely used
to measure brain functional connectivity; see Liu, Gaetz and Zhu (2010), Simpson, Bowman
and Laurienti (2013), Lindquist et al. (2014) among others.

Various models and methods have been developed to estimate the time-varying spectra
and coherences for nonstationary processes. Priestley and Tong (1973) concerned the cross-
spectrum and coherence between oscillatory processes stemming from a time-varying spec-
tral representation, which was later investigated by Dahlhaus (2000a) allowing for rigorous
asymptotic considerations. Ombao et al. (2001) proposed a method based on the smooth lo-
calized complex exponentials to select the span which can be used to obtain the smoothed
estimates of the time-varying spectra and coherence. Sanderson, Fryzlewicz and Jones (2010)
and Park, Eckley and Ombao (2014) considered the problem of estimating time-evolving
cross-dependence in a collection of locally stationary wavelet processes. Ombao and Van
Bellegem (2008) developed a coherence estimation procedure using time-localized linear fil-
tering. Many of the previous results require restrictive structural condition on the underlying
processes such as linearity or Gaussianity.

Under the framework (1.1), the time-varying spectral density matrix function is defined as

F(u, θ) = 1

2π

∑
k∈Z

k(u) exp(−ιkθ) where ι = √−1.
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To estimate the time-varying spectral density matrix consistently, we use smoothing and con-
sider the lag window estimate

F̂ (u, θ) = 1

2π

m∑
l=−m

K(l/m)̂l(u) exp(−ιlθ),(4.1)

where ̂l(u) is the estimate of the autocovariance matrix function with lag l defined in (3.3),
m is the window width satisfying the natural conditions m ≤ Mβ for some 0 < β < 1 and
K(·) is a continuous symmetric nonnegative kernel function with the support [−1,1] and
K(0) = 1. In the special case of stationary processes Xt = G(Ft ), the spectral density matrix
F(θ) = (2π)−1 ∑

k∈Z k exp(−ιkθ) and we can estimate F(θ) by

F̂ (θ) = 1

2π

m∑
l=−m

K(l/m)̂l exp(−ιlθ),(4.2)

where ̂l are estimates of autocovariance matrices, given by (3.1).
Theorem 4.1 and Theorem 4.2 below provide nonasymptotic bounds for |F̂ (u, θ) −

EF̂ (u, θ)|∞ uniformly over u and θ , under the assumption of finite polynomial moments and
Gaussianity, respectively, while Proposition 4.3 concerns the stationary case. Corollary 4.4
concerns the deviation of F̂ (u, θ) and the true spectral density matrix F(u, θ).

THEOREM 4.1. Assume that E(Xt) = 0 and 
q,α < ∞ for some q > 4 and α > 0. Let
bT be the bandwidth and M = 2�T bT �. Assume M ≤ T and m ≤ �Mβ� for some 0 < β < 1.
Let � = 1 ∨ logp. Let

ϕT = sup
u∈[bT ,1−bT ]

max
θ

∣∣F̂ (u, θ) −EF̂ (u, θ)
∣∣∞.(4.3)

Then for any x > 0, we have

P(ϕT ≥ x) ≤ Cq,α(Mx)−q/2T mRM,m

(
�5/4∥∥|X·|∞

∥∥
q,α ∧ 
q,α

)q
+ CTp2 exp

(
− Mx2

Cα�4
4,αm

)
,

(4.4)

where RM,m = mq/2−1(logM)q+1 for α > 1/2 − 2/q , and RM,m = mq/2−1 · (logM)q+1 +
Mq/4−1−αq/2mq/4 for α < 1/2 − 2/q .

THEOREM 4.2. Let (Xt) be a Gaussian process of the form (1.1), which satisfies
E(Xt) = 0 and �2,0 < ∞. Let bT be the bandwidth and M = 2�T bT �. Assume M ≤ T and
m ≤ �Mβ� for some 0 < β < 1. Then there exist universal constants C1,C2 > 0 such that for
any x > 0,

P(ϕT > x) ≤ C1T mp2 exp
[
−C2 min

(
Mx2

m�4
2,0

,
Mx

m�2
2,0

)]
.(4.5)

PROPOSITION 4.3. For zero-mean stationary processes Xt = G(Ft ), define

ϕ̃T = max
θ

∣∣F̂ (θ) −EF̂ (θ)
∣∣∞.

