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The paper introduces a new test for testing structures of covariances for
high dimensional vectors and the data dimension can be much larger than the
sample size. Under proper normalization, central and noncentral limit theo-
rems are established. The asymptotic theory is attained without imposing any
explicit restriction between data dimension and sample size. To facilitate the
related statistical inference, we propose the balanced Rademacher weighted
differencing scheme, which is also the delete-half jackknife, to approximate
the distribution of the proposed test statistics. We also develop a new test-
ing procedure for substructures of precision matrices. The simulation results
show that the tests outperform the exiting methods both in terms of size and
power. Our test procedure is applied to a colorectal cancer dataset.

1. Introduction. Driven by a diversity of contemporary scientific applications, analysis
of high dimensional data has emerged as one of the most important and active areas in statis-
tics. High dimensional data, where the dimension can be much larger than the sample size, are
encountered in genomics, medical imaging, financial economics and others. Knowledge of
the covariance structure is essential in the associated statistical inference. For instance, struc-
tural assumptions are needed for estimation of high dimensional covariance matrices, for
example, the banding method in Wu and Pourahmadi (2009) and Bickel and Levina (2008);
tapering in Furrer and Bengtsson (2007) and Cai, Zhang and Zhou (2010); regularizing princi-
pal components in Cai, Ma and Wu (2015); factoring in Fan, Fan and Lv (2008) and Fan, Liao
and Mincheva (2013). In addition, some researchers considered parametric models of covari-
ance structures, such as autoregressive moving average, compound symmetry and Matérn
class covariance function (e.g., see Gneiting, Kleiber and Schlather (2010), Wiesel, Bibi and
Globerson (2013) and Pourahmadi (2013)).

1.1. Testing covariance structure. Let X1, . . . ,Xn be independent and identically dis-
tributed (i.i.d.) samples drawn from a p-dimensional distribution with mean μ and covariance
matrix � = (σjk)j,k≤p . A fundamental problem in the inference of covariance is to test

(1.1) H0 : σjk = σjk,0 for all (j, k) ∈ S,

where σjk,0 are prespecified or from certain parametric families σjk,0(θ) for some θ , S is
the index set of covariance structure of interest. An incorrectly specified covariance structure
could result in inaccurate statistical inference. One motivation of such models comes from
spatial statistics and machine learning, where parametric covariance functions are widely
used, such as Matérn covariance functions f (m) = σ 22−θ�(θ)−1(

√
θm/ρ)θKθ(

√
θm/ρ)

(Stein (1999)) and the rational quadratic covariance function f (m) = (1 + m2/(θσ 2))−θ/2

(Rasmussen and Williams (2006)), where m is the distance, � is the gamma function, Kθ is
the modified Bessel function of the second kind and σ 2, ρ and θ are nonnegative parameters
of the covariance. An important task is to test the validity of such parametric forms.
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In the classical fixed dimensional setting, when the data is Gaussian, the conventional like-
lihood ratio test (LRT) can be used to access the structure of the covariance and it has certain
optimality properties; see Anderson (2003) for details. When the dimension p grows with
the sample size n, the standard LRT is no longer applicable. There has been a set of high
dimensional tests on different covariance structures. Bai et al. (2009) proposed a corrected
LRT for the identity hypothesis H0 : � = I and demonstrated that the test is valid when Xi

are Gaussian and p/n → c ∈ (0,1). The result is further extended in Zhang, Peng and Wang
(2013) and Zheng, Bai and Yao (2015). Ledoit and Wolf (2002) showed the test in John
(1971), John (1972) for sphericity with H0 : � = σ 2I is consistent even when p/n → c for
a positive constant c. Chen, Zhang and Zhong (2010) proposed tests for sphericity and iden-
tity of covariance matrices without normality assumption and without specifying an explicit
relationship between p and n. For normally distributed data, Jiang (2004) proposed testing
for diagonal � by considering the coherence statistic Ln,p = max1≤j<k≤p|r̂jk|, where r̂jk

is the (j , k)-th sample correlation. Cai and Jiang (2011) extended the test of Jiang (2004)
for the bandedness of � based on the test statistic Ln,p,κ = max|j−k|≥κ |r̂jk| for Gaussian
vectors. Xiao and Wu (2013) extended the results on more testing problems, such as station-
arity, bandedness and tapering, and allowed non-Gaussianity. Qiu and Chen (2012) proposed
a test based on a U-statistic which is an unbiased estimator of

∑
|j−k|≥κ σ 2

jk for testing band-
edness. Cai and Ma (2013) studied the optimality of one sample tests for H0 : � = I . Li
and Chen (2012) considered tests for the equality of covariance matrices. More recently, in
regression setting, to access the adequacy of some specified parametric forms of error covari-
ance structures with H0 : � = �(θ) for unknown parameter θ , Zhong et al. (2017) proposed
a bias adjusted test based on tr{(� − �(θ))2} for normally distributed random vectors. He
and Chen (2016) proposed a test procedure that focuses on testing along the super-diagonals
of the covariance matrix to detect sparse signals and parametric structures. This was further
extended to the case of two samples in He and Chen (2018). In many applications, the diago-
nal elements of the covariance may not be useful in the testing. This motivates us to develop a
test to examine the appropriateness of covariance structure specification via the off-diagonals
of the covariance matrices.

Define the sample mean X̄ = n−1 ∑n
i=1 Xi and the sample covariance matrix �̂ =

n−1 ∑n
i=1(Xi − X̄)(Xi − X̄)T = (σ̂jk)j,k≤p . We propose a test for the hypothesis H0 in

(1.1) based on an unbiased estimator of the quadratic form
∑

(j,k)∈S(σjk − σjk,0)
2. We first

consider testing for off-diagonal covariance structures. A distributional approximation for the
test statistic of Gaussian vectors with same covariance structure is obtained. It is shown that
our Gaussian approximation theorem covers the cases where the test statistic does not have
a limit Gaussian distribution as n → ∞ and p → ∞. In some cases, after a suitable normal-
ization, the test statistic could have a standard normal distribution as the limiting distribution,
but the approximation to a standard normal distribution requires some restrictions on the co-
variance structure �. We provide a sufficient and necessary condition, which extends the
sufficient condition for Gaussian data in Cai and Ma (2013). It is also worth noting that the
proposed test does not require explicit conditions in the relationship between p and n. The
power of the test is also investigated. In order to overcome the difficulty to consistently es-
timate the fourth moments of Xi and quantify the difference of the c.d.f of the test statistic
and that by estimated moments, we propose using the balanced Rademacher weighted differ-
encing scheme, called half-sampling; see also Wu, Lou and Han (2018). Wu (1990) showed
that in the one-dimensional case the histogram of the delete-d jackknife with a suitable d ,
the number of deleted observations, can be consistent in estimating the sampling distribution
for linear and certain nonlinear statistics (in particular, U-statistics), and is optimal if d is
taken to be on the same order as the sample size. We extend his idea and show that the bal-
anced Rademacher weighted differencing scheme (half-sampling approach), which is also the
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delete-n/2 Jackknife, leads to a consistent estimator of the distribution function of the test
statistic. The proofs of the validity of the half-sampling approach require a more involved
Gaussian approximation result.

To study the case where σjk,0 in (1.1) are from certain parametric families σjk,0(θ) for
some θ , we first estimate the involved parameters, then establish the distributional approxi-
mation of the test statistic with estimated parameters and implement the half-sampling pro-
cedure accordingly. In particular, the asymptotic mean of the test statistic varies for different
parametric forms and different relationship between n and p, which may not vanish due to
the bias induced by the estimation of unknown parameters. It is worth noting that our half-
sampling approach avoids the estimation of the unknown mean of the test statistic, and thus
can be easily applied to test parametric covariance functions. The numerical results indicate
that our proposed test estimates size accurately. In comparison, the test in Zhong et al. (2017)
tends to overestimate the size at low nominal levels.

Besides testing for off-diagonal covariance structures, we also develop a test for submatri-
ces. The interest on such a test arises naturally in applications in genomics and other fields,
when we are interested in knowing the between pathway associations in genomics where each
pathway stands for a group of genes, or studying the relationships between a diverse range of
disease phenotypes and genomic markers in PheWAS (see, e.g., Kelley and Ideker (2005)).
Asymptotic properties of the test are derived and a half-sampling estimator of the distribution
function of the test statistic is studied.

1.2. Testing precision matrices. Precision matrix plays a fundamental role in many high
dimensional inference problems. It is of significant interest to understand structure or sub-
structure of the precision matrices. For example, under the Gaussian graphical model frame-
work, a submatrix of the precision matrix characterizes the network of two groups, which
measures the conditional dependence network structure of two groups of variables; see De la
Fuente (2010), Hudson, Reverter and Dalrymple (2009), Ideker and Krogan (2012), Jia et al.
(2011), Li, Agarwal and Rajagopalan (2008), Ren et al. (2015), among others. One can also
use it to study interactions between two groups that adjust for effects from other variables.

