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Sandpile dynamics are considered on graphs constructed from periodic
plane and space tilings by assigning a growing piece of the tiling, either torus
or open boundary conditions. A general method of obtaining the Green’s
function of the tiling is given, and a total variation cut-off phenomenon is
demonstrated under general conditions. It is shown that the boundary condi-
tion does not affect the mixing time for planar tilings. In a companion pa-
per, computational methods are used to demonstrate that an open boundary
condition alters the mixing time for the D4 lattice in dimension 4, while an
asymptotic evaluation shows that it does not change the asymptotic mixing
time for the cubic lattice Zd for all sufficiently large d.
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1. Introduction. The Abelian sandpile model is an important model of selforganized
criticality which has been studied extensively in the statistical physics literature since it was
introduced by Bak, Tang and Wiesenfeld [2]; see, for example, [3, 6, 8, 9, 12, 13, 17, 18, 20,
22–24, 27–31]. Sandpile dynamics on a finite connected graph G = (V ,E) may be described
as follows. In the model, a node s ∈ V is designated sink. Each nonsink vertex v is assigned
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a nonnegative number σ(v) of chips. If at some point σ(v) ≥ deg(v) the vertex can topple,
passing one chip to each neighbor; if a chip falls on the sink it is lost from the model. A
configuration σ is called stable if σ(v) < deg(v) for all v ∈ V \ {s}. The dynamics in the
model occur in discrete time steps, in which a chip is added to the model at a uniform random
vertex, then all legal topplings occur until the model reaches a stable state.

In [16] sandpile dynamics are studied on the torus (Z/mZ)2, and the asymptotic total
variation mixing time is determined with a cut-off phenomenon as m → ∞. This article
extends the techniques of [16] to treat sandpiles on a growing piece of an arbitrary periodic
plane or space tiling of arbitrary dimension, again determining the asymptotic total variation
mixing time and proving a cut-off phenomenon. A second purpose of the article is to study
the effect of the boundary condition on the mixing time, and a class of tilings are considered
with an open boundary in which the chips fall off the boundary and are lost from the model.
In this case, also, a cut-off phenomenon is demonstrated in the total variation mixing time,
and in two dimensions it is shown that the asymptotic mixing time is the same for the periodic
and open boundary conditions, resolving a problem raised in [16]. We stress that the methods
developed here extend those of [16], and it will be useful to read the papers together.

In a companion paper [15] computations are performed of the spectral gap and “boundary
spectral parameters” associated to eigenfunctions which are harmonic modulo 1 and concen-
trated near boundaries of a specified dimension in several specific examples, including the
triangular and honeycomb tilings in dimension 2 and the face centered cubic sphere packing
in dimension 3. By determining these parameters for a specific set of bounding hyperplanes
of the D4 lattice in dimension 4, it is demonstrated that the total variation mixing with an open
boundary is controlled by a statistic concentrated near the three-dimensional boundary and is
thus different from the periodic boundary mixing time, asymptotically. It is also proved that,
for all d sufficiently large, the asymptotic mixing time on the cubic lattice Zd is the same for
periodic and open-boundary conditions determined by hyperplanes parallel to the coordinate
axes but that the optimization problem controlling the spectral gap does not determine the
asymptotic mixing time.

1.1. Precise statement of results.

1.1.1. Convergence of probability measures. The results presented consider convergence
of probability measures in the total variation metric. This is already a strong notion of con-
vergence, and, in fact, similar results hold also in L2. Recall that the total variation distance
between two probability measures μ and ν on a measure space (X ,B) is

(1) ‖μ − ν‖TV(X ) = sup
A∈B

∣∣μ(A) − ν(A)
∣∣.

Given a finite graph G, the set of recurrent sandpiles on the graph form an Abelian group
[10]. A random walk driven by a probability measure μ on a group has distribution at step
n given by μ∗n where μ∗1 = μ and μ∗n = μ ∗ μ∗(n−1) is the group convolution. Given a
measure μ driving sandpile dynamics on the group of recurrent sandpile states G (G) with
uniform measure UG , the total variation mixing time is

(2) tmix = min
{
k : ∥∥μ∗k −UG (G)

∥∥
TV(G (G)) <

1

e

}
.

Given a sequence of graphs Gn, the sandpile dynamics is said to satisfy the cut-off phe-
nomenon in total variation if, for each ε > 0,∥∥μ∗�(1−ε)tmix	 −UG (Gn)

∥∥
TV(G (Gn)) → 1,∥∥μ∗
(1+ε)tmix� −UG (Gn)

∥∥
TV(G (Gn)) → 0

as n → ∞.
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FIG. 1. The square lattice configuration with periodic boundary condition and a single sink.

1.1.2. Periodic tiling graphs. To describe the tilings and graphs we consider more pre-
cisely, let M be a nonsingular d × d matrix, and let � = M · Zd be a d-dimensional lattice.
A (periodic) space tiling T is a connected graph embedded in Rd with straight line edges
which is �-periodic, has finitely many vertices in a fundamental domain for Rd/� and has
bounded degree. Suppose without loss of generality that 0 is a vertex in T . Given an integer
m ≥ 1, two types of graphs are considered:

(1) (Torus boundary condition) The graph Tm = T /m� consists of md fundamental do-
mains with opposite faces identified. By convention, 0 is designated sink.

An example of a square lattice configuration with torus boundary condition appears in
Figure 1.

In treating graphs with open boundary condition, further symmetry on the tiling T is
assumed. In two dimensions, assume that there are vectors v1, . . . , vk , in which T has trans-
lational symmetry, and lines �1, . . . , �k , k ≥ 2, �i = {x ∈ R2 : 〈x, vi〉 = 0} such that T has
reflection symmetry in the family of lines

(3) F = {nvi + �i : 1 ≤ i ≤ k,n ∈ Z}.
In this case, let R be an open, bounded, connected, convex region cut out by some of the
lines, and assume further that R2 is tiled by the reflections of R in the family of lines and
that any sequence of reflections which maps R to itself is the identity map. Examples of such
families of lines are the lines in the square, triangular and tetrakis square tilings, see Figure 2.

In d ≥ 3 dimensions, impose the further constraint that, after an orthogonal transformation
and dilation, T is Zd periodic and has reflection symmetry in the family F of coordinate

FIG. 2. The square, triangular and tetrakis square lattices are examples of tilings with reflecting families of
lines such that the quotient by the reflection group is a bounded convex region of the plane.



674 R. HOUGH AND H. SON

FIG. 3. The triangular, hex and square lattice configurations with open-boundary condition.

hyperplanes Hi,j

(4) Hi,j = {
x ∈Rd : xi = j

}
, 1 ≤ i ≤ d, j ∈ Z.

After the transformation, R = (0,1)d .
The open boundary graphs are constructed as follows:

(2) (Open boundary condition) If the following condition holds,

CONDITION A. No edge of T crosses a face of R

then, a graph Tm is obtained by identifying all vertices of T ∩ (m · R)c and designating this
“boundary” vertex the sink.

Note that, although many planar tilings lack lines of reflection symmetry, all of those
planar tilings considered by [20] are of the type considered, and all but the Fisher tiling
satisfy Condition A; see the examples in Figure 3, in which the reflecting lines are in red and
the vertices on the boundary are sinks.

The D4 lattice in dimension 4 is another example which satisfies Condition A with the
appropriate choice of reflecting hyperplanes. The D4 lattice has vertices Z4∪Z4+(1

2 , 1
2 , 1

2 , 1
2)

and 24 nearest neighbors of 0,

(5) U4 = {±e1,±e2,±e3,±e4} ∪
{

1

2
(ε1, ε2, ε3, ε4), εi ∈ {±1}

}
,

which have unit Euclidean length. The elements of the D4 lattice are frequently identified
with the “Hurwitz quaternion algebra,” in which U4 is the group of units. Let

v1 = (1,1,0,0), v2 = (1,−1,0,0), v3 = (0,0,1,1), v4 = (0,0,1,−1),

and define hyperplanes

Pj = {
x ∈R4 : 〈x, vj 〉 = 0

}
and family of hyperplanes

(6) FD4 = {
nvj + Pj : j ∈ {1,2,3,4}, n ∈ Z

}
.

LEMMA 1. The D4 lattice has reflection symmetry in the family of hyperplanes FD4.
After a rotation and scaling, D4 together with this family satisfy Condition A.

PROOF. Since D4 is a lattice, which is invariant under permuting the coordinates, it suf-
fices to prove the reflection symmetry property for P1. Given x ∈ D4, its reflection in P1 is
x′ = x − 〈x, v1〉v1. Since 〈x, v1〉 ∈ Z, the claim holds.



SANDPILES 675

Since the vectors v1, v2, v3, v4 are orthogonal and of equal length, after a rotation and
scaling the planes in FD4 coincide with the coordinate hyperplanes.

To prove that Condition A is satisfied, it suffices by symmetry to prove that there are
not edges crossing P1. Suppose for contradiction that x and y are connected, so that ‖x −
y‖2 = 1, and that the line segment connecting x = (x1, x2, x3, x4) and y = (y1, y2, y3, y4)

crosses P1, say at z = (z1, z2, z3, z4). It follows that z1 + z2 = 0. Assume without loss of
generality that x1 + x2 > 0 and y1 + y2 < 0. Since the sum of these coordinates is integer
valued, x1 + x2 ≥ 1 and y1 + y2 ≤ −1. Thus, (x1 + x2) − (y1 + y2) ≥ 2 so ‖x − y‖2 ≥ √

2, a
contradiction. �

1.1.3. Spectral factors. The results concerning sandpile dynamics are proved by study-
ing the spectrum of the sandpile transition kernel. Denote � the graph Laplacian �f (v) =
deg(v)f (v) −∑

(v,w)∈E f (w). Given a function f on T , say that f is harmonic modulo 1 if
�f ≡ 0 mod 1, and denote

(7) H (T ) = {f : T →R,�f ≡ 0 mod 1}
and H 2(T ) = H (T ) ∩ �2(T ). Define, also, the function classes

C0(T ) = {
f : T → Z : f ∈ �1(T )

}
,

C1(T ) =
{
f ∈ C0(T ) : ∑

t∈T

f (t) = 0
}
,

C2(T ) =
{
f ∈ C1(T ) : ∑

t∈T

f (t)E[Yt,Tt ] = 0
}
,

where Yt,Tt denotes random walk started at t and stopped when it reaches the period lattice.
In the case of a torus boundary condition, define the spectral parameter

(8) γ = inf
{∑

x∈T

1 − cos(2πξx) : ξ ∈ H 2(T ),�ξ ∈ C1(T ), ξ �≡ 0 mod 1
}
.

In two dimensions, let L denote the set of lines which make up a segment of the boundary
of R, and let C be the set of pairs of lines from L which intersect at a corner of the boundary
of R. Write an affine line a ∈ L as a = nv + � where v ∈ R2 and � is the perpendicular line.
Let Qa be the half plane with boundary passing through 0 whose translate to a contains R.
A pair of affine lines (a1, a2) ∈ C have �1 and �2 that split T into four quadrants. Let Q(a1,a2)

be the quadrant whose translate contains R. Given a ∈ L , let H 2
a (T ) be those functions

ξ ∈ H 2(T ) which are antisymmetric in �; similarly, given (a1, a2) ∈ C , let H 2
(a1,a2)

(T ) be
those functions in H (T ) which are antisymmetric in �1 and �2. Define spectral parameters

γ0 = inf
ξ∈H 2(T )
ξ �≡0 mod 1

∑
x∈T

1 − cos(2πξx),

γ1 = inf
a∈L

inf
ξ∈H 2

a (T )
ξ �≡0 mod 1

∑
x∈Qa

1 − cos(2πξx),

γ2 = inf
(a1,a2)∈C

inf
ξ∈H 2

(a1,a2)(T )

ξ �≡0 mod 1

∑
x∈Q(a1,a2)

1 − cos(2πξx).

In the case of d ≥ 3, assume that a rotation and dilation have been performed so that
reflecting hyperplanes are given by Hi,j , as above. Given a set S ⊂ {1,2, . . . , d}, let SS be
the group generated by reflections in {Hi,0 : i ∈ S}, and let H 2

S (T ) denote those H 2(T )
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functions which are antisymmetric in Hi,0 for all i ∈ S, identified with functions on T /SS .
Again, for 0 ≤ i ≤ d define the spectral parameters

(9) γi = inf
S⊂{1,2,...,d}

|S|=i

inf
ξ∈H 2

S (T )

ξ �≡0 mod 1

∑
x∈T /SS

1 − cos(2πξx).

Note that the definition of γ0 differs from that of γ in that the inf requires only that �ξ ∈
C0(T ), not C1(T ). In dimension d ≥ 2, define the j th spectral factor

(10) �j = d − j

γj

and � = maxj �j .

1.1.4. Statement of results. The following theorem determines the spectral gap of sand-
pile dynamics for plane and space tiling graphs asymptotically:

THEOREM 2. Given a tiling T , as m → ∞, the spectral gap of the transition kernel of
sandpile dynamics on Tm satisfies

(11) gapTm
= (

1 + o(1)
) γ

|Tm| .

If T has a family of reflection symmetries F and satisfies Condition A, then the spectral gap
of the transition kernel of sandpile dynamics on Tm satisfies

(12) gapTm
= (

1 + o(1)
)min(γj : j ≥ 0)

|Tm| .

The following theorem demonstrates a cut-off phenomenon in sandpile dynamics on gen-
eral tiling graphs with either a torus or open-boundary condition. Whereas the mixing of
sandpiles with torus boundary condition is controlled by the spectral gap, when there is an
open-boundary condition, the mixing time is controlled by the spectral factor �.

THEOREM 3. For a fixed tiling T in Rd , sandpiles started from a recurrent state on Tm

have asymptotic total variation mixing time

(13) tmix(Tm) ∼ �0

2
|Tm| logm

with a cut-off phenomenon as m → ∞.
If the tiling T has a family of reflection symmetries F and satisfies Condition A, then

sandpile dynamics started from a recurrent configuration on Tm have total variation mixing
time

(14) tmix(Tm) ∼ �

2
|Tm| logm

with a cut-off phenomenon as m → ∞.

Motivated by Theorem 3, if � = �0, say that the bulk or top dimensional behavior con-
trols the total variation mixing time and, otherwise, that the boundary behavior controls the
total variation mixing time. The proof of Theorem 3 will, in fact, generate a statistic which
randomizes at the mixing time, and this statistic is either distributed throughout the graph or
concentrated near the boundary of the dimension controlling the spectral factor.
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COROLLARY 4. All plane tilings satisfying the open-boundary condition and Condi-
tion A have total variation mixing time controlled by the bulk behavior.

PROOF. It suffices that �1 ≤ �0. Indeed, the fact that only half of the nodes are summed
over in γ1 is canceled by the ratio 2

2−1 of dimensions, and the antisymmetry condition im-

poses an extra constraint on the harmonic modulo 1 function in the inf, so that 1
2γ0 ≤ γ1.

�

In particular, Corollary 4 implies that asymptotic mixing time of sandpile dynamics on the
square grid with open and periodic boundary condition are the same to top order, answering
a question raised in [16].

In [15] the above theorems are supplemented by explicit verifications of spectral gaps
for several tilings. The plane tilings considered are the triangular (tri) and honeycomb (hex)
tilings, along with the triangular face centered cubic tiling (fcc) in three dimensions, which
is the lattice tiling generated by vectors

(15) v1 = (1,0,0), v2 =
(

1

2
,

√
3

2
,0
)
, v3 =

(
1

2
,

1

2
√

3
,

√
2

3

)
with nearest neighbor edges. All of the spectral parameters are obtained for the D4 lattice in
dimension 4 for a specific set of bounding hyperplanes. The results of [15] are summarized
in the following theorem:

THEOREM 5. The triangular, honeycomb and face centered cubic tilings have periodic
boundary spectral parameters:1

γtri = 1.69416(6),

γhex = 5.977657(7),

γfcc = 0.3623(9).

The spectral parameters of the D4 lattice with reflection planes FD4 and open-boundary
condition are (ϑ denotes a parameter bounded by 1 in size):

γD4,0 = 0.075554 + ϑ0.00024,

γD4,1 = 0.0440957 + ϑ0.00017,

γD4,2 = 0.0389569 + ϑ0.00013,

γD4,3 = 0.036873324 + ϑ0.00012,

γD4,4 = 0.0357604 + ϑ0.00011.

The spectral factors are given by:

�D4,0 = 52.9428 + ϑ0.17,

�D4,1 = 68.03486 + ϑ0.27,

�D4,2 = 51.3393 + ϑ0.17,

�D4,3 = 27.1201 + ϑ0.084.

1The digit in parenthesis indicates the last significant digit.
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Since �D4,1 > �D4,0, a particular consequence of Theorem 5 is that the total variation mix-
ing time of the dynamics on the D4 lattice is dominated by the three-dimensional boundary
behavior.

In [15] the cubic lattices Zd with coordinate hyperplanes are also treated asymptotically.

THEOREM 6. As d → ∞, the spectral parameter of the Zd lattice with periodic bound-
ary condition is

(16) γZd = π2

d2

(
1 + 1

2d
+ O

(
d−2));

the parameters with open-boundary condition are

(17) γZd ,j = π2

2d2

(
1 + 3

2d
+ Oj

(
d−2))

and, uniformly in j ,

(18) γZd ,j ≥ π2

2d2 + d
.

For each fixed j ,

(19) �j = 2d3 − (2j + 3)d2 + Oj(d)

π2 .

In particular, for all d sufficiently large, the total variation mixing time on Zd is dominated

by the bulk behavior and � = 2d3

π2 (1 − 3
2d

+ O(d−2)).

For all sufficiently large d , γZd > γZd ,0, with γZd ,0 achieved by a configuration ξ with
�ξ ∈ C0(T ) \ C1(T ). Hence, the lattice Zd with periodic boundary condition gives an
example of a tiling for which γ �= γ0, that is, the spectral gap and mixing times are controlled
by different limiting eigenfunctions.

An important object in this work is the Green’s function of a tiling T started from a node
v ∈ T , denoted gv(x), which satisfies �gv(x) = δv(x). Given a function η on T of bounded
support, define the convolution g ∗ η = gη =∑

v∈T η(v)gv . Theorem 26 of Section 4 gives a
general explicit method for obtaining a frequency space representation of the Green’s func-
tion, which is useful in applications; see [15]. The following theorem is proved in Section 4.

THEOREM 7. Let T be a periodic plane or space tiling in Rd , d ≥ 2, and let η be a
function on T of bounded support. Then, gη ∈ �2(T ) if and only if η ∈ Cρ(T ) where ρ = 2
if d = 2, ρ = 1 if d = 3,4 and ρ = 0 if d ≥ 5. In particular,

(20) H 2(T ) = {
gη : η ∈ Cρ(T )

}
and if ξ ∈ H 2(T ) then ξ = g ∗ (�ξ).

The functions gη are extremal functions for the spectral parameter optimization problems.
The fact that the Green’s function itself just fails to be in �2(T ) in dimension 4 motivated the
calculation of the D4 example in which the 3 dimensional boundary dominates the mixing
time.
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1.2. Discussion of method. The results build on the recent work of the the first author,
Jerison and Levine [16], which determined the asymptotic mixing time and obtained a cut-off
phenomenon for sandpile dynamics on the torus (Z/mZ)2 as m → ∞.

Since the sandpile group of a graph with sink s is isomorphic to G = ZV \{s}/�′ZV \{s}
where �′ is the reduced graph Laplacian obtained by omitting the row and column corre-
sponding to the sink, the dual group is isomorphic to Ĝ = (�′)−1ZV \{s}/ZV \{s}. Thus, �′
provides a natural mapping from Ĝ → G . A map in the reverse direction may be constructed
via convolution with the graph Green’s function. The necessary theory and analytic properties
needed to study the Green’s function on a periodic or open piece of a plane or space tiling is
developed here, using a stopped random walk on the graph and is obtained by combining a
local limit theorem for the random walk in time domain with a frequency domain represen-
tation. Since a tiling lacks the Abelian group structure of a lattice, compared to the previous
work, the determination of the Green’s function in the tiling, as opposed to lattice case, is
more involved. It is reduced to the lattice case by stopping a random walk on the tiling when
it hits the period lattice and using the resulting stopped measure to determine the Green’s
function restricted to the lattice. An explicit formula for the Fourier transform of the Green’s
function restricted to the lattice is given in Theorem 26.

The use of Green’s function estimates on discrete structures is in keeping with a major
trend in statistical physics, in which Green’s function analysis is used to obtained refined and
asymptotic results; see the work of Chatterjee [4] on the Schrödinger equation on discrete
tori, the work of Dembo, Ding, Miller and Peres [7] on lamplighters on tori and the author’s
recent work with Chu [5] on the asymptotic mixing time of the 15-puzzle. We expect that
there may be further applications of these methods, for instance, to domino tilings and in
extending results on tori to periodic tilings.

