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BEYOND GAUSSIAN APPROXIMATION: BOOTSTRAP FOR MAXIMA OF
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The Bonferroni adjustment, or the union bound, is commonly used to
study rate optimality properties of statistical methods in high-dimensional
problems. However, in practice, the Bonferroni adjustment is overly conser-
vative. The extreme value theory has been proven to provide more accurate
multiplicity adjustments in a number of settings, but only on an ad hoc basis.
Recently, Gaussian approximation has been used to justify bootstrap adjust-
ments in large scale simultaneous inference in some general settings when
n � (logp)7, where p is the multiplicity of the inference problem and n is the
sample size. The thrust of this theory is the validity of the Gaussian approx-
imation for maxima of sums of independent random vectors in high dimen-
sion. In this paper, we reduce the sample size requirement to n � (logp)5

for the consistency of the empirical bootstrap and the multiplier/wild boot-
strap in the Kolmogorov–Smirnov distance, possibly in the regime where the
Gaussian approximation is not available. New comparison and anticoncen-
tration theorems, which are of considerable interest in and of themselves, are
developed as existing ones interweaved with Gaussian approximation are no
longer applicable or strong enough to produce desired results.

1. Introduction. Let X = (X1, . . . ,Xn)
T ∈ R

n×p be a random matrix with independent
rows Xi = (Xi,1, . . . ,Xi,p)T ∈ R

p , i = 1, . . . n, where p ≡ pn is allowed to depend on n. Let

Xn = 1

n

n∑
i=1

Xi = (Xn,1, . . . ,Xn,p)T .

We are interested in the consistency of the bootstrap for the maxima

Tn = max
1≤j≤p

√
n(Xn,j −EXn,j )(1)

in the case of large p, including exponential growth of p at certain rate as n → ∞.
The consistency of the bootstrap for the maxima Tn can be directly used to construct simul-

taneous confidence intervals in the many means problem, but the spectrum of its application
is much broader. Examples include sure screening (Fan and Lv (2008)), removing spurious
correlation (Fan and Zhou (2016)), testing the equality of two matrices (Cai, Liu and Xia
(2013), Chang et al. (2017)), detecting ridges and estimating level sets (Chen, Genovese and
Wasserman (2015, 2017)) and many more. It can be also used in time series settings (Zhang
and Wu (2017)) and high-dimensional regression (Zhang and Zhang (2014), Belloni, Cher-
nozhukov and Kato (2014, 2015), Dezeure, Bühlmann and Zhang (2017), Zhang and Cheng
(2017)). In such modern applications, p = pn is not fixed and can be much larger than n.

In closely related settings, Giné and Zinn (1990) proved the consistency of bootstrap for
Donsker classes of functions, Nagaev (1976), Senatov (1980), Sazonov (1981), Götze (1991)
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and Bentkus (1986, 2003) for convex sets when n ≥ p7/2, and Zhilova (2016) for Euclidean
balls. The set {Tn ≤ t} is convex but we are interested in potentially much larger p.

More recently, in a groundbreaking paper, Chernozhukov, Chetverikov and Kato (2013)
used Gaussian approximation to prove the consistency of the bootstrap with a convergence
rate of ((logp)7/n)1/8 under certain moment and tail probability conditions on {Xi,j }. This
convergence rate was improved upon in Chernozhukov, Chetverikov and Kato (2017) to
((logp)7/n)1/6, with extensions to the uniform consistency for P{√n(Xn − EXn) ∈ A} in
certain classes of hyperrectangular and sparse convex sets A ⊆ R

p .
In this paper, we improve the convergence rate to ((logp)5/n)1/6 for the multiplier/wild

bootstrap with third moment match (Liu (1988), Mammen (1993)) and the empirical boot-
strap (Efron (1979)) of Tn, so that the sample size requirement is reduced from n � (logp)7

to n � (logp)5. We establish this sharper rate by exploiting the fact that under suitable con-
ditions, the average third moment tensor of Xi is well approximated by its bootstrapped
version,

n−1
n∑

i=1

E
∗(X∗

i −E
∗X∗

i

)⊗3 ≈ n−1
n∑

i=1

E(Xi −EXi)
⊗3,(2)

in the supreme norm. Here and in the sequel, ξ⊗m = (ξi1 · · · ξim)p×···×p denotes the m dimen-
sional tensor/array generated by vector ξ ∈ R

p . The benefit of the third and higher moment
approximation in bootstrap is well understood in the case of fixed p (Hall (1988), Mammen
(1993), Shao and Tu (1995), Singh (1981)). However, the classical higher order results on
bootstrap were established based on the Edgeworth expansion associated with the central
limit theorem, while we are interested in high-dimensional regimes in which the consistency
of the Gaussian approximation is in question to begin with. Moreover, as existing approaches
of studying the bootstrap in high dimension are very much interweaved with the approxima-
tion of the average second moment or the more restrictive approximation of the moments of
individual vectors

E
∗(X∗

i −E
∗X∗

i

)⊗m ≈ E(Xi −EXi)
⊗m, m = 2,3,∀i ≤ n,(3)

our analysis requires new comparison and anticoncentration theorems. These new compari-
son and anticoncentration theorems, also proved in this paper, are of considerable interest in
their own right.

The difference between the existing and our analytical approaches can be briefly explained
as follows. The first issue is the comparison between the expectation of smooth functions
of the maxima and its bootstrapped version. The comparison theorems in Chernozhukov,
Chetverikov and Kato (2013, 2017) were derived with a combination of the Slepian (1962)
smart path interpolation and the Stein (1981) leave-one-out method. As this Slepian–Stein
approach does not take advantage of the bootstrap approximation of the third moment, we
opt for the Lindeberg approach (Chatterjee (2006), Lindeberg (1922)). In fact, the original
Lindeberg method was briefly considered in Chernozhukov, Chetverikov and Kato (2013)
without an expansion for the third or higher moment match. As a direct application of the
original Lindeberg method requires the more restrictive condition (3), we develop a coherent
Lindeberg interpolation to prove comparison theorems based on (2). This coherent Lindeberg
approach and the resulting comparison theorems are new to the best of our knowledge. The
second issue is the anticoncentration of the maxima, or an upper bound for the modulus of
continuity for the distribution of the maxima, without a valid Gaussian approximation. We
resolve this issue by applying the new comparison theorem to a mixed multiplier bootstrap
with a Gaussian component and a perfect match in the first three moments, so that the an-
ticoncentration of the Gaussian maxima can be utilized through the mixture. This solution
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to the anticoncentration problem is again new to the best of our knowledge. For the anti-
concentration of the maximum of Gaussian vector (ξ1, . . . , ξp)T with marginal distributions
ξj ∼ N(μj ,σ

2
j ),1 ≤ j ≤ p, we sharpen the existing upper bound for the density of the max-

imum from C(2 + √
2 logp)/σ(1) (based on Klivans, O’Donnell and Servedio (2008)) to the

potentially much smaller (2 + √
2 logp)/σ , where

σ = min
1≤j≤p

2 + √
2 logp

1/σ(1) + (1 + √
2 log j)/σ(j)

(4)

and σ 2
(j) is the j th smallest average variance among {σ 2

k = 1
n

∑n
i=1 Var(Xi,k),

1 ≤ k ≤ p}. Moreover, our anticoncentration bound is sharp up to explicit constants when
ξj are correlated and/or noncentral. As more weights are given to the smaller 1/σ(j) in the
denominator in (4), σ(1) ≤ σ ≤ σ(p).

We organize the paper as follows. In Section 2, we state our bootstrap consistency the-
orems and discuss their implications and applications. In Section 3, we present new com-
parison theorems based on the coherent Lindeberg interpolation. In Section 4, we provide
new anticoncentration theorems based mixtures with Gaussian components. In Section 5, we
present some simulation results. The full proofs of all theorems, propositions and lemmas in
this paper are relegated to the Supplementary Material (Deng and Zhang (2020)).

We use the following notation. We assume n → ∞ and p = pn to allow p → ∞ as n →
∞. We assume p > 1 for notational simplicity; our analysis remain true for p = 1 if we
replace logp with 1 ∨ (logp). To shorten mathematical expressions, we write moments as
tensors as in (2) and (3). We also write partial derivative operators as tensors ( ∂

∂x
)⊗m =

(( ∂
∂xi1

) · · · ( ∂
∂xim

))p×···×p for x = (x1, . . . , xp)T , so that f (m) = (∂/∂x)⊗mf (x) is a tensor for

functions f (x) of input x ∈ R
p , and for two mth order tensors f and g in R

p×···×p , the
vectorized inner product is denoted by

〈f,g〉 =
p∑

j1=1

· · ·
p∑

jm=1

fj1,...,jmgj1,...,jm

and |f | ≤ |g| means |fj1,...,jm | ≤ |gj1,...,jm | for all indices j1, . . . , jm. We denote by ‖ · ‖q

the �q norm for vectors, ‖ · ‖Lq = ‖ · ‖Lq(P) the Lq(P) norm for random variables under
probability P, and ‖ · ‖max the �∞ norm for matrices and tensors after vectorization.

We define quantities Mn, Mm, Mm,1 and Mm,2 as follows for the average centered mo-
ments of Xij under different ways of maximization: The maximum average centered mo-
ments and the average moments of the maximum are respectively

Mm
m = max

1≤j≤p

1

n

n∑
i=1

E|Xi,j−EXi,j |m, Mm
m = 1

n

n∑
i=1

E max
1≤j≤p

|Xi,j −EXi,j |m,(5)

and the average of the maximum moment and the expected maximum average power are
respectively

(6) Mm
m,1 = 1

n

n∑
i=1

max
1≤j≤p

E|Xi,j −EXi,j |m, Mm
m,2 = E max

1≤j≤p

1

n

n∑
i=1

|Xi,j−EXi,j |m.

Clearly, Mm ≤Mm,j ≤Mm, j = 1,2.
In what follows, we denote by C0 a numerical constant and Cindex a constant depending

on the “index” only. For example, Ca,b,c is a constant depending on (a, b, c) only. To avoid
cumbersome calculation of explicit expressions of these constants, they will be allowed to
take different values from one appearance to the next in the proofs. Finally, we denote by �(·)
the standard normal cumulative distribution function and �−1(·) the corresponding quantile
function.
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2. Consistency of bootstrap. Let Tn be the maximum of normalized sum of n indepen-
dent random vectors Xi ∈ R

p as defined in (1). In this section, we present our main theorems
on the consistency of bootstrap in approximating the distribution of Tn. We consider this con-
sistency in two somewhat different perspectives. In simultaneous inference about the average
mean E

∑n
i=1 Xi,j /n, we are interested in the performance of the bootstrapped quantile

t∗α = inf
[
t : P∗{T ∗

n > t
} ≤ α

]
at a prespecified significance level α, where T ∗

n is the bootstrapped version of Tn and P
∗ is

the conditional expectation given the original data. As an approximation of the 1−α quantile
of Tn, the performance of such t∗α is measured by∣∣P{Tn > t∗α

}− α
∣∣.

On the other hand, if we are interested in recovering the entire distribution function of Tn, it
is natural to consider the Kolmogorov–Smirnov distance

η∗
n

(
Tn,T

∗
n

) = sup
t

∣∣P{Tn ≤ t} − P
∗{T ∗

n ≤ t
}∣∣.

We shall consider Efron’s (1979) empirical bootstrap and the wild bootstrap in separate sub-
sections.

It seems possible to extend our ideas and analysis to more general settings, for example
the bootstrap schemes in Hall and Presnell (1999) and Præstgaard and Wellner (1993) and
the consistency in rectangular sets (Chernozhukov, Chetverikov and Kato (2017)). However,
we would not pursue these extensions here as they would make the paper more technical.