Let � = �−1 = (ωjk)j,k≤p be the precision matrix. Testing the hypothesis H0 : � = �0
for a given �0 is equivalent to testing H0 : � = �0, which has been well studied under
various alternatives. However, in many applications, one aims at studying the group structure
of the network, by testing a given substructure of the precision matrix �,

(1.2) H0 : ωjk = 0 for all (j, k) ∈ S,

where S is an index set. In such cases, it is essential to work on the precision matrix directly,
instead of the covariance matrix. Testing procedures on the covariance matrix cannot lever-
age information on the given substructure of the precision matrix. More importantly, due
to the notable difference between conditional and unconditional dependencies, the various
procedures for testing the covariance matrix may not be well adapted to testing specific sub-
structure of the precision matrix. To the best of our knowledge, there are no currently avail-
able methods with theoretical guarantees to infer about substructure of the precision matrix
when the dimension of the substructure can go to infinity. Xia, Cai and Cai (2015) proposed
a procedure for testing the differential network by using the maximum entrywise deviation
of the precision matrix. Xia, Cai and Cai (2018) considered testing a given submatrix of the
precision matrix under a Gaussian graphical model when the dimension of the submatrix is
fixed. In our paper, we develop a novel testing procedure for substructures of the precision
matrices. The test statistic is based on the Frobenius norm of a substructure estimate of the
precision matrix without imposing any structure assumptions. Theoretical properties under
sub-Gaussian tails and linear process model are discussed. The testing procedure is easy to
implement.
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1.3. Organization of the paper. The paper is organized as follows. Section 2 introduces
the procedure for testing off-diagonal covariance structure and its asymptotic properties of
the test statistic and the theoretical properties of the half-sampling estimator. Properties of the
test for parametric covariance functions are presented in Sections 3. A new testing procedure
for a given substructure of the precision matrix is proposed and its theoretical properties
are presented in Section 4. Numerical performance of the tests are given in Section 5. The
readers are referred to the Appendix (Supplementary Material, Han and Wu (2020)) Section
A and B for properties of the test for the off-diagonal sub-matrix, and power evaluations,
respectively. A real data example is illustrated in Appendix C. Appendix D includes more
simulation results. All technical details are relegated to Appendix E.

1.4. Notation. Throughout this paper, for a matrix A = (aij ) write |A|∞ = maxi,j |aij |
and the Frobenius norm |A|F = (

∑
ij a2

ij )
1/2. For a vector x = (x1, . . . , xp)T , define |x| =

|x|2 = (x2
1 + · · · + x2

p)1/2. Let ξ = (ξ1, . . . , ξp)T be a random vector. Write ξ ∈ Lm, m ≥ 1,
if the m-norm ‖ξ‖m := (E|ξ |m)1/m < ∞. For two sequences of real numbers {an} and {bn},
write an = O(bn) (resp., an 	 bn) if there exists a constant C such that |an| ≤ C|bn| (resp.,
1/C ≤ an/bn ≤ C) holds for all sufficiently large n, and write an = o(bn) if limn→∞ an/bn =
0. Let 
a� = min{k ∈ Z : k ≥ a}.

2. Testing off-diagonal covariance structure.

2.1. Overview. A natural test statistic for the hypothesis H0 in (1.1) is based on the
quadratic form

∑
(j,k)∈S(σ̂jk − σjk,0)

2. It is noted that
∑

(j,k)∈S(σ̂jk − σjk,0)
2 is a biased

estimator of
∑

(j,k)∈S(σjk − σjk,0)
2, since E(σ̂jk − σjk,0)

2 = var(σ̂jk) + (σjk − σjk,0)
2. Fol-

lowing the spirit of Chen, Zhang and Zhong (2010) and Li and Chen (2012), we propose

(2.1) TS = ∑
(j,k)∈S

Mjk,

which is an unbiased estimator of
∑

(j,k)∈S(σjk − σjk,0)
2, where

(2.2)

Mjk = 1

P 1
n

∗∑
i1,i2

Xi1jXi1kXi2jXi2k − 2

P 2
n

∗∑
i1,i2,i3

Xi1jXi2jXi2kXi3k

− 2

n
σjk,0

n∑
i1

Xi1jXi1k + 2

P 1
n

σjk,0

∗∑
i1,i2

Xi1jXi2k + σ 2
jk,0

+ 1

P 3
n

∗∑
i1,i2,i3,i4

Xi1jXi2jXi3kXi4k and P k
n :=

n∏
j=n−k

j.

Throughout this paper,
∑∗ denotes summation over mutually different subscripts shown,

for example,
∑∗

i1,i2,i3
denotes summation over {(i1, i2, i3) : i1 = i2, i2 = i3, i1 = i3,1 ≤

i1, i2, i3 ≤ n}. Elementary derivations show that EMjk = (σjk − σjk,0)
2 for all 1 ≤ j, k ≤ p,

then TS is unbiased for
∑

(j,k)∈S(σjk − σjk,0)
2. Besides the unbiasedness, TS is invari-

ant under the location shift. This means that, without loss of generality, we can assume
μ = EXi = 0 in the rest of the paper. To calculate TS , it is computationally more efficient
to use an equivalent formula given by Himeno and Yamada (2014) which reduces the com-
putational cost from O(n4) to O(n).

We reject H0 if TS exceeds certain cutoff values. The problem of deriving asymptotic dis-
tribution of TS is open. In many of earlier papers it is assumed that �0 has special structures
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such as being diagonal or spheric and/or Xi is Gaussian or has independent entries. Here, we
shall obtain an asymptotic theory for TS for the Volterra process model, a generalization of
linear process models, which will be specified in this section.

Let us first consider testing the off-diagonal covariance structure:

(2.3) H0a : σjk = σjk,0 for all (j, k) ∈ S1, where S1 = {
(j, k) : 1 ≤ j = k ≤ p

}
.

For X = (X1, . . . ,Xp)T , let W(X,S) := (XjXk −σjk)(j,k)∈S . In particular, let T̂n = TS1 and

W(X,S1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

X1X2 − σ12
. . .

X1Xp − σ1p

X2X1 − σ12
. . .

XpXp−1 − σp,p−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(2.4)

be a p(p − 1)-dimensional vector. Let the random vector X be identically distributed as
Xi . Denote W = W(X, S1), W i = W(Xi , S1) and W̄ n = ∑n

i=1 W i/n. Then the covariance
matrix � = (γα,α′)α,α′∈S1 for W is p(p − 1) × p(p − 1) with entries

(2.5)

γ(j,k),(m,q) = E
(
(XjXk − σjk)(XmXq − σmq)

)
= E(XjXkXmXq) − σjkσmq

= cum(Xj ,Xk,Xm,Xq) + σjmσkq + σjqσkm.

The square of the Frobenius norm of � is

|�|2F = ∑
α,α′∈S1

γ 2
αα′ := ∣∣E(

WW T )∣∣2
F .

Suppose the following Lyapunov-type condition for W i is satisfied: there exists a constant
K such that, for some δ > 0,

(2.6)
(
KW

δ

)2+δ := E

∣∣∣∣W
T
1 W 2

|�|F
∣∣∣∣2+δ

< K < ∞.

The basic idea of our test procedure is to bound the Kolmogorov distance between the distri-
bution of nT̂n/|�|F and its Gaussian analog under condition (2.6). Under the null hypothesis
H0a , we can establish

sup
t∈R

∣∣∣∣∣P
(

nT̂n

|�|F ≤ t

)
− P

(
1

(n − 1)|�|F
n∑

i =l

Y T
i Y l ≤ t

)∣∣∣∣∣ −→ 0,

where Y 1, . . . ,Y n are i.i.d. N(0,�), as the Gaussian analog of W i in the sense of having
the same mean and the same covariance matrix. Then we shall use a half-sampling technique
to obtain an asymptotically unbiased and consistent estimator of the cumulative distribution
function of nT̂n, since the covariance matrix � is unknown and the associated estimation
issue can be quite challenging. Rigorous analysis will be carried out afterwards.

2.2. Asymptotic properties. To present an asymptotic theory of T̂n, we impose the fol-
lowing conditions.

ASSUMPTION 2.1.

Xij = μj +
N∑

l1=1

bj,l1ξil1 +
N∑

l1<l2

aj,l1l2ξil1ξil2 + · · · +
N∑

l1<l2<···<ld

aj,l1l2···ld ξil1ξil2 · · · ξild

for all 1 ≤ j ≤ p where d is a fixed number, {ξil}1≤i≤n,1≤l≤N are i.i.d. random variables with
mean 0, variance 1, Eξ3

11 = 0 and Var(ξ2
11) = ν < ∞.
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Specifically, for Gaussian vector Xi , Assumption 2.1 always holds with N = p and
aj,l1l2 = 0, . . . , aj,l1l2···ld = 0 for all 1 ≤ l1 < l2 < · · · < ld ≤ N . The requirement of
ξi1, . . . , ξiN being i.i.d. and Eξ3

11 = 0 is not essential and is purely for the sake of simpler
notion. Differently from Chen, Zhang and Zhong (2010) and Qiu and Chen (2012), we do
not assume N ≥ p.

Furthermore, many papers in testing high dimensional covariance matrices assume linear
process model, while we extend to nonlinear process model, that is, Volterra process model.
Linear process is considered in Xu, Zhang and Wu (2014) and Li and Chen (2012). In the
study of nonlinear systems, Volterra processes are of fundamental importance; see Schetzen
(1980), Rugh (1981), Casti (1985), Priestley (1988) and Bendat (1990), among others. The
Volterra process has been widely applied as nonlinear system modeling technique with con-
siderable success, since a wide range of nonlinear process models admit Volterra process. At
the technical level, Volterra process involves recursive application of Rosenthal’s inequality.