As in [16], van der Corput’s method from the theory of exponential sums is used to reduce
the determination of the maximum spectral factor to a finite check and to prove an approxi-
mate spectral disjointness for frequencies ξ ∈ Ĝ , for which ν = �′ξ is separated into a small
number of separated clusters.

1.3. Historical review. Sandpile dynamics on a finite piece of the square lattice were
first considered by Bak, Tang and Wiesenfeld [2] in a study of selforganized criticality; see
also Dhar [8], where an arbitrary graph is considered. In [22] driven dynamics on the square
grid with open boundary are considered, and a picture is given of the identity element in the
sandpile group. In [32] numerical studies are made of sandpile statistics on a square grid
with open boundary, but the statistics are measured at a point prior to the mixing time in
Theorem 3.

Sandpiles have been studied on a large number of different graph geometries. The hex
tiling is considered in [1], the graph of the dihedral group Dn is considered in [6] and the
Husimi lattice is studied in [26]. A cut-off phenomenon for sandpiles on the complete graph
is demonstrated in [19] which is also a useful reference for the underlying theory of Abelian
sandpiles. A cut-off is also proved for sandpiles on the square tiling with periodic bound-
ary in [16], extended here to arbitrary periodic plane or space tilings with open or periodic
boundary. These are all of the cases for which a cut-off is known. Several sandpile statistics
are calculated for two-dimensional tilings in [20] which was the original motivation for this
project.

The effect of the boundary condition on sandpile behavior has been studied extensively,
although this is the first treatment of the spectral gap and mixing time; see [3, 17, 18, 28]
and [1] for height probabilities and correlation functions. In [16] the asymptotic mixing time
and a cut-off phenomenon were proved for sandpile dynamics on the rectangular grid with
periodic boundary condition. Theorem 3 generalizes this result to sandpile dynamics on an
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arbitrary plane or space tiling. In [16] it was conjectured that a cut-off phenomenon also exists
on the square grid with open-boundary condition, which is proved here, and in Corollary 4
it is demonstrated that the asymptotic mixing time is the same as for the periodic boundary
case. Theorem 5 gives an example in four dimensions, in which the two mixing times are
asymptotically unequal.

In [14] a random walk is studied with generators given by the powers of 2 in Z/pZ, and
a similar treatment of the boundary occurs where multiples of the largest power of 2 wrap
around p. In that case the boundary does not influence the leading order asymptotic mixing
time.

Organization. This paper is organized as follows. Section 4 develops the Green’s function
of a periodic plane or space tiling and the corresponding Green’s function on finite quotients
of the tiling, including the necessary decay estimates. These decay estimates are proved in
the Appendix. Section 3 recalls background information regarding the sandpile group and its
dual group and gives convenient representations for the frequencies in the dual group. Sec-
tion 5 proves the exponential sum estimates needed to control the spectrum of the transition
kernel of the sandpile chain. Putting these estimates together, the cut-off results are proved in
Section 6.

2. Notation and conventions. The additive character on R/Z is written e(x) = e2πix .
Write, also, c(x) = cos 2πx and s(x) = sin 2πx. For real x, ‖x‖R/Z denotes the distance to
the nearest integer, while for x ∈ Rd , ‖x‖Rd/Zd denotes the Euclidean distance to the nearest
lattice point in Zd .

We use the notations A � B and A = O(B) to mean that there is a constant 0 < C < ∞
such that |A| < CB , and A � B to mean A � B � A. A subscript such as A �R B , A =
OR(B) means that the constant C depends on R. The notation A = o(B) means that A/B

tends to zero as the relevant parameter tends to infinity.
Given a graph G = (V ,E) and vertices v,w ∈ V , the degree of v is deg(v), and the number

of edges from v to w is deg(v,w). The notation d(v,w) indicates the graph distance from v

to w which is the length of the shortest path from v to w. The graph Laplacian � operates on
functions on G by

(21) �f (v) = deg(v)f (v) − ∑
(v,w)∈E

f (w).

The notation δv(w) indicates a point mass at v, which takes value 1 if v = w and 0 other-
wise. The Green’s function started at v on an infinite graph G is a function gv(w) such that
�gv(w) = δv(w). If the graph is finite, �(gv1 − gv2)(w) = δv1(w) − δv2(w). Convolution of
the Green’s function g with a function η of finite support in V with sum of values 0 is defined
by

(22) g ∗ η = ∑
v∈V

η(v)gv.

Thus, on a finite graph, �g ∗η = η if the sum of the values of η is 0. The notation gη for g ∗η

is also used. When G is a finite graph and a node s has been designated sink, the reduced
Laplacian �′ is obtained from � by removing the row and column corresponding to the sink.

A random walk on G proceeds in discrete time steps. At a given time step, each edge from
a given node v is chosen with equal probability as a transition. The transition kernel of this
random walk is

(23) P(v,w) = deg(v,w)

deg(v)
.
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Let Yv,n indicate the walk started at random or deterministic node v and at random or de-
terministic step n. A stopping time adapted to the random walk Yv,n is a random variable N

taking values in {1,2, . . .} ∪ {∞}, such that, for each deterministic n, the event {N = n} is
measurable in the σ -algebra generated by the first n steps of the walk. An important stopping
time in this work is the time Tv which is the first positive step when random walk started from
v ∈ T reaches the lattice �. We sometimes also consider stopping times which stop at time
0 if v ∈ �. When this is the case, it is clearly indicated.

A sandpile on a graph G is a map σ : G → Z≥0. The map σfull = deg−1 is the full sand-
pile. The set of stable sandpiles is denoted

(24) S (G) = {σ : G → Z≥0 : σ ≤ σfull}.
The set of recurrent states form the sandpile group and are denoted G (G). Its dual group
is Ĝ .

A function f on G is harmonic if �f = 0 and harmonic modulo 1 if �f ≡ 0 mod 1. Let

(25) H (G) = {f : G → R,�f ≡ 0 mod 1}.
Throughout, T denotes a plane or space tiling which is periodic in a lattice �. The pe-

riodic graph T /m� is denoted Tm, while Tm indicates the open boundary graph obtained
from a family of reflecting hyperplanes mF . The notation gTm

and gTm indicate the Green’s
functions on Tm or Tm. R indicates an open convex region (fundamental domain) cut out by
the family F and whose reflections in F tile the plane or space. Tm may be identified with
the intersection of mR with T , together with an added point identified with the boundary.
Functions on Tm are identified with functions on T which are reflection antisymmetric in
each hyperplane of mF .

The ball BR(x) ⊂ T is defined to be

(26) BR(x) = {
y ∈ T : d(x, y) ≤ R

}
,

where d(x, y) is the graph distance. Since |T /�| < ∞, for x ∈ �, d(0, x) � ‖x‖, and
#{BR(0)} � Rd as R → ∞. In Tm, BR,Tm

(x) is defined via the quotient distance, treating
points which are equivalent modulo m� as identified. On Tm, BR,Tm(x) is defined via the
quotient distance in which points which are equivalent under mF reflections are identified.

2.1. Function spaces. In handling the analysis on a periodic tiling, a key tool is the “har-
monic measure” on the period lattice � obtained by stopping simple random walk started on
the tiling when it reaches the lattice. Let Yv,n be random walk started from v in T , and let

(27) Tv = min{n ≥ 1 : Yv,n ∈ �}
be the stopping time for simple random walk started at v in T and stopped at the first positive
time that it returns to �. For v /∈ �, let

(28) �v ∼ Yv,Tv

be the probability distribution of Yv,Tv on �, while for v ∈ �, let �v = δv be the distribution
of a point mass at v. Let � have the distribution of Y0,T0 which is the distribution of the first
return to � started at 0.

The following lemma is used to justify convergence when working with the corresponding
stopping times and harmonic measures.

LEMMA 8. There is a constant c > 0 such that, as n → ∞, for all v ∈ T , Prob(Tv >

n) � e−cn. The measure �v satisfies �v({x : d(x, v) > N}) � e−cN as N → ∞. Similarly,
�({x : d(x,0) > N}) � e−cN as N → ∞. The implied constants depend at most upon the
tilings T .
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PROOF. The second statement follows from the first, since Tv bounds d(Yv,Tv , v). To
prove the first, note that Tv is the same stopping time as the first positive time reaching 0
on the finite state Markov chain given by random walk on T /�. The conclusion follows,
since, given any state on T /�, there is a bounded number k such that the walk has a positive
probability of returning to 0 from the state after k steps. �

Given a finite, possibly signed, measure η on T , define

(29) �η = ∑
v∈T

η(v)�v.

Define function classes on T by:

C0(T ) = {
f : T → Z,‖f ‖1 < ∞}

,

C1(T ) =
{
f ∈ C0(T ),

∑
x∈T

f (x) = 0
}
,

C2(T ) =
{
f ∈ C1(T ),

∑
x∈T

f (x)E[Yx,Tx ] = 0
}
.

Hence, C0(T ) is the set of integer functions of finite support, C1(T ) is those functions of
sum 0, and C2(T ) are those C1(T ) functions with zero moment.

Given a set S ⊂ T , say that f ∈ Cρ(S) if, viewed as a function on T with support in S,
f ∈ Cρ(T ).

Although the definition of C2(T ) depends on the lattice �, it is invariant under translating
T as the following lemma shows.

LEMMA 9. Suppose f ∈ C2(T ). For any t ∈ T \ �, let T t
v denote the stopping time of

random walk started at v and stopped at the first positive time that it reaches t + �. Then,

(30)
∑
x∈T

f (x)E[Yx,T t
x
] = 0.

PROOF. Let T̃ t
v be the stopping time of random walk started from v and stopped at the

first time greater than Tv at which the walk reaches t + �. Note that, by conditioning on the
first visit to �,∑

x∈T

f (x)E[Y
x,T̃ t

x
]

= ∑
w∈�

(∑
x∈T

f (x)Prob(Yx,Tx = w)

) ∑
v∈t+�

v · Prob(Yw,T t
w

= v)

=
(∑

w∈�

∑
x∈T

f (x)Prob(Yx,Tx = w)

)

×
(
w + ∑

v∈t+�

(v − w)Prob
(
Y0,T t

0
= (v − w)

))= 0.

The last equality holds, since

(31)
∑

v∈t+�

(v − w)Prob
(
Y0,T t

0
= (v − w)

)
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is a constant independent of w and∑
w∈�

∑
x∈T

f (x)Prob(Yx,Tx = w) = ∑
x∈T

f (x) = 0,

∑
w∈�

∑
x∈T

f (x)Prob(Yx,Tx = w)w = ∑
x∈T

f (x)E[Yx,Tx ] = 0.

The equality E[Y
x,T̃ t

x
] = E[Yx,T t

x
] holds since random walk started from a node t and stopped

at the first time it reaches a node in �+ t has mean t . To check this, let t = v0, v1, v2, . . . , vn =
x + t be a path from t to x + t ∈ � + t such that vi /∈ � + t for 1 ≤ i ≤ n − 1. Let e1,
e2, . . . , en be edges with ei connecting vi−1 and vi . The probability of following e1, e2, . . . , en

in succession is
∏n−1

j=0
1

degvj
. The probability of following that path in reverse is

∏n
j=1

1
degvj

.
Since degv0 = degvn by �-periodicity, running the path in reverse has the same probability.
This is also true of the path translated by −x which proves the claim regarding expectation.

�

Given λ in the lattice �, the translation operator τλ acts on functions f on T or on � by

(32) τλf (x) = f (x − λ).

Given f ∈ C0(T ), the function

(33) fTm
= ∑

λ∈�

τmλf

is m� periodic. The classes Cρ are extended to Tm and Tm as follows. Say f ∈ Cρ(Tm) if
there is a function f0 ∈ Cρ(T ) such that f = f0,Tm

. Given a family of hyperplanes F =
{nvi + Hi}di=1 where vi is orthogonal to Hi , let � be the lattice generated by {2vi}di=1. Any
function f having reflection antisymmetry in F is � periodic. Say that f ∈ Cρ(Tm) if f has
reflection antisymmetry in m · F and if there is a function f0 ∈ Cρ(T ) such that f = f0,Tm

.
Given f ∈ �1(�) and h ∈ �∞(T ),

(34) f ∗ h(x) = ∑
y∈�

f (y)h(x − y).

Similarly, given f ∈ �1(�/m�) and h ∈ �∞(T /m�),

(35) f ∗ h(x) = ∑
y∈�/m�

f (y)h(x − y).

In dimension d , identify � with Zd by choice of basis, and let ei be the ith standard basis
vector. Discrete differentiation in the ei direction is defined by

(36) Dei
f (x) = Dif (x) = f (x + ei) − f (x).

Given a vector a ∈ Nd , define the differential operator

(37) Daf (x) = D
a1
1 · · ·Dad

d f (x).

The discrete derivatives can be expressed as convolution operators. Let

(38) δi(x) =

⎧⎪⎪⎨⎪⎪⎩
−1, x = 0,

1, x = −ei,

0, otherwise.

Thus, Daf = δ
∗a1
1 ∗ · · · ∗ δ

∗ad

d ∗ f .
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Given functions f1, . . . , fn on �, define their Z-linear span

(39) 〈f1, . . . , fn〉 = spanZ{τxf1, . . . , τxfn : x ∈ �}.
On the lattice �:

C0(�) = 〈
1(x = 0)

〉= {
f : � → Z,‖f ‖1 < ∞}

,

C1(�) = 〈δi : 1 ≤ i ≤ d〉,
C2(�) = 〈δi ∗ δj : 1 ≤ i ≤ j ≤ d〉.

See [16] for a proof of these characterizations.
Given f ∈ �1(�), its Fourier transform is

(40) f̂ (x) = ∑
n∈�

f (n)e(−n · x).

On �/m�, the discrete Fourier transform is

(41) f̂ (x) = ∑
n∈�/m�

f (n)e

(
−n · x

m

)
.

2.2. Results from classical analysis. The sandpile chain is studied in frequency space,
and the techniques combine methods which are probabilistic and from the theory of distri-
bution modulo 1. Several techniques from the classical theory of exponential sums are used,
including van der Corput’s inequality [34].

THEOREM 10 (van der Corput’s Lemma). Let H be a positive integer. Then, for any
complex numbers y1, y2, . . . , yN ,

(42)

∣∣∣∣∣
N∑

n=1

yn

∣∣∣∣∣
2

≤ N + H

H + 1

N∑
n=1

|yn|2 + 2(N + H)

H + 1

H∑
h=1

(
1 − h

H + 1

)∣∣∣∣∣
N−h∑
n=1

yn+hyn

∣∣∣∣∣.
The following basic estimate for the sum of a linear phase is also used.

LEMMA 11. Let 0 �≡ α ∈R/Z and let N ≥ 1. Then,

(43)

∣∣∣∣∣
N∑

j=1

e(αj)

∣∣∣∣∣� min
(
N,‖α‖−1

R/Z

)
.

PROOF. This follows on summing the geometric series. �

Chernoff’s inequality is used to control the tail of sums of independent variables; see [35].

LEMMA 12 (Chernoff’s inequality). Let X1, X2, . . . ,Xn be i.i.d. random variables sat-
isfying |Xi − E[Xi]| ≤ 1 for all i. Set X := X1 + · · · + Xn, and let σ := √

Var(X). For any
λ > 0,

(44) Prob
(
X − E[X] ≥ λσ

)≤ max
(
e− λ2

4 , e
−λσ

2
)
.

The following variant of Chernoff’s inequality applies to unbounded random variables
with exponentially decaying tails.
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LEMMA 13. Let X1, X2, . . . ,Xn be i.i.d. nonnegative random variables of variance σ 2,
σ > 0, satisfying the tail bound, for some c > 0 and for all Z > 0, Prob(X1 > Z) � e−cZ .

Let X = X1 + X2 + · · · + Xn. Then, for any λ > 1, for c1 =
√

cσ
2 ,

(45) Prob
(∣∣X − E[X]∣∣≥ λσ

√
n
)� e− λ2

16 + ne−c1λ
1
2 n

1
4
.

PROOF. Let Z be a parameter, Z � n
1
4 . Let X′

i be Xi conditioned on Xi ≤ Z. Let μ′ =
E[X′

i]. Let X′′
i = Xi · 1(Xi ≤ Z) + μ′ · 1(Xi > Z) and X′′ = X′′

1 + X′′
2 + · · · + X′′

n . We have

E
[
Xi · 1(Xi ≥ Z)

]= −
∫ ∞
Z

x dProb(Xi ≥ x)

= ZProb(Xi ≥ Z) +
∫ ∞
Z

Prob(Xi ≥ x)dx

� Ze−cZ +
∫ ∞
Z

e−cx dx ≤
(
Z + 1

c

)
e−cZ.

Thus, for some c′ > 0, E[X′′] = E[X] + O(ne−c′Z). Also,

Var(Xi) = E
[(

Xi − E[Xi])2]
≥ E

[(
Xi − E[Xi])21(Xi ≤ Z)

]
≥ E

[(
Xi − μ′)21(Xi ≤ Z)

]
= Var

(
X′′

i

)
.

Since |X′′
i | ≤ Z, for all n sufficiently large, applying Chernoff’s inequality,

Prob
(∣∣X − E[X]∣∣> λσ

√
n
)≤ n∑

i=1

Prob
(
X′′

i �= Xi

)
+ Prob

(∣∣X′′ − E
[
X′′]∣∣> λ

2
σ
√

n

)
� ne−cZ + 2 max

(
e− λ2

16 , e− λσ
√

n
4Z

)
.

To optimize the exponents, choose Z2 = λσ
√

n
4c

to obtain the claim. �

The local limit theorem for sums of lattice random variables is used in the argument. As
discrete derivatives are needed, a selfcontained proof is given. This is similar to the treatment
in [21], but the claim here extends further into the tail of the distribution. The proof is given
in the Appendix.

THEOREM 14 (Local limit theorem). Let μ be a probability measure on Zd , satisfying
the following conditions:

1. (Lazy) μ(0) > 0.
2. (Symmetric) μ(n) = μ(−n).
3. (Generic) supp(μ) generates Zd . There is a constant k > 0 such that μ∗k assigns posi-

tive measure to each standard basis vector.
4. (Exponential tails) There is a constant c > 0 such that, for all r ≥ 1,

(46) μ
(|n| > r

)� e−cr .
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Let Cov(μ) = σ 2 where σ is a positive definite symmetric matrix. For all a ∈ Nd , there is
a polynomial Qa(x1, . . . , xd), depending on μ, of degree at most ai in xi such that, for all
N ≥ 1 and all n ∈ Zd ,

δ
∗a1
1 ∗ δ

∗a2
2 ∗ · · · ∗ δ

∗ad

d ∗ μ∗N(n) = exp(−|σ−1(n+ a
2 )|2

2N
)

N
d+|a|

2

×
(
Qa

(
n + a

2√
N

)
+ O

(
1

N

(
1 + ‖n‖√

N

)|a|+4))
+ Oε

(
exp

(−N
3
8 −ε)).

In the case of the gradient convolution operator ∇ =
( δ1

...
δd

)
,

∇μ∗N(n) = −σ−2n

N

exp(−‖σ−1n‖2

2N
)

(2π)
d
2 N

d
2 detσ

+ O

(exp(−‖σ−1n‖2

2N
)

N
d+2

2

(
1 + ‖n‖√

N

)5)
+ Oε

(
exp

(−N
3
8 −ε)).

3. The sandpile group and dual group. The reader is referred to Section 2 of [19]
which gives a clear discussion of the sandpile group of a simple connected finite graph. The
arguments given there go through with only slight changes to handle graphs with multiple
edges which are used to handle the case of a sink at the boundary.

Let G = (V ,E) be a graph, which is connected, with possibly multiple edges but no loops.
Let s ∈ V be the sink. A sandpile on G is a map σ : V \ {s} → Z≥0. The sandpile is stable if
σ(v) < deg(v) for all v ∈ V \{s}. If σ is unstable, so that for some v ∈ V \{s}, σ(v) ≥ deg(v),
the sandpile at v can topple to σ ′, which has

σ ′(v) = σ(v) − deg(v),

for w ∈ V \ {s} such that (v,w) ∈ E,

σ ′(w) = σ(w) + deg(v,w),

where deg(v,w) is the number of edges between v and w in E, and

σ ′(w) = σ(w)

otherwise.
Topplings commute, and a vertex’s height does not decrease unless it topples, hence, given

a sandpile σ , there is a unique stable sandpile σo which can be obtained from σ by repeated
toppling. Let

(47) S (G) = {
σ : V \ {s} → Z≥0, σ ≤ deg−1

}
.

The set S (G) becomes an additive monoid under the law σ ⊕ η(v) = (σ + η)o(v), in which
the heights are added and then the sandpile is stabilized.

Sandpile dynamics on S (G) are given by letting μ be the probability measure

(48) μ = 1

|V |
(
δid + ∑

v∈V \{s}
δv

)
,
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in which id is the identity element of the sandpile group and δv is the Kronecker delta function
at v. Given an initial probability distribution ν on S (G), the distribution at step n of the
dynamics is μ∗n ∗ ν where μ∗n is the n-fold repeated convolution.