(i) Under the assumptions of Theorem 4.1, we have

P(ϕ̃T ≥ x) ≤ Cq,α(T x)−q/2T mR∗
T ,m

(
�5/4∥∥|X·|∞

∥∥
q,α ∧ 
q,α

)q
+ Cmp2 exp

(
− T x2

Cα�4
4,αm

)
,

(4.6)
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where R∗
T ,m = mq/2−1 for α > 1/2 − 2/q , and R∗

T ,m = mq/2−1 + T q/4−1−αq/2mq/4 for α <

1/2 − 2/q . (ii) For Gaussian stationary processes, it becomes

P(ϕ̃T > x) ≤ C1mp2 exp
[
−C2 min

(
T x2

m�4
2,0

,
T x

m�2
2,0

)]
.(4.7)

As expected, the tail probabilities for ϕ̃T for stationary processes are sharper that the ones
in Theorems 4.1 and 4.2, as ϕ̃T does not concern the supremum over the time index. The
proof of Proposition 4.3 is simpler and the argument is given in the Supplementary Material
(Zhang and Wu (2020)).

REMARK 3. The long-run covariance matrix (a.k.a. asymptotic covariance matrix) can
be determined by the spectral density matrix at the zero frequency. The estimation of the
long-run covariance matrix is an important problem in statistical inference for time series
and has been extensively studies in the low-dimensional stationary case; see Newey and West
(1987), Politis, Romano and Wolf (1999), Bühlmann (2002), Lahiri (2003), Alexopoulos and
Goldsman (2004). For locally stationary processes, we can estimate the time-varying long-
run covariance matrix �(u) = ∑∞

k=−∞ k(u) by the idea of smoothing similarly as (4.1).
Then nonasymptotic results similar to Theorem 4.1 and Theorem 4.2 can be established in
high dimensions without extra difficulty. The convergence rate of the long-run covariance
matrix estimator is sharper than that of ϕT given in (4.4) or (4.5) since there is no need to
account for the supremum over θ ; see Corollary B.1 in the Supplementary Material for details
(Zhang and Wu (2020)).

COROLLARY 4.4. Define

�ϕ = sup
u∈[bT ,1−bT ]

max
θ

∣∣EF̂ (u, θ) − F(u, θ)
∣∣∞,

ϕ�
T = sup

u∈[bT ,1−bT ]
max

θ

∣∣F̂ (u, θ) − F(u, θ)
∣∣∞.

Under condition (1.2), it follows that �ϕ ≤ Vm,M,T +Wm, where

Vm,M,T = 2KM
√

m

πT
�2,0 + π−1

(
m−α + r(m)

M

)
�2,0�2,α,

Wm = π−1 sup
u

m∑
l=1

(
1 − K(l/m)

)∣∣l(u)
∣∣∞,

and r(m) = 1 if α > 1, r(m) = logm if α = 1 and r(m) = m1−α if α < 1. Consequently,
ϕ�

T = OP(R1 + R2 + �ϕ) under the assumptions of Theorem 4.1 and ϕ�
T = OP(R3 + �ϕ)

under the assumptions of Theorem 4.2 with

R1 = (T mRM,m)2/q

M

(
�5/4∥∥|X·|∞

∥∥
q,α ∧ 
q,α

)2
, R2 =

√
m log(pT )

M
�2

4,α,

R3 =
√

m log(pT )

M
�2

2,0 ∨ m log(pT )

M
�2

2,0.

The term Wm depends on the kernel function. Its order is determined by the smoothness
of K(·) at zero. In particular, this term vanishes if K(·) is the rectangular kernel. In general,
flat-top kernels which take value 1 at a neighbor of 0 have been employed to render a bias
reduced estimator of spectral density; see for example, Politis and Romano (1995, 1999) and
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Politis (2011). If 1 − K(x) = O(|x|ν) at x = 0 for some a > 0 and supu |l(u)|∞ = O(l−b)

for some b > 1, then Wm = O(m−a + m1−b).
For the bias �ϕ̃ = maxθ |EF̂ (θ) − F(θ)|∞ in the stationary case, since K = 0, we can

obtain �ϕ̃ ≤ Ṽm,T + W̃m where

Ṽm,T = π−1
(
m−α + r(m)

T

)
�2,0�2,α,

W̃m = π−1 sup
u

m∑
l=1

(
1 − K(l/m)

)|l|∞,

with r(m) defined the same as in Corollary 4.4.
A similar discussion as Section 3 can be made to concern the effects of local stationarity,

moment condition, dependence strength and dimension on the convergence rates. The details
are omitted here.