ASSUMPTION 2.2. For some constant C > 0,

|�|2F ≥ C
∑

(j,k)∈S1

∑
(m,q)∈S1

(
σ 2

jmσ 2
kq + σjmσjqσkmσkq

)
.(2.7)

We now discuss Assumption 2.2. Let Q := ∑
(j,k)∈S1

∑
(m,q)∈S1

(σjmσkq +σjqσkm)2. Note
that from (2.5),

|�|2F = Q + ∑
(j,k)∈S1

∑
(m,q)∈S1

(
cum(Xj ,Xk,Xm,Xq)

2

+ 2 cum(Xj ,Xk,Xm,Xq)(σjmσkq + σjqσkm)
)
.

Assume that there exists a constant c < 1/4 such that

(2.8)
∑

(j,k)∈S1

∑
(m,q)∈S1

cum(Xj ,Xk,Xm,Xq)
2 ≤ cQ.

Similar conditions are commonly imposed for cumulant analysis; see, for example,
Kalouptsidis and Koukoulas (2005), Xiao and Wu (2013) and Cherif and Fnaiech (2015).
Then (2.8) implies Assumption 2.2 by the Cauchy–Schwarz inequality

|�|2F ≥ 2(1 − 2
√

c)
∑

(j,k)∈S1

∑
(m,q)∈S1

(
σ 2

jmσ 2
kq + σjmσjqσkmσkq

)
.

Typical examples that satisfy (2.8) include Gaussian vectors whose 4th cumulants are 0 and
the linear process models, that is, under Assumption 2.1 with aj,l1l2···li = 0 for all 1 ≤ l1 <

l2 < · · · < li ≤ N , 2 ≤ i ≤ d , 1 ≤ j ≤ p; see Lemma E.2 in the Supplementary Material for
details.

The following theorem provides a Berry–Esseen type bound of the asymptotic approxima-
tion of T̂n by a linear combination of χ2

1 random variables.

THEOREM 2.1. Suppose Assumptions 2.1 and 2.2 hold and ‖ξ11‖4+2δ < ∞ with 0 <

δ ≤ 1. Then under the null hypothesis H0a (2.3), we have that

(2.9) sup
t

∣∣∣∣∣P
(

nT̂n

|�|F ≤ t

)
− P

(p(p−1)∑
d=1

λd

|�|F (ηd − 1) ≤ t

)∣∣∣∣∣ = O
(
n−δ/(10+4δ)),

where λ1 ≥ λ2 ≥ · · · ≥ λp2−p ≥ 0 are eigenvalues of � and ηd , d ≥ 1, are i.i.d. χ2
1 .
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REMARK 2.1. We conjecture that better rate can be possibly derived by applying the
more sophisticated mathematical argument that involves solutions to Stein’s equations. Solu-
tions to Stein’s equation with normal distribution have a close form which is relatively easy
to work with and it can lead to a sharp Berry–Esseen bound. Chatterjee (2008)’s new version
of Stein’s method can be applied to obtain sharp Berry–Esseen bounds of quadratic form for
normal approximation. However, it is difficult to work with Stein’s equation with distribution
being linear combinations of χ2

1 random variables. A recent breakthrough of Stein’s method
with distribution being linear combination of χ2

1 random variables is considered in Arras
et al. (2016). Due to its extreme complexity, we are not able to apply it to our problem. The
optimal rate of L2 type Gaussian approximation is still open.

Note that
∑p(p−1)

d=1 λdηd and Y T Y have the same distribution, with Y ∼ N(0,�). Under

H0a , Theorem 2.1 implies that the asymptotic variance of nT̂n is E(
∑p(p−1)

d=1 λd(ηd − 1))2 =
2|�|2F . If the null hypothesis H0a does not hold, a similar argument as Theorem 2.1 implies
the following corollary.

COROLLARY 2.1. Suppose ‖ξ11‖4+2δ < ∞ with 0 < δ ≤ 1. Assume that
∑p

j =k(σjk −
σjk,0)

2/|�|F = O(1). Under Assumptions 2.1 and 2.2, we have that

(2.10)
sup

t

∣∣∣∣P
(

nT̂n

|�|F ≤ t

)
− P

(
(Y + √

nμY )T (Y + √
nμY ) − tr(�)

|�|F ≤ t

)∣∣∣∣
= O

(
n−δ/(10+4δ)),

where Y ∼ N(0,�) and μY = (σ12 − σ12,0, σ13 − σ13,0, . . . , σp,p−1 − σp,p−1,0)
T . On the

other hand, if
∑p

j =k(σjk − σjk,0)
2/|�|F → ∞, under Assumptions 2.1 and 2.2, we have that

nT̂n/|�|F → ∞ in probability.

REMARK 2.2. The idea of formulating the test statistics for off-diagonal covariance
structure can be used for testing H0 : σjk = σjk,0 for all |j − k| > κ , for example, the banding
structure. With little modification of T̂n, we can construct a test statistic on the superdiagonals
|j − k| > κ . Similar asymptotic properties in Theorem 2.1 and Corollary 2.1 can be obtained.

The asymptotic approximation in Theorem 2.1 is attained without any restriction on p. In
the low dimensional case with p = O(1), which may be viewed as having finite dimension,
the Berry–Esseen style theorem as conveyed in Theorem 2.1 and Corollary 2.1 still hold.

By Theorem 2.1, in general, the approximating distribution of T̂n is a linear combination
of χ2

1 . The following corollary concerns a central limit theorem for T̂n.

COROLLARY 2.2. Under conditions of Theorem 2.1, the central limit theorem nT̂n/

|�|F d−→ N(0,2) holds if and only if

(2.11) ρ� := tr(�4)

tr2(�2)
→ 0 as p → ∞.

Assume
∑

(j,k)∈S1

∑
(m,q)∈S1

(σ 2
jmσ 2

kq + σjmσjqσkmσkq) ≥ Ktr2(�2) for some constant K >

0. If {Xi}ni=1 follows the linear process model, that is, under Assumption 2.1 with aj,l1l2···li =
0 for all 1 ≤ l1 < l2 < · · · < li ≤ N , 2 ≤ i ≤ d , 1 ≤ j ≤ p, then, (2.11) is equivalent to

(2.12) ρ� → 0 as p → ∞.
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In other words, condition (2.12) for linear process models is the necessary and sufficient
one to achieve the central limit theorem. Condition (2.12) is widely used in the literature of
high dimensional hypothesis testing problems; see for example, Chen, Zhang and Zhong
(2010), Li and Chen (2012). This result is consistent with Proposition 3 in Cai and Ma
(2013) which deals with tests for high dimensional covariance matrices for Gaussian vec-
tors. They developed the Berry–Esseen bound (1/n+ρ�)1/5 for a similar test statistic which
is asymptotically Gaussian under (2.12). Condition (2.12) is violated, for instance, the ratio-
nal quadratic covariance structure in Example 2.1 below or the simple linear factor model
Xij = Fi + ξij where {Fi} and {ξij } are i.i.d. mean 0 and variance 1, tr(�4) 	 tr2(�2).

EXAMPLE 2.1. Consider the rational quadratic covariance structure �0 =
{(σjk,0(θ))p×p : σjk,0(θ) = (1 + θ−1

1 θ−2
2 |j − k|2)−θ1/2 and 0 < θ1 < 1/2, θ2 > 0}. It can

be shown that tr(�4) 	 p4−4θ1 and tr(�2) 	 p2−2θ1 , leading to ρ� → 0, as p → ∞. Then
the classical central limit theorem in Corollary 2.2 does not apply, while Theorem 2.1 still
holds with a non-Gaussian approximating distribution.

2.3. Estimating the distribution of nT̂n. In general, by Theorem 2.1, the asymptotic dis-
tribution of nT̂n can be used for testing with estimated critical values via estimation of
{λd}p(p−1)

d=1 . It is also called a plug-in resampling procedure based on the sample version of �

(see Xu, Zhang and Wu (2014)). However, estimation of the eigenvalues of matrix � is highly
nontrivial, since by (2.5) � is a very high p(p−1)×p(p−1) dimensional matrix. To formu-
late a computational feasible test procedure, we use a half-sampling approach (also balanced
Rademacher weighted differencing scheme) to avoid such estimation problems, and obtain
an asymptotically unbiased and consistent estimator of the cumulative distribution function
of nT̂n.