Since the full state σfull(v) = deg(v) − 1 has a positive probability of being reached from
any given state in a bounded number of steps, σfull is recurrent for the dynamics, and hence
the recurrent states are those reachable from σfull. Let �′ denote the reduced graph Laplacian
which is obtained from the graph Laplacian

(49) �f (v) = ∑
(v,w)∈E

f (v) − f (w)

by omitting the row and column corresponding to the sink. The recurrent states form an
Abelian group G (G) ∼= ZV \{s}/�′ZV \{s}; see [19] for a proof. Since �′ is a symmetric matrix,
the dual lattice to �′ZV \{s} is (�′)−1ZV \{s}, and hence the dual group is isomorphic to

(50) Ĝ (G) ∼= (
�′)−1

ZV \{s}/ZV \{s}.

Given ξ ∈ Ĝ and g ∈ G , viewed as functions on V \ {s}, the pairing is ξ(g) = ξ · g ∈ R/Z.
In this article, attention is limited to the random walk μ∗n restricted to the group G of

recurrent states. This is the long-term behavior, and, in any case, in [16] it is shown that, on
the torus (Z/mZ)2, the random walk started from any stable state is absorbed into G (G) with
probability 1 − o(1) in a lower-order number of steps than the mixing time; the proof given
there could be adapted to this situation as well.

Since the random walk considered is a random walk on an Abelian group, in terms of the
mixing behavior there is no loss in assuming that the walk is started at the identity. Also, the
transition kernel is diagonalized by the Fourier transform, that is, the characters, for ξ ∈ Ĝ ,
χξ (g) = e2πiξ(g) are eigenfunctions for the transition kernel, and the eigenvalues are the
Fourier coefficients

(51) μ̂(ξ) = 1

|V |
(

1 + ∑
v∈V \{s}

e(ξv)

)
.

Since the Fourier transform has the usual property of carrying convolution to pointwise mul-
tiplication, Cauchy–Schwarz and Plancherel give the following lemma (see [10]).

LEMMA 15 (Upper bound lemma). Let UG denote the uniform measure on the sandpile
group G (G). For n ≥ 1,

(52)
∥∥μ∗n −UG

∥∥
TV(G ) ≤ 1

2

∥∥μ∗n −UG

∥∥
2 = 1

2

( ∑
ξ∈Ĝ \{0}

∣∣μ̂(ξ)
∣∣2n
) 1

2
.

Several further representations of the dual group Ĝ (G) are useful.

LEMMA 16. The group Ĝ may be identified with the restriction to V \ {s} of functions
ξ : V →R/Z such that ξ(s) = 0 and �ξ ≡ 0 mod 1.

PROOF. Given ξ ∈ Ĝ , extend ξ to a function ξ0 on V by defining ξ0(s) = 0. For v �= s,
�ξ0(v) = �′ξ(v). Since �ξ0 is mean 0 on V , it follows that �ξ0(s) ≡ 0 mod 1, also, so each
element of Ĝ can be recovered this way.

Conversely, given such a ξ , for v ∈ V \ {s}, �ξ(v) = �′ξ |V \{s} so the claim follows from
the structure of the dual group. �

Abusing notation, given any function ξ : V →R, define μ̂(ξ) = 1
|V |

∑
v∈V e(ξv).
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LEMMA 17. Let ξ : V → R/Z be such that ξ(s) = 0 and �ξ ≡ 0 mod 1. Let ν = �ξ

and ξ = g ∗ ν where g is a Green’s function of the graph. Then, ξ − ξ is a constant, and, in
particular,

(53)
∣∣μ̂(ξ)

∣∣= ∣∣μ̂(ξ)
∣∣.

PROOF. Note that the image of � has sum 0 on V , so ν = �ξ has mean 0. Hence,
�(ξ) = ν and �(ξ − ξ) = 0. The conclusion thus holds, since the kernel of � is the space of
constant functions. �

Note that, since the image of � are functions of mean 0, treated as a function on V , ν = �ξ

has mean 0, and hence, for ξ �= 0, ‖ν‖1 ≥ 2. This accounts for the difference between γ and
γ0 in the optimization program describing the spectral gap for periodic tilings, since a positive
mass in the prevector ν must be balanced by a negative mass at the sink so that the extremal
function is C1. This phenomenon does not occur in the case of open boundary since the
negative mass at the sink may be distributed across the boundary.

The above representation is useful in considering sandpiles on periodic tilings, where ξ

may be understood to be a harmonic modulo 1 function on T which is m� periodic and
vanishes at the periodic images of the sink. In the case of an open boundary, another repre-
sentation is more useful.

LEMMA 18. Let m ≥ 1. Let G = Tm be the graph associated to a tiling T with reflec-
tion symmetry in a family of hyperplanes F and fundamental region R. Identify Tm \ {s}
with T ∩ m · R. Given ξ ∈ Ĝ (Tm), there is a unique function ξ0 : T → R which is har-
monic modulo 1, has reflection antisymmetry in each hyperplane in m · F and such that
ξ0|T ∩m·R = ξ .

PROOF. Since any sequence of reflections in m · F , which maps m · R onto itself, is
the identity, it follows that there is a unique extension ξ0 of ξ , thought of as a function
on T ∩ m · R to a function which is reflection antisymmetric in m · F . Such a function
necessarily vanishes on the vertices of T which lie on a hyperplane from m · F . Since ξ0
vanishes on the boundary of m · R, �ξ0 and �′ξ agree on the interior m · R. By reflection
antisymmetry, �ξ0 vanishes on m · F ∩ T . Thus, ξ0 is harmonic modulo 1. �

Given ξ ∈ Ĝ , the choice of ξ is only determined modulo 1. As in [16], it is useful for
ordering purposes to make a preferred choice of the representation. Let

(54) C(ξ) = 1

2π
arg

(
μ̂(ξ)

) ∈ [−1

2
,

1

2

)
.

Let ξ ′ be defined by choosing, for x ∈ V \ {s},

(55) ξ ′
x ≡ ξx mod 1, ξ ′

x ∈
(
C(ξ) − 1

2
,C(ξ) + 1

2

]
.

Define the distinguished prevector of ξ , ν(ξ) = �′ξ ′.

LEMMA 19. Let ξ ∈ Ĝ with distinguished prevector νs. the Fourier coefficient μ̂(ξ)

satisfies

(56) 1 − ∣∣μ̂(ξ)
∣∣� ‖ν‖2

2

|V | ≥ ‖ν‖1

|V | .
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PROOF. The last inequality is true, since ν is integer valued.
Treat ξ , as defined on V , by setting ξ(s) = 0, and define ξ∗ = ξ − C(ξ). Since

(57)
∣∣μ̂(ξ)

∣∣= 1

|V |
∑
v∈V

e
(
ξ∗
v

)= 1

|V |
∑
v∈V

c
(
ξ∗
v

)
is real and since ‖ξ∗‖∞ ≤ 1

2 , it follows from 1 − c(x) ≥ 8x2 for |x| ≤ 1
2 that

(58) 1 − ∣∣μ̂(ξ)
∣∣≥ 8‖ξ∗‖2

2

|V | .

Since ‖�‖2→2 is bounded,

(59)
‖ν‖2

2

|V | = ‖�ξ∗|V \{s}‖2
2

|V | � ‖ξ∗‖2
2

|V | � 1 − ∣∣μ̂(ξ)
∣∣. �

4. The Green’s function of a tiling. This section constructs the Green’s function of a
periodic tiling and records some of its analytic properties which are proved in the Appendix.
For the potential theory of random walks, see [33]. Special cases are worked out in [20].

Let T ⊂ Rd be a tiling which is �-periodic for a lattice �, |T /�| < ∞. Assume 0 ∈ T .
Given v, x ∈ T , a Green’s function gv(x), which satisfies

(60) �gv(x) = δv(x),

may be obtained iteratively by imposing the mean value property

(61) gv(x) = C + 1

degv

(
δv(x) + ∑

(v,w)∈E

gw(x)

)
.

Let P be the transition kernel of random walk on T , and P n, the transition kernel of n,
steps of the random walk, thus P n(v,w) is the probability of transitioning from v to w in n

steps. Equation (61) may be written

(62) gv(x) = C + δv(x)

degv
+ ∑

w∈V

P 1(v,w)gw(x).

Iterating, for any n ≥ 1,

(63) gv(x) = C +
n∑

j=0

P j (v, x)

degx
+ ∑

w∈V

P n+1(v,w)gw(x).

In dimension 2 it is common to regularize this by setting

(64) gv(x) =
∞∑

n=0

(
P n(v, x)

degx
− P n(v, v)

degv

)
.

In dimensions d ≥ 3 it is customary to set C = 0 above, and

(65) gv(x) =
∞∑

n=0

P n(v, x)

degx
.

Assuming the sums converge, which is justified shortly,

(66) �gv(x) = P 0(v, x) +
∞∑

n=0

(
P n+1(v, x) − ∑

(w,x)∈E

P n(v,w)

degw

)
,

and each summand vanishes, while P 0(v, x) = δv(x).
For computations, an alternative description of the Green’s function is more useful. Recall

that � is the measure on � of random walk started from 0 and stopped at the first positive
time T0 at which it reaches �.



690 R. HOUGH AND H. SON

LEMMA 20. The measure � is symmetric, that is, �(x) = �(−x).

PROOF. Let 0 = v0, v1, v2, . . . , vn = x be a path from 0 to x such that vi /∈ � for 1 ≤
i ≤ n − 1. Let e1, e2, . . . , en be edges with ei connecting vi−1 and vi . The probability of
following e1, e2, . . . , en in succession is

∏n−1
j=0

1
degvj

. The probability of following that path

in reverse is
∏n

j=1
1

degvj
. Since degv0 = degvn by �-periodicity, running the path in reverse

has the same probability. This is also true of the path translated by −x. Summing over all
paths that lead to x proves that �(x) ≤ �(−x). By symmetry, �(x) = �(−x). �

LEMMA 21. In dimension 2, for x ∈ �,

(67) g0(x) =
∞∑

n=0

P n(0, x)

degx
− P n(0,0)

deg 0
=

∞∑
n=0

�∗n(x)

degx
− �∗n(0)

deg 0
,

and both sums converge. If the dimension is ≥ 3, then

(68) g0(x) =
∞∑

n=0

P n(0, x)

degx
=

∞∑
n=0

�∗n(x)

degx
,

and both sums converge. Restricted to �, in dimension 2, g0(x) � 1 + log(2 + ‖x‖) and in
dimension d > 2, g0(x) � 1

(1+‖x‖)d−2 .

PROOF. We have �∗2(0) > 0, since the measure � is symmetric. Let σ 2 be the covariance
matrix. It follows that the local limit theorem, Theorem 14, applies to �∗2; see also [21]. This
implies the following bounds on the density of �∗n(x), for any A > 0:

�∗n(x) �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
e−‖σ−1x‖2

n

n
d
2

, n ≥ ‖x‖2

(log(2 + ‖x‖))2 ,

OA

((
1 + ‖x‖)−A)

, n <
‖x‖2

(log(2 + ‖x‖))2 .

This justifies the convergence of the � sums for d ≥ 3 and also the bound on g0(x) as
x → ∞, since the sum is concentrated around n of order ‖x‖2.

To treat the case d = 2, notice that, in defining the stopping time related to the measure
�, there is a positive probability that Y0,2 = 0, so that if � has periodicity, the only possible

periodicity is 2. Again, by the local limit theorem on R2, either �∗n(x) − �∗n(0) � n− 3
2 or

�∗n(x) − �∗(n+1)(0) � n− 3
2 , as n → ∞, which again justifies the convergence. The bound

on g0 can be proved by noting that �∗n(0), �∗n(x) � 1
n

so that

(69)
∑

n�‖x‖2

�∗n(x)

degx
− �∗n(0)

deg 0
� log

(
2 + ‖x‖2)

while, since deg 0 = degx, for some c > 0,∣∣∣∣ ∑
n�‖x‖2

�∗n(x)

degx
− �∗n(0)

deg 0

∣∣∣∣
� 1

deg 0

∑
n�‖x‖2

|e−‖σ−1x‖2

n − 1|
n

+ O
(
n− 3

2
)= O(1).

The last line uses the leading order term of the local limit theorem which is proportional to
the Gaussian density at the point in this range.
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To show the equality of the P and � sums, given the random walk Y0,n, let S0 = 0 < S1 <

S2 < · · · be the return times to �. Let α = E[S1]. The distribution of Y0,Sn is the same as that
of �∗n. Let T (n) be the least j such that Sj > n. Since for x ∈ �,

n∑
j=0

P j (0, x) = E

[
n∑

j=0

1(Y0,Sj
= x ∧ Sj ≤ n)

]

=
n
α∑

j=0

�∗j (x) + O

( ∑
|j− n

α
|≤n

3
4

�∗j (x)

)

+ O

(
nProb

(∣∣∣∣T (n) − n

α

∣∣∣∣> n
3
4

))
.

The first error term tends to 0, as n → ∞, by the local limit theorem for �, since �∗j (x) �
j− d

2 . To bound the second error term, write Sj = T1 + T2 + · · · + Tj , where T1, . . . , Tj are
independent copies of the random variable T0 which is the first return time to the lattice �.
These variables have exponentially decaying tails, and hence the variant of Chernoff’s in-

equality in Lemma 13 with λ of order n
1
4 implies that, for some c > 0,

(70) Prob
(∣∣∣∣T (n) − n

α

∣∣∣∣> n
3
4

)
� ne−cn

3
8
.

This shows that the second error term tends to 0, as n → ∞. Since both error terms tend to 0,
as n → ∞, it is possible to replace the P sums with the � sums. �

It is now possible to show that equations (64) and (65) converge and define Green’s func-
tions.

LEMMA 22. In dimension 2,

(71) g0(x) =
∞∑

n=0

P n(0, x)

degx
− P n(0,0)

deg 0

and, in dimension at least 3,

(72) g0(x) =
∞∑

n=0

P n(0, x)

degx

converge for all x ∈ T and are Green’s functions. The functions satisfy the bounds, in di-
mension 2,

(73) g0(x) � 1 + log
(
2 + d(0, x)

)
,

and, in dimensions d ≥ 3,

(74) g0(x) � 1

(1 + d(0, x))d−2 .

PROOF. We show the case d ≥ 3, the case d = 2 being similar.
Assume that x /∈ �. Let Yx,0 = x,Yx,1, Yx,2, . . . be random walk on T started from x.

Since, for n ≥ 1,

(75)
P n(0, x)

degx
= 1

degx

∑
(w,x)∈E

P n−1(0,w)

degw
= E

[
P n−1(0, Yx,1)

degYx,1

]
,
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it follows that for the finite stopping time Tn = min(T ,n), which is the minimum of n and
the first time T that Y reaches �,

(76)
P n(0, x)

degx
= E

[
P n−Tn(0, Yx,Tn)

degYx,Tn

]
.

Since Tn has exponentially decaying tail, two exceptional cases may be excluded:

• (Case 1) If n ≤ 2 + d(0, x)2, for any A > 0, there is a constant C1 = C1(A) > 0 such that

Prob
(
Tn ≥ C1

⌈
log2

(
2 + d(0, x)2)⌉)≤ 1

d(0, x)A
.

• (Case 2) If n > 2 + d(0, x)2, for any A > 0, there is a constant C2 = C2(A) > 0 such that

Prob
(
Tn ≥ C2�log2 n	)≤ n−A.

Choosing an A sufficiently large, the sum in n of the probabilities of Case 1 or 2 is
O( 1

(1+d(0,x))d−2 ).
Let En be the event that neither Case 1 nor 2 holds. Conditional on En, it suffices to assume

n ≥ √
2 + d(0, x), since P n(0, ·) is supported in a ball of radius ≤ n about 0. Thus, on En,

Tn < n so Yx,Tn ∈ �.
Denote (Yx,T |T = j), the conditional distribution of Yx,T conditioned on the event that

T = j . Splitting into dyadic ranges,∑
2k≥√

2+d(0,x)

∑
2k−1<n≤2k

E
[
P n−Tn(0, Yx,Tn)

degx
1En

]

≤ ∑
2k≥√

2+d(0,x)

∑
2k−1<n≤2k

×
C1�log2(2+d(0,x)2)	∨C2k∑

j=1

Prob(T = j)E
[
P n−j (0, (Yx,T |T = j))

degx

]
.

Arguing as in the previous lemma, let E[S1] = α be the expected return time to �, and
S0 = 0 < S1 < S2 < · · · be the return times to �, with T (j) the number of returns to time j .
We obtain the bound

∑
2k≥√

2+d(0,x)

C1�log2(2+d(0,x)2)	∨C2k∑
j=1

Prob(T = j)

×
{ ∑

2k−2
α

<n≤ 2k+1
α

E
[
ρ∗n((Yx,T |T = j))

degx

]

+ O

(
2kProb

(
T
(
2k−1 − j

)≤ 2k−2

α
∨ T

(
2k)> 2k+1

α

))}
.

Choosing λ of order 2
k
2 in Lemma 13, the error term is O(22ke−c2

k
2
). Summed in k, this is

negligible compared to the main term. For j in the stated range, ρ∗n(Yx,T |T = j) satisfies,
for some c > 0 and all A > 0,

(77) ρ∗n(Yx,T |T = j) �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
OA

(
1

d(0, x)A

)
, n ≤ d(0, x)2

(log(2 + d(0, x)))2 ,

e− cd(0,x)2
n

n
d
2

, n >
d(0, x)2

(log(2 + d(0, x)))2 .
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This follows from the local limit theorem for ρ∗n. Since

(78)
∑

n>
d(0,x)2

(log(2+d(0,x)))2

e− cd(0,x)2
n

n
d
2

� 1

(1 + d(0, x))d−2

and the contribution of smaller n is negligible by taking A sufficiently large, the claimed
bound holds. �

When v /∈ �, it follows from the Laplace equation that

(79) g0(v) = 1

degv

∑
(v,w)∈E

g0(w).

LEMMA 23. Given a Green’s function, g0 started from zero on T , satisfying, for x ∈ T ,
g0(x) � log(2 + d(0, x)), the Green’s function can be recovered from its values on � by, for
v ∈ T \ �, g0(v) = E[g0(Yv,Tv )].

PROOF. By iterating the mean value property (79), for the stopping time Tn = min(Tv, n),

(80) g0(v) = E
[
g0(Yv,Tn)

]
.

Meanwhile, E[g0(Yv,Tv )1(Tv ≤ n)] converges as n → ∞, since g0 grows at most logarith-
mically on the lattice � and Tv has exponentially decaying tails. Both limits are equal to
E[g0(Yv,Tv )] by the growth assumption on g0. �

Finally, to obtain the Green’s function in general, for v /∈ � iterate the identity

(81) gv(x) = δv(x)

degv
+ 1

degv

∑
(v,w)∈E

gw(x).

LEMMA 24. For v /∈ �, a Green’s function gv(x) is given by

(82) gv(x) = 1

degx
E

[
Tv−1∑
j=0

1(Yv,j = x)

]
+ E

[
gYv,Tv

(x)
]
.

In particular, for x ∈ �, gv(x) = g0 ∗ �v(x).

PROOF. Convergence of the two expectations is guaranteed by the exponential decay of
the tail of Tv and by the growth bound of the Green’s function. From the definition of the
Green’s function on the lattice �, �E[gYv,Tv

(x)] = Prob(Yv,Tv = x). Meanwhile,

(83)

�

(
1

degx
E

[
Tv−1∑
j=0

1(Yv,j = x)

])

= E

[
Tv−1∑
j=0

1(Yv,j = x)

]
− ∑

(x,y)∈E

1

degy
E

[
Tv−1∑
j=0

1(Yv,j = y)

]

= E

[
Tv−1∑
j=0

1(Yv,j = x)

]
− E

[
Tv∑

j=1

1(Yv,j = x)

]

= δv(x) − Prob(Yv,Tv = x).

Adding these two contributions completes the proof of the first claim.
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To prove the second, note that, for x ∈ �, E[∑Tv−1
j=0 1(Yv,j = x)] = 0, and thus, the claim

follows since Yv,Tv has the distribution of �v . �

LEMMA 25. For any η ∈ C0(T ), for all x ∈ �,

(84) gη(x) = g0 ∗ �η(x).

