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LARGE DEVIATIONS AND LOCALIZATION OF THE MICROCANONICAL
ENSEMBLES GIVEN BY MULTIPLE CONSTRAINTS

BY KYEONGSIK NAM

Department of Mathematics, University of California, Berkeley, ksnam@math.berkeley.edu

We develop a unified theory to analyze the microcanonical ensembles
with several constraints given by unbounded observables. Several interesting
phenomena that do not occur in the single constraint case can happen under
the multiple constraints case. We systematically analyze the detailed struc-
tures of such microcanonical ensembles in two orthogonal directions using
the theory of large deviations. First of all, we establish the equivalence of
ensembles result, which exhibits an interesting phase transition phenomenon.
Secondly, we study the localization and delocalization phenomena by obtain-
ing large deviation results for the joint law of empirical distributions and the
maximum component. Some concrete examples for which the theory applies
will be given as well.

1. Introduction.

1.1. Motivation. There are several notions of statistical ensembles describing the me-
chanical system. For instance, a canonical ensemble represents the possible states in the
equilibrium with a heat reservoir at a fixed temperature, whereas a microcanonical ensem-
ble represents the states having a specified total energy. The Gibbs’ principle, which is also
called the principle of equivalence of ensembles, states that in the infinite volume limit, the
microcanonical ensemble converges to the canonical ensemble with a certain temperature. A
theory of large deviations has provided an elegant way to describe the equivalence of ensem-
bles results. We refer to [5, 9, 14] for a monograph about Gibbs measures and the statistical
mechanics.

The theory of microcanonical ensembles with a single constraint has been well established.
For instance, consider the microcanonical ensemble given by a uniform distribution on the
set {∣∣∣∣φ(x1) + · · · + φ(xn)

n
− c

∣∣∣∣≤ δ

}
, δ > 0 small,(1)

where a random vector distributed as a uniform distribution on (1) is denoted by X =
(X1, . . . ,Xn) (a random vector notation X will be used throughout the Introduction). The
principle of equivalence of ensembles asserts that the law of X1 converges weakly to the prob-
ability distribution λ∗ maximizing a differential entropy h(μ) over the constraint

∫
φ dμ = c,

as n → ∞ followed by δ → 0 (see Proposition 5.1 for details).
Beyond the single constraint of type (1), it is natural and crucial to consider the micro-

canonical ensembles given by several constraints:

2⋂
i=1

{∣∣∣∣φi(x1) + · · · + φi(xn)

n
− ai

∣∣∣∣≤ δ

}
, δ > 0 small.(2)
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Here, the configuration space � := (0,∞)n is equipped with the reference measure P := λ⊗n

for some probability measure λ on (0,∞). The microcanonical ensemble is a conditional
distribution of P on the set (2). The classical Gibbs principle for the microcanonical ensem-
ble with a single constraint naturally applies if φi ’s are bounded and continuous: the law
of X1 converges weakly to the distribution dλ∗ = 1

Z
eαφ1+βφ2 dλ for some α,β satisfying∫

φi dλ∗ = ai , i = 1,2, as n → ∞ followed by δ → 0.
However, entirely new and interesting phenomena happen if φi’s are not bounded. For

instance, for the configuration space (0,∞)n, consider the uniform distribution on the set{
φ1(x1) + · · · + φ1(xn)

n
= 1
}

∩
{
φ2(x1) + · · · + φ2(xn)

n
= b

}
(3)

with unbounded functions φi(x) = xi for i = 1,2. Chatterjee [2] proved that when 1 ≤ b ≤ 2,
the law of X1 converges weakly to the G1,b-distribution as n → ∞, where G1,b is a proba-
bility distribution on (0,∞) of the form 1

Z
erx+sx2

dx satisfying∫
x dG1,b = 1,

∫
x2 dG1,b = b.

On the other hand, a genuinely new phenomenon appears when b > 2. In fact, the law of
X1 converges weakly to exp(1) distribution as n → ∞, whatever the value of b > 2 is. This
explains that one of the constraints becomes irrelevant to the thermodynamic behavior of (3).
Another striking fact is that the expectation of φ2 under the limiting distribution, which is
equal to 2, is strictly less than b. In other words, some localized site 1 ≤ i ≤ n possesses a

strictly positive l2-mass
x2
i

n
and a negligible l1-mass xi

n
due to the existence of a discrepancy

b − 2 corresponding to the second constraint. This example shows that microcanonical en-
sembles given by several constraints (2) with unbounded φi ’s behave qualitatively differently
from the ensembles with bounded φi’s.