Assume that n is even. Let B ⊂ {1,2, . . . , n}, Bc = {1, . . . , n}\B , and |B| = |Bc| = m =
n/2. Define respectively,

JB(S1,�0) = ∑
(j,k)∈S1

Rjk(B,σjk,0),(2.13)

CB,Bc(S1,�0) = ∑
(j,k)∈S1

Njk

(
B,Bc, σjk,0

)
,(2.14)

where recall the notation
∑∗ means summation over mutually different subscripts shown,

P k
m := m(m − 1) · · · (m − k), and

Njk

(
B,Bc, σjk,0

) =
(

1

m

∑
i1∈B

Xi1jXi1k − 1

P 1
m

∗∑
i1,i2∈B

Xi1jXi2k − σjk,0

)

(2.15)

·
(

1

n − m

∑
i3∈Bc

Xi3jXi3k − 1

P 1
n−m

∗∑
i3,i4∈Bc

Xi3jXi4k − σjk,0

)
,

Rj,k(B,σjk,0) = 1

P 1
m

∗∑
i1,i2∈B

Xi1jXi1kXi2jXi2k − 2

P 2
m

∗∑
i1,i2,i3∈B

Xi1jXi2jXi2kXi3k

+ 1

P 3
m

∗∑
i1,i2,i3,i4∈B

Xi1jXi2jXi3kXi4k + σ 2
jk,0(2.16)

− 2

m
σjk,0

∑
i1∈B

Xi1jXi1k + 2

P 1
m

σjk,0

∗∑
i1,i2∈B

Xi1jXi2k.
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We consider the balanced Rademacher weighted differencing scheme (half-sampling ap-
proach). The half-sampling estimator is defined as

(2.17) F̃ (t) = 1(n
m

) ∑
B∈B

1m(1−m/n)(JB(S1,�0)+JBc (S1,�0)−2CB,Bc (S1,�0))≤t ,

where B contains all the subsets of size m of {1,2, . . . , n}. Because
(n
m

)
can be too

large, F̃ (t) may be difficult to compute. Instead, a stochastic approximation may be
employed. Let B1, . . . ,BL be i.i.d. uniformly sampled from the class B := {B : B ⊂
{1, . . . , n}, |B| = m}. Assuming {Xi} and the sampling process {Bl} are independent.
The balanced Rademacher weighted differences is defined by m(1 − m/n)(JBl

(S1,�0) +
JBc

l
(S1,�0) − 2CBl,B

c
l
(S1,�0)). Following Politis, Romano and Wolf (1999), F̃ (t) can be

approximated by

(2.18) F̂L(t) = 1

L

L∑
l=1

1m(1−m/n)(JBl
(S1,�0)+JBc

l
(S1,�0)−2CBl,B

c
l
(S1,�0))≤t .

By the Dvoretzky–Kiefer–Wolfowitz–Massart inequality (cf. Massart (1990)),

(2.19) P∗(
sup

t

∣∣F̂L(t) − F̃ (t)
∣∣ ≥ u

)
≤ 2e−2Lu2

, u ≥ 0,

where P∗(·) = P(·|X1, . . . ,Xn) is the conditional probability given the original data
{X1, . . . ,Xn}. Hence, the distribution function of F(t) := P(nT̂n ≤ t) can be estimated by
F̃ (t) (cf. Theorem 2.2), which is well approximated by F̂L(t) by choosing L ≥ n.

Politis, Romano and Wolf (1999) assume that m/n → 0, whereas, motivated by numerical
performance (see Example 2.2 below), we build a new half-sampling procedure under the
case m = n/2. In contrast, Xu, Zhang and Wu (2014) considered a subsampling procedure
with m = o(n). The convergence rate they developed for subsampling is much worse than our
Theorem 2.2. In practice, we directly use the stochastic approximation of the half-sampling
estimator, F̂L(t), instead of the original half-sampling estimator F̃ (t). When the sample size
is too small, the total number of possible subsamples can be small, then the method is less
reliable. In practice, we recommend the sample size n ≥ 20 and resampling replications L ≥
1000.

Our half-sampling procedure is motivated by the Hadamard matrices. For ease of presen-
tation, consider the mean test problem. Assume that Y 1, . . . ,Y n are i.i.d. N(μ,�). Let H be
an n × n Hadamard matrix where its first row consists all 1’s, all its entries take values 1 or
−1, and its rows are mutually orthogonal, so that HHT = nIn. Let Zl = n−1/2 ∑n

i=1 HliY i

for l = 1,2, . . . , n. Then Z2, Z3, . . . , Zn are i.i.d. N(0,�) and the empirical cumulative
distribution function

F̂n(t) = 1

n − 1

n∑
l=2

1|Zl |22≤t

converges uniformly to F(t) = P(n|Ȳ − μ|22 ≤ t). We can reject the null hypothesis μ = 0
at level α ∈ (0,1) if n|Ȳ |22 > t̂1−α , where t̂1−α is the (1 − α)th sample quantile of F̂n(t).
As an important feature of the latter method, one does not need to estimate the covariance
matrix �. However, it is highly nontrivial to construct Hadamard matrices; see Hedayat and
Wallis (1978) and Yarlagadda and Hershey (2012). To circumvent the construction problem
of Hadamard matrices, we shall obtain asymptotically independent realizations by using bal-
anced Rademacher weighted differencing scheme. See Wu, Lou and Han (2018) for more
details.
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FIG. 1. Power curve of the test given in Qiu and Chen (2012) (abbr. QC), the subsampling procedures with
resampling size m = 14,20 and the half-sampling procedure with m = 30 at size = 0.05. The resampling sizes
are 2000.

The example below numerically illustrates the benefits of the half-sampling approach over
the usual subsampling procedure with m = o(n). Our half- sampling approach goes far be-
yond the theoretical results about subsampling approach in Xu, Zhang and Wu (2014). The
proofs of the validity of half-sampling approach are highly nontrivial and require a more
involved Gaussian approximation result than theirs.

EXAMPLE 2.2. Consider the following model:

Xij = Zij + ρζi, 1 ≤ i ≤ n,1 ≤ j ≤ p,

where Zij ’s and ζi ’s are i.i.d. N(0,1), and ρ is a parameter. To obtain the power curve, the
data set is simulated by setting ρ from 0 (under the null) to 0.25. We set p = 120 and n = 60.
Figures 1 and 2 display the power curve of the test given in Qiu and Chen (2012) (abbr. QC),
the subsampling procedures with resampling size m = 14,20 and the half-sampling proce-
dure with m = 30. The empirical size and power of the tests are estimated from 10000 real-
izations. The result shows that subsampling with resampling size m = 14 leads to a smaller
empirical size than the nominal level, while all the other tests have correct sizes. It can be

FIG. 2. Power curve of the test given in Qiu and Chen (2012) (abbr. QC), the subsampling procedures with
resampling size m = 14,20 and the half-sampling procedure with m = 30 at size = 0.01. The resampling sizes
are 5000.
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noted that the half-sampling procedure is the best one in both size accuracy and power. In
addition, the subsampling with m = 20 also improves the power over the subsampling with
m = 14 and the QC test.

Let y∗
α = inf{y : F̃ (y) ≥ α} be the α-quantile of half-sampling estimator F̂ (t). It can be

approximated by y∗
L,α = inf{y : F̂L(y) ≥ α}. Theorem 2.2 shows convergence property of the

half-sampling estimator F̃ (t).

THEOREM 2.2. Let F(t) = P(nT̂n ≤ t). Suppose Assumptions 2.1 and 2.2 hold, and
‖ξ11‖4+2δ < ∞ where 0 < δ ≤ 1. Let m = 
n/2�, then under the null hypothesis H0a in (2.3),

(2.20) sup
t

E
∣∣F̃ (t) − F(t)

∣∣2 = O
(
n−δ/(10+4δ)).

Based on Theorem 2.2, at a given significance level 0 < α < 1, we propose the test
�a,α = 1(nT̂n ≥ y∗

1−α). In practice, we use y∗
L,1−α instead of y∗

1−α . The null hypothesis H0a

is rejected whenever �a,α = 1. Power analysis is discussed in the Supplementary Material.
In multiple testing problems that are common in genomics, researchers use either normal
approximation based method, or the normal quantile transformation of mixture of χ2

1 distri-
bution; see, for example, Xia, Cai and Cai (2018).

3. Testing parametric forms of covariance functions. In this section, we aim to test:

(3.1) H0a : σjk = σjk,0(θ) for all (j, k) ∈ S1,S1 = {
(j, k) : 1 ≤ j = k ≤ p

}
,

where the unknown parameter θ = (θ1, . . . , θd)T ⊂ R
d and d is finite. We estimate θ by

(3.2) θ̂ = arg min
θ

p∑
j =k

(
σ̂jk − σjk,0(θ)

)2
.

Assume that θ̂ − θ = OP(αn,p), where αn,p is the rate of convergence. For example, it can be
verified that αn,p = (

√
np)−1 for the sphericity structure �0(θ) = θIp , and αn,p = (

√
n)−1

for the compound symmetry structure �0(θ) = Ip + θ(11T − Ip).
We first introduce some notation. Let θj be the j th (j = 1, . . . , d) component of the d-

dimensional vector θ . Let V = (vm,q)1≤m,q≤d with

vmq =
p∑

j =k

(
∂σjk,0(θ)

∂θm

· ∂σjk,0(θ)

∂θq

)
.

In addition, let � = (�1, . . . ,�d) and

�m =
(

∂σ12,0(θ)

∂θm

,
∂σ13,0(θ)

∂θm

, . . . ,
∂σp,p−1,0(θ)

∂θm

)T

for 1 ≤ m ≤ d . Moreover, define

ϒ = �V −1� ′.

For the process W i = W(Xi ,S1) as W(Xi ,S1) defined in (2.4), let

(3.3) κ2+�
� := E

∣∣∣∣W
T
1 ϒW 1 − tr(ϒ�)

|� − ϒ�|F
∣∣∣∣2+�

.