PROOF. Since �v has been defined to be a point mass at v when v ∈ �, the previous
Lemma demonstrates that, for all v ∈ T and all x ∈ �, gv(x) = g0 ∗ �v(x). It thus follows
that if η is a function of bounded support on T , then, for x ∈ T ,

(85) gη(x) = g0 ∗ �η(x). �

The following theorem demonstrates that the above methods may be used to obtain an ex-
plicit formula for the Green’s function of a periodic tiling which is useful in practical calcula-
tions. Let T ⊂Rd be a tiling with period lattice � identified with Zd after a linear map, and
suppose 0 ∈ T . Split Rd into unit cubes by identifying (y1, . . . , yd) with (
y1�, . . . , 
yd�).
Let zi = e(−xi) be Fourier variables, i = 1,2, . . . , d , and assign each directed edge e = (u, v)

of T a weight we, which is the product of all zi such that the floor of the ith coordinate of v

is greater than the floor of the ith coordinate of u, divided by the product of all zj such that
the opposite is true. Choose a system of representatives 0 = v0, v1, . . . , vm for T /�, and let
Q be the (m + 1) × (m + 1) matrix with

(86) Q(i, j) = ∑
v≡vj mod �

e=(vi ,v)∈E

we

degvi

.

Thus, when z ≡ 1, Q is the transition matrix of simple random walk on T /�. Let c0 be the
column of Q corresponding to v0 and r0 be the row corresponding to 0; let Q′ be the m × m

minor obtained by deleting c0 and r0, and, similarly, let c′
0, r ′

0 be obtained by deleting the
(0,0) entry.

THEOREM 26. The characteristic function of � is

�̂(x) = ∑
λ∈Zd

�(λ)e(−x · λ)

= Q0,0(z) + r ′
0(z)

(
I − Q′(z)

)−1
c′

0(z)

and the Fourier transform of g0 restricted to � is given by

(87) (deg 0)ĝ0(x) = 1

1 − (Q0,0(z) + r ′
0(z)(I − Q′(z))−1c′

0(z))
.

PROOF. The stopped random walk either transitions directly from 0 to another point
in � with partial characteristic function given by Q0,0(z), or transitions from 0 to another
state, makes n ≥ 0 moves between states not in � and then returns to �. Given a probability
measure ν on T , define

ν̂(x) = [ν̂0, . . . , ν̂m],
ν̂j = ∑

y≡vj mod �

ν(y)z

y1�
1 · · · z
yd�

d .
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By the periodicity the change in (
y1�, . . . , 
yd�) in each transition and the corresponding
chances of a transition depend only on the current state v mod �, and the changes are addi-
tive, hence, given a probability ν on T , with transition in T given by P · ν, the mixture after
one transition satisfies P̂ · ν = ν̂Q. Conditioning on n, the number of steps before a transition
back into �,

(88) �̂(x) = Q0,0(z) + r ′
0(z)

(
I + Q′(z) + Q′(z)2 + · · · )c′

0(z).

The justification of the geometric series formula
∑∞

n=0(Q
′(z))n = (I − Q′(z))−1 is that,

pointwise, Q′(z)n is bounded by Q′(1)n, which tends to 0 with n, since the random walk has
a positive probability of returning to � in boundedly many steps from any state.

Since, restricted to �, g0(x) = 1
deg 0(

∑∞
n=0 �∗n(x) − �∗n(0)) in dimension 2, or in dimen-

sion at least 3, g0(x) = 1
deg 0

∑∞
n=0 �∗n(x), the Fourier transform of g0 is given by, for x �= 0,

(89) (deg 0)ĝ0(x) =
∞∑

n=0

�̂(x)n,

with the caveat that, in dimension 2, the Green’s function can be considered as dual to func-
tions of bounded support and sum 0. The formula for the Green’s function’s characteristic
function follows from applying the geometric series formula to the characteristic function
of �. �

PROOF OF THEOREM 7. Identify � with Zd . We show that the conditions are necessary
and sufficient for gη to be in �2(�). This suffices for the theorem, since the condition of
being in Cρ(T ) is invariant under translation so that the same conditions are necessary and
sufficient for gη to be in �2(t + �) for any t ∈ T /�.

Since on �, gη = g0 ∗ �η, gη has Fourier transform

(90) ĝη(ξ) = 1

deg 0

�̂η(ξ)

1 − �̂(ξ)
.

Since supp� generates �, �̂(ξ) �= 1 if ξ �= 0, and hence 1
1−�̂(ξ)

is bounded outside neighbor-
hoods of 0. Thus, by Parseval, it suffices to consider the behavior on a neighborhood of 0. By
Taylor expansion, using that � has exponentially decaying tails,

1 − �̂(ξ) =∑
n

�(n)
(
1 − e−2πin·ξ )= 2π2ξ tσ 2ξ + O

(‖ξ‖3),
where we have used that the first moment of � vanishes, since � is symmetric.

By Parseval, for δ > 0,

‖gη‖2
2 = 1

(deg 0)2

∫
Rd/Zd

|�̂η(ξ)|2
|1 − �̂(ξ)|2 dξ

= O(1) + 1

(deg 0)2

∫
‖ξ‖<δ

|�̂η(ξ)|2
4π4(ξ tσ 2ξ)2 + O(‖ξ‖5)

dξ.

Since �η has exponentially decaying tails, it follows that �̂η(ξ) is equal to its Taylor expansion
at 0 which is necessarily bounded. The constant term is the total mass; the linear term is given
by the first moment. Switching to polar coordinates gains a factor of rd−1 against the factor
of � r−4 from the definite quadratic form in the denominator. Thus, in dimension 2 it is
necessary and sufficient for gη to be in �2 that �̂η vanish to degree 2, in dimension 3,4 that
it vanish to degree 1 and in higher dimensions that it is bounded. This gives the condition
claimed.
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To prove the characterisation of H 2(T ), let ξ ∈ H 2(T ), and let ν = �ξ . Since � :
�2(T ) → �2(T ) is bounded, ‖ν‖2 < ∞, and hence ν has finite support. It follows that gν

is well defined as a function on T , and �(ξ − gν) = 0. If (ξ − gν)(x) → 0 as d(0, x) →
∞, then, by the maximum modulus principle, ξ − gν = 0. This applies unless d = 2 and
ν /∈ C1(T ). To rule out the remaining case, let y ∈ �, and let τy denote translation by y.
Since ν − τyν is at least C1(T ), g ∗ (ν − τyν) tends to 0 at infinity, and hence, for any y,
ξ − τyξ = g ∗ (ν − τyν). Since ν /∈ C1(T ), g ∗ ν is unbounded, and hence g ∗ (ν − τyν) can
take arbitrarily large values. But ξ − τyξ is bounded, a contradiction. Hence, ξ ∈ H 2(T )

implies ξ = g ∗ (�ξ) and �ξ ∈ Cρ(T ). �

4.1. The Green’s function of periodic and reflected tilings. Let T ⊂Rd be a tiling which
is periodic with period �. A mean zero Green’s function started from 0 may be defined on
T /m�, as follows. On �/m�, define �Tm

(x) = �(x + m�) and

(91) g0,Tm
(x) = 1

deg(0)

∞∑
n=0

(
�∗n
Tm

(x) − 1

md

)
.

This may be extended to all of T /m� by the formula

(92) g0,Tm
(v) = E

[
g0,Tm

(Yv,Tv )
]
.

This is still mean 0, since, for any v,

(93)
∑

λ∈�/m�

g0,Tm
(v + λ) = ∑

λ∈�/m�

E
[
g0,Tm

(Yv,Tv + λ)
]= 0

by the � translation invariance.
As above, the Green’s function started from an arbitrary point v is obtained by

(94) gv,Tm
(x) = −cv + 1

degx
E

[
Tv−1∑
j=0

1(Yv,j = x)

]
+ E

[
gYv,Tv ,Tm

(x)
]
,

where the constant cv is chosen to make the Green’s function mean 0. Since Tv has exponen-
tially decaying tail and gYv,Tv

is mean 0, cv = O( 1
md ).

LEMMA 27. The Green’s function satisfies

(95) �gv,Tm
(x) = δv(x) − 1

md
δ(x ∈ �).

PROOF. If v /∈ �,

(96) �g0,Tm
(v) = (degv)g0,Tm

(v) − ∑
(v,w)∈E

g0,Tm
(w) = 0

since the sum over w corresponds to taking one step in the random walk Yv .
When x ∈ �, by splitting off the n = 0 term in the sum defining g0,Tm

,

�g0,Tm
(x) = δ0(x) − 1

md
+

∞∑
n=1

(
ρ∗n
Tm

(x) − 1

md

)
− ∑

(x,y)∈E

g0,Tm
(y)

= δ0(x) − 1

md
+

∞∑
n=1

(
ρ∗n
Tm

(x) − 1

md

)

− deg(0)E
[

1

degx

( ∑
(x,y)∈E,y /∈�

g0,Tm
(Yy,Ty ) + ∑

(x,y)∈E,y /∈�

g0,Tm
(y)

)]
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= δ0(x) − 1

md
+

∞∑
n=1

(
ρ∗n
Tm

(x) − 1

md

)
− deg(0)E

[
g0,Tm

(Yx,Tx )
]
.

Since Yx,Tx has the distribution of δx ∗ �Tm
and since �Tm

is symmetric, the sum and the
expectation cancel, leaving δ0(x) − 1

md .
The values of gx,Tm

for x ∈ � are obtained by translation invariance.
To check the property at v /∈ �,

�gv,Tm
(x) = −�cv + E

[
Tv−1∑
j=0

1(Yv,j = x)

]

− ∑
(x,y)∈E

1

degy
E

[
Tv−1∑
j=0

1(Yv,j = y)

]
+ E

[
�gYv,Tv ,Tm

(x)
]

= E

[
Tv−1∑
j=0

1(Yv,j = x)

]
− E

[
Tv∑

j=1

1(Yv,j = x)

]

+ Prob(Yv,Tv = x) − 1

md
δ(x ∈ �)

= δv(x) − 1

md
δ(x ∈ �). �

It follows that gTm
has the property that

(97) �
(
gv1,Tm

(x) − gv2,Tm
(x)

)= δv1(x) − δv2(x).

Given an integer valued function η on T /m�, define

(98) gη,Tm
= gTm

∗ η(x) = ∑
v∈T /m�

η(v)gv,Tm
(x).

Abusing notation, given η ∈ C0(T ), define gη,Tm
= gTm

∗ ηTm
.

Given a tiling T with reflection symmetry in family of hyperplanes

(99) F = {
nvi + Hi : n ∈ Z,Hi = {

x : 〈x, vi〉 = 0
}}

,

which its edges do not cross, the tiling is periodic with period lattice � generated by {2vi :
i = 1,2, . . . , d}. A Green’s function for Tm with reflection symmetry in mF is obtained by
letting g̃ be a Green’s function for T /m� and then imposing reflection antisymmetry by
forming an alternating sum over reflections in a bounded number of hyperplanes.

4.2. Derivative estimates. The following results are needed regarding discrete derivatives
of the Green’s function on T /m� and are proved in the Appendix.

LEMMA 28. Let T be a tiling of Rd which is � ∼= Zd periodic. Let η be of class Cρ(T )

for some 0 ≤ ρ ≤ 2. Let Da be a discrete differential operator on the lattice �, and assume
that |a| + ρ + d − 2 > 0. For x ∈ �, for m ≥ 1,

(100) Dagη,Tm
(x) � 1

1 + ‖x‖|a|+ρ+d−2
(Z/mZ)d

.
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Note that, although Lemma 28 applies to x ∈ �, by Lemma 9 the property of being Cρ is
invariant under translating T , and hence the same estimate holds for arbitrary x ∈ T up to
changing the norm by O(1).

LEMMA 29. Let T be a tiling of Rd with period lattice � identified with Zd via a choice
of basis. Set σ 2 = Cov(�). Let η be of class C1(T ), and let �η be the signed measure on �

obtained by stopping simple random walk on T started from η when it reaches �. Let �η

have mean v. For m ≥ 1, for n ∈ �, 1 ≤ ‖n‖ � ( m2

logm
)

d−1
2d ,

(101) gη,Tm
(n) = �(d

2 )vtσ−2n

deg(0)π
d
2 ‖σ−1n‖d detσ

+ O

(
1

‖σ−1n‖d

)
.

If d ≥ 3 and η /∈ C1(T ) has total mass C,

(102) gη,Tm
(n) = C�(d

2 − 1)

2 deg(0)π
d
2 ‖σ−1n‖d−2 detσ

+ O

(
1

‖σ−1n‖d−1

)
.

As in the previous lemma, gη may be recovered on all of T /m� by translating T to
translate the period lattice.

LEMMA 30. Let d ≥ 2, and let a ∈Nd . If |a| + d
2 > 2, then for each fixed n, v ∈ T ,

(103) Dagv,Tm
(n) → Dagv(n)

as m → ∞.

5. Spectral estimates. This section collects together the spectral gap and spectral dis-
jointness estimates needed to prove Theorem 3 by estimating the relevant exponential sums
in the Fourier coefficient μ̂(ξ). When the prevector ν is sparse, the argument decomposes
ν =∑

j νj into localized separated components. The important observation in the argument
is that, while convolution with the Green’s function is not local, at a distance away from
the support of the function it varies smoothly. This allows decomposing ξ = ξ i + ξe into
an internal component which arises from convolving with the localized νj near the point of
evaluation plus an external smoothly varying ξe which is obtained by convolving with the
distant components. In estimating the exponential sums μ̂(ξ) = E[e(ξx)], the behaviors of
the internal components ξ i are classified according to the small localized prevector νj while
the external component is handled using techniques such as Taylor expansion and van der
Corput’s inequality for estimating the exponential sum of a smoothly varying function.

The argument in the case of periodic boundary is organized as follows. First, it is shown
in Lemma 35 that if the prevector component νj does not have the sufficient regularity, then
the exponential sum that arises nearby has more cancellation than the extremal case. Next, in
Lemma 36 it is proved that there are prevectors νj that achieve an extreme minimum amount
of cancellation which is determined in the variational description of the spectral factors. Fol-
lowing this, in Lemma 38 it is shown that the cancellation from various prevector components
is at least additive without the presence of an external field, and, finally, in Lemma 39 it is
shown that there is at least as much cancellation in the presence of an external field. The case
of open boundary follows a similar organization but treats separately prevector components
that are localized near a boundary of a given codimension.

The main object of interest in this section is the amount of cancellation in exponential
sums. Let G = Tm or Tm, and let S ⊂ G, ξ : G →R. Define the savings of ξ on S to be

(104) sav(ξ ;S) := |S| −
∣∣∣∣∑
x∈S

e(ξx)

∣∣∣∣,
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and, for S = G, the total savings

(105) sav(ξ) := |G| −
∣∣∣∣∑
x∈G

e(ξx)

∣∣∣∣.
If S1, S2 ⊂ Tm are disjoint, then, by the triangle inequality,

(106) sav(ξ ;S1 ∪ S2) ≥ sav(ξ ;S1) + sav(ξ ;S2).

We have

(107) 1 − ∣∣μ̂(ξ)
∣∣= sav(ξ)

|G| .

The spectral gap is given by

(108) gapm = min
0�=ξ∈Ĝm

sav(ξ)

|G| .

Set

(109) ρ =

⎧⎪⎪⎨⎪⎪⎩
2, d = 2,

1, d = 3,4,

0, d ≥ 5,

and β = d − 2 + ρ,

(110) β =

⎧⎪⎪⎨⎪⎪⎩
2, d = 2,3,

3, d = 4,

d − 2, d ≥ 5.

By Lemma 51 from the Appendix, if ν ∈ Cρ(T ) and ξ = g ∗ ν, then, for y �= 0,

(111) |ξy | � 1

d(0, y)β
,

and hence ξ ∈ �2(T ).
Let BR(0) = {x ∈ T : d(x,0) ≤ R}, and define

(112) C (B,R) := {
ν ∈ Cρ(BR(0)

) : ‖ν‖1 ≤ B
}
.

We record the following exponential sum and savings estimates to be used throughout the
section. The first lemma reduces savings estimates to estimating cosine sums.

LEMMA 31. Let S ⊂ Tm or Tm, and assume, for some 0 < δ, ε < 1,∑
x∈S

(
1 − c(ξx)

)≤ δ|S|,
∣∣∣∣∑
x∈S

s(ξx)

∣∣∣∣≤ ε|S|.

Then, ∣∣∣∣sav(ξ ;S) −∑
x∈S

(
1 − c(ξx)

)∣∣∣∣≤ ε2|S|
2(1 − δ)

.
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PROOF. Since
∑

x∈S c(ξx) ≥ (1 − δ)|S|,∣∣∣∣sav(ξ ;S) −
(∑

x∈S

1 − c(ξx)

)∣∣∣∣
=
√√√√(∑

x∈S

c(ξx)

)2
+
(∑

x∈S

s(ξx)

)2
−∑

x∈S

c(ξx)

= (
∑

x∈S s(ξx))
2√

(
∑

x∈S c(ξx))2 + (
∑

x∈S s(ξx))2 +∑
x∈S c(ξx)

≤ ε2|S|
2(1 − δ)

.

�

The following estimates for exponential sums are used.

LEMMA 32. Let 1 ≤ R < m be parameters, let G = Tm or Tm and let ξ : G → R.
Suppose that there is an x ∈ G and C > 0 such that, for all x �= y ∈ G,∣∣ξ(y)

∣∣≤ C

d(x, y)β
.

The following estimates hold:

1.
∑

d(x,y)>R(1 − c(ξy)) � C2R−2β+d .
2.

∑
y∈G(1 − c(ξy)) � C2.

3.
∑

d(x,y)≤R |s(ξy)| �
{C logR, d = 2,

CRd−β, d ≥ 3.

4. If
∑

y∈G ξy = 0 then |∑y∈G s(ξy)| � C3.

The implicit constants depend on T .

PROOF. We have |BR(x)| � Rd . Bound |1 − c(ξy)| ≤ 2π2ξ2
y . The first estimate can be

obtained by estimating∑
d(x,y)>R

(
1 − c(ξy)

)� ∑
2k>R

∑
2k−1<d(x,y)≤2k

C2

(1 + d(x, y))2β

� C2
∑

2k>R

2k(d−2β) � C2

R2β−d
.

The second item follows from the first. For the third, bound |s(ξy)| ≤ 2π |ξy | and argue as
above. For (4), Taylor expand sin to degree 3 and use that the sum of the linear term vanishes.

�

5.1. Periodic case. Recall that, for ξ : T → R,

(113) f (ξ) := ∑
x∈T

(
1 − c(ξx)

)
.

Define

(114) I := {
�w : w ∈ C0(T )

}⊂ C2(T ).

LEMMA 33. The spectral parameter γ has characterization, in dimension 2,

γ = inf
{
f (g ∗ ν) : ν ∈ C2(T ) \ I

}
,
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and in dimension at least 3,

γ = inf
{
f (g ∗ ν) : ν ∈ C1(T ) \ I

}
.

The parameter γ0 has characterization,

γ0 = inf
{
f (g ∗ ν) : ν ∈ Cρ(T ) \ I

}
.

PROOF. Recall the definitions,

γ = inf
{∑

x∈T

1 − cos(2πξx) : ξ ∈ H 2(T ),�ξ ∈ C1(T ), ξ �≡ 0 mod 1
}
,

γ0 = inf
{∑

x∈T

1 − cos(2πξx) : ξ ∈ H 2(T ), ξ �≡ 0 mod 1
}
.

First, consider the case of γ0. If ν ∈ Cρ(T ) \ I , then �(g ∗ ν) = ν ∈ Cρ(T ), so ξ = g ∗ ν

is harmonic modulo 1 and in �2(T ). This demonstrates ξ �≡ 0 mod 1, since, otherwise, ξ has
finite support so that ν = �ξ ∈ I . Thus,

γ0 ≤ inf
{
f (g ∗ ν) : ν ∈ Cρ(T ) \ I

}
.

To prove the reverse inequality, suppose ξ ∈ H 2(T ), ξ �≡ 0 mod 1. Let ν = �ξ . By The-
orem 7, ξ = g ∗ ν, ν ∈ Cρ(T ), and, since ξ is not integer valued, ν /∈ I . This proves the
reverse inequality.

The case of γ is essentially the same, except that in dimensions at least 5, there is the
further restriction that ν = �ξ ∈ C1(T ). �

PROPOSITION 34. Fix B,R1 > 0. For any ν ∈ C (B,R1) and m > 2R1, let ξ (m) =
ξ (m)(ν) be the frequency in Ĝm corresponding to ν, namely,

(115) ξ (m)
x = (gTm

∗ ν)(x) − (gTm
∗ ν)(0),

and let ξ = ξ(ν) = g ∗ ν. Then,

(116) sav
(
ξ (m))→ f (ξ) as m → ∞.

PROOF. Let ξ∗ = gTm
∗ ν. Since sav(ξ∗) = sav(ξ (m)), it suffices to show that sav(ξ∗) →

f (ξ) as m → ∞. By Lemma 28, ξ∗(y) � 1
d(0,y)β

, with an implicit constant depending on B

and R1. By Lemma 32,∑
d(0,y)>R

(
1 − c

(
ξ∗
y

))= OB,R1

(
R−2β+d), ∣∣∣∣ ∑

y∈Tm

s
(
ξ∗
y

)∣∣∣∣= OB,R1(1),

and hence by Lemma 31,

(117)
∣∣∣∣ ∑
y∈Tm

c
(
ξ∗
y

)+ is
(
ξ∗
y

)∣∣∣∣= ∣∣∣∣ ∑
y∈Tm

c
(
ξ∗
y

)∣∣∣∣+ O

(
1

md

)
.