Next, we shall discuss how our results can be used.
Regularized estimation of sparse spectral density matrices. In the above Theorems 4.1

and 4.2, sparseness conditions are not imposed for spectral density matrix estimation. Sun et
al. (2018) investigated regularized estimation of high-dimensional spectral density matrices
for stationary Gaussian processes by imposing weak sparsity on the spectral density matrix
in the sense that it falls within a small �d ball in C

p×p for some 0 ≤ d < 1. In particular,
they proposed hard thresholding of averaged periodograms to estimate the spectral density
matrix and established nonasymptotic bounds for the concentration of the estimator around
its expectation using spectral norm and Frobenius norm. The idea of thresholding has been
widely used in high-dimensional covariance matrix estimation; see, for example, Bickel and
Levina (2008) for i.i.d. vectors and Chen, Xu and Wu (2013) for time series. Applying the
thresholding procedure to the lag-window estimate F̂ (u, θ) in (4.1), we can introduce the
regularized estimate in our regime:

Tτ

(
F̂ (u, θ)

) = (
F̂ij (u, θ)1

{∣∣F̂ij (u, θ)
∣∣ ≥ τ

})p
i,j=1,(4.8)

where τ > 0 is a tuning parameter and Tτ (·) is a thresholding operator. Assume that F(u, θ)

has weak sparsity, that is, for some 0 ≤ d < 1, supu∈[0,1] maxθ maxi

∑p
j=1 |Fij (u, θ)|d ≤ Rp .

Recall the definition of ϕ�
T in Corollary 4.4. We can adopt similar techniques in Bickel and

Levina (2008) to obtain that under the event ϕ�
T ≤ τ/2,

sup
u∈[bT ,1−bT ]

max
θ

∥∥Tτ

(
F̂ (u, θ)

) − F(u, θ)
∥∥ ≤ 7τ 1−dRp,

sup
u∈[bT ,1−bT ]

max
θ

∥∥Tτ

(
F̂ (u, θ)

) − F(u, θ)
∥∥
F ≤ 13τ 1−dRp.

Hence, the nonasymptotic bound in L∞ norm can be used to derive the uniform convergence
in spectral norm and Frobenius norm for thresholded estimates in the sparse case. In compar-
ison with Sun et al. (2018), we allow more general processes which can be non-Gaussian and
nonstationary, and we can provide a uniform bound by taking supreme over the frequency
while they established a pointwise result at each single frequency. We shall comment that for
the stationary Gaussian case considered in Sun et al. (2018) we can obtain the same result as
Proposition 3.6 in that paper.

Application to the estimation of locally stationary generalized dynamic factor mod-
els. Barigozzi et al. (2019) considered Time-varying Generalized Dynamic Factor Mod-
els (tvGDFM), extending the influential GDFM introduced in Forni et al. (2000) to
locally stationary processes. To perform theoretical analysis of the estimation proce-
dure for the tvGDFM, one needs to establish a moment bounds for uniform distance
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supu maxθ |F̂ij (u, θ) − Fij (u, θ)|. Our Theorem 4.1 and Corollary 4.4 can provide such a
theoretical foundation. Using Eϕ2

T = ∫ ∞
0 P(ϕ2

T ≥ v) dv, we obtain

E
∣∣ϕ�

T

∣∣2 = E sup
u

max
θ

∣∣F̂ (u, θ) − F(u, θ)
∣∣2∞ ≤ Cq

(
R2

1 +R2
2 + �2

ϕ

)
,(4.9)

where R1, R2 and �ϕ have been defined in Corollary 4.4. Note that the term R2
1 + R2