The microcanonical ensembles with several constraints, given by unbounded observables
such as (3), are of great importance in the statistical mechanics due to their wide appli-
cations to the partial differential equations. For instance, consider the (focusing) nonlinear
Schrödinger equation (NLS)

ut = −�u − |u|p−1u(4)

(see [17] for a monograph of dispersive equations). Since the Hamiltonian H(u) =∫ 1
2 |∇u|2 − 1

p+1 |u|p+1 and the mass M(u) = ∫ |u|2 are conserved under the NLS (4), a
natural invariant measure for NLS is a uniform distribution on the set∣∣M(u) − m

∣∣≤ δ,
∣∣H(u) − E

∣∣≤ δ, δ > 0 small.(5)

This microcanonical ensemble can be made rigorous by discretizing the underlying space
Rd . Chatterjee [1] showed that in a suitable thermodynamic limit, a typical function in the
microcanonical ensemble (5) approximates the ground state soliton. As a consequence, a sta-
tistical version of the soliton resolution conjecture was established. This example illustrates
that thermodynamic properties of a general class of microcanonical ensembles can lead to
describe a probabilistic behavior of the corresponding PDEs.

However, despite its importance, no systematic methods to analyze such microcanonical
ensembles have been developed yet. To the author’s best knowledge, the only concrete exam-
ples of such microcanonical ensembles that have been studied so far are (3) with φi(x) = xi

(see [2]) and (5) (see [1]). However, methods used there are ad hoc, and finer structures of the
microcanonical ensembles are far from being well understood. In this paper, we first develop
a unified framework describing thermodynamic behaviors of general microcanonical ensem-
bles with multiple constraints given by unbounded functions. Remarkably, it turns out that
such microcanonical ensembles behave significantly differently from the single constraint
case or the multiple constraints given by bounded observables.
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1.2. Previous works and main contributions of our work. The equivalence result between
the microcanonical ensemble given by a single constraint and the grand canonical ensemble
is quite classical and has been studied extensively. We refer to [4, 13] for the case when the
Hamiltonian describing a constraint is given by a bounded interacting potential, and [6–8]
for the case including a possibly unbounded interacting potential. The similar equivalence of
ensembles result holds for the microcanonical ensemble with multiple constraints of type

k⋂
i=1

{∣∣∣∣φi(X1) + · · · + φi(Xn)

n
− ai

∣∣∣∣≤ δ

}
, k ≥ 2, δ > 0 small,(6)

provided that φi ’s are bounded functions.
However, as explained before, an entirely new phenomenon occurs if φi ’s are not bounded

functions: as mentioned before, some of multiple constraints in (6) may become extraneous
in a thermodynamic limit. The first main contribution of our work is to develop a unified
framework about the equivalence of ensembles result for general microcanonical ensembles
with several constraints given by unbounded observables. The framework developed in this
paper is new in the statistical mechanics literature, and robust which clearly explains a mys-
terious thermodynamic behavior of such microcanonical ensembles. We build a framework
using a large deviation theory, and precisely characterize a thermodynamic limit of such mi-
crocanonical ensembles.

Another entirely new phenomenon of the microcanonical ensembles given by several con-
straints with unbounded observables is a localization phenomenon, which complements the
equivalence of ensembles result (see Section 2 for the explanations). Under the single con-
straint (1) with an unbounded function φ, it is not hard to see that localization does not
happen (see Proposition 5.2 for a precise statement and a proof). On the other hand, for the
microcanonical ensemble given by multiple constraints (6) with unbounded functions φi ’s, as
explained in the example (3), a strictly positive mass can be concentrated on some sites (see
Theorem 2.8 for details). The second contribution of our paper is a systematic study on the
localization and delocalization phenomena of the general microcanonical ensembles. In par-
ticular, we derive a large deviation principle for the joint law of empirical distributions and
the maximum component. This type of result is new in the statistical mechanics literature,
and reveals a genuinely new and detailed structure of such microcanonical ensembles.

1.3. Organization of the paper. The paper is organized as follows. In Section 2, we first
introduce a precise model of microcanonical ensembles with several constraints given by
unbounded observables, and then state main theorems and explain their interpretations.