It follows that

sav
(
ξ∗)= OB,R1

(
m−d)+ ∑

y∈Tm

(
1 − c

(
ξ∗
y

))
= OB,R1

(
R−2β+d)+ ∑

d(0,y)≤R

(
1 − c

(
ξ∗
y

))
.
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Letting m → ∞ for fixed R obtains ξ∗
y → ξy . Then, letting R → ∞ obtains

limm→∞ sav(ξ∗) = f (ξ). �

On T , ξ = g ∗ ν ∈ �2(T ) if and only if ν ∈ Cρ(T ). The following lemma gives a local
version of this statement by showing that if a local part of ν is not in Cρ , subject to some
technical conditions, there is arbitrarily large savings near the local piece.

LEMMA 35. For all A,B,R1 > 0, there exists an R2(A,B,R1) > 2R1 such that if m is
sufficiently large, then for any x ∈ Tm and any ν ∈ ZTm satisfying the following conditions:

1. ‖ν‖1 ≤ B ,
2. ν|BR1 (x) /∈ Cρ(Tm),
3. d(x, suppν|BR1 (x)c ) > 2R2,

it holds

(118) sav
(
gTm

∗ ν;BR2(x)
)≥ A.

Thus, if ν has mean zero, then the corresponding frequency ξ ∈ Ĝm satisfies sav(ξ ;
BR2(x)) ≥ A.

PROOF. It suffices to show that sav(gTm
∗ ν;BR2(x) ∩ �) ≥ A which simplifies the esti-

mates.
Assume that the dimension is at most 4, since, otherwise, ν ∈ Cρ(Tm). The proof is similar

to the proof of Lemma 22 from [16], so only the necessary modifications are indicated.
As there, let ξ = ξ i + ξe with

(119) νi := ν|BR1 (x), νe := ν|BR1 (x)c

and

ξ i := gTm
∗ νi, ξ e := gTm

∗ νe(120)

and treat R2 as a parameter which can be taken arbitrarily large but fixed. Let R be a second

parameter depending on R2 such that Rd+1

Rd−1
2

→ 0 as R2 → ∞. By the estimate |∇gη(y)| �
1

‖y‖d−1 from Lemma 28, it follows that for ‖y‖ ≤ R, ξe
x+y = ξe

x + O( BR

Rd−1
2

). Thus,

(121)
∣∣∣∣ ∑
‖y‖≤R

e(ξx+y)

∣∣∣∣= O

(
BRd+1

Rd−1
2

)
+
∣∣∣∣ ∑
‖y‖≤R

e
(
ξ i
x+y

)∣∣∣∣.
Thus, it suffices to prove that, as R → ∞,

(122) #
{
y : ‖y‖ ≤ R

}−
∣∣∣∣ ∑
‖y‖≤R

e
(
ξ i
x+y

)∣∣∣∣→ ∞.

First, consider the case d = 2. If νi /∈ C1(Tm), then ∇gη may be viewed as the convolution
of g with a function in C1 but not C2. By the asymptotic for such functions in Lemma 29,
|ξ i

x+je1
− ξ i

x | → ∞ while |ξ i
x+(j+1)e1

− ξ i
x+je1

| → 0 as j → ∞, and hence

(123) R −
∣∣∣∣∣

R∑
j=1

e
(
ξ i
x+je1

− ξ i
x

)∣∣∣∣∣→ ∞,
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as R → ∞, so that the claim holds by choosing R sufficiently large. Suppose instead that
νi ∈ C1(Tm) \ C2(Tm). By Lemma 29, if �η has mean v0 �= 0, for x �= 0,

(124) gη(x) = vt
0σ

−2x

deg(0)π‖σ−1x‖2 detσ
+ O

(
1

1 + ‖σ−1x‖2

)
.

It follows that there are 0 ≤ θ1 < θ2 ≤ 2π such that if θ1 ≤ arg(y) ≤ θ2, then |ξ i
x+y | � 1

‖y‖ . It
follows that ∑

‖y‖≤R

(
1 − c

(
ξ i
x+y

))� logR,
∑

‖y‖≤R

∣∣s(ξ i
x+y

)∣∣� R.

Thus, by Lemma 31,

(125) #
{
y : ‖y‖ ≤ R

}−
∣∣∣∣ ∑
‖y‖≤R

e
(
ξ i
x+y

)∣∣∣∣� logR.

In the case that d ≥ 3, assume that νi ∈ C0(Tm) \ C1(Tm). Apply Lemma 29 to find that,
for η of mass C with support in a bounded neighborhood of 0,

gη(n) = C�(d
2 − 1)

2 deg(0)π
d
2 ‖σ−1n‖d−2 detσ

+ O

(
1

‖σ−1n‖d−1

)
.(126)

It follows that, for ‖n‖ � 1,

(127)
∣∣gη(n)

∣∣� 1

‖n‖d−2 .

In the case d = 3, sum in a dimension 2 plane to find∑
‖y‖≤R,y3=0

1 − c
(
ξ i
x+y

)� logR,
∑

‖y‖≤R,y3=0

∣∣s(ξ i
x+y

)∣∣� R

so that

(128) #
{
y : ‖y‖ ≤ R

}−
∣∣∣∣ ∑
‖y‖≤R

e
(
ξ i
x+y

)∣∣∣∣� logR.

In the case d = 4,∑
‖y‖≤R

1 − c
(
ξ i
x+y

)� logR,
∑

‖y‖≤R

∣∣s(ξ i
x+y

)∣∣� R2.

Thus, by Lemma 31,

(129) #
{
y : ‖y‖ ≤ R

}−
∣∣∣∣ ∑
‖y‖≤R

e
(
ξ i
x+y

)∣∣∣∣� logR.
�

LEMMA 36. For all B,R1 > 0 and α < 1, there exists R2(α,B,R1) > 2R1 such that if m

is sufficiently large, then for any x ∈ Tm and any ν ∈ ZTm satisfying the following conditions:

1. ‖ν‖1 ≤ B

2. ν|BR1 (x) ∈ Cρ(Tm)

3. d(x, suppν|BR1 (x)c ) > 2R2

the bound holds

(130) sav
(
gTm

∗ ν;BR2(x)
)≥ α sav

(
ξ∗); ξ∗ = gTm

∗ ν|BR1 (x).
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PROOF. The proof is essentially the same as for Lemma 23 of [16] but is included
here for completeness. First, it is shown that there is δ = δ(B,R1) > 0 such that for
sufficiently large m, if sav(ξ∗) < δ, then sav(ξ∗) = 0. After making a translation in �,
sav(ξ∗) = sav(gTm

∗ ν′) for some ν′ ∈ C (B,R1). Let

(131) γ ′ = min
{
f
(
g ∗ ν′) : ν′ ∈ C (B,R1) \ I

}
> 0.

By Proposition 34, for all sufficiently large m,

(132)
∣∣sav

(
gTm

∗ ν′)− f
(
g ∗ ν′)∣∣< γ ′

2

for all ν′ ∈ C (B,R1). Thus, if ν′ ∈ C (B,R1)\I , then sav(ξ∗) >
γ ′
2 . Since sav(gTm

∗ν′) = 0

if ν′ ∈ I , it follows that the claim holds with δ = γ ′
2 .

Now, set ε = ε(α,B,R1) = (1 − α)δ > 0. It suffices to show that

(133) sav
(
gTm

∗ ν;BR2(x)
)
> sav

(
ξ∗)− ε,

which implies the lemma, since the claim is trivial if sav(ξ∗) = 0, while otherwise sav(ξ∗) ≥
δ so that sav(ξ∗) − ε ≥ α sav(ξ∗). It suffices to show that if R is fixed, but sufficiently large,
that

(134) sav
(
ξ∗;BR(x)

)
> sav

(
ξ∗)− ε

2
,

since the difference between sav(gTm
∗ν;BR(x)) and sav(ξ∗;BR(x)) may be made arbitrarily

small by taking R2 sufficiently large.
By the decay estimates for the Green’s function in Lemma 28, for y �= x,

(135)
∣∣ξ∗

y

∣∣� 1

d(x, y)β
.

Thus, by Lemmas 31 and 32,

(136)
∣∣∣∣ ∑
d(x,y)≤R

(
1 − c

(
ξ∗
y

))− sav
(
ξ∗;BR(x)

)∣∣∣∣�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(logR)2

R2 , d = 2,

1

R
, d = 3,

1

R2 , d = 4,

1

Rd−4 , d ≥ 5.

Since

(137) sav
(
ξ∗)= |Tm| −

∣∣∣∣ ∑
z∈Tm

e
(
ξ∗
z

)∣∣∣∣≤ ∑
z∈Tm

(
1 − c

(
ξ∗
z

))
and by Lemma 32,

(138)
∑

d(x,y)>R

(
1 − c

(
ξ∗
y

))� Rd−2β,

the claim follows by letting R → ∞. �

PROPOSITION 37. The spectral constant γ is positive, and there exist constants
B0,R0 > 0 such that:
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1. For sufficiently large m, if γ = γ0 any ξ ∈ Ĝm that achieves the spectral gap, sav(ξ) =
|Tm|gapm, has a prevector ν which is a translate of some ν′ ∈ C (B0,R0) ⊂ Cρ(Tm). If
γ0 < γ , then the support of ν is contained in at most two such neighborhoods.

2. For any ν ∈ Cρ(T ) satisfying f (g ∗ ν) < 3
2γ0, there exists ν′ ∈ C (B0,R0) ⊂ Cρ(T )

such that a translate of ν′ differs from ν by an element of I . In particular, f (g ∗ ν) =
f (g ∗ ν′).

PROOF. This closely follows the proof of Proposition 20 from [16]. The first step in this
proof finds a constant B0 such that:

(I) For sufficiently large m, if ξ (m) ∈ Ĝm achieves sav(ξ (m)) = |Tm|gapm, then its distin-
guished prevector ν(m) must satisfy ‖ν(m)‖1 ≤ B0.

(II) If ν ∈ Cρ(T ) satisfies f (g ∗ ν) ≤ 3
2γ0 + 1, then ν differs by an element of I from

some ν̃ ∈ Cρ(T ) with ‖ν̃‖1 ≤ B0.

To prove (I), fix ν′ ∈ Cρ(T ) \ I . Choose B ′, R′ large enough so that ν′ ∈ C (B ′,R′). For
each m sufficiently large, let νm be a translation of ν′ and ξ (m) the corresponding element of
Ĝm. By Proposition 34,

(139) sav
(
ξ (m))→ f

(
g ∗ ν′)=: γ ′ as m → ∞,

and, therefore, sav(ξ (m)) < γ ′ + 1 for sufficiently large m.
Let ξ ∈ Ĝm achieve the spectral gap, and let ν be the distinguished prevector of ξ . By

Lemma 19,

(140) ‖ν‖1 � sav(ξ) < γ ′ + 1.

This proves (I).
To prove (II), let ν ∈ Cρ(T ); let ξ = g ∗ ν. Since ν ∈ Cρ(T ), ξ ∈ �2(T ). There is a

version ξ̃ : T → [−1
2 , 1

2), ξ̃ ≡ ξ mod 1 such that �ξ̃ = ν − �w which differs from ν by
�w ∈ I . Because ν̃ is integer valued and � is bounded �2 → �2,

(141) ‖ν̃‖1 ≤ ‖ν̃‖2
2 = ‖�ξ̃‖2

2 � ‖ξ̃‖2
2 = ∑

x∈T

|ξ̃x |2 � ∑
x∈T

(
1 − c(ξ̃x)

)
.

An upper bound on f (g ∗ ν) thus implies and upper bound on ‖ν̃‖1.
The covering process described in Proposition 20 of [16] takes as input a vector ν ∈ ZT

or ν ∈ ZTm with ‖ν‖1 ≤ B0 and returns a set X ′ and radia R1(x), R2(x) satisfying the
conditions of Lemma 35 or Lemma 36 and such that

(142) suppν ⊂ ⋃
x∈X ′

BR1(x)(x), d(x, suppν|BR1(x)(x)c ) > 2R2(x)

for each x ∈ X ′ and the balls {BR2(x)(x)}x∈X ′ are pairwise disjoint. Let X ′′ = {x ∈ X ′ :
ν|BR1(x)(x) /∈ I }. The conditions on A in Lemma 35 and on α in Lemma 36 are set such
that A > 3

2γ0 + 1 and α is arbitrarily close to 1. Given x ∈ X ′′, let u(x) = ν|BR1(x)(x). If
u(x) /∈ Cρ , then sav(ξ) ≥ 3

2γ0 + 1. Also, if |X ′′| ≥ 2 the savings from g ∗ u(x1) together with
g ∗u(x2) is approximately twice the savings from an individual component. Thus, the savings
are minimized by a ν with |X ′′| = 1. This reduces the search for the minimizing prevector
in the inf defining γ0 to a finite check which proves that γ0 > 0. Since the inf defining γ

is further restricted by �ξ ∈ C1(T ), γ > 0. Note that γ ≤ 2γ0 since if ν achieves γ0, then
we can let νy = ν − τyν ∈ C1(T ) and ξy = g ∗ (νy) satisfies limd(0,y)→∞ sav(ξy) = 2γ0 as
y → ∞.

To prove item (2) of the Proposition, let ν be a function on T . Let u(x) = ν|BR1(x)(x). Given

x ∈ X ′′, if u(x) /∈ Cρ , then sav(ξ) ≥ 3
2γ0 + 1. Also, if |X ′′| ≥ 2, the savings from g ∗ u(x1)
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together with g ∗ u(x2) is approximately twice the savings from an individual component.
Thus, |X ′′| = 1 and u(x) ∈ Cρ(T ), so that the difference between u(x) and ν is in I . Since
the savings is translation invariant, the claim holds. This suffices for (2).

To prove (1), let ν ∈ Cρ(T ) be such that ξ = g ∗ ν achieves γ0. If ν ∈ C1(T ), so that γ =
γ0, let ξm be the corresponding element of Ĝm. As m → ∞, sav(ξm) → f (ξ) = γ0. If ξ0 ∈ Gm

achieves the spectral gap, perform the clustering algorithm on ν0 = �ξ0. If |X ′′| > 1, then
the total savings are at least roughly double the savings of the cluster with the least savings.
Since this is asymptotically as large as γ0, we obtain a contradiction. If ν /∈ C1(T ), for any
fixed y, νy = ν − τyν ∈ C1(T ) and ξy = gTm

∗ νy has sav(ξy) → f (ξy) as m → ∞. Letting
y → ∞ obtains a minimal savings which is asymptotically at most twice γ0 as ξ ranges in
Ĝm \ {0}. Arguing as before, we conclude that the optimal prevector has at most two clusters.

�

The following lemma is the analogue of Lemma 24 of [16].

LEMMA 38. Let k ≥ 1 be fixed, and let ν1, . . . , νk ∈ Cρ(Tm) be bounded functions of
bounded support, which are R-separated, in the sense that their supports have pairwise dis-
tance at least R. Set ν =∑k

i=1 νi . As R → ∞,

(143) 1 − ∣∣μ̂(ξ(ν)
)∣∣= O

(
logR

R2β−dmd

)
+

k∑
i=1

(
1 − ∣∣μ̂(ξ(νi)

)∣∣).
The implicit constant depends upon k and the bounds for the functions and their supports.

PROOF. Set ξ = gTm
∗ ν and ξ i = gTm

∗ νi , so that |μ̂(ξ(ν))| = |μ̂(ξ)| and |μ̂(ξ(νi))| =
|μ̂(ξ i)|. Choose xi ∈ suppνi for each i, and let R′ = 
(R − 1)/2�, so that the balls BR′(xi)

are disjoint. By Lemma 28,

(144)
∣∣ξ i(y)

∣∣� 1

d(xi, y)β
.

By Lemma 32,

(145)
∑

d(xi ,y)>R′
1 − c

(
ξi(y)

)� Rd−2β,
∑

y∈Tm

s
(
ξi(y)

)= O(1).

It follows that

(146) 1 − ∣∣μ̂(ξ i)
∣∣= 1

|Tm|
∑

d(xi ,y)≤R′

(
1 − c

(
ξ i(y)

))+ O

(
1

R2β−dmd

)
.

If d(xi, y) ≤ R′, then ξ(y) = ξ i(y) + O(R−β), so that

(147) c
(
ξ(y)

)= c
(
ξ i(y)

)+ O

( |s(ξ i(y))|
Rβ

)
+ O

(
R−2β).

By Lemma 32,

(148)
∑

d(xi ,y)≤R′

∣∣s(ξ i(y)
)∣∣�

⎧⎪⎪⎨⎪⎪⎩
logR, d = 2,

R, d = 3,4,

R2, d ≥ 5.

Thus,

(149) 1 − ∣∣μ̂(ξ i)
∣∣= 1

|Tm|
∑

d(xi ,y)≤R′

(
1 − c(ξy)

)+ O

(
logR

R2β−dmd

)
.
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For z /∈⋃k
i=1 BR′(xi), let ri = d(xi, z), so that

(150)
∣∣ξ(z)

∣∣= O

(
1

r
β
1

+ · · · + 1

r
β
k

)
.

It follows that

(151)
∑

z/∈⋃k
i=1 BR′ (xi )

(
1 − c

(
ξ(z)

))= O

(
1

R2β−d

)
,

and thus

(152)
k∑

i=1

(
1 − ∣∣μ̂(ξ i)

∣∣)= O

(
logR

R2β−dmd

)
+ 1

|Tm|
∑

z∈Tm

(
1 − c

(
ξ(z)

))
.

We have Re(μ̂(ξ)) � 1. Meanwhile, by Taylor expanding sin to degree 3,

(153) Im
(
μ̂(ξ)

)= 1

|Tm|
∑

z∈Tm

s
(
ξ(z)

)= O

(
1

md

)
.

It follows that

(154)
k∑

i=1

(
1 − ∣∣μ̂(ξ i)

∣∣)= O

(
logR

R2β−dmd

)
+ 1 − ∣∣μ̂(ξ)

∣∣.
�

For larger frequencies ξ , for which ν = �ξ has larger �1 norm, a clustering is used on the
prevector ν. Given a radius R, say two points xo, xt ∈ suppν are R-path connected if there
exist points xo = x0, x1, . . . , xn = xt in suppν such that for all 0 ≤ i < n, d(xi, xi+1) < R.
Given ν, let C = C (ν) be the R-path connected components in suppν. Say that ν is R-
reduced if for all C ∈ C , ν|C /∈ I . The R-reduction of ν is the prevector ν′ which is equiva-
lent to ν and omits any clusters C such that ν|C ∈ I . Evidently, ν and ν′ generate the same
frequency ξ ∈ Ĝm, and each norm of ν′ is no larger than the norm of ν.

Denote nbd(C) the distance R neighborhood of the set C.

LEMMA 39. Let B ≥ 1 be a fixed parameter. There is a function η(B,R) tending to 0 as
R → ∞ such that for all m sufficiently large, if ν ∈ ZTm satisfies the following conditions:

1. ν is R-reduced,
2. ‖ν‖L∞ = O(1), with a constant that depends only on T ,
3. ν has an R-cluster C for which ‖ν|C‖1 ≤ B ,

then

(155) sav
(
gTm

∗ ν;nbd(C)
)≥ γ0 − o(1) − η(B,R),

with o(1) tending to 0 as m → ∞.

PROOF. Decompose the phase function ξ = gTm
∗ ν into an internal and external com-

ponent, ξ = ξ i + ξe, where

(156) ξ i := gTm
∗ ν|C, ξe := gTm

∗ ν|Cc .

Let Q = T /�. The argument sums over each of the individual classes in Q so that dis-
crete derivatives may be applied in �. The first observation is that, in a fixed class q ∈ Q, the
external phase ξe may be well approximated in the cluster nbd(C) by a polynomial of degree
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at most 2. Note that, for x ∈ nbd(C), any y ∈ supp(ν)\C satisfies d(x, y) > R
2 . By the bound

in Lemma 28, for |a| = 3, ∣∣Daξe
x

∣∣= ∣∣∣∣ ∑
y∈Cc

ν(y)Dagy,Tm
(x)

∣∣∣∣
≤ ‖ν‖∞

∑
y∈BR(x)c

∣∣Dagy,Tm
(x)

∣∣
� ∑

d(x,y)≥R

1

d(x, y)d+1

�
∫ ∞
R

dr

r2 � 1

R
.

The proof now proceeds essentially as in Lemma 25 of [16]. Let R1, R2, R3 be parameters,
which tend to ∞ with R and satisfy R1 < R2 < R3 < R, and

(157) R1 → ∞,
R2

R4
1

→ ∞,
R3

R1R
2
2

→ ∞,
R

R2
1R2

3

� 1 as R → ∞.