2.1. Empirical bootstrap. In the empirical bootstrap, we generate i.i.d. vectors X∗
1, . . . ,

X∗
n from the empirical distribution of the centered data points X1 − X, . . . ,Xn − X from

the original sample: Under the conditional probability P
∗ given the original data X =

(X1, . . . ,Xn)
T ,

P
∗{X∗

i = Xk − X
} = #{j : 1 ≤ j ≤ n : Xj = Xk}

n
, 1 ≤ k ≤ n,1 ≤ i ≤ n,(7)

where X = ∑n
i=1 Xi/n is the sample mean. The bootstrapped version of Tn is defined as

T ∗
n = max

1≤j≤p

1√
n

n∑
i=1

X∗
i,j .(8)

We state our main theorem on the consistency of empirical bootstrap as follows.

THEOREM 1 (Empirical bootstrap). Let X = (X1, . . . ,Xn)
T ∈ R

n×p be a random matrix
with independent rows Xi ∈ R

p , X∗
i the empirical bootstrapped Xi as in (7), and Tn and T ∗

n

as in (1) and (8), respectively. Let M4 and M4 be as in (5), and σ be as in (4). Define

γ ∗
δ,M0

=
(

(logp)2(log(np/δ))3

n

M4
0

σ 4

)1/6
.(9)

Then, with M ≥ M4 satisfying

P

{
‖X −EX‖max >

n1/3σ 1/3M2/3

(logp)1/6(log(4np/δ))1/2

}
≤ 1

2
min

{
δ, γ ∗

δ,M

}
,(10)

there exists a numerical constant C0 such that the Kolmogorov–Smirnov distance between
the distributions of Tn and T ∗

n is bounded by

sup
t∈R

∣∣P{Tn ≤ t} − P
∗{T ∗

n ≤ t
}∣∣ ≤ C0 min

{
γ ∗
δ,M, γ ∗

δ,M4

[
1 ∨ (

γ ∗
δ,M4

/δ
)1/5]}(11)
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with at least probability 1 − δ. Moreover, with M ≥ M4 satisfying (10) for δ = 1,∣∣P{Tn ≤ t∗α
}− (1 − α)

∣∣ ≤ C0 min
{
γ ∗

1,M, γ ∗
1,M4

}
.(12)

Note that the tail probability condition (10) is needed only when the first component on the
right-hand side of (11) and (12) is smaller. Theorem 1 asserts that under the fourth moment
and tail probability conditions, Efron’s empirical bootstrap provides a consistent estimate of
the distribution of Tn when

n � (logp)5.

This should be compared with the existing results on the Gaussian wild bootstrap and empir-
ical bootstrap where

n � (logp)7

is required (Chernozhukov, Chetverikov and Kato (2013, 2017)). In practice, the significance
of the difference between (logp)5 and (logp)7 would depend on applications even if we ig-
nore the constant factors involved in different theorems. If the above conditions are viewed
as sample size requirements, it would be fair to say that the difference could be quite sig-
nificant, that is, a (logp)2 fold increase in n, when data are not dirt cheap. More important,
our results prove theoretical advantages of bootstrap schemes with third moment match in
high dimension, compared with methods based on Gaussian approximation, as supported
by our simulation results in Section 5 for moderately large p. Moreover, as we show in
Corollary 1 below, our theory either requires just the fourth moment M4 or provides the rate
γ ∗
n � ((Bn/σ)2(log(np))5/n)1/2 where Bn is the maximum Orlicz norm of Xij .

2.2. Wild bootstrap. In wild bootstrap (Wu (1986)), we generate

X∗
i = Wi(Xi − X),(13)

where X = ∑n
i=1 Xi/n is the sample mean, W1, . . . ,Wn are i.i.d. variables with

EWi = 0, EW 2
i = 1,(14)

and the sequence {Wi} is independent of the original data X = (X1, . . . ,Xn)
T .

This general formulation of the wild bootstrap allows broad choices of the multiplier Wi

among them the Gaussian Wi ∼ N(0,1) and Rademacher P{Wi = ±1} = 1/2 are the most
obvious. Liu (1988) suggested the use of multipliers satisfying

EWi = 0, EW 2
i = 1, EW 3

i = 1,(15)

to allow the third moment match E(X∗
i )

⊗3 ≈ EX⊗3
i , and explored the benefits of such

schemes. Mammen (1993) proposed a specific choice of the multiplier Wi satisfying (15),

P

{
Wi = 1 ± √

5

2

}
=

√
5 ∓ 1

2
√

5
,(16)

and studied extensively the benefit of the third moment match in wild bootstrap. We note here
that while (15) holds for many choices of Wi , the Gaussian and Rademacher multipliers do
not possess this property. In the following theorem, we assume the sub-Gaussian condition

E exp(tW1) ≤ exp
(
τ 2

0 t2/2
)
, ∀t ∈ R,(17)

in addition to the third moment condition (15).



3648 H. DENG AND C.-H. ZHANG

THEOREM 2 (Wild bootstrap). Let X = (X1, . . . ,Xn)
T ∈ R

n×p be a random matrix with
independent rows Xi ∈ R

p , and X∗
i be generated by the wild bootstrap as in (13) with mul-

tipliers satisfying the moment condition (15) and the sub-Gaussian condition (17) with a
certain τ0 < ∞. Let Tn and T ∗

n be as in (1) and (8), respectively. Define

γ ∗
δ,M0

=
(

(logp)2(log(np))(log(np/δ)2)

n

M4
0

σ 4

)1/6
.(18)

Then, with M ≥ M4 satisfying

P

{
‖X −EX‖max >

n1/3σ 1/3M2/3

(logp)1/6(log(np))1/3(log(4np/δ))1/6

}
≤ 1

2
min

{
δ, γ ∗

δ,M

}
,(19)

there exists a numerical constant Cτ0 such that the Kolmogorov–Smirnov distance between
the distributions of Tn and T ∗

n is bounded by

sup
t∈R

∣∣P{Tn ≤ t} − P
∗{T ∗

n ≤ t
}∣∣ ≤ Cτ0 min

{
γ ∗
δ,M, γ ∗

δ,M4,2

[
1 ∨ (

γ ∗
δ,M4,2

/δ
)1/5]}(20)

with at least probability 1 − δ, where M4,2 ≤ M4 by its definition in (6). Moreover, with
M ≥ M4 satisfying (19) for δ = 1,∣∣P{Tn ≤ t∗α

}− (1 − α)
∣∣ ≤ Cτ0 min

{
γ ∗

1,M, γ ∗
1,M4,2

}
.(21)

REMARK 1. A user friendly bound of M4,2

M4
4,2 ≤ K

(
M4

4 + logp

n
Emax

i,j
|Xi,j −EXi,j |4

)
(22)

for some universal constant K can be found in Lemma 9 of Chernozhukov, Chetverikov and
Kato (2015) and Lemma E.3 of Chernozhukov, Chetverikov and Kato (2017).

Theorem 2 asserts that with the third moment condition (15) on the multiplier, the con-
clusions of Theorem 1 are all valid for the wild bootstrap under weaker moment condition.
Thus, the discussion below Theorem 1 about its significance also applies to Theorem 2.

While the statements of Theorems 1 and 2 are almost identical, the smaller quantity M4,2
is used in (20) and (21) in Theorem 2, compared with the larger M4 in (11) and (12) in
Theorem 1. Theorem 2 can be further sharpened if Theorems 7 and 8 in Section 3 are applied
in full strength.

As briefly discussed below Theorem 1, a key point in our theory is the benefit of the third
or higher moment match in both the empirical bootstrap and wild bootstrap. Efron’s empirical
bootstrap can always match moments but not exactly,

E

{
1

n

n∑
i=1

EX⊗m
i − 1

n

n∑
i=1

E
∗(X∗

i

)⊗m

}
≈ 0, m = 1,2, . . .

An alternative wild bootstrap scheme, X∗
i = WiXi , which approximates (13) with negligible

difference in our analysis under the assumption of EXi = 0, matches the moments of Xi

perfectly,

E
{
EX⊗m

i −E
∗(X∗

i

)⊗m} = 0,(23)

but only up to a certain order; m = 1,2 for the Gaussian and Rademacher wild bootstrap, and
m = 1,2,3 for Mammen’s and other wild bootstrap schemes satisfying (15). Thus, compared
with the proof of Theorem 2 which directly applies the exact moment match in (23), the proof
of Theorem 1 requires an additional analysis of the the difference in the moments, leading to
the stronger condition involving M4.
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If Xi ∈ R
p have symmetric distributions, condition (23) holds for all m for the Rademacher

wild bootstrap. In this case, the sample size condition n � (logp)4 is sufficient for the con-
sistency of the bootstrap under sixth moment and tail probability conditions and an anticon-
centration condition.

THEOREM 3 (Rademacher wild bootstrap). Let X = (X1, . . . ,Xn)
T ∈ R

n×p be a random
matrix with independent rows Xi ∈ R

p . Suppose E(Xi −EXi)
⊗m = 0 for m = 3 and m = 5.

Let X∗
i be generated by the Rademacher wild bootstrap, with P{Wi = ±1} = 1/2 for the

multiplier in (13). Then, for any given constants c0, c1 and M ≥ M6,∣∣P{Tn ≤ t∗α
}− (1 − α)

∣∣+ (
E sup

t∈R
∣∣P{Tn < t} − P

∗{T ∗
n < t

}∣∣2)1/2

≤ Cc0,c1

(
logp

n1/4

)4/7
+ sup

t∈R
P

{
t − c0

(
logp

n1/4

)4/7
≤
√

logp
Tn

M
≤ t

}
(24)

+
[
Emin

{
4,Cc0,c1

(
logp

n1/4

)32/7
max

1≤j≤p

n∑
i=1

(Xi,j −EXi,j )
6

M6n
I{|Xi,j−EXi,j |>an}

}]1/3

,

where an = c1M
√

logp(n1/4/ logp)10/7 and Cc0,c1 is a constant depending on {c0, c1} only.

The discussion below Theorem 1 about its significance also applies here, although (logp)5

is further improved to (logp)4 and an anticoncentration condition is required in Theorem 3.
In Section 4, we prove that the anti-concentration condition

sup
t
P

{
t − εn ≤

√
logp

Tn

M
≤ t

}
= o(1) ∀εn = o(1)

holds when
∑n

i=1 Xi/
√

n is conditionally a Gaussian vector given a certain sigma field A,
with Var(

∑n
i=1 Xi,j /

√
n|A) = σ 2

j such that P{minj σ 2
j ≥ σ 2} → 1 for a certain constant σ >

0.
The condition E(Xi − EXi)

⊗m = 0 holds for the leading odd m ∈ {3,5} when Xi are
symmetric about its mean, that is, P{Xi − EXi ∈ A} = P{EXi − Xi ∈ A} for all Boreal
sets A ⊂ R

p . In practice, such conditions could be imposed by the application itself. If the
validity of such conditions is uncertain, we may also test the moment condition when Xi are
i.i.d. However, a theoretical analysis of such tests and the validity of (24) for the Rademacher
wild bootstrap after such tests is beyond the scope of this paper.

2.3. Examples. In this subsection, we consider some specific examples in which the
moment and tail probability conditions of our theorems hold. These examples cover many
practical problems and applications as discussed in Chernozhukov, Chetverikov and Kato
(2013, 2017), and many publications citing their work (Blanchet, Kang and Murthy (2019),
Chen (2018), Dezeure, Bühlmann and Zhang (2017), Ning and Liu (2017), Zhang and Wu
(2017), Horowitz (2019)). Throughout this subsection, we assume the following:

Cond-1: 0 < σ ≤ (2 + √
2 logp)/{1/σ(1) + (1 + √

2 log j)/σ(j)},∀j = 1, . . . , p,
Cond-2: n−1 ∑n

i=1 E|Xi,j −EXi,j |4 ≤ M4
4 ,∀j = 1, . . . , p,

where σ(1) ≤ · · · ≤ σ(p) are the ordered values of σj = (n−1 ∑n
i=1 E(Xi,j −EXi,j )

2)1/2. Here,
σ and M4 are allowed to depend on n and to diverge to 0 or ∞, but they can also be treated
as constants for simplicity. Under the above moment conditions, we consider three examples
specified by certain measure Bn of the tail of {|Xi,j |}, possibly with unbounded Bn.
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2.3.1. Exponential tail. Here, we impose one additional condition on the tail of Xi,j in
the form of a uniform bound on their Orlicz norm with respect to ψ1(x) = ex − 1: with
inf∅= ∞,

(E.1) ‖Xi,j‖ψ1 = inf{B : Eψ1(|Xi,j −EXi,j |/B) ≤ 1} ≤ Bn,∀i, j.