The key principle behind a new behavior of such microcanonical ensembles is a large
deviation result for the joint law of empirical distributions and several empirical means (The-
orem 3.4). Using this result combined with the Gibbs conditioning principle, we precisely
characterize a thermodynamic limit of microcanonical ensembles. Details are elaborated in
Section 3.

In Section 4, we describe the localization and delocalization phenomena of microcanonical
ensembles. The key result is a large deviation result for the joint law of empirical distributions
and the maximum component (Theorem 4.1), which illustrates a detailed thermodynamic
behavior of the microcanonical ensembles. Finally, in Section 5, some concrete examples of
the microcanonical distributions for which the theory applies will be covered.

1.4. Notations. Throughout the paper, for a Polish space S , let us denote B by the Borel
σ -field on S and Cb(S) by the set of bounded continuous functions on S . Let us define
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M(S) as the set of finite regular Borel measures on S , and M1(S) as the subspace of proba-
bility measures. Given the set of bounded continuous functions {gk} that determine the weak
convergence on M1(S), we define a metric d on M1(S) by

d(μ, ν) :=
∞∑

k=1

1

2k‖gk‖∞

[∫
S

gk dμ −
∫
S

gk dν

]
(7)

for two probability measures μ,ν. Note that the weak topology on M1(S) coincides with
the topology given by a metric d . Throughout this paper, we assume that M1(S) is equipped
with the weak topology. For μ,ν ∈ M1(S), H(μ|ν) denotes the relative entropy between
μ and ν. Finally, ∂f denotes a subdifferential of the function f , and the integral

∫∞
0 f is

simplified to
∫

f .

2. Main results. Consider the configuration space � = (0,∞)N, and let us denote Xi :
� → (0,∞) by the projection onto the ith coordinate. Assume that the functions φ1, . . . , φk

(k ≥ 2) satisfying the following Assumption 1 are given.

ASSUMPTION 1. Functions φ1, . . . , φk (k ≥ 2) satisfy:

(i) For each 1 ≤ i ≤ k, φi : (0,∞) → (0,∞) is C1, increasing, and limx→∞ φi(x) = ∞.
(ii) For each 1 ≤ i ≤ k and any c > 0,

∫∞
0 e−cφi dx < ∞.

(iii) There exists κ > 1 such that φκ
i < φi+1 for each 1 ≤ i ≤ k − 1.

(iv) There exists C,M > 0 such that x > C ⇒ 1
C

φi(x)−M < φ′
i (x) < Cφi(x)M for each i.

Conditions (i) and (ii) imply that φi ’s are unbounded and grows not slowly at infinity.
Condition (iii) means that for each index i, φi+1 grows faster than φi at infinity. A technical
assumption (iv) will be used to prove Lemma A.1 later. It is not hard to see that a large
class of functions φi ’s satisfy the Assumption 1. For instance, a large class of polynomials
with strictly increasing degrees, which is of our main interest due to its wide applications in
geometry and PDEs as explained in the Introduction, satisfy the Assumption 1. In particular,
the constraint that Chatterjee considered in [2] corresponds to the case φ1(x) = x and φ2(x) =
x2.

For each 1 ≤ i ≤ k, define the empirical means

Si
n := φi(X1) + · · · + φi(Xn)

n
,

and then consider the following constraints for each δ > 0:

Cδ
n :=

k⋂
i=1

{∣∣Si
n − ai

∣∣≤ δ
}
.

We are interested in the infinite volume behavior of the uniform distribution on the constraint
Cδ

n as the gap δ converges to zero. Since the Lebesgue measure is not a probability measure,
we define a reference measure P to be P := λ⊗N on � = (0,∞)N, where λ is a probability
measure on (0,∞) defined by

λ = 1

Z
e−φ1 dx(8)

(Z is a normalizing constant). The motivation to choose such reference measure is that it
is a probability measure and once conditioned on the constraint Cδ

n, it behaves like the uni-
form distribution as δ → 0. In fact, the conditional distribution of any reference measure
( 1
Z

ep1φ1+···+pkφk dx)⊗N on the constraint Cδ
n approximates the uniform distribution in a cer-

tain sense as δ → 0. We refer to Remark 2.7 for the detailed explanations.
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Now, let us consider the following microcanonical distribution:

P
(
(X1, . . . ,Xn) ∈ ·|Cδ

n

)
.(9)

We develop a unifying method to systematically analyze the detailed behaviors of (9) as
n → ∞ followed by δ → 0.