To facilitate the theoretical analysis, the following technical conditions are considered (see
Zhong et al. (2017)).
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ASSUMPTION 3.1. Assume that θ̃ is in a small neighborhood of θ . (i). For any 1 ≤
m,q ≤ d ,

p∑
j =k

∂2σjk,0(θ̃)

∂θm∂θq

(
σjk,0(θ) − σjk

) = o

{ p∑
j =k

∂σjk,0(θ)

∂θm

∂σjk,0(θ)

∂θq

}
,

p∑
j =k

(
∂2σjk,0(θ)

∂θm∂θq

(
σjk,0(θ) − σjk

))2
= O

{ p∑
j =k

(
∂σjk,0(θ)

∂θm

∂σjk,0(θ)

∂θq

)2
}
.

(ii). For any 1 ≤ m,q, s ≤ d ,
p∑

j =k

(
∂3σjk,0(θ̃)

∂θm∂θq∂θs

σjk

)u

= O

{ p∑
j =k

(
∂2σjk,0(θ)

∂θm∂θq

σjk

)u
}

for u = 1,2,

p∑
j =k

(
∂2σjk,0(θ)

∂θm∂θq

σjk,0(θ)

)2
= O

{ p∑
j =k

(
∂σjk,0(θ)

∂θm

∂σjk,0(θ)

∂θq

)2
}
.

Similar to T̂n = TS1 in (2.1), we define T̂n(θ̂) with σjk,0 in (2.2) replaced by σjk,0(θ̂). The
asymptotic behavior with estimated parameters is more complicated. The estimated param-
eters can play a nontrivial role, leading to dichotomous limiting behaviors; cf. Theorem 3.1.
We supplemented the Gaussian approximation results in Xu, Zhang and Wu (2014) with an-
other type of approximating distribution when the bias term is the leading term in the test
statistic. The following theorem presents the asymptotic properties of T̂n(θ̂).

THEOREM 3.1. Suppose Assumptions 2.1, 2.2 and 3.1 hold and ‖ξ11‖4+2δ < ∞, κ� < ∞
with 0 < δ ≤ 1, � ≥ 0. (i) If κ0/

√
n → 0, then under the null hypothesis H0a in (3.1),

(3.4) sup
t

∣∣∣∣∣P
(

nT̂n(θ̂)

|� − ϒ�|F ≤ t

)
− P

(
1

|� − ϒ�|F

(p(p−1)∑
d=1

λdηd − tr(�)

)
≤ t

)∣∣∣∣∣ → 0,

where λd are eigenvalues of (I − ϒ)1/2�(I − ϒ)1/2 and ηd are i.i.d. χ2
1 .

(ii) If
√

n/κ0 → 0 and the Lindeberg condition holds, that is,

(3.5) E
(∣∣∣∣W

T
1 ϒW 1 − tr(ϒ�)

κ0|� − ϒ�|F
∣∣∣∣21|W T

1 ϒW 1−tr(ϒ�)|≥√
nεκ0|�−ϒ�|F

)
→ 0

for any ε > 0, then under the null hypothesis H0a (3.1),

(3.6) sup
t

∣∣∣∣P
(√

n(nT̂n(θ̂) + tr(ϒ�))

κ0|� − ϒ�|F ≤ t

)
− �(t)

∣∣∣∣ → 0,

where � is the standard Gaussian cdf.

REMARK 3.1. When κ0/
√

n → 0, Theorem 3.1(i) reveals that the asymptotic mean of
nT̂n(θ̂)/|� − ϒ�|F is (tr((I − ϒ)�) − tr(�))/|� − ϒ�|F = −tr(ϒ�)/|� − ϒ�|F , which
may not converge to 0 as n,p → ∞.

REMARK 3.2. As pointed out in Chen and Qin (2010), although the term
∑n

i=1 X′
iXi in

|X̄|22 is not useful in testing of the mean, it may impose extra restriction on p and n. Likewise,
our κ0 controls the effect of

∑
i=1 W T

i ϒW i , which is a bias term induced by the estimation
of the unknown parameters. In practice, κ0/

√
n → 0 means that the estimation of θ does not

affect the asymptotic behavior of the test statistic. In contrast, if
√

n/κ0 → 0, the estimation
of θ incurs leading order effects of the test statistic. Then under proper normalization, we can
still achieve asymptotic normality, that is, Theorem 3.1(ii).
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The test statistic nT̂n(θ̂) can have two different asymptotic distributions, depending on the
magnitudes of κ0 and

√
n. Note that the asymptotic order of κ0 is related to the convergence

rate of θ̂ to θ . We next present several examples to illustrate the asymptotic orders of κ0 and
the corresponding limiting distributions. For notational simplicity, we assume Xi ∼ N(0,�0)

in the examples.

EXAMPLE 3.1. Consider the compound symmetry covariance structure �0 = Ip +
θ(11T − Ip) with θ ∈ (0,1) and let Xi ∼ N(0,�0). It can be shown that ϒ = (p(p −
1))−11p(p−1)1T

p(p−1), tr(ϒ�) = 2θ2(p − 2)(p − 3) + 4(θ2 + θ)(p − 2) + 2(θ2 + 1) and

tr(� − ϒ�)2 	 4(θ − θ2)2p(p − 1)(p − 2). Then basic calculation shows that κ0 	 √
p.

Consequently, if p/n → 0, (n(n − 1))−1 ∑n
i =l W

T
i W l is the leader term and we shall ap-

ply Theorem 3.1(i); in contrast, if n/p → 0, n−2 ∑n
i,l W

T
i ϒW l is the leader term and the

Lindeberg condition holds, then we shall apply Theorem 3.1(ii).

EXAMPLE 3.2. Consider the exponential covariance class �0 = {(σjk,0(θ))p×p :
σjk,0(θ) = θ1 exp(−|j − k|/θ2) and θ1, θ2 > 0} and let Xi ∼ N(0,�0). It can be shown
that tr(ϒ�) 	 1, tr(ϒ�)2 	 1 and tr(� − ϒ�)2 	 1. Then κ0 	 1. Thus, κ0/

√
n → 0,

(n(n − 1))−1 ∑n
i =l W

T
i W l is the leader term and we shall apply Theorem 3.1(i).

EXAMPLE 3.3. Consider the rational quadratic covariance structure �0 =
{(σjk,0(θ))p×p : σjk,0(θ) = (1 + θ−1

1 θ−2
2 |j − k|2)−θ1/2 and θ1, θ2 > 0} and let Xi ∼

N(0,�0). If 0 < θ1 < 1/2, by elementary calculations, tr(ϒ�) 	 p2−2θ1 , tr(ϒ�)2 	 p4−4θ1 ,
tr(�2) 	 p4−4θ1 and tr(� − ϒ�)2 	 p4−4θ1 . Then κ0 	 1. On the other hand, if θ1 > 1/2,
then tr(ϒ�) 	 p3−4θ1 log2(p) + 1, tr(ϒ�)2 	 p6−8θ1 log4(p) + 1, tr(�2) 	 p2 and tr(� −
ϒ�)2 	 p2. This leads to κ0 	 p2−4θ1 log2(p) + 1/p. Thus, on both cases, κ0/

√
n → 0,

(n(n − 1))−1 ∑n
i =l W

T
i W l is the leader term and we shall apply Theorem 3.1(i).

Similar to Section 2.3, we can formulate a half-sampling procedure. Let θ̂B (resp., θ̂Bc ) be
the least squares estimator of equation (3.2) via {Xi}i∈B (resp., {Xi}i∈Bc ). Define JB(S1, θ̂)

and CB,Bc(S1, θ̂) with σjk,0 in (2.13) and (2.14) replaced by σjk,0(θ̂B) and σjk,0(θ̂Bc). Simi-
larly as (2.17) and (2.18), we write the half-sampling estimator and its stochastic approxima-
tion of the distribution function of nT̂n(θ̂) as F̃

θ̂
(t) and F̂

L,θ̂
(t), respectively. A more detailed

version is provided in the Appendix.
Thus, we have the following asymptotic property for the half-sampling estimator F̃

θ̂
(t).

THEOREM 3.2. Write Fθ(t) := P(nT̂n(θ) ≤ t). Suppose Assumptions 2.1, 2.2 and 3.1
hold, and ‖ξ11‖4+2δ < ∞ where 0 < δ ≤ 1. If

√
n/κ0 → 0, then assume the Lindeberg con-

dition (3.5) holds. If m = 
n/2� → ∞, then under the null hypothesis H0a in (3.1),

(3.7) sup
t

∣∣F̃
θ̂
(t) − F

θ̂
(t)

∣∣ P→ 0.

Based on Theorem 3.2, at a given significance level 0 < α < 1, we propose the test
�

a,α,θ̂
= 1(nT̂n(θ̂) ≥ y∗

1−α), where y∗
1−α is the (1 − α)th quantile of F̃

θ̂
(t). In practice, we

use y∗
L,1−α := inf{y : F̂

L,θ̂
(y) ≥ 1 − α} instead of y∗

1−α . The null hypothesis H0a is rejected
whenever �

a,α,θ̂
= 1. Note that our half-sampling procedure is valid on both cases in The-

orems 3.1. We shall evaluate the numeric performance of the new test method in Section 5.
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It is also worth noting that our test procedure �
a,α,θ̂

can be applied to test general para-
metric structures, and do not need to estimate the bias induced by estimation of unknown
parameters.