COROLLARY 1. Suppose Xi are independent. Let Tn and T ∗
n be as in (1) and (8), re-

spectively, and Bn be as in (E.1).

(i) Let X∗
i be generated by the empirical bootstrap as in (7). Then (11) and (12) hold with

γ ∗
δ,M = max

{(
(logp)2(log(np/δ)3

n

M4
4

σ 4

)1/6
,

(
(logp)(log(np/δ))4

n

)1/2 Bn

σ

}
.

(ii) Let X∗
i be generated by the wild bootstrap as in (13). Suppose the multipliers Wi

satisfy the moment condition (15) and the sub-Gaussian condition (17) with a τ0 < ∞. Then
(20) and (21) hold with

γ ∗
δ,M = max

{(
(logp)2(log(np)(log(np/δ)2

n

M4
4

σ 4

)1/6
,

(
(logp)(log(np))(log(np/δ))3

n

)1/2 Bn

σ

}
.

REMARK 2. As x4 ≤ 5ψ1(x) for x ≥ 0, we have M4
4 ≤ 5B4

n , but Bn/M4 could be un-
bounded. We may compare the above result under (E.1) with Chernozhukov, Chetverikov
and Kato (2017) for the maxima. For the empirical bootstrap, Propositions 2.1 and 4.3 of
Chernozhukov, Chetverikov and Kato (2017) yields the following Kolmogorov–Smirnov dis-
tance bound:

sup
t

∣∣P{Tn ≤ t} − P
∗{T ∗

n ≤ t
}∣∣ ≤ CK

{
B

2
n

(
log(np)

)7
/n

}1/6

with probability at least 1 − δ when log(1/δ) ≤ K log(np), where Bn = max{M2
4/σ 2

(1),

Bn/σ(1)} is a scale-free version of their constant factor with the Bn in (E.1) and σ(1) =
minj≤p σj . Corollary 1 (i) improves the rate of their upper bound by at least a factor
of log1/3(np)(σ/σ(1))

2/3. When M4/σ(1) = O(1) and Bn/σ(1) � nκ0 with nontrivial κ0 ∈
(0,1/2), the rate improvement is by at least the following factor of polynomial order:

min
{
nκ0/3 log1/3(np), n(1−2κ0)/3(log(np)

)7/6−5/2}
.

Similarly, for the Gaussian wild bootstrap, the combination of Proposition 2.1 and Corol-
lary 4.2 of Chernozhukov, Chetverikov and Kato (2017) yields the following Kolmogorov–
Smirnov distance bound:

sup
t

∣∣P{Tn ≤ t} − P
∗{T ∗

n ≤ t
}∣∣ ≤ C0

{
B2

n log5(np) log2(np/δ)/n
}1/6

with probability at least 1− δ. With the third moment match in wild bootstrap, Corollary 1(ii)
improves upon their rate by at least a factor of log1/3(np)(σ/σ(1))

2/3 in general, and by at
least min{nκ0/3, n(1−2κ0)/3}polylog(np/δ) when M4/σ(1) = O(1) and Bn/σ(1) � nκ0 with
κ0 ∈ (0,1/2).

We note that the product of sub-Gaussian variables satisfies the sub-exponential condi-
tion (E.1) imposed in Corollary 1. For example, for testing the equality of the population
covariance matrices of two samples {Yi} and {Zi} in R

d , we just need to set

Xi = vec
(
YiY

T
i − ZiZ

T
i

)
with p = d(d + 1)/2,

as in Cai, Liu and Xia (2013) and Chang et al. (2017).
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2.3.2. Conditionally Gaussian vectors with Gaussian tail. Suppose
∑n

i=1 Xi/
√

n is con-
ditionally a Gaussian vector given a certain sigma

(E.2) : field A, (
∑n

i=1 Xi,j /
√

n)|A ∼ N(μj ,σ
2
j ), and with ψ2 = ex2 − 1,

‖Xi,j‖ψ2 = inf
{
B : Eψ2

(|Xi,j −EXi,j |/B) ≤ 1
} ≤ Bn.

Under (E.2), Theorem 3 is applicable, and a corollary of it is stated as follows.

COROLLARY 2. Let X = (X1, . . . ,Xn)
T ∈ R

n×p be a random matrix with independent
rows Xi ∈ R

p . Suppose E(Xi − EXi)
⊗m = 0 for m = 3 and m = 5. Let X∗

i be generated
by the Rademacher wild bootstrap, with P{Wi = ±1} = 1/2 for the multiplier in (13). Then,
under (E.2), we have

max
{∣∣P{Tn ≤ t∗α

}− (1 − α)
∣∣,(E sup

t∈R
∣∣P{Tn < t} − P

∗{T ∗
n < t

}∣∣2)1/2}

≤ C0

[(
logp

n1/4

)4/7 M6

σ
+
(

logp

n1/4

)2 Bn

√
log(np)

σ
√

logp

]
,

where σ is a constant upper bound for the soft minimum of {σ1, . . . , σp} in (E.2) as in (4).

2.3.3. Moment conditions. Consider the following conditions on moments of the max-
ima:

(E.3): M
q
q = n−1 ∑n

i=1 Emax1≤j≤p |Xi,j −EXi,j |q ≤ B
q
n ,

(E.4): M4
4,2 = Emax1≤j≤p

∑n
i=1 |Xi,j −EXi,j |4/n ≤ B4

n ,

(E.5): M6
6,2 = Emax1≤j≤p

∑n
i=1 |Xi,j −EXi,j |6/n ≤ B6

n.

Theorems 1, 2 and 3, respectively, imply the following corollary.

COROLLARY 3. Suppose Xi are independent. Let Tn and T ∗
n be as in (1) and (8), re-

spectively.

(i) Let X∗
i be generated by the empirical bootstrap as in (7). Then, under (E.3), (11) and

(12) hold with constant Cq and

γ ∗
δ,M = max

{
γ ∗
δ,M4

, γ ∗
1 (Bn)

[
1 ∨

(
γ ∗

1 (Bn)

δ

)1/q]}
,

where

γ ∗
1 (Bn) =

(
(logp)1/2(log(np/δ))

n1/2−1/q

Bn

σ

)q/(q+1)

.

Moreover, if (E.3) holds with q = 4, then γ ∗
δ,M4

= γ ∗
δ,Bn

in (11) and (12).
(ii) Let X∗

i be generated by the wild bootstrap as in (13) with multipliers satisfying the
moment condition (15) and the sub-Gaussian condition (17) with a certain τ0 < ∞. Then,
under (E.3), (20) and (21) hold with constant Cτ0,q and

γ ∗
δ,M = max

{
γ ∗
δ,M4

, γ ∗
2 (Bn)

[
1 ∨

(
γ ∗

2 (Bn)

δ

)1/q]}
,

where

γ ∗
2 (Bn) =

(
(logp)1/2(log(np))1/2(log(np/δ))1/2

n1/2−1/q

Bn

σ

)q/(q+1)

.

However, under (E.4), (20) and (21) hold with γ ∗
δ,M4,2

= γ ∗
δ,Bn

.
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(iii) Suppose that X satisfies the conditions of Theorem 3 and (E.5), and that
∑n

i=1 Xi/
√

n

satisfies the conditional Gaussian condition in (E.2) with a constant lower bound σ for the
soft minimum of the conditional standard deviation as in (4). Let X∗

i be generated by the
Rademacher wild bootstrap as in Theorem 3. Then∣∣P{Tn ≤ t∗α

}− (1 − α)
∣∣+ (

E sup
t∈R

∣∣P{Tn < t} − P
∗{T ∗

n < t
}∣∣2)1/2

≤ C0

[(
logp

n1/4

)4/7 Bn

√
log(np)

σ
√

logp
+
(

logp

n1/4

)32/21]
.

REMARK 3. We compare the above result under (E.3) with Chernozhukov, Chetverikov
and Kato (2017) for the maxima. For the empirical bootstrap, Corollary 3(i) implies with at
least probability 1 − δ, the Kolmogorov–Smirnov distance in (11) is bounded by

Cq max
{(

(logp)2(log(np))3

n

M4
4

σ 4

)1/6
,

(
(logp)(log(np))2

n1−2/q

B2
n

σ 2

) q
2(q+1)

}
(25)

when δ is greater than the second component, and

Cq max
{(

(logp)2(log(np))3

n

M4
4

σ 4

)1/6
,

(
(logp)(log(np))2

n1−2/qδ2/q

B2
n

σ 2

)1/2}
(26)

when δ is smaller. Note that log(np/δ) � log(np) as otherwise δ is extremely small so that the
second bound is effective but also trivial due to small n1−2/qδ2/q . For the third-moment match
wild bootstrap, (ii) yields a slightly better result but the above bounds in (25) and (26) also
apply. In Chernozhukov, Chetverikov and Kato (2017), the combination of Propositions 2.1
and 4.3 for the empirical bootstrap and the combination of Proposition 2.1 and Corollary 4.2
for the Gaussian wild bootstrap yield the Kolmogorov–Smirnov distance bound as

sup
t

∣∣P{Tn ≤ t} − P
∗{T ∗

n ≤ t
}∣∣

≤ Cq,K max
{(

B
2
n(log(np))7

n

)1/6
,

(
B

2
n(log(np))3

n1−2/qδ2/q

)1/3}
,

with at least probability 1 − δ, where Bn = max{M2
4/σ 2

(1),Bn/σ(1)} with the Bn in (E.3) and
σ(1) = minj σj . It is clear that the first component of the bound in (25) or (26) improves the
first rate above by at least a factor of (σ/σ(1) log(np))1/3. As q/(2(q +1)) > 1/3 for all q > 2
and the bounds are trivial when q ≤ 2, the second components in (25) and (26) improves the
second rate above by at least a factor of(

n1−2/q

(logp)(log(np))2

σ 2

B2
n

) q
2(q+1)

− 1
3

for q > 2.

In linear regression, we observe yi = ZT
i β + εi . Suppose the design vectors are determin-

istic and normalized to
∑n

i=1 Z2
i,j = n. Suppose we want to control the spurious correlation

in sure screening based on
∑n

i=1 yiZi/
√

n as in Fan and Lv (2008) and Fan and Zhou (2016).
Let Xi = yiZi . We have Xi −EXi = εiZi and

Tn =
∥∥∥∥∥

n∑
i=1

yiZi/
√

n −E

n∑
i=1

yiZi/
√

n

∥∥∥∥∥∞
.
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Suppose Eεi = 0 and Eε2
i = σ 2. For 1 ≤ q ≤ ∞, define(

1

n

n∑
i=1

E|εi |q
)1/q

≤ Mε,q, max
j≤p

(
1

n

n∑
i=1

|Zi,j |q
)1/q

≤ MZ,q.

Then conditions (E.3) with q = 4, (E.4) and (E.5) can be fulfilled with

M4 ≤ Mε,4MZ,∞, Mm,2 ≤ Mε,mqMZ,mq/(1−q), 1 ≤ q ≤ ∞,

where m = 4,6 in (E.4), (E.5), respectively. Dezeure, Bühlmann and Zhang (2017) studied
bootstrap simultaneous inference in high-dimensional linear regression under the sample size
condition n ≥ (logp)7 + s2(logp)3 and the moment condition Mε,4 + MZ,∞ = O(1).