Note that for certain values of (a1, . . . , ak), the conditional distribution (9) may not be well
defined since the constraint Cδ

n may be an empty set for small δ > 0. In order to avoid this
problem, we define the admissible set in the following way: let us denote A1 ⊂ (0,∞)(k−1)

by

A1 := int
{
(v1, . . . , vk−1) ∈ (0,∞)(k−1) : ∃μ ∈ M1

(
R+) such that

h(μ) �= −∞,

∫
φ1 dμ = v1, . . . ,

∫
φk−1 dμ = vk−1,

∫
φk dμ < ∞

}
.

Here, h(μ) is the differential entropy of the probability measure μ ∈ M1(R
+), defined by

h(μ) :=
⎧⎪⎨
⎪⎩

−
∫

dμ

dx
log
(

dμ

dx

)
dx μ � dx,

−∞ otherwise.

For each (v1, . . . , vk−1) ∈ A1, define

g1(v1, . . . , vk−1)

:= inf
μ∈M1(R

+)

{∫
φk dμ : h(μ) �= −∞,

∫
φ1 dμ = v1, . . . ,

∫
φk−1 dμ = vk−1

}
.

Finally, the admissible set A is defined by

A := {(v1, . . . , vk−1, vk) : (v1, . . . , vk−1) ∈ A1, vk > g1(v1, . . . , vk−1)
}
.

Also, we assume that a map g1 : A1 →R is continuous, which implies that A is an open set.
Throughout this paper, we only consider the case (a1, . . . , ak) ∈ A so that the constraint Cδ

n

is a nonempty set, and thus the microcanonical distribution is well defined (see Remark 3.8
for the explanations).

We first characterize the law to which the finite marginal distribution P((X1, . . . ,Xj ) ∈
·|Cδ

n) weakly converges as n → ∞ followed by δ → 0.

THEOREM 2.1. Let λ∗ be the (unique) maximizer of the differential entropy h(·) over the
set {

μ ∈ M1
(
R+) : ∫ φ1 dμ = a1, . . . ,

∫
φk−1 dμ = ak−1,

∫
φk dμ ≤ ak

}
.(10)

Then, for any fixed positive integer j ,

lim
δ→0

lim
n→∞P

(
(X1, . . . ,Xj ) ∈ ·|Cδ

n

)= (λ∗)⊗j
.(11)

REMARK 2.2. When each function φi is bounded and continuous, as a simple applica-
tion of the maximum entropy principle, one can deduce that the limiting law λ∗ in (11) is a
(unique) maximizer of the differential entropy h(·) over the set{

μ ∈M1
(
R+) : ∫ φi dμ = ai,1 ≤ i ≤ k

}
.(12)
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In fact, according to the maximum entropy principle, the limiting distribution λ∗ in (11) is a
(unique) minimizer of the relative entropy H(·|λ) over the set (12). Thus, using the identity,
for μ � dx,

H(μ|λ) =
∫

log
(

dμ

dλ

)
dμ

=
∫

log
(

dμ

dx

)
dμ +

∫
log
(

dx

dλ

)
dμ

= −h(μ) + a1 + C,

it follows that λ∗ is a (unique) maximizer of the differential entropy h(·) over the set (12).
On the other hand, when the macroscopic observables φi ’s are unbounded, the classical

maximum entropy principle is not applicable since the map μ �→ ∫
φi dμ may not be contin-

uous. Theorem 2.1 claims that the last condition
∫

φk dμ = ak in the set (12) is enlarged to
the condition

∫
φk dμ ≤ ak . This implies that for certain values of a1, . . . , ak−1, the last con-

straint |Sk
n − ak| ≤ δ may be irrelevant to the limiting law of the finite marginal distribution

of (9). In other words, unlike the case when φi’s are bounded continuous, the limiting law
λ∗ may not satisfy

∫
φk dλ∗ = ak . This phenomenon is precisely described in Theorem 2.4,

which is about the equivalence of ensembles result.