4. Testing a given substructure of the precision matrix. In this section, we consider
testing

H0c : ωjk = 0 for all (j, k) ∈ S,

where S is the index set of the precision matrix � of interest. Under the Gaussian graphi-
cal model framework, a submatrix of the precision matrix characterizes the network of two
groups. See De la Fuente (2010), Hudson, Reverter and Dalrymple (2009), Ideker and Kro-
gan (2012), Jia et al. (2011), Li, Agarwal and Rajagopalan (2008), among others. In general,
testing substructure of � is not directly useful for testing substructure of �. So it is essential
to work on the precision matrix directly, not the covariance matrix.

A natural approach to test H0c is to first construct estimators of ωjk , and then base the
test on the sum of squares of the entries in the index set S . In the high dimensional setting,
there is no sample precision matrix that one can use to approximate �. In this section, we
assume p = o(n), then we can use the inverse of sample covariance matrix as an estimate of
the precision matrix. That is, �̂ = �̂−1 = (ω̂jk)j,k≤p . We propose the following test statistic
for testing the null hypothesis H0c:

(4.1) Ĝn = ∑
(j,k)∈S

ω̂2
jk.

The method in this paper does not take into account any structural information, which can be
useful in analyzing high dimensional data in situations that such information is not available.

Before studying the null distribution of Ĝn, we first introduce the following regularity
conditions.

ASSUMPTION 4.1 (Sub-Gaussian). Suppose ξil , 1 ≤ i ≤ n, 1 ≤ l ≤ N , are i.i.d. mean 0
sub-Gaussian random variables with

E exp
(
tξ2

il

) ≤ K < ∞,

for some constant K > 0 and t > 0.

ASSUMPTION 4.2. Assume for some constant K0 > 0, K−1
0 ≤ λmin(�) ≤ λmax(�) ≤

K0, where λmax(�) and λmin(�) denote the largest and the smallest eigenvalues of �, re-
spectively.

Assumption 4.2 on the eigenvalues is a common assumption in the high dimensional set-
ting, for instance, Xia, Cai and Cai (2015) and Xia, Cai and Cai (2018). Note that this as-
sumption is equivalent to K−1

0 ≤ λmin(�) ≤ λmax(�) ≤ K0.
We now introduce some notation. Let W i = W(Xi , S0), where S0 = {(j, k) : 1 ≤

j, k ≤ p}. Then denote the covariance matrix for W i as � = (γα,α′)α,α′∈S0 . Let � =
(�(m1,q1),(m2,q2))1≤m1,m2,q1,q2≤p with

�(m1,q1),(m2,q2) = ∑
j,k∈S

ωjm1ωjm2ωkq1ωkq2,

where S is the index set of the precision matrix � of interest. Define

(4.2) τ 2+�
� := E

∣∣∣∣W
T
1 �W 1 − tr(��)

|��|F
∣∣∣∣2+�

.
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The following theorem states the asymptotic properties of Ĝn. Let |S| be the cardinality of

S ; let λ1 ≥ · · · ≥ λp2 ≥ 0 be eigenvalues of �1/2��1/2 and fk = (
∑p2

d=1 λk
d)1/k , k > 0. Then

tr(��) = f1 and |��|F = f2.

THEOREM 4.1. Consider the linear process model Xij = ∑N
l=1 bj,lξil , 1 ≤ j ≤ p, where

ξil are i.i.d. and satisfy Assumption 4.1. Suppose that Assumption 4.2 holds and τ� < ∞ with
0 < δ ≤ 1, � ≥ 0. (i) If τ0/

√
n → 0 and p2|S|f1/(nf

2
2 ) → 0, then under the null hypothesis

H0c,

(4.3) sup
t

∣∣∣∣∣P
(

nĜn − f1

f2
≤ t

)
− P

(p(p−1)∑
d=1

λd

f2
(ηd − 1) ≤ t

)∣∣∣∣∣ → 0,

where ηd are i.i.d. χ2
1 . (ii) If

√
n/τ0 → 0, p2|S|f1/(τ

2
0 f 2

2 ) → 0, and the Lindeberg condition
holds, that is, for any ε > 0,

E
(∣∣∣∣W

T
1 �W 1 − f1

τ0f2

∣∣∣∣21|W 1�WT
1 −f1|≥√

nετ0f2

)
→ 0,

then under the null H0c, we have the CLT

(4.4)

√
n(nĜn − f1)

τ0f2
⇒ N(0,1).

REMARK 4.1. Assume Xi ∼ N(0,�). Then, under Assumption 4.2, by elementary cal-
culations, we have that E|W T

1 �W 1|2 	 p2|S|2, f1 	 p|S| and f 2
2 	 p2|S|2. This leads to

τ0 = O(1). Thus, we shall apply Theorem 4.1(i). Meanwhile, the allowed dimension p can
be as large as p = o(n).

The estimation of �� is technically challenging, since correlations among the estimates
of the entries of ωjk for (j, k) ∈ S not only depend on the entries within the submatrix, but
also heavily depend on the entries outside of it. To incorporate this dependency structure,
we use the half-sampling approach in previous sections. Let B1, . . . ,BL be i.i.d. uniformly
sampled from the class B := {B : B ⊂ {1, . . . , n}, |B| = m}, where m = 
n/2�. Denote the
empirical precision matrix estimated by {Xi}i∈B (resp., {Xi}i∈Bc ) as �(B) := (ωjk,B) (resp.,
�(Bc) := (ωjk,Bc)). Then we estimate the distribution function of FG(t) := P(nĜn ≤ t) by

(4.5) F̃G(t) = 1(n
m

) ∑
B∈B

1m(1−m/n)(
∑

(j,k)∈S (ωjk,B−ωjk,Bc )2)≤t .

Similarly as (2.18), define its stochastic approximation F̂L,G(t). Our half-sampling procedure
is as follows:

(1) Generate a subset B of size m of {1, . . . , n}. Then compute the empirical preci-
sion matrix estimation �(B) and �(Bc), and obtain the half-sampling test statistic m(1 −
m/n)

∑
(j,k)∈S(ωjk,B − ωjk,Bc)2.

(2) Repeat the above step independently L times (L > n) and collect all the corresponding
half-sampling test statistics.

(3) Construct half-sampling estimator F̂L,G(t), and calculate the (1 − α)-quantile of
F̂L,G(t): y∗

L,1−α = inf{y : F̂L,G(y) ≥ 1 − α}.
The test for H0c is then defined as �c,α = 1(nĜn ≥ y∗

L,1−α). We shall reject the null hy-

pothesis H0c at level α, whenever �c,α = 1. Besides, p-value can be estimated as F̂L,G(nĜn).
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5. Simulation studies. In this section, we shall evaluate the numerical performance of
the proposed methods based on the tests �a,α , �a,α,θ and �b,α for two subvectors (c.f.
Appendix A). All these testing procedures use the half-sampling approach. In practice, we
recommend the sample size n ≥ 20 and resampling replications should be at least 1000.
As other resampling methods, the computational cost of our procedure is high. The test
�a,α is compared with several other tests, including the test given in Qiu and Chen (2012)
which is based on the sum-of-squares type statistics and the test proposed in Chernozhukov,
Chetverikov and Kato (2013) which uses Gaussian multiplier bootstrap, and is based on the
maximum deviation type statistics. These tests are denoted respectively by Qiu-Chen and
CCK in the rest of this section. The test �a,α,θ is compared with a sum-of-squares type
statistic given in Zhong et al. (2017), which is denoted as ZLST. For the test �b,α , it is
compared with CCK only. More simulation results are given in the Supplementary Mate-
rial.

We first consider the test for H0a : σjk = σjk,0 for all (j, k) ∈ S1. To compare with the tests
for the banded � proposed by Qiu and Chen (2012), we consider the case σjk,0 = 0 for all
(j, k) ∈ S1. The following model under the null, σjk = 0 for all (j, k) ∈ S1, is used to study
the size of the tests:

(5.1) Xij =
√

�jZij , i = 1, . . . , n, j = 1, . . . , p,

where �j = √
p · Unif(0.5,2.5) for j = 1,2, otherwise, �j = Unif(0.5,2.5) for j =

3, . . . , p.
To evaluate the power, we generate multivariate random vector Xi = (Xi1, . . . ,Xip) inde-

pendently according to the moving average model,

(5.2) Xij =
√

�j(Zi,j + 3Zi,j+1), i = 1, . . . , n, j = 1, . . . , p,

where three distributions are assigned to the i.i.d. Zij : (i) standard normal; (ii) centralized
Gamma(4,1); and (iii) the student t5. The last two cases are designed to assess the perfor-
mance under nonnormality and heavy tails.

We choose a set of data dimensions p = 32,64,128,256,512,1024, while the sample
size is n = 20,50,100, respectively. The nominal significance level for all the tests is set at
α = 0.05. The empirical size and power of the tests, reported in Tables 1 and 2, are estimated
from 2000 replications.

It can be seen from Table 1 that the estimated sizes of our proposed test �a,α are close
to the nominal level 0.05 in all the cases. And the size is not sensitive to the dimensional-
ity indicated by its robust performance. This reflects the fact that the null distribution of the
test statistic is well approximated by our half-sampling approach. The empirical sizes using
Qiu and Chen (2012) (Qiu-Chen) or Chernozhukov, Chetverikov and Kato (2013) (CCK)
encounter serious size distortion. The actual sizes are around 0.02 for both tests. This phe-
nomenon is expected as the Qiu-Chen test is constructed based on the asymptotic normality
(cf. (2.12)), which is no longer valid for model (5.1) due to the fact that tr(�4) 	 tr2(�2) 	 p2

and ρ� → 0, and the CCK based test works for sparsity scenario.
The power results in Table 2 show that the proposed test has a much higher power than

the other tests in all settings. The results show clearly that the powers of all these test im-
proves with the sample size increases. However, the power of the Qiu–Chen test deterio-
rates as the dimension p grows. Overall, the new test significantly outperforms the other two
tests.