2.4. Lévy–Prokhorov predistance and anticoncentration. The Kolmogorov–Smirnov
distance between two distribution functions can be bounded from the above by a sum of
upper bounds for their Lévy–Prokhorov distance and the minimum of their modulus of con-
tinuity. For two random elements Tn and T ∗

n living in a common metric space equipped with
a probability measure P, the Lévy–Prokhorov distance is the smallest ε > 0 satisfying

max
[
P{Tn ∈ A} − P

{
T ∗

n ∈ A(ε)
}
,P

{
T ∗

n ∈ A
}− P

{
Tn ∈ A(ε)

}] ≤ ε(27)

for all Borel sets A, where A(ε) = {y : minx∈A d(x, y) < ε} is the ε-neighborhood of A.
For comparison of the distributions of two maxima Tn and T ∗

n for simultaneous testing, it is
typically sufficient to consider one-sided intervals A = (∞, t] in (27). Choosing A = (∞, t]
is also sufficient for studying the Kolmogorov–Smirnov distance between the distribution
functions of Tn and T ∗

n . Thus, our analysis focuses on the following quantity:

ηn(ε) ≡ η(P)
n

(
ε;Tn,T

∗
n

) = sup
t∈R

η(P)
n

(
ε, t;Tn,T

∗
n

)
(28)

with η
(P)
n (ε, t;Tn,T

∗
n ) = max[P{Tn ≤ t − ε} −P{T ∗

n < t},P{T ∗
n ≤ t − ε} −P{Tn < t},0]. As

the Lévy–Prokhorov distance over all one-sided intervals is the smallest ε satisfying ηn(ε) ≤
ε, we refer to the quantity ηn(ε) as Lévy–Prokhorov predistance for convenience. It does
not define a distance between Tn and T ∗

n , but satisfies a “pseudo-triangular inequality” in the
sense that ∀T̃n, ε1 + ε2 < ε and ε1, ε2 > 0,

η(P)
n

(
ε;Tn,T

∗
n

) ≤ η(P)
n (ε1;Tn, T̃n) + η(P)

n

(
ε2; T̃n, T

∗
n

)
.(29)

It is straightforward by the triangle inequality that the Kolmogorov–Smirnov distance be-
tween the cumulative distribution functions of Tn and T ∗

n , equal to ηn(0+), is bounded by

sup
t∈R

∣∣P{Tn < t} − P
{
T ∗

n < t
}∣∣

= ηn(0+) ≤ ηn(ε) + min
{
ωn(ε;Tn),ωn

(
ε;T ∗

n

)}
, ∀ε > 0,

(30)

where ωn(ε;Tn) = ω
(P)
n (ε;Tn) = supt∈R P{t − ε < Tn < t} and ωn(ε;T ∗

n ) = ω
(P)
n (ε;T ∗

n ) is
defined in the same way with Tn replaced by T ∗

n . The quantity ωn(ε;Tn), which is also called
the Lévy concentration function, is the modulus of continuity of the cumulative distribution
function of Tn.

The Lévy–Prokhorov predistance characterizes the convergence in distribution. When Tn

has a fixed distribution function H0, T ∗
n converges in distribution to H0 if and only if ηn(ε) →

0 ∀ε > 0. On the other hand, limε→0+ ωn(ε;Tn) = 0 if and only if H0 is continuous. Of
course, if T ∗

n converges in distribution to a continuous H0, then the distribution function of
T ∗

n converges to H0 in the Kolmogorov–Smirnov distance. Moreover, as ηn(ε) is decreasing
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in ε, the condition ηn(ε) → 0 ∀ε > 0 is necessary for the convergence ηn(0+) → 0 in the
Kolmogorov–Smirnov distance.

Inequality (30) asserts that the Kolmogorov–Smirnov distance is bounded by a sum of
two quantities, the Lévy–Prokhorov predistance which allows a shift ε in the comparison
of two distribution functions and the Lévy concentration as an upper bound for the error
introduced by the shift. By allowing a shift, the Lévy–Prokhorov pre-distance can be further
bounded by comparison of the expectations of smooth functions of Tn and T ∗

n so that the
Lindeberg interpolation can be applied as discussed in detail in Section 3. Upper bounds for
the Lévy concentration, called the anticoncentration inequality, will be discussed in Section 4.
The role of (30) is to explicitly spell out the roles of the comparison and anticoncentration
theorems and to facilitate the notation in our analysis. We note that ηn(ε) is decreasing but
min{ωn(ε;Tn),ωn(ε;T ∗

n )} is increasing in ε. In our analysis, we pick an ε = 1/bn to balance
the rate of the two terms in (30). For example, as ωn(1/bn;Tn)� b−1

n

√
logp by Theorem 12

in Section 4, b−1
n � ((logp)2/n)1/6 is used to achieve the rate ((logp)5/n)1/6 in Theorems

1 and 2.
In bootstrap, we are interested in approximating the distribution of Tn under the marginal

probability P by the distribution of the bootstrap T ∗
n under the conditional probability P

∗
given the original data. To streamline the notation, we write this comparison under a common
probability measure by introducing a copy T 0

n of Tn independent of the original data X, so
that P{Tn ≤ t} = P{T 0

n ≤ t |X} = P
∗{T 0

n ≤ t}. This allows us to write

η(P∗)
n

(
ε, t;T 0

n , T ∗
n

)
= max

[
P

∗{T 0
n ≤ t − ε

}− P
∗{T ∗

n < t
}
,P∗{T ∗

n ≤ t − ε
}− P

∗{T 0
n < t

}
,0
]

= max
[
P{Tn ≤ t − ε} − P

∗{T ∗
n < t

}
,P∗{T ∗

n ≤ t − ε
}− P{Tn < t},0

]
.

The following lemma connects the consistency of bootstrap to the tail probability of the
random Lévy–Prokhorov predistance under P∗ and Lévy concentration function ωn(ε;Tn).

LEMMA 1. Let t∗α be the (1−α)-quantile of T ∗
n under P∗. Then, for all εn > 0 and η > 0,∣∣P{Tn ≤ t∗α

}− (1 − α)
∣∣ ≤ sup

t
P
{
η(P∗)

n

(
εn, t;T 0

n , T ∗
n

)
> η

}+ η + ωn(εn;Tn),

and the Kolmogorov–Smirnov distance between P{Tn ≤ t} and P
∗{T ∗

n < t} is bounded by

sup
t∈R

∣∣P{Tn < t} − P
∗{T ∗

n < t
}∣∣ ≤ η + ω(P)

n (εn;Tn)

when η∗
n(εn) ≤ η, where η∗

n(ε) ≡ η
(P∗)
n (ε;T 0

n , T ∗
n ) = supt∈R η

(P∗)
n (ε, t;T 0

n , T ∗
n ).

We derive in the next two sections upper bounds for the Lévy–Prokhorov predistances
ηn(ε) and η∗

n(ε) and the Lévy concentration function ωn(ε;Tn), respectively.

3. Comparison theorems. Let h0 be a smooth decreasing function taking value 1 in
(−∞,−1] and 0 in [0,∞). As we will explicitly explain at the beginning of the proof of
Theorem 5, it follows directly from the definition of the Lévy–Prokhorov predistance in (28)
that

ηn(1/bn) ≤ sup
t∈R

∣∣Eht (bnTn) −Eht

(
bnT

∗
n

)∣∣, ∀bn > 0,

where ht (·) = h0(· − t) is the location shift of h0. In this section, we develop comparison
theorems which provide expansions and bounds for

Ef (X1, . . . ,Xn) −E
∗f

(
X∗

1, . . . ,X∗
n

)
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in terms of average moments of {Xi, i ≤ n} and {X∗
i , i ≤ n}. Here, f (x1, . . . , xn) is a smooth

function of n vectors xi ∈ R
p and E and E

∗ may represent two arbitrary measures. The
bootstrap is treated as a special case where E

∗ is the conditional expectation given X under
E.

To make a connection between quantities of the form Eht (bnTn), which is Lipschitz
smooth in Xi at the best, and Ef (X1, . . . ,Xn), which is required to be more smooth in
our analysis, we approximate the maximum function Tn = maxj

∑n
i=1 Xi,j /

√
n of {Xi} by

the smooth max function Fβ(Zn) as in Chernozhukov, Chetverikov and Kato (2013), where
Zn = (X1 + · · · + Xn)/n1/2 and

Fβ(z) = 1

β
log

( p∑
j=1

eβzj

)
, ∀z = (z1, . . . , zp)T .(31)

For β > 0, the function Fβ(z) is infinitely differentiable and

max(z1, . . . , zp) ≤ Fβ(z) ≤ max(z1, . . . , zp) + β−1 logp.

It follows that (cf. Proof of Theorem 5 in the Supplementary Material, Deng and Zhang
(2020)) for βn = 2bn logp,

ηn(1/bn) ≤ sup
t∈R

∣∣Eht

(
2bnFβn(Zn)

)−Eht

(
2bnFβn

(
Z∗

n

))∣∣,(32)

where Z∗
n = (X∗

1 +· · ·+X∗
n)/n1/2. In the Supplementary Material, we provide upper bounds

for the derivatives of Fβ(z) and f = h ◦ (bnFβ) via the Faa di Bruno formula.
We shall put X and X∗ in the same probability space to better present our analysis. For

this purpose, we use slightly different notation between the general and bootstrap cases. In
the general case where both E and E

∗ are treated as deterministic, the problem does not
involve the joint distribution between {Xi} and {X∗

i }. This allows us to assume without loss
of generality that (Xi,X

∗
i ) ∈ R

p×2, 1 ≤ i ≤ n, are independent matrices under E, so that the
problem concerns

�n(f ) = E
{
f (X1, . . . ,Xn) − f

(
X∗

1, . . . ,X∗
n

)}
.

In the bootstrap case, E∗ is the conditional expectation given X and we consider

�∗
n(f ) =E

∗{f (X0
1, . . . ,X

0
n

)− f
(
X∗

1, . . . ,X∗
n

)}
=Ef (X1, . . . ,Xn) −E

∗f
(
X∗

1, . . . ,X∗
n

)
,

(33)

where X0 = (X0
1, . . . ,X

0
n)

T is an independent copy of X. As (X0
i ,X

∗
i ) are still independent

random matrices under E∗, we can conveniently write the mean squared approximation error
as

E
[
E

∗{f (X0
1, . . . ,X

0
n

)− f
(
X∗

1, . . . ,X∗
n

)}]2
.

In either cases, we assume throughout this section that EXi = E
∗X∗

i = 0, so that the average
centered moments are

μ(m) = 1

n

n∑
i=1

EX⊗m
i , ν(m) = 1

n

n∑
i=1

E
∗(X∗

i

)⊗m
.(34)

We consider in separate sections the Lindeberg method and comparison bounds for two
general measures, the maxima, the empirical bootstrap and the wild bootstrap.
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3.1. A coherent Lindeberg interpolation. Let (Xi,X
∗
i ) ∈ R

p×2 be independent random
matrices under E, Ui = (X1, . . . ,Xi−1,0,X∗

i+1, . . . ,X
∗
n), and Vi = (X1, . . . ,Xi,X

∗
i+1, . . . ,

X∗
n). The original Lindeberg (1922) proof of the central limit theorem begins with the de-

composition

�n(f ) = E
{
f (Vn) − f (V0)

}=
n∑

i=1

E
{
f (Vi ) − f (Vi−1)

}
,

followed by a Taylor expansion of the increments f (Vi ) − f (Vi−1) at Ui , so that

�n(f ) =
m∗−1∑
m=1

�n,m + Rem,

�n,m = 1

m!
n∑

i=1

〈
Ef

(m)
i (Ui ),EX⊗m

i −E
(
X∗

i

)⊗m〉
,

(35)

where f
(m)
i (x1, . . . , xn) = (∂/∂xi)

⊗mf (x1, . . . , xn). To prove the central limit theorem, Lin-
deberg (1922) took m∗ = 3 and Gaussian X∗

i with the same first two moments as Xi , so
that �n(f ) = Rem. In this approach, f (Vi) can be viewed as an interpolation between
f (Vn) = f (X) and f (V0) = f (X∗). The ideal has found much broader applications recently;
see, for example, Chatterjee (2006). However, the decomposition (35) may not yield the best
bounds for �n(f ) when EX⊗m

i − E(X∗
i )

⊗m are heterogeneous, for example, in the case of
the empirical bootstrap with heteroscedastic Xi .