First, for each x ∈ C, choose a representative q for each class in Q with d(q, x) = O(1), and
assume that for all λ ∈ � such that ‖λ‖1 ≤ R1,

(158)
∥∥ξe

q − ξe
q+λ

∥∥
R/Z <

1

Rd+1
1

.

The clustering process of Proposition 20 of [16] obtains a cover

(159) suppν ⊂ ⊔
x∈X ′

B
R̃1(x)

(x)

and such that, for each x ∈ X ′, there are radii 2R̃1(x) < R̃2(x) such that

(160) d(x, suppν|B
R̃1(x)

(x)c ) > 2R̃2(x), x ∈ X ′,

and the balls {B
R̃2(x)

(x)}x∈X ′ are disjoint and meet the conditions of either Lemma 35 or
36; in addition, we require that the balls are sufficiently large to accommodate a further fixed
parameter R′ ≤ R̃2(x) satisfying the conditions below. The radii R̃2 are uniformly bounded
by some R0 with a bound depending only on B . By taking R sufficiently large, assume that
R0 is arbitrarily small compared to R1.

Let x ∈ X ′ and q ∈ Q with d(x, q) = O(1) to find, for a parameter R′ ≤ R̃2(x),

(161)
∣∣∣∣ ∑
d(y,x)≤R′,y≡q mod �

e
(
ξ i
y + ξe

y

)∣∣∣∣= ∣∣∣∣ ∑
d(y,x)≤R′,y≡q mod �

e
(
ξ i
y

)∣∣∣∣+ O

(
1

R1

)
.

Thus, ∑
d(y,x)≤R′

e
(
ξ i
y + ξe

y

)= ∑
q∈Q

e
(
ξe
q

) ∑
d(y,x)≤R′,y≡q mod �

e
(
ξ i
y

)+ O

(
1

R1

)
.

Let X ′′ = {x ∈ X ′ : νB
R̃1(x)

(x) /∈ I }. Let ux = ν|B
R̃1(x)

(x). If ux /∈ Cρ(Tm), then each sum

(162)
∑

d(y,x)≤R′,y≡q mod �

e
(
ξ i
y

)
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can be made to save an arbitrary constant by choosing R′ sufficiently large, which suffices to
complete the proof of the lemma, so assume ux ∈ Cρ(Tm). Under this condition,∑

d(y,x)≤R′,y≡q mod �

∣∣s(ξ i
y

)∣∣� 1

Rβ−d

so that

sav
(
ξ i;BR′(x) ∩ q mod �

)= ∑
d(y,x)≤R′,y≡q mod �

1 − c
(
ξ i
y

)+ O

(
1

R′2β−d

)
.

In particular,∣∣∣∣∑
q∈Q

e
(
ξe
q

) ∑
d(y,x)≤R′,y≡q mod �

e
(
ξ i
y

)∣∣∣∣≤ ∑
q∈Q

∣∣∣∣ ∑
d(y,x)≤R′,y≡q mod �

e
(
ξ i
y

)∣∣∣∣
≤
∣∣∣∣ ∑
d(y,x)≤R′

e
(
ξ i
y

)∣∣∣∣+ O

(
1

R′2β−d

)
.

If there are two or more elements of X ′′, appealing to Lemma 36 saves more than γ0 if m is
sufficiently large. If |X ′| = 1, let ux ∈ Cρ(Tm) \ I . This obtains

sav
(
ξ i;BR1(x)

)= sav
(
gTm

∗ ux;BR1(x)
)

= sav
(
gTm

∗ ux)+ O

(
(logR1)

2

R
2β−d
1

)
.

Since the support of ux is treated as bounded and for fixed ν ∈ Cρ(T ), sav(gTm
∗ ν) →

f (g ∗ ν) as m → ∞, sav(gTm
∗ ux) ≥ γ0 − o(1) as m → ∞. This again suffices for the

lemma.
The remainder of the proof is the same as the proof of Lemma 25 of [16], which handles

the case of a linear or quadratic external phase using van der Corput’s inequality to reduce to
the linear case, and then Lemma 11 to bound the sum of the linear phase. �

5.2. Open boundary case. In the case of a reflected boundary let F be the family of
reflecting hyperplanes and R the fundamental open region. The number of vertices is |Tm| =
1 + |mR ∩ T |. Consider ξ ∈ Ĝm to be an mF -antisymmetric function on T .

In two dimensions, define functionals

f (ξ) = ∑
x∈T

1 − c(ξx),

fa(ξ) = ∑
x∈Qa

1 − c(ξx),

f(a1,a2)(ξ) = ∑
x∈Q(a1,a2)

1 − c(ξx).

In dimension d ≥ 3, for 0 ≤ i ≤ d , define the functional

(163) fS(ξ) = ∑
x∈T /SS

1 − c(ξx).

The graph T /SS is given the quotient distance.
Let rm → ∞ with m a parameter, say rm = logm. Let ν : Tm → Z. Say ν is a codimension

j cluster, if its support has distance at most rm to a boundary of codimension j but not any
boundary of codimension i > j . Let

(164) Ĝm,j = {ξ ∈ Ĝm : �ξ is a co-dim j cluster}.
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Define the j th spectral gap to be

(165) gapm,j = inf
ξ∈Ĝm,j

ξ �≡0 mod 1

1 − ∣∣μ̂(ξ)
∣∣.

One way of constructing a j cluster begins with a set S of j hyperplanes and ν ∈ C (B,R1)

with support contained in a single octant described by the hyperplanes. Impose reflection an-
tisymmetry in the hyperplanes. For all m sufficiently large, translate ν to ν̃ within a funda-
mental domain R for T /mF by a vector parallel to the hyperplanes in S, such that supp ν̃

has distance less than or equal to rm from those sides of R contained in S and distance greater
than rm from all remaining sides. Form νm by imposing reflection antisymmetry in mF .

In the following proposition, interpret S = ∅ or S = a or S = (a1, a2) if the dimension
is 2:

PROPOSITION 40. Fix B,R1 > 0, and let ν ∈ C (B,R1) have reflection antisymmetry in
a family S of j hyperplanes. For any m > 2R1, let νm be any j -cluster in Tm constructed as
above. Let ξ (m) = ξ (m)(ν) be the frequency in Ĝm corresponding to νm, and let ξ = ξ(ν) =
g ∗ ν. Then,

(166) sav
(
ξ (m))→ fS(ξ) as m → ∞.

PROOF. In this proof, identify Tm with m · R ∩ T . Recall that functions that are reflec-
tion antisymmetric in F are periodic in a lattice �, and that R has finite index in T /�.
Treated as a function on Tm = T /m�, νm may be considered as the sum of some bounded
number I of functions of bounded support

(167) νm =
I∑

i=1

νm,i

one of whose support, say νm,1 intersects Tm and is a translate of ν. By the condition of
being a j cluster, the distance from the support of the next nearest component to Tm is at
least rm, since νm has distance at least rm from the corresponding reflecting boundary. Thus,
ξ (m) =∑I

i=1 gTm
∗νm,i =∑I

i=1 ξ
(m)
i . Let xi ∈ suppνm,i . By the decay estimate in Lemma 28,

(168) ξ
(m)
i (y) � 1

d(xi, y)β
,

and thus, by Lemma 32,

(169)
∑

y∈Tm

∣∣s(ξ (m)(y)
)∣∣�

⎧⎪⎪⎨⎪⎪⎩
logm, d = 2,

m, d = 3,4,

m2, d ≥ 5.

Thus, by Lemma 31,

(170)
∣∣∣∣sav

(
ξ (m))− ∑

y∈Tm

(
1 − c

(
ξ (m)(y)

))∣∣∣∣�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(logm)2

m2 , d = 2,

1

m
, d = 3,

1

m2 , d = 4,

1

md−4 , d ≥ 5.
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For R a fixed parameter, which may be taken arbitrarily large, by Lemma 32,∑
y∈Tm,d(y,x1)>R

1 − c
(
ξ (m)(y)

)� Rd−2β.

Meanwhile, for d(y, x1) ≤ R,

(171) 1 − c
(
ξ (m)(y)

)= 1 − c
(
ξ

(m)
1 (y)

)+ o(1)

with the error holding as m → ∞. Thus,

sav
(
ξ (m))= ∑

y∈Tm,d(y,x1)≤R

(
1 − c

(
ξ (m)(y)

))+ o(1) + O
(
Rd−2β).

Letting m → ∞, ξ (m) converges pointwise to a translated version of ξ , then letting R → ∞
obtains the claim. �

LEMMA 41. For all A,B,R1 > 0, there exists an R2(A,B,R1) > 2R1 such that if m is
sufficiently large, then for any x ∈ Tm and any ν ∈ ZTm satisfying the following conditions:

1. ‖ν‖1 ≤ B ,
2. ν|BR1 (x) /∈ Cρ(Tm) and ν|BR1 (x) is a j -cluster,
3. d(x, suppν|BR1 (x)c ) > 2R2,

the bound holds

(172) sav
(
g ∗ ν;BR2(x)

)≥ A.

Thus, if ν has mean zero, then the corresponding frequency ξ ∈ Ĝm satisfies sav(ξ ;
BR2(x)) ≥ A.

PROOF. The proof is the same as of Lemma 35. �

LEMMA 42. For all B,R1 > 0 and α < 1, there exists R2(α,B,R1) > 2R1 such that if m

is sufficiently large, then for any x ∈ Tm and any ν ∈ ZTm satisfying the following conditions:

1. ‖ν‖1 ≤ B ,
2. ν|BR1 (x) ∈ Cρ(Tm) and ν|BR1 (x) is a j -cluster,
3. d(x, suppν|BR1 (x)c ) > 2R2,

the bound holds

(173) sav
(
g ∗ ν;BR2(x)

)≥ α sav
(
ξ∗); ξ∗ = g ∗ ν|BR1 (x).

PROOF. The proof is the same as of Lemma 36. �

PROPOSITION 43. The spectral parameters γj are positive. If j = 0 or γj < γj−1, then
there exist constants B0,R0 > 0 such that:

1. For sufficiently large m, any ξ ∈ Ĝm,j that achieves the j th spectral gap, sav(ξ) =
(1+|Tm|)gapm,j , has a prevector ν ∈ Cρ(Tm) which is a translate of some ν′ ∈ C (B0,R0) ⊂
Cρ(T ) with reflection antisymmetry in a family S of j hyperplanes.

2. For any ν ∈ Cρ(T ), which has reflection antisymmetry in a family S of hyperplanes,
|S| = j , and satisfying fS(g ∗ν) < γj−1 or j = 0, there exists ν′ ∈ C (B0,R0) ⊂ Cρ(T ) with
reflection antisymmetry in S such that a translate of ν′ differs from ν by an element of I . In
particular, fS(g ∗ ν) = fS(g ∗ ν′).
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If j > 0 and γj = γj−1 the above statements hold with the caveat that the prevector has
bounded �1 norm and bounded support but that the support of the prevector may be arbitrar-
ily far from 0.

PROOF. This is similar to the proof of Proposition 37. The first step in this proof finds a
constant B0 such that:

(I) For sufficiently large m, if ξ (m) ∈ Ĝm,j achieves sav(ξ (m)) = (1 + |Tm|)gapm,j , then
its distinguished prevector ν(m) must satisfy ‖ν(m)‖1 ≤ B0.

(II) If ν ∈ Cρ(T ) has reflection symmetry in a set S of hyperplanes, |S| = j and satisfies
fS(g ∗ ν) ≤ 3

2γj + 1, then ν differs by an element of I from some ν̃ ∈ Cρ(T ) with ‖ν̃‖1 ≤
B0.

To prove (I), fix ν′ ∈ Cρ(T ) \ I with reflection antisymmetry in a family S of hyperplanes.
Choose B ′, R′ large enough so that ν′ ∈ C (B ′,R′). For each m sufficiently large, let νm be
a translation of ν′ along hyperplanes on the boundary of m · R and ξ (m) the corresponding
element of Ĝm. By Proposition 40,

(174) sav
(
ξ (m))→ fS

(
g ∗ ν′)= γ ′ as m → ∞,

and, therefore, sav(ξ (m)) < γ ′ + 1 for sufficiently large m.
Let ξ (m) ∈ Ĝm,j achieve the j th spectral gap, and let ν(m) be the distinguished prevector

of ξ (m). By Lemma 19,

(175)
∥∥ν(m)

∥∥
1 � sav

(
ξ (m))< γ ′ + 1.

This proves (I).
To prove (II), let ν ∈ Cρ(T ), and let ξ = g ∗ ν. Since ν ∈ Cρ(T ), ξ ∈ �2(T ). There is

a version ξ̃ : T → [−1
2 , 1

2), ξ̃ ≡ ξ mod 1 such that �ξ̃ = ν − �w which differs from ν by
�w ∈ I . Because ν̃ is integer valued and � is bounded �2 → �2,

(176) ‖ν̃‖1 ≤ ‖ν̃‖2
2 = ‖�ξ̃‖2

2 � ‖ξ̃‖2
2 = ∑

x∈T

|ξ̃x |2 � ∑
x∈T

(
1 − c(ξ̃x)

)
.

An upper bound on f (g ∗ ν) thus implies an upper bound on ‖ν̃‖1.
The covering process described in Proposition 20 of [16] takes as input a vector ν ∈ ZT

or ν ∈ ZTm with ‖ν‖1 ≤ B0 and returns a set X ′ and radia R1(x), R2(x), satisfying the
conditions of Lemma 41 or Lemma 42 with A > 3

2 maxj γj + 1 and α arbitrarily close to 1,
and such that

(177) suppν ⊂ ⋃
x∈X ′

BR1(x)(x), d(x, suppν|BR1(x)(x)c ) > 2R2(x)

for each x ∈ X ′ and the balls {BR2(x)(x)}x∈X ′ are pairwise disjoint. Let X ′′ = {x ∈ X ′ :
ν|BR1(x)(x) /∈ I }.

First, consider item (2) of the proposition, so that ν is a function on T which is anti-
symmetric in a set S of hyperplanes. Let u(x) = ν|BR1(x)(x) treated as a function which is
antisymmetric in S. Given x ∈ X ′′, if u(x) /∈ Cρ , then sav(ξ) ≥ 3

2γj + 1. Also, if |X ′′| ≥ 2
the savings from g ∗ u(x1) together with g ∗ u(x2) is approximately twice the savings from an
individual component. Thus, it suffices to assume that |X ′′| = 1 and u(x) ∈ Cρ(T ).

If j ≥ 1, g ∗ u(x) is in �2(T ). It follows that if τy indicates translation in a direction away
from a hyperplane of S, then

(178) lim inf
y→∞ sav

(
g ∗ (τyu

(x)))≥ γj−1.
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Hence, if γj < γj−1, then the inf is achieved by a function with support in a bounded neigh-
borhood of 0. If j = 0, then there are no reflecting hyperplanes, and the savings is translation
invariant, so that the claim still holds. This suffices for (2).

For (1), argue similarly, using that as m → ∞ the savings converges to fS . �

LEMMA 44. Let k ≥ 1 be fixed, and let ν1, . . . , νk be bounded functions of bounded
support and such that νi ∈ Cρ(Tm). Suppose the functions are R-separated, in the sense that
their supports have pairwise distance at least R. Set ν =∑k

j=1 νj . Then, as R → ∞,

(179) 1 − ∣∣μ̂(ξ(ν)
)∣∣= O

(
logR

R2β−dmd

)
+

k∑
j=1

(
1 − ∣∣μ̂(ξ(νj )

)∣∣).
The implicit constant depends upon k and the bounds for the functions and their supports.

PROOF. Let νj = ∑I
i=1 νj,i as a function on T /m� with νj,1 having support that in-

tersects Tm. Let xj,i ∈ suppνj,i and ξ = gTm
∗ ν, ξj = gTm

∗ νj , ξj,i = gTm
∗ νj,i . Let

R′ = 
R−1
2 � so that the balls BR′(xj,i) are pairwise disjoint.

By the decay estimate in Lemma 28,

(180)
∣∣ξj,i(y)

∣∣� 1

d(xj,i , y)β
.

Thus, by Lemma 32,∑
y∈Tm

∣∣s(ξj (y)
)∣∣� md−β,

∑
y∈Tm

∣∣s(ξ(y)
)∣∣� md−β.

It follows from Lemma 31 that:

sav(ξ) = ∑
y∈Tm

(
1 − c

(
ξ(y)

))+ O

(
1

m2β−d

)
,

sav(ξi) = ∑
y∈Tm

(
1 − c

(
ξ i(y)

))+ O

(
1

m2β−d

)
.

If d(xj,i , y) ≤ R′, then ξ(y) = ξj,i(y) + O(R−β), so that

(181) c
(
ξ(y)

)= c
(
ξj,i(y)

)+ O

( |s(ξj,i(y))|
Rβ

)
+ O

(
R−2β).

By Lemma 32,

(182)
∑

d(xj,i ,y)≤R′

∣∣s(ξj,i(y)
)∣∣�

⎧⎪⎪⎨⎪⎪⎩
logR, d = 2,

R, d = 3,4,

R2, d ≥ 5.

Meanwhile, (
∑I

i=1 ξj,i(y))2 ≤ I
∑I

i=1 ξj,i(y)2. Thus,

(183)
∑

y∈Tm,d(y,xj,1)>R′
1 − c

(
ξj (y)

)� 1

R2β−d
.

It follows that

(184) 1 − ∣∣μ̂(ξ j )
∣∣= O

(
logR

R2β−dmd

)
+ 1

1 + |Tm|
∑

y∈Tm,d(y,xj,1)≤R′

(
1 − c

(
ξ(xj,1 + y)

))
.
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Similarly,

(185)
∑

z∈Tm

z/∈⋃k
j=1 Br′ (xj,1)

1 − c
(
ξ(z)

)� 1

R2β−d
.

It follows

(186) 1 − ∣∣μ̂(ξ)
∣∣= O

(
logR

R2β−dmd

)
+

k∑
j=1

(
1 − ∣∣μ̂(ξ j )

∣∣).
�

For larger frequencies, the analogue of Lemma 39 in the case of an open boundary is as
follows:

LEMMA 45. Let B ≥ 1 be a fixed parameter. There is a function η(B,R) tending to 0 as
R → ∞ such that, for all m sufficiently large, if ν ∈ ZTm satisfies the following conditions:

1. ν is R-reduced,
2. ‖ν‖L∞ = O(1) with a constant depending only on T ,
3. ν has an R-cluster C for which ‖ν|C‖1 ≤ B and which is a j boundary cluster, then

(187) sav
(
g ∗ ν;nbd(C)

)≥ (
1 + |Tm|)gapm,j − η(B,R).

PROOF. The proof is the same as the proof of Lemma 39. �

PROOF OF THEOREM 2. When the boundary is open, let γ ′ = minj γj , and let j be
minimal such that γj = γ ′. By the minimality there are B0, R0 such that there is a vector
ν ∈ C (B0,R0) with reflection symmetry in a set S of hyperplanes; |S| = j such that ξ = g∗ν,
and γ ′ = fS(ξ). By Proposition 40 it is possible to find a sequence ξ (m) ∈ Ĝm such that

(188) sav
(
ξ (m))→ fS(ξ)

as m → ∞.
To complete the proof, it suffices to show that

(189) γ ∗ = lim inf
m→∞

(
1 + |Tm|)gapm

satisfies γ ∗ ≥ γ ′. Let ξ (mj ) ∈ Ĝmj
satisfy sav(ξ (mj )) → γ ∗, and let ν(mj ) be the sequence

of prevectors, which may be assumed to satisfy ‖ν(mj )‖1 ≤ B0 and diam suppν(mj ) ≤ R0.
Given R > 0, let jR be maximal such that infinitely often suppν(m) has distance at most
R from jR boundary hyperplanes. Let j∗ = supR jR which is achieved for some R1. Let
rm → ∞ sufficiently slowly so that only finitely many mj have ν(mj ) a boundary cluster with
more than j∗ boundaries. Take a subsequence mji

for which ν(mji
) is a j∗ boundary cluster

and has distance at most R1 from each of the j∗ boundaries. By Proposition 43, for each mji

there is a translation of ν(mji
) to νmji

∈ C (B0,R0) ⊂ Cρ(T ) with reflection antisymmetry in
a family S of j∗ hyperplanes. By Proposition 40,

(190) sav
(
ξ (mji

))− fS

(
g ∗ ν(mji

))→ 0,

as i → ∞, which proves that γ ∗ = γ ′.
In the case of a periodic boundary, let {νn}n be a sequence of functions in C1(T )

with f (g ∗ νn) → γ . For each fixed n, as m → ∞, sav(gTm
∗ νn) → f (g ∗ νn) so

lim sup |Tm|gapm ≤ γ . To prove the reverse direction, let ξmk
∈ Ĝmk

be a sequence such that
sav(ξmk

) → lim inf |Tm|gapm. Let νmk
= �ξmk

, which is integer valued and has sum 0, hence
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is in C1(Tm). Perform a clustering on νmk
. Arguing as in the proof of Proposition 37, con-

clude that, after eliminating clusters in I , there are at most two nonempty clusters in νmk
for

all k sufficiently large. Since the clusters are of bounded size, after passing to a subsequence
we may assume that, up to translation, the two clusters are the same for all k sufficiently large.
In the limit the savings from the neighborhood of each cluster tends to at least γ0 − oR(1) as
k → ∞. It follows that if there are two clusters, the lim inf is at least 2γ0 ≥ γ . If there is only
one cluster, the function in the cluster is C1, and hence the lim inf is at least γ . �

6. Mixing analysis. An L2 version of Theorem 3 is as follows:

THEOREM 46. For a fixed tiling T in Rd , let c0 = γ −1
0 . Let m ≥ 2 and let tmix

m =
c0
2 |Tm| log |Tm|. For each fixed ε > 0, sandpiles on Tm satisfy:

lim
m→∞

∥∥P �(1−ε)tmix
m 	

m δσfull −URm

∥∥
L2(dURm) = ∞,

lim
m→∞

∥∥P 
(1+ε)tmix
m �

m δσfull −URm

∥∥
L2(dURm) = 0.