Next, we conduct two simulation studies (Example 3.1 and Example 3.3) to evaluate the
finite sample performance of the test �a,α,θ for H0a : σjk = σjk,0(θ) for all (j, k) ∈ S1. Data
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TABLE 1
Empirical sizes for H0a : σjk = σjk,0 for all j = k at 5% significance, based on 2000 replications with normal,

gamma and student-t innovations in Model (5.1)

Proposed Test �a,α Qiu-Chen CCK

p n: 20 50 100 20 50 100 20 50 100

Normal
32 0.050 0.055 0.044 0.027 0.025 0.024 0.026 0.020 0.022
64 0.048 0.053 0.057 0.026 0.025 0.028 0.023 0.024 0.029

128 0.061 0.052 0.049 0.027 0.026 0.017 0.019 0.025 0.016
256 0.053 0.054 0.053 0.019 0.024 0.034 0.020 0.020 0.025
512 0.061 0.052 0.052 0.028 0.026 0.019 0.029 0.020 0.018

1024 0.055 0.053 0.048 0.017 0.030 0.022 0.020 0.032 0.024

Gamma
32 0.042 0.048 0.049 0.025 0.034 0.028 0.023 0.024 0.017
64 0.048 0.055 0.048 0.020 0.023 0.017 0.018 0.022 0.021

128 0.054 0.053 0.056 0.021 0.028 0.018 0.020 0.015 0.022
256 0.062 0.051 0.054 0.035 0.025 0.023 0.016 0.019 0.019
512 0.051 0.051 0.049 0.025 0.026 0.022 0.014 0.027 0.018

1024 0.056 0.054 0.050 0.022 0.022 0.020 0.018 0.020 0.017

Student t

32 0.041 0.049 0.050 0.023 0.024 0.022 0.014 0.029 0.018
64 0.051 0.048 0.050 0.020 0.020 0.021 0.019 0.022 0.022

128 0.053 0.047 0.052 0.017 0.018 0.030 0.014 0.018 0.024
256 0.054 0.053 0.062 0.032 0.025 0.024 0.025 0.022 0.023
512 0.050 0.054 0.044 0.012 0.022 0.019 0.014 0.027 0.028

1024 0.043 0.057 0.054 0.025 0.016 0.024 0.028 0.016 0.017

dimension p is chosen to be 60, 120, 240, 480, 720, 960, and the sample size is n = 60,120.
The empirical size and power of the tests at the nominal level 0.05 and 0.01 are reported in
Tables 3, 4, 5 and 6, based on 2000 replications and 10,000 replications, respectively. We
also compare our test statistic �a,α,θ with the ZLST test proposed by Zhong et al. (2017) for
Gaussian data.

The null hypothesis for testing compound symmetry covariance structure is

(5.3) H0a : �0 = Ip + θ
(
11T − Ip

)
, θ ∈ (0,1).

We generate multivariate random vector Xi according to the following model:

Xij = δXi,j−1 + √
θfi +

√(
1 − δ2

)
(1 − θ)εij , i = 1, . . . , n, j = 1, . . . , p,

where Xi0, fi and εij are i.i.d. and have mean 0, variance 1. We consider three setups for the
distribution of Xi0, fi and εij : (i) standard normal; (ii) standardized Gamma(4,1); and (iii)
standardized student t5. To study the size of the test, we generate the data by setting δ = 0
and θ = 0.15. In contrast, we generate the data by setting δ = 0.4 and θ = 0.15, to access the
power of the test.

Another example is to test the rational quadratic covariance structure

(5.4) H0a : σjk,0(θ) = (
1 + θ2|j − k|2)−θ1/2

, θ1 > 0, θ2 > 0.

We generate random samples from multivariate model Xi = �XZi , with �X�′
X = �0(θ). The

components of Zi = (Zi1, . . . ,Zip)′ are i.i.d. We consider the following covariance structure
�0(θ),

σjk,0(θ) = (1 − δ)
(
1 + θ2|j − k|2)−θ1/2 + δ · 0.4|j−k|, 1 ≤ j, k ≤ p,



3582 Y. HAN AND W. B. WU

TABLE 2
Empirical powers for H0a : σjk = σjk,0 for all j = k at 5% significance, based on 2000 replications with

normal, gamma and student-t innovations in Model (5.2)

Proposed Test �a,α Qiu-Chen CCK

p n: 20 50 100 20 50 100 20 50 100

Normal
32 0.255 0.590 0.903 0.176 0.507 0.863 0.192 0.539 0.852
64 0.264 0.580 0.890 0.169 0.474 0.837 0.190 0.523 0.855

128 0.266 0.608 0.924 0.164 0.462 0.820 0.194 0.527 0.879
256 0.260 0.596 0.910 0.168 0.444 0.793 0.197 0.525 0.843
512 0.253 0.581 0.892 0.173 0.467 0.786 0.173 0.552 0.858

1024 0.275 0.619 0.912 0.177 0.471 0.817 0.196 0.515 0.840

Gamma
32 0.250 0.587 0.907 0.176 0.486 0.824 0.182 0.501 0.834
64 0.243 0.579 0.929 0.171 0.469 0.803 0.178 0.504 0.857

128 0.252 0.597 0.896 0.164 0.472 0.793 0.186 0.521 0.834
256 0.263 0.588 0.919 0.168 0.454 0.800 0.192 0.513 0.856
512 0.260 0.593 0.906 0.150 0.446 0.826 0.191 0.488 0.841

1024 0.248 0.602 0.910 0.139 0.481 0.814 0.178 0.498 0.846

Student t

32 0.263 0.587 0.890 0.173 0.515 0.843 0.161 0.478 0.795
64 0.240 0.573 0.892 0.168 0.480 0.835 0.161 0.481 0.806

128 0.264 0.599 0.913 0.173 0.469 0.791 0.169 0.484 0.783
256 0.248 0.590 0.908 0.167 0.470 0.777 0.170 0.483 0.799
512 0.253 0.584 0.887 0.176 0.455 0.791 0.169 0.479 0.781

1024 0.267 0.606 0.891 0.180 0.466 0.786 0.162 0.483 0.778

TABLE 3
Empirical sizes and powers for testing compound symmetry covariance structure in (5.3) at 5% significance,

based on 2000 replications with normal, gamma and student-t innovations

Normal Gamma Student t

�a,α,θ ZLST �a,α,θ �a,α,θ

p n: 60 120 60 120 60 120 60 120

size
60 0.055 0.052 0.054 0.041 0.042 0.054 0.040 0.059

120 0.048 0.053 0.055 0.061 0.041 0.046 0.061 0.046
240 0.053 0.054 0.064 0.046 0.059 0.053 0.049 0.050
480 0.054 0.046 0.056 0.062 0.049 0.056 0.044 0.047
720 0.046 0.047 0.062 0.042 0.046 0.044 0.059 0.048
960 0.047 0.053 0.058 0.063 0.052 0.049 0.053 0.051

power
60 0.918 1.000 0.863 1.000 0.878 1.000 0.856 1.000

120 0.773 1.000 0.715 0.995 0.749 0.999 0.733 0.992
240 0.606 0.934 0.556 0.915 0.566 0.939 0.558 0.928
480 0.532 0.816 0.452 0.756 0.484 0.768 0.493 0.756
720 0.476 0.696 0.417 0.631 0.455 0.703 0.465 0.687
960 0.433 0.625 0.378 0.585 0.400 0.616 0.404 0.610
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TABLE 4
Empirical sizes and powers for testing compound symmetry covariance structure in (5.3) at 1% significance,

based on 10000 replications with normal, gamma and student-t innovations

Normal Gamma Student t

�a,α,θ ZLST �a,α,θ �a,α,θ

p n: 60 120 60 120 60 120 60 120

size
60 0.0089 0.0114 0.0127 0.0113 0.0101 0.0079 0.0084 0.0093

120 0.0093 0.0121 0.0126 0.0111 0.0100 0.0104 0.0105 0.0107
240 0.0096 0.0088 0.0137 0.0110 0.0112 0.0096 0.0097 0.0095
480 0.0104 0.0112 0.0153 0.0116 0.0079 0.0116 0.0087 0.0109
720 0.0085 0.0094 0.0161 0.0103 0.0111 0.0105 0.0117 0.0092
960 0.0107 0.0096 0.0174 0.0121 0.0102 0.0103 0.0108 0.0102

power
60 0.807 1.000 0.779 0.999 0.794 1.000 0.780 1.000

120 0.645 1.000 0.580 0.980 0.628 0.994 0.622 0.989
240 0.455 0.889 0.408 0.845 0.449 0.857 0.436 0.845
480 0.354 0.679 0.305 0.623 0.342 0.667 0.337 0.669
720 0.325 0.558 0.298 0.499 0.309 0.528 0.305 0.536
960 0.282 0.516 0.251 0.460 0.273 0.499 0.261 0.483

where 0 ≤ δ < 1 and θ1, θ2 > 0. Similarly, three distributions Zij are concerned: (i) standard
normal; (ii) standardized Gamma(4,1); and (iii) standardized student t5. To study the size of
the test, we generate the data by setting δ = 0, θ1 = 0.4 and θ2 = 0.4. In contrast, we generate
the data by setting δ = 0.4, θ1 = 0.4 and θ2 = 0.4, to evaluate the power of the test.