We further develop the Lindeberg approach (35) as follows to bound the quantity �n(f )

in terms of the difference of the average moments of {Xi} and {X∗
i },

1

n

n∑
i=1

EX⊗m
i − 1

n

n∑
i=1

E
(
X∗

i

)⊗m
,(36)

instead of the difference in the moments of individual Xi and X∗
i as in a direct application

of (35). This improvement, which can be viewed as a “coherent” Lindeberg interpolation and
facilitates our analyses of the bootstrap for the maxima of the sums of Xi , is achieved by
taking the average of the Lindeberg interpolation over all permutations of the index i.

Consider permutation invariant functions f (x1, . . . , xn) of xi ∈ R
p,1 ≤ i ≤ n, satisfying

f (x1, . . . , xn) = f (xσ1, . . . , xσn)

for all permutations σ = (σ1, . . . , σn) of {1, . . . , n}. While �n(f ) of (35) is invariant in the
permutation σ , the individuals components �n,m and the remainder term on the right-hand
side are not. Thus, the worst scenario bounds for |�n,m| and |Rem | may not yield optimal
results compared with the coherent Lindeberg interpolation, which we formally describe as
follows.

Suppose EXi = EX∗
i = 0. For permutations σ = (σ1, . . . , σn) of {1, . . . , n}, let

Uσ,k = (
Xσ1, . . . ,Xσk−1,X

∗
σk+1

, . . . ,X∗
σn

)
.

As �n(f ) invariant under permutation of the index i, for each permutation σ (35) yields

�n(f ) =
m∗−1∑
m=2

�n,m,σ + Remσ ,
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with �n,m,σ = (m!)−1 ∑n
k=1〈Ef

(m)
σk (Uσ,k,0),EX⊗m

σk
− E(X∗

σk
)⊗m〉. This leads to the expan-

sion

�n(f ) = E
{
f (X1, . . . ,Xn) − f

(
X∗

1, . . . ,X∗
n

)}
=

m∗−1∑
m=2

Aσ (�n,m,σ ) +Aσ (Remσ ),
(37)

where Aσ is the operator of averaging over all permutations σ of {1, . . . , n}. The expansion
in (37) can be viewed as a coherent version of the original one in (35) as the fluctuation with
respect to the choice of σ is removed by taking average over all permutations. The following
lemma will be used to approximate Aσ (�n,m,σ ) and Aσ (Remσ ) by quantities of the same
form with the difference of the average moments (36) in place of EX⊗m

i −E(X∗
i )

⊗m. Define

ζk,i = δkXi + (1 − δk)X
∗
i ,

where {δk} are Bernoulli variables independent of {Xi,X
∗
i , i ≤ n} under E with P{δk = 1} =

k/(n + 1). Let Aσ,k be the operator of taking the average over all permutations σ and all
k = 1, . . . , n and the expectation with respect to δk , conditionally on {Xi,X

∗
i , i ≤ n},

Aσ,kh
(
σ, k, ζk,σk

,X,X∗) = 1

n

n∑
k=1

1

n!
∑
σ

{
kh(·,Xσk

)

n + 1
+ (n + 1 − k)h(·,X∗

σk
)

n + 1

}
,(38)

for all Borel functions h, where h(·, ξ) = h(σ, k,X(σ ),X∗
(σ ), ξ) and X(σ ) is the permutation

over rows of X.

LEMMA 2. For all permutation invariant functions f (x1, . . . , xn),

Aσ,k

(
I{σk=i}f (Uσ,k, ζk,i)

)
does not depend on i. Consequently, for any function gi(·, ·), 1 ≤ i ≤ n,

Aσ,k

〈
f (Uσ,k, ζk,σk

), gσk

(
X,X∗)〉 = 〈

Aσ,k

(
f (Uσ,k, ζk,σk

)
)
,

1

n

n∑
i=1

gi

(
X,X∗)〉.

We consider smooth functions with slightly stronger permutation invariance properties.
Suppose that for certain permutation invariant functions f (m,0)(x1, . . . , xn),

f (m)
n (x1, . . . , xn−1,0) = f (m,0)(x1, . . . , xn−1,0), m = 0,2, . . . ,m∗ − 1,(39)

where f
(m)
n (x1, . . . , xn) = (∂/∂xn)

⊗mf (x1, . . . , xn) is as in (35). Such f (m,0) exist if
f (x1, . . . , xn) = f0(x1, . . . , xn,0) for a permutation invariant function f0(x1, . . . , xn, xn+1)

involving n + 1 vectors, for example, a function of the sum x1 + · · · + xn. In this case, we
may pick

f (m,0)(x1, . . . , xn) = (∂/∂xn+1)
⊗mf0(x1, . . . , xn, xn+1)|xn+1=0.

It follows from (37), Lemma 2 and (39) that

Aσ (�n,m,σ )

= nAσ,k

(
(m!)−1〈

Ef (m,0)(Uσ,k,0),EX⊗m
σk

−E
(
X∗

σk

)⊗m〉)
≈ nAσ,k

(
(m!)−1〈

Ef (m,0)(Uσ,k, ζk,σk
),EX⊗m

σk
−E

(
X∗

σk

)⊗m〉)
=
〈

n

m!Aσ,k

(
Ef (m,0)(Uσ,k, ζk,σk

)
)
,

1

n

n∑
i=1

EX⊗m
i − 1

n

n∑
i=1

E
(
X∗

i

)⊗m

〉
,

(40)
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so that Aσ (�n,m,σ ) is small when the average moments between {Xi} and {X∗
i } are close

to each other. Interestingly, a combination of Slepian’s (1962) smart path interpolation and
Stein’s (1981) leave-one-out method also allows comparison of the average of the second
moment, but not the third moment and beyond. The Edgeworth expansion, a classical tool for
high-order analysis of the bootstrap, is not available in our analysis as we are interested in
the regime where the Gaussian approximation may fail to begin with.

3.2. A general comparison theorem. In this subsection, we present upper bounds for the
absolute value of �n(f ) in (37) for smooth permutation invariant functions f (x1, . . . , xn) in
a general setting, where (Xi,X

∗
i ) ∈ R

p×2, 1 ≤ i ≤ n, are assumed to be independent random
matrices under E. Conditions up to the m∗th moment will be imposed, for example, m∗ = 4
in (37).

In addition to invariance condition (39), we assume the following stability condition on
derivatives of order m∗. For integers m1 ≥ 2 and m2 ≥ 0 with m1 + m2 ≤ m∗, define

f (m1,m2)(x1, . . . , xn−1, xn) = (
(∂/∂xn)

⊗m2
)⊗ f (m1,0)(x1, . . . , xn−1, xn).

Here, ((∂/∂xn)
⊗m2) ⊗ f (m1,0), a product of two tensors, is treated as an m = m1 + m2 di-

mensional tensor with elements ( ∂
∂xn,j1

) · · · ( ∂
∂xn,jm2

)f
(m1,0)
jm2+1,...,jm2+m1

. Suppose that for m1 ≥ 2

and m2 = m∗ − m1, for example, (m1,m2) = (2,2) or (3,1) for m∗ = 4,

P

⎧⎪⎪⎨⎪⎪⎩
∣∣f (m1,m2)

j1,...,jm∗ (x1, . . . , xn−1, tξi)
∣∣ ≤ g

(‖ξi‖
un

)
f̄

(m∗)
j1,...,jm∗ (x1, . . . , xn−1,0),∣∣f (m∗)

j1,...,jm∗ (x1, . . . , xn−1, tξi)
∣∣ ≤ g

(‖ξi‖
un

)
f̄

(m∗)
j1,...,jm∗ (x1, . . . , xn−1,0)

⎫⎪⎪⎬⎪⎪⎭ = 1(41)

for all 0 ≤ t ≤ 1 and 1 ≤ i ≤ n, where ξi is either Xi or X∗
i . Suppose further that for some

permutation invariant f
(m∗)
max (x1, . . . , xn),

P

{
f̄

(m∗)
j1,...,jm∗ (x1, . . . , xn−1,0) ≤ g

(‖ξi‖
un

)(
f (m∗)

max (x1, . . . , xn−1, ξi)
)
j1,...,jm∗

}
= 1(42)

for the same ξi . Define Gk = (E{1/g(‖Xk‖/un)}) ∧ (E{1/g(‖X∗
k‖/un)}) and

μ(m)
max =

([
max

{
n∑

k=1

E|Xk|mg(
‖Xk‖
un

)

nGk

,

n∑
k=1

E|X∗
k |mg(

‖X∗
k‖

un
)

nGk

,

n∑
k=1

E|Xk|mEg(
‖X∗

k‖
un

)

nGk

,

n∑
k=1

E|X∗
k |mEg(

‖Xk‖
un

)

nGk

}]1/m)⊗m

.

(43)

When g(t) is increasing in t and P{max1≤i≤n(‖Xi‖ ∨ ‖X∗
i ‖) ≤ cun} = 1 for a constant c,

μ(m)
max ≤ g2(c)

((
max

{
n∑

k=1

E|Xk|m
n

,

n∑
k=1

E|X∗
k |m

n

})1/m)⊗m

.

Let Uσ,k and ζk,i be as in Lemma 2 and define

F (m) = n

m!Aσ,k

(
Ef (m,0)(Uσ,k, ζk,σk

)
) =

n∑
k=1

1

m!n!
n∑

i=1

∑
σ,σk=i

Ef (m,0)(Uσ,k, ζk,i),

where Aσ,k is the operator defined in (38). Similarly, define

F (m)
max = n

m!Aσ,k

(
Ef (m)

max(Uσ,k, ζk,σk
)
)=

n∑
k=1

1

m!n!
n∑

i=1

∑
σ,σk=i

Ef (m)
max(Uσ,k, ζk,i).



BEYOND GAUSSIAN APPROXIMATION 3659

THEOREM 4. Let (Xi,X
∗
i ) ∈ R

p×2, 1 ≤ i ≤ n, be independent random matrices under
expectation E. Let m∗ ∈ {3,4}. Suppose (41) and (42) hold. Then

Ef (X1, . . . ,Xn) −Ef
(
X∗

1, . . . ,X∗
n

) =
m∗−1∑
m=2

〈
F (m),μ(m) − ν(m)〉+ Rem,

where μ(m) = n−1 ∑n
i=1 EX⊗m

i and ν(m) = n−1 ∑n
i=1 E(X∗

i )
⊗m as in (34), and

|Rem | ≤
{

2 + 4
m∗−1∑
m=2

(
m∗
m

)}〈
F (m∗)

max ,μ(m∗)
max

〉
.

We may apply Theorem 4 directly to {Xi} and {X∗
i } or their truncated versions as we will

show in Theorems 5 and 6 in the next two subsections.
In Theorem 4, the difference between the left- and right-hand sides of (40) is absorbed in

the remainder term, which itself is expressed in terms of the average of moment-like quanti-
ties in (43), under conditions (41) and (42).

3.3. Comparison theorem for the maxima of sums. As in (1) and (8), let

Tn =
∥∥∥∥∥

n∑
i=1

Xi/
√

n

∥∥∥∥∥∞
, T ∗

n =
∥∥∥∥∥

n∑
i=1

X∗
i /

√
n

∥∥∥∥∥∞
.