If the tiling T satisfies the reflection condition and Condition A, then set tmix
m =

�
2 |Tm| logm. For each fixed ε > 0, sandpiles on Tm satisfy:

lim
m→∞

∥∥P �(1−ε)tmix
m 	

m δσfull −URm

∥∥
L2(dURm) = ∞,

lim
m→∞

∥∥P 
(1+ε)tmix
m �

m δσfull −URm

∥∥
L2(dURm) = 0.

The proof of the lower bound of both the total variation and L2 theorems uses the following
Lemma adapted from Diaconis and Shahshahani [11].

LEMMA 47. Let G be a finite Abelian group, let μ be a probability measure on G and let
N ≥ 1. Let X ⊂ Ĝ \ {0}. Suppose that the following inequalities hold for some parameters
0 < ε1, ε2 < 1:

(191)

∑
ξ∈X

∣∣μ̂(ξ)
∣∣N ≥ |X | 1

2

ε1
,

∑
ξ1,ξ2∈X

∣∣μ̂(ξ1 − ξ2)
∣∣N ≤ (

1 + ε2
2
)(∑

ξ∈X

∣∣μ̂(ξ)
∣∣N)2

.

Then,

(192)
∥∥μ∗N −UG

∥∥
TV(G ) ≥ 1 − 4ε2

1 − 4ε2
2.

PROOF. See Lemma 27 in [16]. �

PROOF OF THEOREM 3, LOWER BOUND. First, consider the Tm case. Let ν ∈
C (B0,R0) be such that ξ = g ∗ν satisfies f (ξ) = γ0. Let R > R0, and let {ν1

i }Mi=1, {ν2
i }Mi=1 be

two collections of R-separated translates of ν with those translates ν1
i having distance � m

from those translates ν2
i for all i, j . Here, M � md

Rd . Let νi,j = ν1
i − ν2

j . Let ξi,j = g ∗ νi,j .

Let N = 
(d
2 logm − c)|Tm| 1

γ0
�. Let X = {ξi,j }Mi,j=1. By Lemma 44,

(193) 1 − ∣∣μ̂(ξi,j )
∣∣= 2γ0

|Tm| + O

(
logm

m2β

)
,
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so

(194) log
∣∣μ̂(ξi,j )

∣∣= − 2γ0

|Tm| + O

(
logm

m2β

)
and thus

(195)
∣∣μ̂(ξi,j )

∣∣N = e2cm−d

(
1 + O

(
(logm)2

m2β−d

))
.

It follows that the first condition of Lemma 47 holds with ε1 = O(Rde−2c).
If the supports of ν1

i1
and ν1

i2
have distance at least ρ, and the supports of ν2

j1
and ν2

j2
have

distance at least ρ,

(196) 1 − ∣∣μ̂(ξi1,j1 − ξi2,j2)
∣∣= 4γ0

|Tm| + O

(
logρ

ρ2β−dmd

)
,

and, hence,

(197)
∣∣μ̂(ξi1,j1 − ξi2,j2)

∣∣N = e4cm
−2d+O(

logρ

ρ2β−d )
.

Meanwhile, if i1 = i2 or j1 = j2 but the other functions have support at distance at least ρ,
then

(198) 1 − ∣∣μ̂(ξi1,j1 − ξi2,j2)
∣∣= 2γ0

|Tm| + O

(
logρ

ρ2β−dmd

)
,

and hence

(199)
∣∣μ̂(ξi1,j1 − ξi2,j2)

∣∣N = e2cm
−d+O(

logρ

ρ2β−d )
.

In what follows, abbreviate d(ν, ν′) the distance between the supports of ν and ν′. If R is
a large enough fixed constant, then

(200)
∑

1≤i1,i2,j1,j2≤M

min(d(ν1
i1

,ν1
i2

),d(ν2
j1

,ν2
j2

))<(logm)2

∣∣μ̂(ξi1,j1 − ξi2,j2)
∣∣N � e2c m2d

R2d
+ e4cO

(
m

3d
2
)
.

This is the composite of three estimates:

1. The number of choices in which i1 = i2 and j1 = j2 is M2 � m2d

R2d .
2. The contribution of terms with i1 = i2 or j1 = j2, but not both is bounded as follows.

By symmetry, assume i1 = i2 which can be chosen in M ways. Choose j1 in M ways. Split
the sum over j2 into terms in which the distance between the supports of νj1 , νj2 are in some
dyadic interval. This obtains a bound, for R sufficiently large,

M2
∑

R≤2k<2m

∑
j2

2k−1≤d(νj1 ,νj2 )<2k

e2cm
−d+O( k

2k(2β−d)
)

� e2c md

R2d

∑
R≤2k<2m

2kd exp
(

C(logm)k

2k(2β−d)

)
� e2c m2d

R2d
.

3. When i1 �= i2 and j1 �= j2 but one of the two has distance at most (logm)2, assume by
symmetry that d(νj1, νj2) < (logm)2. Choose i1, i2, j1 in O(M3) ways, then bound the sum
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over j2 by summing over d(νj1, νj2)

� M3
∑

R<2k≤2(logm)2

∑
j2

2k−1≤d(νj1 ,νj2 )<2k

e4cm
−2d+O( k

2k(2β−d)
)

� e4cm
3d
2 .

Meanwhile, ∑
1≤i1,i2,j1,j2≤M

min(d(ν1
i1

,ν1
i2

),d(ν2
j1

,ν2
j2

))≥(logm)2

∣∣μ̂(ξi1,j1 − ξi2,j2)
∣∣N

= ∑
1≤i1,i2,j1,j2≤M

d(νi1 ,νi2 ),d(νj1 ,νj2 )≥(logm)2

e4cm−2d

(
1 + O

(
log logm

logm

))

≤ M4∣∣μ̂(ξ)
∣∣4N

(
1 + O

(
log logm

logm

))
.

Therefore, since M4|μ̂(ξ)|4N � e4c m2d

R4d ,

(201)

∑
1≤i1,i2,j1,j2≤M

∣∣μ̂(ξi1,j1 − ξi2,j2)
∣∣N

≤ M4∣∣μ̂(ξ)
∣∣4N

(
1 + O

(
log logm

logm
+ R2d

e2c
+ 1

m
d
2

))
,

and thus the second condition holds with ε2 = O(Rde−c).
In the case of an open boundary, let � = �j be maximized at the co-dimension j boundary.

Recall �j = d−j
γj

, and hence either j = 0 or γj < γj−1. In either case, there is a set S of j

hyperplanes and a vector ν ∈ C (B0,R0) with reflection antisymmetry in S such that γj =
fS(g ∗ ν).

Let, as above, R be a large constant, and let {νi}Mi=1, M � md−j

Rd−j be R-spaced translates of

ν parallel to S which are j -clusters in Tm. Let ξi = gTm ∗ νi and X = {ξi}Mi=1. By Proposi-
tion 40, for each i, uniformly in m,

(202) sav(ξi) = (
1 + o(1)

)
γj ,

although note that the savings may differ across X . Given 0 < ε < 1
2 , let

(203) N =
⌊
(1 − ε)

d − j

2γj

|Tm| logm

⌋
.

Hence,

(204)
∣∣μ̂(ξi)

∣∣N = mo(1)

m
d−j

2 (1−ε)
.

It follows that the condition on ε1 from Lemma 47 holds with

(205) ε1 = 1

m
d−j

2 ε+o(1)
.
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Meanwhile, for ρ > R, if d(νi, νj ) > ρ,

(206) 1 − ∣∣μ̂(ξi − ξj )
∣∣= 1 − ∣∣μ̂(ξi)

∣∣+ 1 − ∣∣μ̂(ξj )
∣∣+ O

(
logρ

ρ2β−dmd

)
.

Thus, arguing as before,

(207)
∑

1≤i,j≤M

d(νi ,νj )<(logm)2

∣∣μ̂(ξi − ξj )
∣∣N = O

(
md−j

Rd−j

)
+ O

(
m

d−j
2
)
.

The first error term is obtained by the diagonal i = j which can be chosen in M ways. To
bound the remaining terms, choose i in M ways, then bound the sum over j by summing
over dyadic intervals of d(νi, νj ). For R sufficiently large this obtains a bound of

M
∑

R≤2k≤2(logm)2

∑
j

2k−1≤d(νi ,νj )<2k

m
O( k

2k(2β−d)
)

m(d−j)(1−ε)+o(1)
� m

d−j
2 .

Meanwhile, ∑
1≤i,j≤M

d(νi ,νj )≥(logm)2

∣∣μ̂(ξi − ξj )
∣∣N

≤
( ∑

1≤i≤M

∣∣μ̂(ξi)
∣∣N)2(

1 + O

(
log logm

logm

))
.

It follows that ∑
1≤i,j≤M

∣∣μ̂(ξi − ξj )
∣∣N

≤
( ∑

1≤i≤M

∣∣μ̂(ξi)
∣∣N)2(

1 + O

(
log logm

logm
+ mo(1)

m(d−j)ε

))
.

Thus, the condition on ε2 of Lemma 47 is satisfied with ε2 = O(
log logm

logm
). �

PROOF OF THEOREM 46, LOWER BOUND. By Parseval,

(208)
∥∥P N

m δσfull −URm

∥∥2
2 = ∑

0�=ξ∈Ĝm

∣∣μ̂(ξ)
∣∣2N

.

By Cauchy–Schwarz, the condition
∑

ξ∈X |μ̂(ξ)|N ≥ |X | 1
2

ε1
implies

(209)
∑
ξ∈X

∣∣μ̂(ξ)
∣∣2N ≥ 1

ε2
1

.

The theorem thus follows from the previous lower bound. �

6.1. Proof of upper bound. The upper bound in Theorem 3 is obtained from the upper
bound in Theorem 46 by applying Cauchy–Schwarz followed by Parseval.

Let R = R(ε) be a parameter. In the case of Tm, let ξ ∈ Ĝm, and let ν be its R-reduced
prevector. Perform a clustering on ν in which points xi , xt in its support are connected in a
cluster if there is a sequence of points xi = x0, x1, . . . , xn = xt from the support such that
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BR(xi) ∩ BR(xi+1) �= ∅. Let N (V ,K) denote the number of R-reduced prevectors ν of
L1 mass V in K clusters. In the case of Tm, let rm be a radius tending slowly to infinity,
rm ≤ logm. Given a set S of bounding hyperplanes, say that a cluster C is of type S if S

is a maximal set of hyperplanes such that the cluster intersects the rm neighborhood of the
intersection of the planes in S. If there is more than one such maximal S, choose one to which
C belongs arbitrarily. Let N (V , {KS}) be the number of R-reduced prevectors ν of L1 mass
V with KS boundary clusters of type S.

LEMMA 48. The following upper bounds hold:

N (V ,K) ≤ exp
(
K log

(
md)+ O(V logR)

)
,

N
(
V, {KS})≤ exp

(∑
S

KS log
(
md−|S|r |S|

m

)+ O(V logR)

)
.

PROOF. The case of N (V , {KS}) is demonstrated, the other case being similar. The
number of points, which have distance at most rm from the hyperplanes in a set S, is

O(md−|S|r |S|
m ). For each of the KS clusters of type S, choose base points of the clusters

in, for some C > 0,

O
(
exp

(
KS log

(
Cmd−|S|r |S|

m

)))
ways. Given a string of length V , allocate the vertices to belong to the various clusters in
O(2|V |) ways by splitting the string at

∑
KS − 1 places. For each cluster of size k, choose

an unlabeled tree on k nodes in exp(O(k)) ways; see [25] for the asymptotic count. Traverse
the tree from the root down, placing a vertex at distance O(Rd) from its parent vertex. Now,
assign the height of each vertex in O(1) ways. This obtains the claimed bound. �

PROOF OF THEOREM 46, UPPER BOUND. The open boundary case is demonstrated, the
periodic boundary case being easier.

Let N = �(1 + ε)�
2 (1 + |Tm|) logm	. Write �(V, {KS}) for the collection of nonzero

frequencies ξ ∈ Ĝm such that the R-reduced prevector of ξ has L1 norm V in {KS} R-clusters.
Thus, with K = |KS | =∑

S KS ,

(210)
∥∥P N

m δσfull −URm

∥∥2
L2(dURm) = ∑

KS,|KS |≥1

∑
V ≥|KS |

∑
ξ∈�(V,{KS})

∣∣μ̂(ξ)
∣∣2N

.

Let �(V,K) = ⋃
|KS |=K �(V, {KS}). It follows from Lemma 19 that, for some c > 0, for

ξ ∈ �(V,K),

(211)
∣∣μ̂(ξ)

∣∣2N ≤ exp(−cV logm).

Let A > 0 be a fixed integer constant satisfying Ac > 2d . Then,

(212)

∑
K≥1

∑
V ≥AK

∑
ξ∈�(V,K)

∣∣μ̂(ξ)
∣∣2N

≤ ∑
K≥1

∑
V ≥AK

N (V ,K) exp(−cV logm)

≤ ∑
K≥1

∑
V ≥AK

exp
(
K log

(
md)− V

[
c logm − O(logR)

])
.

If m is sufficiently large, the inner sum is bounded by � exp(− cAK
2 logm). Now, choose A

large enough so that the sum over K is bounded by � m−1.
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Let 0 < δ < 1 be a parameter, and set B = Aδ−1. Apply Lemma 45 to choose R = R(ε)

such that the savings from a j boundary R cluster of size at most B is at least γj (1 − ε
2).

If ξ ∈ �(V,KS) with V < AK , then its R-reduced prevector has at least (1 − δ)K clusters
of size at most B . Hence, with γ ∗ = maxj γj , γ∗ = minj γj and δ′ = γ ∗

γ∗ δ assumed to be
sufficiently small,

(213) 1 − ∣∣μ̂(ξ)
∣∣≥ (

1 − δ′)∑
S

KSγ|S|
1 + |Tm|

(
1 − ε

2

)
≥ (1 − 5ε

6 )

1 + |Tm|
∑
S

KSγ|S|.

Thus, using � ≥ �j = d−j
γj

and using (1 − x) ≤ e−x , for all ε sufficiently small,

∣∣μ̂(ξ)
∣∣2N ≤ exp

(
−(1 + ε)

(
1 − 5ε

6

)
�
∑
S

KSγ|S| logm

)

≤ exp
(
−(1 + β)�

∑
S

KSγ|S| logm

)

≤ exp
(
−(1 + β)

∑
S,|S|<d

KS

(
d − |S|) logm

− (1 + β)K[d]�γd logm

)
,

where β = β(ε) > 0.
Thus, the sum over V < AK is bounded by, for some c > 0, and β > 0 sufficiently small,∑

|KS |≥1

∑
|KS |≤V <A|KS |

∑
ξ∈�(V,K)

∣∣μ̂(ξ)
∣∣2N

≤ ∑
|KS |≥1

∑
|KS |≤V <A|KS |

× N
(
V, {KS}) exp

(
−(1 + β)

∑
|S|<d

KS

(
d − |S|) logm − cK[d] logm

)

� ∑
|KS |≥1

∑
|KS |≤V <A|KS |

exp
(∑

S

((−βKS

(
d − |S|) logm

)+ KS |S| log rm
)

− cK[d] logm + O
(|K|))

� m− β
2 . �

APPENDIX: GREEN FUNCTION ESTIMATES ON GENERAL TILINGS

The Green’s function estimates are based on the local limit theorem for probability mea-
sures with exponentially decaying tail on Zd in Theorem 14.

PROOF OF THEOREM 14. If ‖n‖2 ≥ N
3
2 − ε

2 , apply Chernoff’s inequality. By Fourier in-
version,

δ
∗a1
1 ∗ δ

∗a2
2 ∗ · · · ∗ δ

∗ad

d ∗ μ∗N(n)

= (2i)|a|
∫
(R/Z)d

s

(
x1

2

)a1 · · · s
(

xd

2

)ad

μ̂(x)Ne

(
xt

(
n + a

2

))
dx.



SANDPILES 721

By symmetry,

μ̂(x) = ∑
n∈Zd

μ(n)c(n · x)

= 1 − 2π2
∑

n∈Zd

μ(n)
(|n · x|2 + O

(‖n‖4‖x‖4))
= 1 − 2π2‖σx‖2 + O

(‖x‖4).
Since μ(0) > 0 and since μ∗k assigns positive measure to each standard basis vector, for
each δ > 0 there is c1 > 0 such that if ‖x‖(R/Z)d > δ, then |μ̂(x)| ≤ 1 − c1. Combining this
observation with Taylor expansion about 0, it follows that there is c2 > 0 such that |μ̂(x)| ≤
1 − c2‖x‖2

(R/Z)d
. Using this, truncate to, for some c3 > 0, ‖x‖(R/Z)d ≤ c3N

− 1
4 .

Write the remaining part of the integral as

(2i)|a|
∫
‖x‖≤c3N

− 1
4
s

(
x1

2

)a1 · · · s
(

xd

2

)ad

× exp
(
−2π2N‖σx‖2 + 2πixt

(
n + a

2

)
+ O

(
N‖x‖4))dx.

Write the main term in the exponentials as

− 1

2

(
2π

√
Nσx − i

σ−1(n + a
2 )√

N

)t(
2π

√
Nσx − i

σ−1(n + a
2 )√

N

)

− 1

2

‖σ−1(n + a
2 )‖2

N
.

Substitute

(214) y = x − i
σ−2(n + a

2 )

2πN
.

Shift the integrals in the complex plane so that

(215) 2π
√

Nσ

(
x − i

σ−2(n + a
2 )

2πN

)
= 2π

√
Nσy

becomes real. This introduces an integral on ‖Re(x)‖ = c3N
− 1

4 on which ‖ Im(x)‖ ≤
N− 1

4 − ε
4 . Throughout this integral the integrand is bounded by exp(−c4N

1
2 ) so this con-

tributes an error term. On the shifted integral, write

exp
(
O
(
N‖x‖4))= 1 + O

(
N‖x‖4)= 1 + O

(
N
∥∥Re(x)

∥∥4 + ‖n‖4

N3

)
.

Write, by Taylor expansion,

s

(
x1

2

)a1 · · · s
(

xd

2

)ad = π |a|xa1
1 · · ·xad

d

(
1 + O

(∥∥Re(x)
∥∥2 + ‖n‖2

N2

))
.

Bound each term |σ−2(n + a
2 )j | � ‖n‖. In integrating away this error, each factor of |xj |

contributes a term of order 1√
N

which obtains a bound of

(216) � exp
(
−1

2

‖σ−1(n + a
2 )‖2

N

)1 + (
‖n‖√

N
)|a|+4

N
d+|a|+2

2

.

Note that the error of size ‖n‖2

N2 is bounded by 1
N

+ ‖n‖4

N3 .
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Write the main term as

(2πi)|a| exp
(
−1

2

‖σ−1(n + a
2 )‖2

N

)

×
∫
‖y‖≤c3N

− 1
4

d∏
j=1

(
yj + i

(
σ−2(n + a

2 )

2πN

)
j

)aj

exp
(−2π2N‖σy‖2)dy.

Extend the integral to Rd with negligible error, and substitute z = 2π
√

Nσy to obtain

exp(−1
2

‖σ−1(n+ a
2 )‖2

N
)

(2π)dN
d+|a|

2 detσ

×
∫
Rd

exp
(
−‖z‖2

2

) d∏
j=1

(
i
(
σ−1z

)
j −

(
σ−2(n + a

2 )√
N

)
j

)aj

dz.

This produces the claimed main term. Note that only terms with even powers of z are
preserved by the integral which proves the formula for the gradient. �

Let η be a function of bounded support on T . Let �η be the signed measure on � obtained
by starting simple random walk from η and stopping it on the first nonnegative step at which
it visits �.

LEMMA 49. Let T be a tiling in Rd , and let η be an integer-valued function on T .
There is a constant c = c(η) > 0 such that the following holds. If η ∈ C0(T ), then |�η(x)| �
e−c‖x‖.