It turns out that as in Remark 2.2, the structure of a set (10) in Theorem 2.1 is also different
from the case when the microcanonical distribution is given by a single constraint. In fact, in
the case of single constraint (1) under the reference measure ( 1

Z
e−φ dx)⊗N (assume that an

unbounded function φ satisfies the conditions (i) and (ii) in Assumption 1), λ∗ in Theorem 2.1
is given by

λ∗ = arg max
μ∈M1(R

+)

{
h(μ) :

∫
φ dμ ≤ c

}
= arg max

μ∈M1(R
+)

{
h(μ) :

∫
φ dμ = c

}

(see Section 5.1 and the identity (89)). In other words, even when φ is unbounded, the lim-
iting distribution λ∗ satisfies

∫
φ dλ∗ = c. We refer to [7, 8] for the similar equivalence of

ensembles result for more general Hamiltonian with superstable interactions.
On the other hand, as mentioned before, in the case of multiple constraints with unbounded

φi ’s satisfying Assumption 1, the expectation of φk under the limiting distribution λ∗ may not
be equal to ak . Also, the expectation of φi ’s (1 ≤ i ≤ k − 1) under the limiting distribution
λ∗ is always equal to ai . This is because the unbounded function φk controls other functions,
and the main reason behind this phenomenon is illustrated in Theorem 3.4.

Now, let us precisely characterize a unique maximizer of the differential entropy h(·) over
the set (10). In order to accomplish this, we need the following definition.

DEFINITION 2.3. Define the logarithmic moment generating function:

H(p1, . . . , pk) := log
∫

ep1φ1+···+pkφk dλ.(13)

Let us denote π1 and π2 by the projections π1(v1, . . . , vk−1, vk) = (v1, . . . , vk−1) and
π2(v1, . . . , vk−1, vk) = vk . Then, define S1 ⊂ A1 by a collection of (v1, . . . , vk−1)’s such
that there exist p1, . . . , pk−1 satisfying

(v1, . . . , vk−1) ∈ π1
(
∂H(p1, . . . , pk−1,0)

)
.(14)

For (v1, . . . , vk−1) ∈ S1, choose a unique (p1, . . . , pk−1) satisfying (14) (see Remark 3.11
for the explanations), and then define a function g2 : S1 →R by

g2(v1, . . . , vk−1) := inf
{
π2
(
∂H(p1, . . . , pk−1,0)

)}
.(15)

Finally, define S2 := A1 ∩ Sc
1 .
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Now, one can precisely characterize the distribution λ∗ in Theorem 2.1 using the notions
in Definition 2.3. It exhibits an interesting phase transition phenomenon.

THEOREM 2.4. Fix any positive integer j . Then,

lim
δ→0

lim
n→∞P

(
(X1, . . . ,Xj ) ∈ ·|Cδ

n

)= (λ∗)⊗j
,

where λ∗ is characterized as follows: either in the case of

(i) (a1, . . . , ak−1) ∈ S2 or
(ii) (a1, . . . , ak−1) ∈ S1 and ak < g2(a1, . . . , ak−1),

λ∗ = 1

Z
ep1φ1+···+pk−1φk−1+pkφk dx

for p1, . . . , pk−1,pk satisfying pk < 0 and
∫

φi dλ∗ = ai for 1 ≤ i ≤ k.
On the other hand, when (a1, . . . , ak−1) ∈ S1 and ak ≥ g2(a1, . . . , ak−1),

λ∗ = 1

Z
ep1φ1+···+pk−1φk−1 dx

for p1, . . . , pk−1 satisfying
∫

φi dλ∗ = ai for 1 ≤ i ≤ k − 1.

According to the Gibbs principle, if each φi is bounded continuous, then the limiting law is
of the form λ∗ = 1

Z
ep1φ1+···+pkφk dx satisfying

∫
φi dλ∗ = ai for all 1 ≤ i ≤ k. Also, when the

microcanonical ensemble is given by a single constraint (1), even when φ is not bounded, one
can prove a similar result (see Proposition 5.1). However, when the constraints are given by
several unbounded observables satisfying Assumption 1, Theorem 2.4 demonstrates that one
of the constraints may not contribute to the limiting distribution λ∗. We refer to Sections 5.2
and 5.3 for some concrete examples.

Theorem 2.4 also shows that the interesting phase transition phenomenon happens
in the equivalence of ensembles viewpoint. Indeed, when (a1, . . . , ak−1) ∈ S1 and ak ≥
g2(a1, . . . , ak−1), the kth constraint Sk

n = ak becomes extraneous for a limit of the finite
marginal distributions of the microcanonical ensembles. Since λ∗ in Theorem 2.4 satisfies∫

φk dλ∗ = g2(a1, . . . , ak−1) (see Lemma 3.12), it is plausible to guess that the discrepancy
ak − g2(a1, . . . , ak−1) corresponding to the kth constraint gets concentrated on some sites.
We will rigorously elaborate on this point in Theorem 2.8.