2 in
(4.9) should be R2

3 for Gaussian processes. For a more user-friendly bound, consider α >

1/2 − 2/q and choose the rectangular kernel K(·). Let m  �Mβ� for some 0 < β < 1.
Assume that ‖X·j‖q,α  1 for all 1 ≤ j ≤ p, K  1 and ‖|X·|∞‖q,α  pτ , 0 ≤ τ ≤ 2/q .
Then (4.9) becomes

E
∣∣ϕ�

T

∣∣2 � T 4/q(logM)4+4/q min{p4τ (1 ∨ logp)5,p8/q}
M2−2β

+ log(pT )

M1−β
+ M2+β

T 2 ,

(4.10)

and, by considering the cross spectral density for each pair of component processes in Theo-
rem 4.1 and Corollary 4.4, we have

max
1≤i,j≤p

E sup
u

max
θ

∣∣F̂ij (u, θ) − Fij (u, θ)
∣∣2 � T 4/q(logM)4+4/q

M2−2β
+ logT

M1−β
+ M2+β

T 2 .

Estimation of coherence matrices. In many applications, it is of interest to estimate the
coherence matrix. In our framework, the time-varying coherence matrix is given by

C(u, θ) = diag
[
F(u, θ)

]−1/2
F(u, θ)diag

[
F(u, θ)

]−1/2
.

We estimate the coherence matrix C(u, θ) by the plug-in estimator

Ĉ(u, θ) = diag
[
F̂ (u, θ)

]−1/2
F̂ (u, θ)diag

[
F̂ (u, θ)

]−1/2
,(4.11)

where F̂ (u, θ) is the estimate of the spectral density matrix given by (4.1). We shall concern
the bound for the maximum deviation

ρT = sup
u∈[bT ,1−bT ]

max
θ

∣∣Ĉ(u, θ) − C(u, θ)
∣∣∞.

Corollary 4.5 below gives a bound of ρT in terms of ϕ�
T , by which the results for ϕ�

T can be
used to bound ρT .

COROLLARY 4.5. Assume c0 = infu minθ min1≤j≤p Fjj (u, θ) > 0. Then

ρT ≤ 3ϕ�
T

c0
+ 2ϕ�

T
2

c2
0

,(4.12)

where ϕ�
T = supu maxθ |F̂ (u, θ) − F(u, θ)|∞ as defined in Corollary 4.4.

5. Graphical model and inverse spectral density matrix. The concept of graphical
model for multivariate data has been extended to multivariate time series (e.g., Brillinger
(1996), Dahlhaus (2000b), Timmer et al. (2000), Eichler (2012) among others). A vertex of
the graph represents a component process and each edge indicates the partial correlation of
the two corresponding components given others. Hence, for stationary Gaussian processes,
this induced graph is a conditional independence graph in the frequency domain, the proper-
ties of which has been investigated largely (cf. Dahlhaus (2000b), Fried and Didelez (2003),
Bach and Jordan (2004), etc.). For non-Gaussian processes, it is termed partial correlation
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graph in Dahlhaus (2000b) using partial spectral coherence as a measure for the dependence
between two marginal time series after removing the linear effects of some other components.
Partial spectral coherence has been widely used in many real-world applications; see, for ex-
ample, Gather, Imhoff and Fried (2002), Salvador et al. (2005), Eichler (2007), Medkour,
Walden and Burgess (2009). Recently researchers study functional connectivities of brain
networks in neuroscience based on inverse of spectral density matrices; see, for example,
Baccalá and Sameshima (2001), Eichler, Dahlhaus and Sandkühler (2003), Blinowska (2011)
and Lennartz et al. (2018). Baccalá and Sameshima (2001) proposed partial direct coherence,
a normalized quantity for inverse of spectral density matrices which measures frequency
domain direct causal relations. A zero value in the inverse of spectral density matrices sug-
gests no partial direct coherence. For locally stationary processes, it is natural to study the
time-varying functional connectivity based on the inverse spectral density matrix function.
However, in the high-dimensional case where the dimension p can be even much larger than
the sample size T , since the estimated spectral density matrix may not be invertible, classical
methods developed under the low-dimensional setting are no longer applicable. In this sec-
tion, we shall provide a solution to this challenging problem under the more general setting
in which the process can be locally stationary and hence the inverse spectral density matrix
varies with time.