For random matrices X̃ = (X̃1, . . . , X̃n) and X̃∗ = (X̃∗
1, . . . , X̃∗

n) and bn > 0, define

�0 =
{∥∥∥∥∥

n∑
i=1

Xi − X̃i

n1/2

∥∥∥∥∥∞
>

1

4bn

}
, �∗

0 =
{∥∥∥∥∥

n∑
i=1

X∗
i − X̃∗

i

n1/2

∥∥∥∥∥∞
>

1

4bn

}
.(44)

THEOREM 5. Let (Xi,X
∗
i ) ∈ R

p×2, 1 ≤ i ≤ n, be independent random matrices under
expectation E, m∗ ∈ {3,4}, ηn(ε) be the Lévy–Prokhorov pre-distance in (28), and un =√

n/(2bn logp).
(i) Let μ

(m)
max be given in (43) with g(t) = e2m∗t . Then

ηn(1/bn) ≤ Cm∗

(
m∗−1∑
m=2

bm
n (logp)m−1

nm/2−1

∥∥μ(m) − ν(m)
∥∥

max

+ bm∗
n (logp)m

∗−1

nm∗/2−1

∥∥μ(m∗)
max

∥∥
max

)
,

(45)

where μ(m) and ν(m) are as in Theorem 4.
(ii) Let X̃ = (X̃1, . . . , X̃n) and X̃∗ = (X̃∗

1, . . . , X̃∗
n). Suppose that (X̃i, X̃

∗
i ) are independent

matrices under P, EX̃i = EX̃∗
i = 0, and P{‖X̃‖max ∨‖X̃∗‖max ≤ c1un} = 1 for a constant c1.

Then

ηn(1/bn) ≤ Cm∗,c1

m∗∑
m=2

bm
n (logp)m−1

nm/2−1

∥∥μ̃(m) − ν̃(m)
∥∥

max

+ Cm∗,c1

bm∗
n (logp)m

∗−1

nm∗/2−1

∥∥μ̃(m∗)∥∥
max + P{�0} + P

{
�∗

0
}
,

(46)

where μ̃(m) = n−1 ∑n
i=1 EX̃⊗m

i , ν̃(m) = n−1 ∑n
i=1 E(X̃∗

i )
⊗m, and �0 and �∗

0 are as in (44).
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We may consider X̃ = (X̃i,j )n×p = (X̃1, . . . , X̃n) as a truncated version of X given by

X̃i,j = Xi,j I{|Xi,j |≤an} −EXi,j I{|Xi,j |≤an}.(47)

In this case, the following lemma can be used to bound P{�0}.
LEMMA 3. Let Mm be as in (5) with m > 2, X̃ as in (47) with an satisfying

Mm{n/ log(p/εn)}1/m ≤ an ≤ ãn = {c1n
1/2/(bn log(p/εn))} with c1 > 0, and �0 as in (44).

Then, for sufficiently large constant Cm,c1 , it implies by bm
n (log(p/εn))

m−1Mm
m/nm/2−1 ≤

1/Cm,c1 that

P{�0} ≤ εn + P{�̃0} ≤ εn + Cm,c1

bm
n (log(p/εn))

m−1

nm/2−1 Mm
m,2,(48)

where �̃0 = {max1≤j≤p |n−1/2 ∑n
i=1 Xi,j I{|Xi,j |>ãn}| > 1/(8bn)} and Mm,2 is as in (6).

We note that the upper bound for an is no smaller than the lower bound due to the condition

bm
n

(
log(p/εn)

)m−1
Mm

m/nm/2−1 ≤ 1/Cm,c1 .

3.4. Efron’s empirical bootstrap. We have already obtained upper bounds for the Lévy–
Prokhorov predistance (28) in terms of the average moments of Xi and X∗

i in Theorem 5. In
bootstrap, the Lévy–Prokhorov predistance is a random variable due to the involvement of
P

∗,

η∗
n(ε) ≡ η(P∗)

n

(
ε;T 0

n , T ∗
n

) = sup
t∈R

η(P∗)
n

(
ε, t;T 0

n , T ∗
n

)
,(49)

where η
(P∗)
n (ε, t;T 0

n , T ∗
n ) = max[P∗{T 0

n ≤ t − ε} − P
∗{T ∗

n < t},P∗{T ∗
n ≤ t − ε} − P

∗{T 0
n <

t},0] as in Lemma 1, and T ∗
n is the bootstrapped Tn. Recall that P∗{T 0

n ≤ t} = P{Tn ≤ t} as
T 0

n is an independent copy of Tn. In this subsection, we derive more explicit bounds for η∗
n(ε)

in terms of the average moments of {Xi} for Efron’s empirical bootstrap.
For the empirical bootstrap, the difference of the average moments between Xi and X∗

i is

ν(m) − μ(m) = 1

n

n∑
i=1

(Xi − X)⊗m − 1

n

n∑
i=1

EX⊗m
i

= 1

n

n∑
i=1

(
X⊗m

i − μ(m))+
m∑

k=1

(
m

k

)
Sym

(
(−X)⊗k

n∑
i=1

X
⊗(m−k)
i

n

)
,

where ν(m) and μ(m) are as in (34) with the assumption μ(1) = 0 and Sym(A) denotes the
symmetrization of tensor A by taking the average over all permutations of the index of its el-
ements. It can be seen from the above expression that the quantities ‖μ(m) − ν(m)‖max in the
right-hand side of (45), and ‖μ(4)

max‖max as well, can be bounded by empirical process meth-
ods. However, as high moments are involved, some level of truncation may still be needed to
obtain sharp results when ‖X‖max is unbounded. Therefore, a direct application of the error
bound (46) with truncation is natural. This approach is taken here.

THEOREM 6. Let Xi ∈ R
p be independent random vectors and X∗

i generated by the
empirical bootstrap. Let bn > 0, M4 be as in (5), {c1, c2} be fixed positive constants, and
ãn = c1

√
n/(bn log(p/εn)). Suppose log(p/εn) ≤ c2n. Then

η∗
n(1/bn) ≤ Cc1,c2b

2
n

(
log(p/εn)

)3/2
M2

4/n1/2 + 2εn + P
{‖X‖max > ãn

}
(50)

with at least probability 1 − (P{‖X‖max > ãn} + 2εn), and with M4 as in (5),

P
{
η∗

n(1/bn) > Cc1,c2

(
εn + b4

n

(
log(p/εn)

)3
M4

4/(εnn)
)}≤ εn.(51)
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3.5. Wild bootstrap. Let {Wi} be a sequence of i.i.d. variables independent of X and
satisfying EWi = 0 and EW 2

i = 1. The wild bootstrap (Liu (1988), Wu (1986), Mammen
(1993)) is defined in (13). Recall that we assume EXi = 0 without loss of generality in our
analysis. As ‖∑n

i=1 WiX/
√

n‖∞ = OP (1)‖X‖∞ is typically negligible in the analysis of the
maxima of the sum of X∗

i under mild conditions, for simplicity we may study

X∗
i = WiXi.(52)

Suppose the moments of individual X∗
i matches that of Xi under the joint expectation E,

EX⊗m
i = E(WiXi)

⊗m, m = 1, . . . ,m∗ − 1,(53)

where m∗ represents the highest order of expansion involved in the comparison theorem.
Condition (53) holds for m∗ = 4 when EW 3

i = 1 (Liu (1988), Mammen (1993)), and all m∗
for the Rademacher wild bootstrap when EX⊗m

i = 0 for all positive odd m smaller than m∗,{
EW 3

i = 1 and m∗ = 4
}

or{
EW 4

i = 1 and EX⊗m
i = 0 ∀ odd m ∈ [1,m∗)

}
.

(54)

We note that (53) always holds for m∗ = 3 due to the default conditions EWi = 0 and EW 2
i =

1. Under this moment condition and the sub-Gaussian condition (17) on Wi , a modification
of the proof of Theorem 6 yields the following result.

THEOREM 7. Let Xi ∈ R
p be independent random vectors and X∗

i generated by the
wild bootstrap as in (13). Suppose (53) holds with m∗ ∈ {3,4} and (17) holds with τ0 <

∞. Let Mm∗ and Mm∗,2 be as in (5) and (6), respectively. Let bn > 0, εn ≤ εn and ãn =
c1

√
n/{(bn(log(p/εn))

1/2(log(p/εn))
1/2}. Suppose logp ≤ c2n with a constant c2 > 0 and

M = Mm∗(n/ log(p/εn))
1/m∗−1/4. Then, for a sufficiently large constant Cm∗,τ0,c1,c2 ,

η∗
n(1/bn) ≤ Cm∗,τ0,c1,c2b

2
n

(
log(p/εn)

)1/2(log(p/εn)
)
/n1/2M2 + εn

+ P

{
max

1≤j≤p

∣∣∣∣∣
n∑

i=1

Xi,j I{|Xi,j |>ãn}√
n

∣∣∣∣∣ > 1/(8bn)

}
(55)

with at least probability 1 − (P{C0τ
2
0 b2

n log(p/εn)max1≤j≤p

∑n
i=1 X2

i,j I{|Xi,j |>ãn} > n} +
2εn) and

η∗
n(1/bn) ≤ C ′

m∗,τ0,c1,c2

(
εn + bm∗

n (log(p/εn))
m∗
2 −1(log(p/εn))

m∗
2

εn · nm∗
2 −1

Mm∗
m∗,2

)
(56)

with at least probability 1 − εn.

While (55) is comparable with (50) in Theorem 6, (56) requires the weaker moment Mm∗,2
than the Mm∗ in (51).

In the rest of the subsection, we study the implication of a martingale structure in the
original Lindeberg expansion (35) for wild bootstrap. This would lead to a comparison theory
more useful for the high order m∗ > 4. Let

U0
i = (

X0
1, . . . ,X

0
i−1,0,X∗

i+1, . . . ,X
∗
n

)
, V0

i = (
X0

1, . . . ,X
0
i ,X

∗
i+1, . . . ,X

∗
n

)
,

where X0 = (X0
1, . . . ,X

0
n)

T is an independent copy of X. Let f
(m)
i = (∂/∂xi)

mf and �∗
n(f )

be as in (33). The bootstrap version of the Lindeberg expansion (35) is

�∗
n(f ) =

m∗−1∑
m=2

�∗
n,m + Rem(57)

with �∗
n,m = (m!)−1 ∑n

i=1〈E∗f (m)
i (U0

i ),E
∗(X0

i )
⊗m −E

∗(X∗
i )

⊗m〉.
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Consider the case where X∗
i are defined as in (52). By (53), E{E∗(X0

i )
⊗m −E

∗(X∗
i )

⊗m} =
0. As E∗f (m)

i (U0
i ) is a function of (Xi+1, . . . ,Xn), �∗

n,m is a sum of martingale differences.
This directly leads to the comparison inequalities in Proposition 1 below. Consider functions
f satisfying

P

⎧⎪⎨⎪⎩
∣∣f (m∗)

i (x1, . . . , xi−1, tξi, xi+1, . . . , xn)
∣∣

≤ g

(‖ξi‖
un

)
f (m∗)

max (x1, . . . , xi−1,0, xi+1, . . . , xn)

⎫⎪⎬⎪⎭ = 1, 0 ≤ t ≤ 1,(58)

for ξi = Xi or X∗
i , with real-valued g(t) and m∗-tensor-valued f

(m∗)
max . Let

s2
n,m,i = 〈(

E
∗f (m)

i

(
U0

i

))⊗2
,E

(
X⊗m

i −EX⊗m
i

)⊗2(
EWm

i

)2〉
, 2 ≤ m < m∗,

s2
n,m∗,i =

〈(
E

∗f (m∗)
max

(
U0

i

))⊗2
,E

[
E

∗g
(‖X∗

i ‖
un

)∣∣X∗
i

∣∣⊗m∗ −Eg

(‖X∗
i ‖

un

)∣∣X∗
i

∣∣⊗m∗]⊗2〉
,

Rem = 1

m∗!
n∑

i=1

〈
E

∗f (m∗)
max

(
U0

i

)
,Eg

(‖X0
i ‖

un

)∣∣X0
i

∣∣⊗m∗ +Eg

(‖X∗
i ‖

un

)∣∣X∗
i

∣∣⊗m∗〉
.