It can be seen from Tables 3 and 5 that both our test �a,α,θ and ZLST test control the
size very well at the nominal level 0.05, for both examples. The results in Tables 4 and 6
show that the estimated sizes of our new test �a,α,θ are close to the nominal level 0.01 in

TABLE 5
Empirical sizes and powers for testing rational quadratic covariance structure in (5.4) at 5% significance, based

on 2000 replications with normal, gamma and student-t innovations

Normal Gamma Student t

�a,α,θ ZLST �a,α,θ �a,α,θ

p n: 60 120 60 120 60 120 60 120

size
60 0.042 0.049 0.056 0.040 0.060 0.049 0.053 0.047

120 0.051 0.047 0.045 0.048 0.047 0.053 0.043 0.058
240 0.049 0.053 0.046 0.047 0.043 0.045 0.044 0.054
480 0.049 0.054 0.059 0.045 0.044 0.045 0.048 0.048
720 0.046 0.045 0.056 0.053 0.058 0.047 0.052 0.043
960 0.056 0.051 0.051 0.048 0.050 0.053 0.051 0.047

power
60 0.226 0.498 0.090 0.311 0.221 0.530 0.228 0.485

120 0.234 0.633 0.099 0.389 0.240 0.610 0.261 0.608
240 0.270 0.717 0.126 0.457 0.311 0.701 0.289 0.691
480 0.339 0.779 0.124 0.498 0.317 0.761 0.348 0.780
720 0.385 0.848 0.135 0.525 0.357 0.809 0.376 0.844
960 0.465 0.903 0.143 0.562 0.431 0.884 0.457 0.923
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TABLE 6
Empirical sizes and powers for testing rational quadratic covariance structure in (5.4) at 1% significance, based

on 10000 replications with normal, gamma and student-t innovations

Normal Gamma Student t

�a,α,θ ZLST �a,α,θ �a,α,θ

p n: 60 120 60 120 60 120 60 120

size
60 0.0111 0.0113 0.0190 0.0231 0.0087 0.0117 0.0079 0.0125

120 0.0088 0.0104 0.0196 0.0184 0.0089 0.0120 0.0104 0.0088
240 0.0111 0.0097 0.0176 0.0170 0.0107 0.0103 0.0086 0.0084
480 0.0106 0.0114 0.0177 0.0161 0.0097 0.0101 0.0098 0.0102
720 0.0096 0.0097 0.0169 0.0141 0.0113 0.0110 0.0095 0.0097
960 0.0102 0.0093 0.0171 0.0168 0.0105 0.0096 0.0099 0.0096

power
60 0.082 0.256 0.028 0.137 0.093 0.267 0.072 0.248

120 0.096 0.369 0.032 0.177 0.100 0.355 0.095 0.318
240 0.138 0.428 0.036 0.230 0.135 0.425 0.129 0.421
480 0.182 0.466 0.039 0.260 0.164 0.465 0.173 0.446
720 0.232 0.507 0.046 0.276 0.205 0.498 0.218 0.499
960 0.302 0.556 0.051 0.298 0.264 0.545 0.281 0.549

all the cases. For compound symmetry covariance structure, the estimated sizes of ZLST test
are close to the nominal level 0.01 only when n = 120. When n = 60, ZLST test leads to an
inflatted size at the nominal level 0.01. For rational quadratic covariance structure, ZLST test
suffers from the size distortion at the nominal level 0.01, the actual sizes are around 0.02.
This reflects that our proposed method has more accurate small tail probabilities than ZLST
test.

The power results show that the proposed test has a higher power than ZLST test in all
settings, especially for rational quadratic covariance structure. It can be seen in Tables 3 and
4 that the estimated powers of both tests tend to decrease when the dimension p increases.
However, for the rational quadratic covariance structure in Tables 5 and 6, the estimated
powers rise as the dimension p increases. Overall, for both examples, the new test �a,α,θ

significantly outperforms ZLST test.
We then conduct simulations to evaluate the performance of the test for H0b : �12 = �12,0,

where �12,0 is preassigned. We partition equally the entire random vector Xi into two subvec-
tors of p1 = p/2 and p2 = p −p1. Without loss of generality, we shall always take �12,0 = 0
in the simulations. Factor models for Xij are considered. In the size evaluation, the following
linear factor model is considered:

(5.5) Xij =
⎧⎨
⎩

bT
j1fi1 + εij 1 ≤ j ≤ p1,

bT
j2fi2 + εij p1 + 1 ≤ j ≤ p,

where bj1, bj2 are vectors of factor loadings, fi1, fi2 is a 2 × 1 vector of common factors
and εij is the error term, fi1, fi2 and εij are independent. All elements of bj1 and bj2,
j = 1, . . . , p, are chosen from Unif(0.5,2.5).

In the simulation for the power, we generate the sample from the following factor model:

(5.6) Xij =
⎧⎨
⎩

bT
j1fi1 + ρfi3 + εij 1 ≤ j ≤ p1,

bT
j2fi2 + ρfi3 + εij p1 + 1 ≤ j ≤ p,
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TABLE 7
Empirical sizes for H0b : �12 = 0 at 5% significance, based on 2000 replications with normal, gamma and

student-t innovations in Model (5.5)

Proposed Test �b,α CCK

p n: 20 50 100 20 50 100

Normal
32 0.056 0.048 0.049 0.011 0.020 0.027
64 0.045 0.057 0.043 0.012 0.015 0.018

128 0.053 0.052 0.063 0.012 0.020 0.021
256 0.054 0.059 0.049 0.009 0.012 0.023
512 0.062 0.053 0.057 0.008 0.018 0.019

1024 0.055 0.049 0.055 0.004 0.014 0.019

Gamma
32 0.058 0.055 0.060 0.007 0.018 0.026
64 0.055 0.052 0.054 0.006 0.015 0.025

128 0.052 0.046 0.044 0.008 0.015 0.020
256 0.046 0.054 0.046 0.007 0.013 0.019
512 0.059 0.055 0.050 0.003 0.013 0.017

1024 0.053 0.045 0.049 0.003 0.012 0.016

Student t

32 0.052 0.054 0.044 0.015 0.013 0.014
64 0.057 0.051 0.051 0.011 0.013 0.016

128 0.054 0.045 0.048 0.012 0.013 0.018
256 0.051 0.045 0.048 0.009 0.010 0.017
512 0.055 0.046 0.048 0.003 0.006 0.010

1024 0.060 0.047 0.054 0.001 0.004 0.008

where fi3 is a 1 × 1 common factor and fi1, fi2, fi3 and εij are independent. In this study,
ρ is chosen to be 1.5. Same distributions are considered for i.i.d. sequences fi1, fi2, fi3 and
(εij )

p
j=1. The sample sizes are taken to be n = 20,50,100, while the dimension p varies over

the values 32, 64, 128, 256, 512, 1024. The simulation results for the second test are reported
in Tables 7 and 8, based on 2000 replications.

Table 7 reports the empirical sizes of the proposed test �b,α (cf. Appendix A) and the
CCK test for the factor model at the 5% significance level. For each choice of p and n, it
can be seen that the estimated sizes are reasonably close to the nominal level 0.05 for the
proposed test, whereas the sizes of the CCK test tend to be smaller than the nominal level. It
is observed that the empirical sizes of the CCK test decreases with p, but increases with n.

Table 8, which compares the powers, shows that the new test �b,α uniformly and sig-
nificantly outperforms the CCK test over all choices of n and p. We also observed that the
powers of the CCK test improves with the sample size, but deteriorates as the dimension p

increases in our simulation setting.
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TABLE 8
Empirical powers for H0b : �12 = 0 at 5% significance, based on 2000 replications with normal, gamma and

student-t innovations in Model (5.6)

Proposed Test �b,α CCK

p n: 20 50 100 20 50 100

Normal
32 0.263 0.624 0.923 0.075 0.279 0.764
64 0.274 0.608 0.916 0.060 0.257 0.595

128 0.256 0.619 0.910 0.049 0.266 0.573
256 0.263 0.621 0.916 0.045 0.234 0.553
512 0.273 0.616 0.902 0.034 0.238 0.522

1024 0.270 0.637 0.910 0.022 0.225 0.501

Gamma
32 0.252 0.627 0.893 0.059 0.247 0.661
64 0.259 0.630 0.898 0.045 0.226 0.567

128 0.240 0.633 0.883 0.037 0.201 0.509
256 0.265 0.627 0.907 0.022 0.178 0.508
512 0.248 0.611 0.901 0.022 0.174 0.482

1024 0.256 0.628 0.918 0.016 0.133 0.402

Student t

32 0.258 0.610 0.864 0.053 0.268 0.658
64 0.248 0.619 0.873 0.038 0.226 0.517

128 0.244 0.634 0.876 0.022 0.169 0.493
256 0.267 0.611 0.870 0.016 0.140 0.415
512 0.249 0.626 0.859 0.010 0.106 0.353

1024 0.266 0.605 0.886 0.003 0.071 0.289
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