For 0 ≤ u ≤ 1 and θ , denote by �0(u, θ) = F(u, θ)−1, the inverse of the spectral density
matrix. We estimate the spectral density matrix by the lag window estimate [cf. (4.1)]. For
simplicity, we consider the rectangular kernel, that is, K(x) = 1 for |x| ≤ 1 and K(x) = 0
otherwise. Then we use the constrained �1 minimization approach to estimate �0(u, θ). Let

�̂(u, θ) = arg min
∣∣�(u, θ)

∣∣
�1

subject to
∣∣F̂ (u, θ)�(u, θ) − Ip

∣∣∞ ≤ λ,(5.1)

where λ > 0 is a tuning parameter. The constrained �1 minimization approach has been
adopted in many applications; see Candes and Tao (2007), Bickel, Ritov and Tsybakov
(2009), Cai, Liu and Luo (2011) among many others. The optimization program (5.1) can
be decomposed into p parallel vector minimization sub-problems. Let ei be the standard unit
vector in R

p with 1 in the ith coordinate and 0 in all others. For 1 ≤ i ≤ p, let ŵi(u, θ) be
the solution to the following convex optimization problem:

min |w|1 subject to
∣∣F̂ (u, θ)w − ei

∣∣∞ ≤ λ,(5.2)

where w is a vector in R
p . By a similar argument as Lemma 1 of Cai, Liu and Luo (2011),

we can show that solving the optimization problem (5.1) is equivalent to solving the p opti-
mization problems (5.2), that is,

�̂(u, θ) = (
ŵ1(u, θ), . . . , ŵp(u, θ)

)
.(5.3)

We estimate �0(u, θ) by

�̃(u, θ) = �̂(u, θ) + �̂†(u, θ)

2
,(5.4)

where † is the conjugate transpose of a matrix. Theorem 5.1 provides a nonasymptotic bound
concerning the uniform convergence of �̃(u, θ). To this end, we need to introduce quantity
κ0 which characterizes the sparseness of �0(u, θ). Note that sparseness conditions are not
needed for covariance and spectral density matrix estimates in Theorems 3.1 and 4.1.

THEOREM 5.1. Define κ0 = sup0≤u≤1 maxθ |�0(u, θ)|�1 and

�T = sup
u∈[bT ,1−bT ]

max
θ

∣∣�̃(u, θ) − �0(u, θ)
∣∣∞.
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Recall Corollary 4.4 for Vm,M,T . (i) Let the assumptions of Theorem 4.1 be satisfied. For any
x ≥ Vm,M,T ∨ (λ/κ0), we have

P
(
�T ≥ 7xκ2

0
) ≤ Cq,αT mRM,m(�5/4

∥∥|X·|∞
∥∥
q,α ∧ 
q,α)q

(Mx)q/2

+ CTp2 exp
(
− Mx2

Cαm�4
4,α

)
.

(5.5)

(ii) Let the assumptions of Theorem 4.2 be satisfied. For any x ≥ Vm,M,T ∨ (λ/κ0), we have

P
(
�T ≥ 7xκ2

0
) ≤ C1T mp2 exp

[
−C2 min

(
Mx2

m�4
2,0

,
Mx

m�2
2,0

)]
.(5.6)

REMARK 4. In the special case of stationary processes, denote the inverse spectral den-
sity matrix by �0(θ) = F(θ)−1. As in (5.2) and (5.3), we can similarly consider the min-
imizer �̂(θ) = (ŵ1(θ), . . . , ŵp(θ)) in which ŵi(θ) ∈ R

p , 1 ≤ i ≤ p, is the solution to the
following convex optimization problem:

min |w|1 subject to
∣∣F̂ (θ)w − ei

∣∣∞ ≤ λ,(5.7)

where w is a vector in R
p and F̂ (θ) is given in (4.2). Let �̃(θ) = (�̂(θ)+ �̂†(θ))/2. The tail

probability bound in the right-hand side of (5.5) and (5.6) concerning maxθ |�̃(θ)−�0(θ)|∞
should be the same as that in (4.6) and (4.7) respectively. To prove it, we can follow all the
arguments in the proof of Theorem 5.1 and then replace the last step by the corresponding
result for stationary processes established in Proposition 4.3.