If η ∈ C1(T ), then there are functions f1, f2, . . . , fd on � such that

�η =
d∑

j=1

fj ∗ δj

and satisfying |fj (x)| � e−c‖x‖.
If η ∈ C2(T ), then there are functions fi,j , 1 ≤ i ≤ j ≤ d on � such that

�η = ∑
1≤i≤j≤d

fi,j ∗ δi ∗ δj

and satisfying |fi,j (x)| � e−c‖x‖.

PROOF. In the case that η ∈ C0(T ), the exponential decay condition follows from the
fact that the stopped random walk has a distribution with exponentially decaying tails.

To prove the two remaining claims, given a radius R, let �η,R denote the measure �η re-
stricted to ‖x‖ ≤ R. Due to the exponentially decaying tails, the signed mass of this measure
is exponentially small in R, and if η is C2, the moment is exponentially small in R. Hence, it
follows that there is a bounded measure νη,R of unsigned mass exponentially small in R, such
that �′

η,R = �η,R + νη,R is in C1(�) when η ∈ C1(T ), and similarly for C2. Write �′
η,R as a

linear combination of translates of {δi}1≤i≤d if η ∈ C1(T ) or {δi,j }1≤i≤j≤d of η ∈ C2(T ).
Arrange this sum such that �′

η,2R − �′
η,R is the linear combination of translates with absolute

sum of coefficients O(e−c′R), which is easily achieved in the case of C1(T ) by balancing
each function value in the support with an opposing value at the origin, the total number of δi

needed to achieve this being O(R). In the case of C2(T ), first write the difference of a linear
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combination of translates of δi , then balance each δi with a corresponding term at the origin,
the number needed for a single one again being O(R). The polynomial growth is now dom-
inated by the exponential decay of �′. Letting R → ∞ obtains the required decomposition.

�

Let T be a tiling, periodic with period � which is identified with Zd via a choice of basis.
Assume 0 ∈ T . Let � be the measure obtained by stopping the random walk started at 0
at its first return to �. Let � 1

2
= 1

2(� + δ0) be the half-lazy version of �. Given m ≥ 1, let
�Tm

(x) = �(x + m�) and � 1
2 ,Tm

(x) = � 1
2
(x + m�).

LEMMA 50. Let T be a tiling of Rd which is periodic in lattice � ∼= Zd . The Green’s
function of T started from 0 is given on � by, in dimension d = 2,

(217) g0(n) = 1

2 deg(0)

∞∑
N=0

�∗N
1
2

(n) − �∗N
1
2

(0),

and in dimension d ≥ 3 by

(218) g0(n) = 1

2 deg(0)

∞∑
N=0

�∗N
1
2

(n).

For all m sufficiently large, on T /m�, when restricted to �/m�, the Green’s function is
given by

(219) g0,Tm
(n) = 1

2 deg(0)

∞∑
N=0

(
�∗N

1
2 ,Tm

(n) − 1

md

)
.

PROOF. This is very similar to the proof of Lemma 29 in [16]. Recall that, in dimen-
sion 2,

(220) g0(n) = 1

deg(0)

∞∑
N=0

�∗N(n) − �∗N(0),

and in dimension at least 3,

(221) g0(n) = 1

deg(0)

∞∑
N=0

�∗N(n).

Since, by definition, �∗2(0) > 0, the measure �∗2 satisfies the conditions of the local limit
theorem above; see also [21]. Thus, after taking consecutive odd and even terms together, the
sums converge absolutely.

Expanding by the binomial theorem, in the d = 2 case,

1

2 deg(0)

∞∑
N=0

(
�∗N

1
2

(n) − �∗N
1
2

(0)
)

= 1

2 deg(0)

∞∑
N=0

1

2N

⎛⎝ N∑
k=0

(
N

k

)(
�∗k(n) − �∗k(0)

)⎞⎠
= 1

2 deg(0)

∞∑
k=0

(
�∗k(n) − �∗k(0)

) ∞∑
N=k

(
N

k

)
2−N.
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The inner sum evaluates to 2, from the identity ( 1
1−x

)k =∑∞
N=0

(N+k
k

)
xN which proves the

first claim. The claim in dimensions d ≥ 3 is similar.
To prove the identity on �/m�, expand both sides in characters of the group. �

The following lemma gives decay estimates for the Green’s function on T .

LEMMA 51. Let T be a tiling in Rd with period lattice �, and let η be a function on T
of bounded support. Let gη = g ∗ η. If η /∈ C1(T ), for x ∈ �,

gη(x) �
⎧⎪⎨⎪⎩

log
(
2 + ‖x‖), d = 2,

1

(1 + ‖x‖)d−2 , d ≥ 3.

If Da = δ
∗a1
1 ∗ · · · ∗ δ

∗ad

d is a discrete differential operator, η ∈ Cρ(T ) and ‖a‖+ ρ ≥ 1, then

Dagη(x) � 1

(1 + ‖x‖)d+|a|+ρ−2 .

PROOF. The claims are first proved for the Green’s function g0 started at 0. In this case
the claims regarding the Green’s function itself were proved in Lemma 22. To prove the
claims regarding the discrete derivative, write

(222) Dag0(x) = 1

2 deg 0

∞∑
n=0

Da�∗N
1
2

(x).

For N <
‖x‖2

(1+log(2+‖x‖))2 , Chernoff’s inequality implies that �∗N
1
2

(x) = OA((1 + ‖x‖)−A), so

that this part of the sum may be ignored. In the remaining part of the sum, the local limit
theorem obtains, for some c > 0,

Da�∗N
1
2

(x) � exp(−c
‖x‖2

N
)

N
d+|a|

2

.

Summed in N , this obtains the bound claimed.
Now, given η, if η /∈ C1(T ), write on �, g ∗ �η = gη,

gη(x) = ∑
y∈�

�η(y)g0(x − y) � ∑
y∈�

e−c‖y‖∣∣g0(x − y)
∣∣.

Due to the bound for g0, y may be truncated at ‖y‖ � (1 + log(2 + ‖x‖)), from which the
claim follows. The proof in case of Cρ for ρ = 1,2 is similar, by writing �η as a linear
combination of translates of first or second derivative operators. �

The remaining lemmas obtain analogues of the decay estimates for Dg on T in the setting
of the periodic case Tm. This is accomplished by a split space-frequency representation on Tm

in which small convolutions �∗N , which are localized in space, are treated in space domain,
and large values of �∗N are treated in frequency domain.

LEMMA 52. Let T be a tiling of Rd with periodic lattice � identified with Zd by a

choice of basis. Let σ 2 = Cov(�). For m ≥ 1 and for 1 ≤ ‖x‖(Z/mZ)d � ( m2

logm
)

d−1
2d ,

(223) ∇g0,Tm
(x) = − �(d

2 )σ−2x

deg(0)π
d
2 ‖σ−1x‖d detσ

+ O

(
1

‖σ−1x‖d

)
.
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PROOF. Let T = Cm2

logm
for a constant C > 0. Let σ 2

1
2

= Cov(ρ 1
2
), so σ 1

2
= 1√

2
σ . Let R =

2 + ‖σ−1
1
2

x‖. Then,

∇g0,Tm
(x) = 1

2 deg(0)

∑
n∈Zd

∑
0≤N<T

⎛⎜⎜⎜⎝
δ1
δ2
...

δd

⎞⎟⎟⎟⎠ ∗ �∗N
1
2

(x + mn)

+ 1

2 deg(0)

∑
T ≤N

⎛⎜⎜⎜⎝
δ1
δ2
...

δd

⎞⎟⎟⎟⎠ ∗ �∗N
1
2 ,Tm

(x).

In the first sum, by applying Chernoff’s inequality, those terms with n �= 0 contribute an
acceptable error term if C is sufficiently small. Similarly, discard those terms with N � R2

logR

as an error term. Applying the local limit theorem, the first term has a main term,

(224)
1

2 deg(0)

∑
R2

logR
�N≤T

(
−

σ−2
1
2

x

(2π)
d
2 detσ 1

2

exp(−
‖σ−1

1
2

x‖2

2N
)

N
d
2 +1

)
.

The error is bounded by

(225)

� OA

(
R−A)+ ∑

R2
logR

�N≤T

exp(−
‖σ−1

1
2

x‖2

2N
)

N
d+2

2

(
1 +

‖σ−1
1
2

x‖
√

N

)

� 1

‖σ−1
1
2

x‖d
.

The sum may be replaced with an integral,

(
1 + O

(
1

R

))
1

2 deg(0)

(
−

σ−2
1
2

x

π
d
2 ‖σ−1

1
2

x‖d detσ 1
2

)∫ 2T

R2

c
logR

exp(−1/r)

r
d
2

dr

r

=
(

1 + O

(
1

R

))(
−

�(d
2 )σ−2

1
2

x

2 deg(0)π
d
2 ‖σ−1

1
2

x‖d detσ 1
2

)
.

By Fourier inversion on the group (Z/mZ)d , the tail of the sum is given by

1

2 deg(0)

1

md

∑
0�=ξ∈(Z/mZ)d

⎛⎜⎜⎜⎜⎜⎝
e

(
ξ1

m

)
− 1

...

e

(
ξd

m

)
− 1

⎞⎟⎟⎟⎟⎟⎠
(1

2 + 1
2 �̂(

ξ
m

))T

1 − �̂(
ξ
m

)
e

(
ξ · x
m

)
.
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This is bounded in norm by, for some c > 0,

� 1

md

∑
0�=ξ∈(Z/mZ)d

(1 − c
‖ξ‖2

m2 )T

‖ξ‖
m

�
∫
(R/Z)d

exp(−cT ‖x‖2)

‖x‖ dx

�
∫ ∞

0
exp

(−cT r2)rd−1 dr

r
� T − d−1

2 .

The claimed asymptotic holds, since T � R
2d

d−1 . �

LEMMA 53. Let T be a tiling of Rd , d > 2 with periodic lattice � identified with Zd by

a choice of basis. Set σ 2 = Cov(�). For m ≥ 1 and for 1 ≤ ‖x‖(Z/mZ)d � ( m2

logm
)

d−2
2(d−1) ,

(226) g0,Tm
(x) = �(d

2 )

2 deg(0)(π)
d
2 ‖σ−1x‖d−2 detσ

+ O

(
1

‖σ−1x‖d−1

)
.

PROOF. Let T = Cm2

logm
for a constant C > 0. Let σ 2

1
2

= Cov(ρ 1
2
), so that σ 1

2
= 1√

2
σ . Let

R = 2 + ‖σ−1
1
2

x‖. Write

g0(x) = 1

2 deg(0)

∑
n∈Zd

∑
0≤N<T

�∗N
1
2

(x + mn)

+ 1

2 deg(0)

∑
T ≤N

�∗N
1
2 ,Tm

(x).

In the first sum, by applying Chernoff’s inequality, those terms with n �= 0 contribute an
acceptable error term if C is sufficiently small. Similarly, discard those terms with N �
R2

logR
as an error term. Applying the local limit theorem, the first term becomes, with error

OA(R−A),

(227)
1

2 deg(0)

∑
R2

logR
�N≤T

( exp(−
‖σ−1

1
2

x‖2

2N
)

(2π)
d
2 detσ 1

2
N

d
2

)(
1 + O

(
1

R

))
.

With the same relative error the sum may be replaced with an integral,(
1 + O

(
1

R

))
1

4 deg(0)

(
1

π
d
2 ‖σ−1

1
2

x‖d−2 detσ 1
2

)∫ 2T

R2

c
logR

exp(−1/x)

x
d
2 −1

dx

x

=
(

1 + O

(
1

R

))(
�(d

2 − 1)

4 deg(0)π
d
2 ‖σ−1

1
2

x‖d−2 detσ 1
2

)
.

The main term can be obtained by using σ 1
2

= 1√
2
σ . By Fourier inversion on the group

(Z/mZ)d , the tail of the sum is given by

1

2 deg(0)

1

md

∑
0�=ξ∈(Z/mZ)d

(1
2 + 1

2 �̂(
ξ
m

))T

1 − �̂(
ξ
m

)
e

(
ξ · x
m

)
.
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This is bounded in norm by, for some c > 0,

� 1

md

∑
0�=ξ∈(Z/mZ)d

(1 − c
‖ξ‖2

m2 )T

(
‖ξ‖
m

)2

�
∫
(R/Z)d

exp(−cT ‖x‖2)

‖x‖2 dx

�
∫ ∞

0
exp

(−cT r2)rd−2 dr

r
� T − d−2

2 .

The claimed asymptotic holds, since T � R
2(d−1)
d−2 . �

LEMMA 54. Keep the notation of the previous lemma. The discrete derivatives satisfy,
for any a ∈ Nd , |a| ≥ 1 and for all x ∈ �,

(228) Dag0,Tm
(x) �a

1

1 + ‖x‖|a|+d−2
(Z/mZ)d

.

PROOF. Assume that among the representatives of x mod mZd , ‖x‖ is minimal. Let R =
2 + ‖σ−1x‖(Z/mZ)d . Split the sum as

Dag0,Tm
(x) = 1

2 deg(0)

∑
n∈Zd

∑
0≤N<R2

δ
∗a1
1 ∗ · · · ∗ δ

∗ad

d �∗N
1
2

(x + mn)

+ 1

2 deg(0)

∑
N>R2

δ
∗a1
1 ∗ · · · ∗ δ

∗ad

d �∗N
1
2 ,Tm

(x).

In the first sum, use Chernoff’s inequality to discard those terms with N � R2

logR
and those

terms with m2‖n‖2 � R2 logR.
By the local limit theorem, the first sum is bounded by

� ∑
R2

logR
�N≤R2

∑
n∈Zd

exp(−‖σ−1(x+mn)‖2

2N
)

N
d+|a|

2

(
1 + ‖x + mn‖√

N

)|a|
.

By the exponential decay, the sum over n is bounded by a constant times the n = 0 term.
Meanwhile, the sum over those terms with n = 0 is bounded by � 1

1+‖x‖|a|+d−2 .
Expanding the tail of the sum in characters and bounding the sum in absolute value, it is

bounded by

� 1

md

∑
0�=ξ∈(Z/mZ)d

d∏
j=1

∣∣∣∣1 − e

(
ξj

m

)∣∣∣∣aj |1+�̂(
ξ
m

)

2 |R2

1 − |�̂(
ξ
m

)|

�
∫
(R/Z)d

∏d
j=1 |ξj |aj

‖ξ‖2 exp
(−cR2‖ξ‖2)dξ

�
∫ ∞

0
e−cr2R2

r |a|+d−2 dr

r

� 1

R|a|+d−2 . �
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The remaining lemmas treat the convolution of the Green’s function with a measure η of
bounded support on the tiling T . Note that the estimates are stated for the argument in the
lattice �, but the regularity of η is invariant under translating T which permits recovering
estimates for all t ∈ T .

LEMMA (Lemma 28). Let T be a tiling of Rd which is � ∼= Zd periodic. Let η be of
class Cρ(T ) for some 0 ≤ ρ ≤ 2. Let Da be a discrete differential operator on the lattice �,
and assume that |a| + ρ + d − 2 > 0. For m ≥ 1 and for x ∈ �,

(229) Dagη,Tm
(x) � 1

1 + ‖x‖|a|+ρ+d−2
(Z/mZ)d

.

PROOF. Assume without loss of generality that x ∈ � satisfies ‖x‖ = ‖x‖(Z/mZ)d which
can be assumed to be larger than any fixed constant.

Let �η be the signed measure on T obtained by stopping random walk started from η at
the first time that it reaches �. Thus, for x ∈ �/m�, gη,Tm

(x) = gTm
∗ �η.

In the case ρ = 0, bound, using Lemma 54,

Dagη,Tm
(x) = ∑

y∈�

�η(y)Dag0,Tm
(x − y)

� ∑
y∈�

e−c‖y‖ 1

1 + ‖x − y‖d+|a|−2
(Z/mZ)2

� 1

1 + ‖x‖d+|a|−2
(Z/mZ)2

.

The last estimate holds by splitting on ‖y‖ � log‖x‖ and bounding the values of
1

1+‖x−y‖d+|a|−2

(Z/mZ)2

with larger ‖y‖ by a constant. In the case ρ = 1, by Lemma 49 write

�η =∑d
i=1 fi ∗ δi . Then,

Dagη,Tm
(x) =

d∑
i=1

∑
y∈�

fi(y)Daδi ∗ g0,Tm
(x − y)

�
d∑

i=1

∑
y∈�

e−c‖y‖ 1

1 + ‖x − y‖d+|a|−1
(Z/mZ)2

� 1

1 + ‖x‖d+|a|−1
(Z/mZ)2

.

In the case ρ = 2, by Lemma 49 write �η =∑
1≤i≤j≤d fi,j ∗ δi ∗ δj . Then,

Dagη,Tm
(x) = ∑

1≤i≤j≤d

∑
y∈�

fi,j (y)Daδi ∗ δj ∗ g0,Tm
(x − y)

� ∑
1≤i≤j≤d

∑
y∈�

e−c‖y‖ 1

1 + ‖x − y‖d+|a|
(Z/mZ)2

� 1

1 + ‖x‖d+|a|
(Z/mZ)2

.
�
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LEMMA (Lemma 29). Let T be a tiling of Rd with period lattice � identified with Zd via
a choice of basis. Let σ 2 = Cov(�). Let η be of class C1(T ), and let �η be the signed measure
on � obtained by stopping simple random walk on T started from η when it reaches �. Let

�η have mean v. For n ∈ �, 1 ≤ ‖n‖ � ( m2

logm
)

d−1
2d ,

(230) gη,Tm
(n) = �(d

2 )vtσ−2n

deg(0)π
d
2 ‖σ−1n‖d detσ

+ O

(
1

‖σ−1n‖d

)
.

If d ≥ 3 and η /∈ C1(T ) has total mass C,

(231) gη,Tm
(n) = C�(d

2 − 1)

2 deg(0)π
d
2 ‖σ−1n‖d−2 detσ

+ O

(
1

‖σ−1n‖d−1

)
.

PROOF. Let h = ∑d
i=1 hiδi = −vt · ∇ be a sum of first derivative operators which has

the same mean as �η. The difference η − h is C2, hence by the previous lemma

(232) gTm
∗ (η − h)(n) � 1

‖σ−1n‖d
.

For the measure h, by Lemma 52,

(233) (gTm
∗ h)(n) = �(d

2 )vtσ−2n

deg(0)π
d
2 ‖σ−1n‖d detσ

+ O

(
1

‖σ−1n‖d

)
.

The second claim follows similarly, by choosing h to be a point mass at 0 with value equal to
the sum of the values of η. Apply Lemma 53 to the difference gTm

∗ (η − h). �

LEMMA (Lemma 30). Let d ≥ 2, and let a ∈ Nd . If |a| + d
2 > 2, then for each fixed

n, v ∈ T ,

(234) Dagv,Tm
(n) → Dagv(n),

as m → ∞.

PROOF. As a function on �, the Fourier transform of Dag0,

(235) D̂ag0(x) =
∏d

j=1(e(xj ) − 1)aj

(deg(0))(1 − �̂(x))
.

On �/m�, the discrete Fourier transform is obtained by taking points which are 1
m

times a
vector in Zd . By inverse Fourier transform

(236) Dag0,Tm
(n) = 1

md

∑
0�=x∈(Z/mZ)d

D̂ag0

(
x

m

)
e

(
n · x
m

)
.

Note that the summand can be unbounded near 0 but is integrable, and the sum avoids 0.
Letting m → ∞ obtains the integral

(237) Dag0(n) =
∫
(R/Z)d

D̂ag0(x)e(n · x)dx.

When n /∈ �, use that Dag0(n) is a mixture of nearby lattice values and that the mixture
decays exponentially. Since Dag0(n

′) also decays as ‖n′‖ → ∞, the claim follows.
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By translation invariance, the argument for v = 0 also handles the case of v ∈ �. When
v /∈ �, write

gv,Tm
(x) = −cv + 1

degx
E

[
Tv−1∑
j=0

1(Yv,j = x)

]
+ E

[
gYv,Tv ,Tm

(x)
]
.

Since Tv has distribution which decays exponentially, as m → ∞ there is a probability expo-
nentially small in m that Yv,n, 1 ≤ n ≤ Tv exits (−m

2 , m
2 ]d , so up to exponentially small error,

the value of

(238)
1

degx
E

[
Tv−1∑
j=0

1(Yv,j = x)

]

is the same whether interpreted on T or on Tm. Also, cv → 0 as m → ∞ so this may be
discarded as an error term. The probability that Yv,Tv leaves a fixed ball about 0 tends to 0 as
the radius tends to infinity, and, by the derivative condition, the Green’s function is bounded.
Hence, the convergence of

(239) E
[
gYv,Tv ,Tm

(x)
]→ E

[
gYv,Tv

(x)
]

holds from the convergence of the Green’s function on fixed balls about 0. �
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