PROPOSITION 1. Let Xi and X∗
i be as in (52) and �∗

n(f ) as in (57). Suppose (53) and
(58). Then

E
∣∣�∗

n(f )
∣∣ ≤ m∗−1∑

m=2

1

m!
(

n∑
i=1

Es2
n,m,i

)1/2

+E(Rem),

(
E
∣∣�∗

n(f )
∣∣2)1/2 ≤

m∗∑
m=2

1

m!
(

n∑
i=1

Es2
n,m,i

)1/2

+ (
E(Rem)2)1/2

.

(59)

For Efron’s empirical bootstrap,

E
∗(X∗

i

)⊗m = n−1
n∑

k=1

(Xk − X)⊗m(60)

involves all data points, so that the martingale argument does not directly apply. An appli-
cation of the martingale Bernstein inequality (Steiger (1969), Freedman (1975)) leads to the
following theorem.

THEOREM 8. Theorem 7 is still valid for general m∗ > 2 when εn is defined by

εn = b2
n(logp)

{
log(1/εn)/n

}1/2
M2 + κn,m∗(Mm∗,1/Mm∗)m

∗
(61)

provided that M ≥M4,1 with the Mm,1 in (6).

Consider m∗ = 6. When M6 � M6,1 and Mbn � √
logp, the second term in (61) is of no

greater order than {b2
n(logp)n−1/2M2}4, so that by Theorem 8

(logp)4/n → 0 ⇒ εn → 0.

In this case, taking m∗ > 6 does not improve the order of εn in Theorem 8.
Next, we derive upper bounds for

η(q)
n (ε) = sup

t∈R
[
E
{
η(P∗)

n

(
ε, t;T 0

n , T ∗
n

)}q]1/q(62)
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with the η
(P∗)
n (ε, t;T 0

n , T ∗
n ) in (49). The quantity η

(q)
n (ε) can be viewed as a weak Lévy–

Prokhorov predistance, as the supreme is taken outside the expectation. However, this weak
version of the Lévy–Prokhorov predistance is still stronger than the unconditional one. In
fact, we have

ηn(ε) ≡ sup
t∈R

η(P)
n

(
ε, t;Tn,T

∗
n

)≤ η(q)
n (ε) ≤ ∥∥η∗

n(ε)
∥∥
Lq(P), q ≥ 1,

where η
(P)
n (ε, t;Tn,T

∗
n ) is as in (28). See (49) and the discussion below (28).

In addition to the average moments Mm defined in (5), we use quantities

Mm,1 =
∥∥∥∥∥

n∑
i=1

E exp(2m‖WiXi‖∞/un)|WiXi |m
nE exp(−2m‖Xi‖∞/un)

∥∥∥∥∥
1/m

∞
,

Mm,2 =
∥∥∥∥∥1

n

n∑
i=1

E|WiXi |m
E exp(−2m‖Xi‖∞/un)

∥∥∥∥∥
1/m

∞
,

(63)

to bound the η
(q)
n (ε) in (62). When P{‖Xi‖∞ ≤ an} = 1,

Mm,1 ≤ e
2an
un
(
E|W1|mEe

2m|W1| an
un
)1/m

Mm, Mm,2 ≤ e
2an
un
(
E|W1|m)1/m

Mm.

In any case, controlling Mm,1 requires W1 to have a finite moment generating function in the
interval [0,2m∗an/un].

THEOREM 9. Let an = c1
√

n/(bn logp), m∗ ≥ 3 and η
(q)
n (·) be as in (62).

(i) Let X∗
i be as in (52). Suppose (53) holds. Let bn > 0 and un = √

n/(2bn logp) in (63).
Then

η(1)
n (1/bn) ≤ Cm∗

(
m∗−1∑
m=2

∣∣EWm
1

∣∣bm
n (logp)m−1

nm/2−1/2 Mm
2m,2 + bm∗

n (logp)m
∗−1

nm∗/2−1 Mm∗
m∗,1

)
.(64)

(ii) Let X∗
i be as in (13). Suppose (54) and (17) hold. Then, for 1 ≤ q ≤ 2,

η(q)
n (1/bn)

≤ Cm∗,τ0,c1

(
b2
n logp

n1/2 M2
4 + κ

1/q
n,m∗

)

+
[
Emin

{
2,Cτ0

b2
n logp

n
max

1≤j≤p

n∑
i=1

X2
i,j I{|Xi,j |>an}

}]1/q

(65)

≤ Cm∗,τ0,c1

(
b2
n logp

n1/2 M2
4 + κ

1/q
n,m∗

)

+
[
Emin

{
2,Cm∗,τ0,c1

bm∗
n (logp)m

∗−1

nm∗/2 max
1≤j≤p

n∑
i=1

|Xi,j |m∗
I{|Xi,j |>an}

}]1/q

,

where κn,m = bm
n (logp)m−1n1−m/2Mm

m . Moreover,(
E
∣∣η∗

n(1/bn)
∣∣q)1/q ≤ (1 + q)

{
q−121/qη(q)

n (1/bn)
}q/(q+1)

.(66)

Compared with the first term on the right-hand side of (50), the first term on the right-hand
side of (65) is of smaller order by at least a factor

√
log(p/κn,4).
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The proof of Theorem 9, given in the Supplementary Material (Deng and Zhang (2020)),
involves two issues. The first one is to relate the maxima Tn in (1) and T ∗

n in (8) to smooth
functions f (x1, . . . , xn) in Proposition 1. This is done via the smooth max function in (31) as
discussed at the beginning of this section. The second issue involves heterogeneity among Xi .
When P{‖X‖max ≤ un} = 1, the quantities in (63) are bounded under the condition Mm∗ =
O(1) on the average moments. However, a direct application of (59) requires the stronger
condition

1

n

n∑
i=1

max
1≤j≤p

E|Xi,j |m∗ = O(1)

as in Theorem 8. This issue is again resolved through Lemma 2.

4. Anticoncentration of the maxima. As we have discussed at the end of Section 2,
the Kolmogorov–Smirnov distance between two distribution functions can be bounded from
the above by the sum of the Lévy–Prokhorov predistance and the minimum of the Lévy
concentration of the two distribution functions,

sup
t∈R

∣∣P{Tn ≤ t} − P
{
T ∗

n < t
}∣∣ ≤ ηn(ε) + min

{
ωn(ε;Tn),ωn

(
ε;T ∗

n

)}
(67)

as in (30). The above two terms are also required if one wants to use Lemma 1 to derive an
upper bound for |P{Tn ≤ t∗α}−(1−α)|. As upper bounds for the Lévy–Prokhorov predistance
ηn(ε) and its bootstrap version η∗

n(ε) have already been established in Section 3, the aim of
this section is to develop anticoncentration inequalities to bound the Lévy concentration func-
tion ωn(ε;Tn) from the above. We note that once a comparison theorem becomes available
as an upper bound for ηn(ε), an anticoncentration inequality for Tn can be established from
one for T ∗

n , as

ωn(ε;Tn) ≤ ωn

(
ε;T ∗

n

)+ 2 sup
t∈R

∣∣P{Tn ≤ t} − P
{
T ∗

n < t
}∣∣ ≤ 3ωn

(
ε;T ∗

n

)+ 2ηn(ε)(68)

by the triangle inequality and (67), and vice versa.
To study the consistency of the Gaussian wild bootstrap, say T ∗,Gauss

n for the approximation
of the distribution of Tn, the Kolmogorov–Smirnov distance of interest is bounded by

sup
t∈R

∣∣P{Tn ≤ t} − P
∗{T ∗,Gauss

n < t
}∣∣

≤ η∗
n(ε) + min

{
ω(P)

n (ε;Tn),ω
(P∗)
n

(
ε;T ∗,Gauss

n

)}
,

where η∗
n(ε) = η

(P∗)
n (ε;T 0

n , T ∗,Gauss
n ) and ω

(P)
n (ε;Tn) are as in (49) and (30) respectively.

Thus, an anticoncentration inequality for the Gaussian maxima T ∗,Gauss
n under P

∗ suf-
fices (Chernozhukov, Chetverikov and Kato (2015)). This approach has been taken in
Chernozhukov, Chetverikov and Kato (2013, 2017) among others. However, the inequal-
ity (68) with T ∗

n = T ∗,Gauss
n , which requires a small Lévy–Prokhorov predistance ηn(ε) =

η
(P)
n (ε;Tn,T

∗,Gauss
n ), is not helpful in our study as we are interested in scenarios where the

Gaussian approximation may not hold.
Our idea is to derive anticoncentration inequalities for the maxima Tn of sums of possibly

skewed independent random vectors through a mixed wild bootstrap which has a Gaussian
component and also provides the third moment match as Liu (1988) and Mammen (1993)
advocated. Compared with the Gaussian wild bootstrap, such a mixed wild bootstrap enjoys
both the anticoncentration properties of the Gaussian component through conditioning and
sharper approximation of the distribution of Tn through the fourth-order comparison theorems
developed in Section 3.
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The multiplier of the above mixed wild, bootstrap can be defined as

W ∗∗
i = a0δiZi + b0(1 − δi)W

0
i ,(69)

where δi,Zi,W
0
i , i = 1, . . . , n, are independent random variables, δi are Bernoulli variables

with P{δi = 1} = p0 = 1 − P{δi = 0}, Zi ∼ N(0,1), and W 0
i can be taken as Mammen’s

bootstrap multiplier in (16). In this mixed wild bootstrap, a0, b0 and p0 are positive constants
satisfying

0 < p0 < 1, E
(
W ∗∗

i

)2 = a2
0p0 + b2

0(1 − p0) = 1,

E
(
W ∗∗

i

)3 = b3
0(1 − p0) = 1.

(70)

For any p0 ∈ (0,1), the values of a0 and b0 are determined by

b0 = (1 − p0)
−1/3, a0 =

√
p−1

0

(
1 − (1 − p0)1/3

)
.

For example, a0 = 0.6423387 and b0 = 1.259921 for p0 = 1/2.
Suppose EXi = 0 as in Section 3. Given the multiplier (69) and the original data Xi =

(Xi,1, . . . ,Xi,p)T , i = 1, . . . , n, the mixed wild bootstrap for Tn is defined through

X∗∗
i = W ∗∗

i Xi, Z∗∗
n,j = 1√

n

n∑
i=1

X∗∗
i,j , and T ∗∗

n = max
1≤j≤p

Z∗∗
n,j .(71)

We conveniently avoid the complication of subtracting the sample mean from Xi as the pri-
mary purpose of this mixed wild bootstrap is to provide a vehicle to derive anticoncentration
inequalities for the maxima Tn for the original data. Once an upper bound for ω

(P)
n (ε;Tn) is

established, the consistency of the bootstrap can be studied through (67) and Lemma 1.
Let P∗∗ be the conditional probability given {Xi, δi,W

0
i , i = 1, . . . , n}. We find that under

P
∗∗, Z∗∗

n is a Gaussian vector with individual mean and standard deviation

μ∗∗
j = E

∗∗(Z∗∗
n,j

) = b0√
n

n∑
i=1

(1 − δi)W
0
i Xi,j ,

σ ∗∗
j =

√
Var∗∗(Z∗∗

n,j

) =
(

a2
0

n

n∑
i=1

δiX
2
i,j

)1/2

.

(72)

Anticoncentration inequalities for T ∗∗
n under the marginal probability P can be derived from

the conditional one under P∗∗ via

ω(P)
n

(
ε;T ∗∗

n

) ≤ E
[
ω(P∗∗)

n

(
ε;T ∗∗

n

)]
,(73)

where ω
(P∗∗)
n (ε;T ∗∗

n ), a function of the random vector (μ∗∗
j , σ ∗∗

j ,1 ≤ j ≤ p), is the Lévy
concentration function of T ∗∗

n under the conditional probability P
∗∗ as in (30).

In what follows, we present anticoncentration inequalities for the maxima of Gaussian
vectors, sums in the mixed wild bootstrap and sums of general independent vectors with zero
mean.