Fiecas et al. (2019) adopted the essentially same approach as (5.7) to estimate the inverse
spectral density matrix for stationary processes. But they required more restrictive assump-
tions to establish the nonasymptotic bound. For one thing, they assumed geometric moment
contraction, that is, �m,2,j = O(λm) for some 0 < λ < 1, while we can deal with much
stronger dependence with algebraic decay characterized by the parameter α. For another,
they required the existence of finite exponential moment for each component process while
we can allow the mild condition with the existence of polynomial moment.

Note that the bound for the tail probability in Case (i) (resp., Case (ii)) of Theorem 5.1
is the same to Theorem 4.1 (resp., Theorem 4.2). We shall discuss the newly introduced
parameter κ0, which characterizes the sparseness of �0(u, θ). Consider the class of high-
dimensional vector autoregressive models: Xt = AXt−1 + εt . Assume that Cov(εt ) = Ip and
the spectral radius of A = (aij )

p
i,j=1 is smaller than 1. By elementary calculation, we can

obtain �0(θ) = 2π(Ip +A�A−Ae−ιθ −A�eιθ ). Let L = max(|A|�1, |A�|�1) where |A|�1 :=
maxi

∑
j |aij |. Then κ0 ≤ 2π(1+L)2 and the sparseness of A ensures the sparseness of �0(θ)

in terms of the �1 norm.
Fiecas et al. (2019) also incorporated the �1 norm of �0(θ) for high-dimensional stationary

processes and additionally assumed the inverse spectral density matrix falls within a small �d

ball, 0 ≤ d < 1. Similarly, if we further assume �0(u, θ) is weakly sparse within a small �d

ball, we can also work out the bounds in spectral norm and Frobenius norm accordingly; see
Remark B.1 for detailed results.

6. Hanson–Wright-type inequalities. In this section, we shall provide Hanson–Wright-
type tail probability inequalities for locally stationary processes. The celebrated Hanson–
Wright inequality provided a concentration result for quadratic forms of sub-Gaussian
i.i.d. random variables; see Hanson and Wright (1971), Wright (1973) and Rudelson and
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Vershynin (2013). There has been a large literature concerning large/moderate deviations
for quadratic forms of Gaussian processes; see, for example, Bercu, Gamboa and Rouault
(1997), Bryc and Dembo (1997), Zani (2002), Kakizawa (2007) among others. Xiao and Wu
(2012) obtained tail probability upper bounds for quadratic forms of stationary processes
with finite polynomial moments. We aim to relax the (i) i.i.d., (ii) Gaussian/sub-Gaussian,
(iii) one-dimensional or (iv) stationary assumptions which were imposed in previous works,
and develop tail probability inequalities for quadratic forms for high-dimensional locally sta-
tionary processes.

Consider the quadratic form of the high-dimensional locally stationary process (Xt):

QT = ∑
1≤s≤t≤T

as,tXsX
�
t ,

where the coefficients in our setting satisfy as,t = at−s (t ≥ s), which depends on the distance
t − s. Moreover, we assume sups,t |as,t | ≤ 1 and as,t = 0 if t − s > B , where B ≤ T . Theo-
rem 6.1 and Theorem 6.3 provide tail probability inequalities for |QT −EQT |∞. The former
assumes the existence of finite polynomial moments and the latter assumes the Gaussianity.

THEOREM 6.1. For the process (1.1), assume E(Xt) = 0 and, for some q > 4 and α > 0,
‖|X·|∞‖q,α < ∞. Let � = 1∨ logp and let B ≤ T . Then there exist constants C,Cα,Cq,α > 0
such that for any x > 0,

P
(|QT −EQT |∞ ≥ x

) ≤ Cq,αx−q/2�5q/4∥∥|X·|∞
∥∥q
q,αFT,B

+ Cp2 exp
(
− x2

Cα�4
4,αT B

)
,

where FT,B = T Bq/2−1 (resp., T Bq/2−1 + T q/4−αq/2Bq/4) if α > 1/2 − 2/q (resp., α <

1/2 − 2/q).