THEOREM 10. Let ξ = (ξ1, . . . , ξp)T be a multivariate Gaussian vector with marginal
distributions ξj ∼ N(μj ,σ

2
j ), σ(1) ≤ · · · ≤ σ(p) be the ordered values of σ1, . . . , σp . Then, for

all xm ≥ 1,

sup
x

d

dx
P

{
max

1≤j≤p
ξj ≤ x

}
≤ max

1≤m≤p

{
xm

σ(m)

+
m−1∑
k=1

ϕ(xk − 1/xk)

σ(k)

}
.(74)
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Consequently, with σ = (2 + √
2 logp)/{1/σ(1) + max1≤m≤p(1 + √

2 logm)/σ(m)} ≥ σ(1),

P

{
a < max

1≤j≤p
ξj ≤ a + ε

}
≤ ε

σ
(2 +

√
2 logp), ∀ε > 0, a ∈ R.(75)

Given {σj }, there exist certain ξj ∼ N(0, σj ) and constants a > 0 and C0 ≤ 27/(1 − 1/4)

such that

P

{
a ≤ max

1≤j≤p
ξj ≤ a + ε

}
≥ ε

σ

(
2 + √

2 logp

C0

)
(76)

for all ε satisfying 0 ≤ (ε/σ )(2 + √
2 logp) ≤ 1/8. Moreover, (76) also holds for certain

independent ξj ∼ N(μj ,σj ) with possibly different nonzero μj and the same {a,C0}.

Anticoncentration of the maxima of Gaussian vectors have been considered in the
literature; For example, Nazarov (2003), Klivans, O’Donnell and Servedio (2008) and
Chernozhukov, Chetverikov and Kato (2015). These results provides C0(2 + √

2 logp)/σ(1)

as an upper bound for (74) or C0(2 + √
2 logp)ε/σ(1) for (75). A main advantage of

Theorem 10 is the use of potentially much large σ instead of σ(1). For example, when
1/σ(1) ≥ (1 + √

2 logp)/σ(m) for all 1 ≤ m ≤ p, we have σ = (2 + √
2 logp)(σ(1)/2) and

therefore the right-hand side of (75) becomes 2ε/σ(1). Moreover, Theorem 10 is sharp up
to the constant factor C0. The anticoncentration inequality for general ξj ∼ N(μj ,σ

2
j ) is

needed to study the mixed wild bootstrap T ∗∗
n under the conditional probability P

∗∗, in view
of (72).

THEOREM 11. Let Xi = (Xi,1, . . . ,Xi,p)T ∈ R
p be independent centered random vec-

tors with p > 1 and T ∗∗
n the mixed wild bootstrap given by (69) and (71). Let σ 2

j =∑n
i=1 EX2

i,j /n and {σ(j),1 ≤ j ≤ p,σ } be as in (4). Suppose P{‖X‖max ≤ an} = 1 for certain
constants an satisfying

max
1≤j≤p

log(j2σ/(ε
√

logp))

σ 2
(j)

≤ p0n/
(
8a2

n

)
.(77)

Then, with the (a0, b0,p0) in (69),

ω(P)
n

(
ε;T ∗∗

n

) = sup
t∈R

P
{
t ≤ T ∗∗

n ≤ t + ε
} ≤ Ca0,b0,p0

ε

σ

√
logp.(78)

If we use the mixed wild bootstrap (71) to approximate the distribution of Tn, Theorem 11
and the comparison theorems in Section 3 can be directly applied to establish the consistency
of the bootstrap via (49). However, for studying the consistency of bootstrap methods in
general through (67), we desire an anticoncentration inequality for the original data. This can
be done by comparing the distributions of T ∗∗

n and Tn, resulting in the following theorem.

THEOREM 12. Let Xi ∈ R
p be independent with p > 1, EXi = 0, Mm and σ be as

in (5) and (4), respectively, bn > 0 and ω
(P)
n (ε;Tn) be as in (30) with the Tn in (1). Let

an = c1
√

n/(bn logp) for some constant c1 > 0. Then, for a certain positive constant Cc1 ,

ω(P)
n (1/bn;Tn)

≤ C0

bnσ

√
logp + Cc1κn,4 + 2P

{
max

1≤j≤p

∣∣∣∣∣
n∑

i=1

Xi,j I{|Xi,j |>an}√
n

∣∣∣∣∣ > 1

8bn

}
.

(79)
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FIG. 1. Simulated relative frequency of the simultaneous coverage of 500 95% simultaneous confidence intervals
for each bootstrap scheme: G, M and R, respectively, represent the Gaussian, Mammen and Rademacher wild
bootstrap, while E represents Efron’s empirical bootstrap.

We have derived comparison theorems up to a general order m∗ ≥ 3 under the mo-
ment matching condition (53). This includes m∗ > 4 for the Rademacher wild boot-
strap for symmetric Xi . However, as the Rademacher multiplier does not have a Gaus-
sian component, we settle for m∗ = 4 in the above theorem. If the Gaussian wild boot-
strap is used as a vehicle to prove Theorem 12, (53) holds only for m∗ = 3 and the term
κn,4 = b4

n(logp)3M4
4/n will have to be replaced by κn,3 = b3

n(logp)2M3
3/

√
n, leading to

the condition logp � n1/7 for bn � √
logp as in Chernozhukov, Chetverikov and Kato

(2015).

5. Simulation results. We study the performance of different bootstrap procedures
in two experiments. In both experiments, we generate vectors Xi = (Xi,1, . . . ,Xi,p)T in
a Gaussian copula model, where F(Xi,j ) = �(Yi,j ) and Yi = (Yi,1, . . . , Yi,p)T are i.i.d.
N(0,�) with N(0,1) marginal distributions, n = 200, p = 400 and F represents the
gamma distribution with unit scale and shape parameter α = EXi,j ∈ {1,3}. We pick
�j,k = Cov(Yi,j , Yi,k) = ρ + (1 − ρ)I{j=k} in Experiment I, and �j,k = ρ|j−k| in Exper-
iment II, with ρ ∈ {0.2,0.8}. Four bootstrap methods are considered: the Gaussian wild
bootstrap with Wi ∼ N(0,1), Mammen’s wild bootstrap, the Rademacher wild bootstrap
with P{Wi = ±1} = 1/2 and Efron’s empirical bootstrap. Note that the skewness for Xi,j

is 2/
√

α, for example, 2 for α = 1 and 2/
√

3 for α = 3. Thus, in this setting, the Gaussian
multiplier and Rademacher wild bootstrap methods do not match the third moment of the
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FIG. 2. The Kolmogorov–Smirnov distances of 500 runs for each bootstrap scheme: G, M, R and E, respectively,
represent the Gaussian, Mammen, Rademacher and empirical bootstrap schemes.

original data. Our theorems in Section 2 therefore assert that Mammen’s wild bootstrap and
empirical bootstrap have better approximation properties. This theoretical claim is supported
by our simulation results.

Since EXi is unknown, the wild bootstrap is defined as X∗
i = Wi(Xi − X). We compare

the distribution of Tn = maxj

∑n
i=1(Xi,j − EXi,j )/

√
n against their bootstrapped versions.

The true distribution of Tn is evaluated based on 5000 simulations. The results for the four
bootstrap schemes are based on 500 copies of X, and 500 copies of X∗ for each observation
of X.

Figure 1 plots the simulated relative frequency of the simultaneous coverage of 95%
bootstrap simultaneous confidence intervals for each bootstrap scheme in the four com-
binations of (ρ,α) in Experiments I and II. This is closely related to the risk |P{Tn >

t∗α} − α|. The results for the Kolmogorov–Smirnov distance are shown in Figure 2 which
contains 8 boxplots of the Kolmogorov–Smirnov distances between the true Tn and boot-
strapped T ∗

n .
Corresponding to our theoretical results, this simulation study demonstrates that Mam-

men’s wild bootstrap is the best among all four schemes, empirical bootstrap is a close sec-
ond, while Gaussian and Rademacher wild bootstrap methods are clearly worse. Because
of the skewness of the Gamma distribution, an explanation of the poor performance of the
Gaussian and Rademacher wild bootstrap methods is the lack of the third moment match as
our theoretical results indicate. We would like to mention that the difference among boot-
strap procedures in two settings (Experiment I, ρ = 0.8, α = 3 or 1) are not as significant as
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TABLE 1
The Kolmogorov–Smirnov distances between the bootstrapped T ∗

n and true Tn

Gaussian Mammen Rademacher Empirical

Setting Mean Std Mean Std Mean Std Mean Std

I, ρ = 0.2,α = 3 0.08996 0.02907 0.04893 0.01883 0.09484 0.02916 0.05088 0.01873
I, ρ = 0.2,α = 1 0.11660 0.03958 0.05964 0.02377 0.13428 0.04088 0.06457 0.02231
I, ρ = 0.8,α = 3 0.04910 0.01610 0.04699 0.01510 0.05091 0.01587 0.04690 0.01503
I, ρ = 0.8,α = 1 0.05861 0.02364 0.05443 0.02198 0.05880 0.02432 0.05452 0.02107

II, ρ = 0.2,α = 3 0.11106 0.02299 0.04324 0.01443 0.12176 0.02254 0.05105 0.01397
II, ρ = 0.2,α = 1 0.14542 0.02451 0.04677 0.01622 0.18143 0.02654 0.07190 0.02053
II, ρ = 0.8,α = 3 0.09558 0.02485 0.04575 0.01629 0.10335 0.02493 0.04667 0.01488
II, ρ = 0.8,α = 1 0.12780 0.03229 0.04998 0.01839 0.15043 0.03404 0.06249 0.02055

the others, possibly due to the smaller effective dimensionality caused by high correlation.
Nevertheless, Mammen’s wild bootstrap and empirical bootstrap still perform slightly better.

In addition to the plots, Table 1 provides the mean and standard deviation of the
Kolmogorov–Smirnov distance between the bootstrap estimates and the true cumulative dis-
tribution function of Tn, and Table 2 provides the mean and standard deviation of the cov-
erage probabilities of 95% simultaneous confidence intervals with each bootstrap scheme.
These tables depicts the same picture as the plots.

It is worth mentioning that the empirical bootstrap does not always perform worse than
Mammen’s wild bootstrap (Figure 1, Experiment I, ρ = 0.2,α = 3). Recall that we discuss in
Section 2 that the empirical bootstrap doesn’t offer exact moments match, and the fluctuation
of the difference between true moments and empirically bootstrapped ones leads to a slightly
weaker consistency statement in Theorem 1. However, the difference between the fourth
moments,

μ(4) − ν(4) = 1

n

n∑
i=1

EX⊗4
i − 1

n

n∑
i=1

E
∗(X∗

i

)⊗4
,

for the empirical bootstrap can be much smaller than that for Mammen’s. This may provide
an explanation of the performance of the Mammen and empirical bootstraps in these two
settings.

TABLE 2
Relative frequency of bootstrap coverage of 95% simultaneous confidence intervals

Gaussian Mammen Rademacher Empirical

Setting Mean Std Mean Std Mean Std Mean Std

I, ρ = 0.2,α = 3 0.9232 0.01938 0.9446 0.01544 0.9072 0.2199 0.9527 0.01422
I, ρ = 0.2,α = 1 0.9251 0.02308 0.9517 0.01422 0.8975 0.02938 0.9646 0.01131
I, ρ = 0.8,α = 3 0.9364 0.01876 0.9457 0.01706 0.9331 0.01912 0.9471 0.01649
I, ρ = 0.8,α = 1 0.9303 0.02671 0.9458 0.02447 0.9251 0.02785 0.9486 0.02357

II, ρ = 0.2,α = 3 0.9323 0.01513 0.9527 0.00970 0.9124 0.01563 0.9628 0.00876
II, ρ = 0.2,α = 1 0.9230 0.01613 0.9545 0.00955 0.8853 0.01890 0.9707 0.00721
II, ρ = 0.8,α = 3 0.9291 0.01456 0.9479 0.01061 0.9129 0.01540 0.9562 0.00872
II, ρ = 0.8,α = 1 0.9196 0.01850 0.9524 0.01172 0.8894 0.02079 0.9673 0.01116
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