Proposition 6.2 below concerns the special case of one-dimensional processes, by letting
� = 1 and replacing the L∞ dependence adjusted norm ‖|X·|∞‖q,α in Theorem 6.1 by the
component-wise dependence adjusted norms ‖X·i‖q,α and ‖X·j‖q,α .

PROPOSITION 6.2. For 1 ≤ i, j ≤ p, let QT,ij = ∑
1≤s≤t≤T as,tXsiXtj . Under the as-

sumptions of Theorem 6.1, we have

P
(|QT,ij −EQT,ij | ≥ x

) ≤ Cq,αx−q/2‖X·i‖q/2
q,α‖X·j‖q/2

q,αFT,B

+ C exp
(
− x2

Cα�4
4,αT B

)
,

where FT,B is defined the same as in Theorem 6.1.

THEOREM 6.3. Let (Xt) be a Gaussian process of the form (1.1), which satisfies
E(Xt) = 0 and �2,0 < ∞. Let B ≤ T . Then there exists a universal constant C > 0 such
that for any x > 0,

P
(|QT −EQT |∞ > x

) ≤ 2p2 exp
[
−C min

(
x2

T B�4
2,0

,
x

B�2
2,0

)]
.
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Theorems 6.4 and 6.6 below concern the following special case of QT :

LT (B) := ∑
B+1≤t≤T

atXt−BX�
t ,(6.1)

where supt |at | ≤ 1 and 0 ≤ B < T . Proposition 6.5 applies to the one-dimensional case.
They are useful to prove the results of the estimates of autocovariance matrices in Section 3.

THEOREM 6.4. For the process (1.1), assume E(Xt) = 0 and, for some q > 4 and α > 0,
‖|X·|∞‖q,α < ∞. Let � = 1∨ logp and let B < T . Then there exists a constant Cq,α > 0 such
that for any x > 0,

P
(∣∣LT (B) −ELT (B)

∣∣∞ ≥ x
) ≤ Cq,αx−q/2�q

∥∥|X·|∞
∥∥q
q,αDT,B

+ Cp2 exp
(
− x2

Cα�4
4,αT

)
,

where DT,B = T Bq/4−1 (resp., T Bq/4−1 + T q/4−αq/2) if α > 1/2 − 2/q (resp., α < 1/2 −
2/q).

PROPOSITION 6.5. Let LT,ij (B) = ∑
B+1≤t≤T atX(t−B)iXtj , 1 ≤ i, j ≤ p. Under the

assumptions of Theorem 6.4, we have

P
(∣∣LT,ij (B) −ELT,ij (B)

∣∣ ≥ x
) ≤ Cq,αx−q/2‖X·i‖q/2

q,α‖X·j‖q/2
q,αDT,B

+ C exp
(
− x2

Cα�4
4,αT

)
,

where DT,B is defined the same as in Theorem 6.4.

THEOREM 6.6. Let (Xt) be a Gaussian process of the form (1.1), which satisfies
E(Xt) = 0 and �2,0 < ∞. Then there exists a universal constant C > 0 such that for any
x > 0,

P
(∣∣LT (B) −ELT (B)

∣∣∞ > x
) ≤ 2p2 exp

[
−C min

(
x2

T �4
2,0

,
x

�2
2,0

)]
.

7. Concluding remarks. High-dimensional nonstationary processes arise in a wide
range of disciplines. In this paper, we have made contributions towards a general theory for
high-dimensional locally stationary processes that goes beyond the investigation of specific
parametric models. We showed that many commonly seen parametric recursive models fit
approximately within the framework of functional dependence measure, a convenient frame-
work to depict the temporal dependence for high-dimensional processes. Equipped with func-
tional dependence measure, the main tools we developed are tail probability inequalities for
quadratic forms involving high-dimensional processes. We established a Nagaev-type bound
on tail probability of quadratic forms with the existence of finite polynomial moments and
a Hanson–Wright-type bound for Gaussian processes, based on which, we were able to esti-
mate the autocovariance functions, spectral density matrix and inverse spectral density ma-
trix. The convergence rate depends on the temporal dependence, the moment condition, the
dimension and the sample size. To perform statistical inference of the estimates such as hy-
pothesis testing and construction of simultaneous confidence bands, one needs to develop the
more refined result in terms of asymptotic distributional theory. The latter is more challenging
and we leave it as future work.
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