On the other hand, when (a1, . . . , ak−1) ∈ S1 and ak < g2(a1, . . . , ak−1), in the equiva-
lence of ensembles viewpoint Theorem 2.4, the microcanonical distributions (9) behave in a
standard way. In other words, as in the case when φi ’s are bounded, the limiting distribution
λ∗ satisfies

∫
φi dλ∗ = ai for all 1 ≤ i ≤ k. From this, we can infer that no huge amount of

the quantity can be concentrated on some sites (see Theorem 2.6 for the precise statement),
unlike the case ak ≥ g2(a1, . . . , ak−1). Another interesting point of Theorem 2.4 is the case
when (a1, . . . , ak−1) ∈ S2: unlike the case (a1, . . . , ak−1) ∈ S1, whatever ak is, the limiting
distribution λ∗ satisfies

∫
φi dλ∗ = ai for all 1 ≤ i ≤ k. This key difference of the sets S1 and

S2 follows from Lemma 3.12.
Although Theorem 2.4 provides the equivalence of ensembles result and explains the in-

teresting phase transition phenomenon, it does not capture the localization phenomenon. In
order to illustrate this, assume for a moment that in a thermodynamic limit, a huge amount
of the quantity gets concentrated on a single site. It is obvious that the probability that this
localized site is the first coordinate of the configuration space is equal to 1

n
. Since 1

n
converges

to zero as n → ∞, this localization phenomenon is not reflected in the statement

lim
δ→0

lim
n→∞P

(
X1 ∈ ·|Cδ

n

)= λ∗.
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Therefore, the localization and delocalization phenomena can provide the supplementary
information about the microcanonical ensembles. We study this phenomenon by obtaining a
large deviation result for the maximum component. In fact, we can analyze much finer struc-
tures of (9) by establishing a large deviation result for the joint law of empirical distributions
Ln := 1

n
(δX1 + · · · + δXn) and the maximum component Mn := max1≤i≤n

φk(Xi)
n

under the
microcanonical distribution (9).

THEOREM 2.5. For any Borel set A in M1(R
+) ×R+,

− inf
(μ,z)∈Ao

J max(μ, z)

≤ lim inf
δ→0

lim inf
n→∞

1

n
logP

(
(Ln,Mn) ∈ Ao|Cδ

n

)

≤ lim sup
δ→0

lim sup
n→∞

1

n
logP

(
(Ln,Mn) ∈ Ā|Cδ

n

)≤ − inf
(μ,z)∈Ā

J max(μ, z)

with the rate function J max(μ, z) given by

J max(μ, z)

=
⎧⎨
⎩−h(μ) − K(a1, . . . , ak)

∫
φi dμ = ai(1 ≤ i ≤ k − 1),

∫
φk dμ ≤ ak − z,

∞ otherwise.

Here, K(a1, . . . , ak) is defined by

K(a1, . . . , ak)

:= inf
μ∈M1(R

+)

{
−h(μ) :

∫
φ1 dμ = a1, . . . ,

∫
φk−1 dμ = ak−1,

∫
φk dμ ≤ ak

}
.

Theorem 2.5 provides fine structures of the microcanonical ensembles since it offers the
limit behaviors of the joint law of empirical distributions and the maximum component. In
particular, one can systematically analyze the localization and delocalization phenomena of
the microcanonical ensembles using the large deviation result Theorem 2.5. First, one can
prove the following delocalization result.

THEOREM 2.6. Fix any ε > 0. Then, either in the case of

(i) (a1, . . . , ak−1) ∈ S2 or
(ii) (a1, . . . , ak−1) ∈ S1 and ak ≤ g2(a1, . . . , ak−1),

lim sup
δ→0

lim sup
n→∞

1

n
logP

(
Mn ≥ ε|Cδ

n

)
< 0.(16)

In particular, localization does not happen in the sense that

lim
δ→0

lim
n→∞P

(
Mn < ε|Cδ

n

)= 1.(17)

On the other hand, in the case of (a1, . . . , ak−1) ∈ S1 and ak > g2(a1, . . . , ak−1), we have the
upper tail estimate for the maximum component:

lim sup
δ→0

lim sup
n→∞

1

n
logP

(
Mn ≥ ak − g2(a1, . . . , ak−1) + ε|Cδ

n

)
< 0.(18)

In particular, the maximum component cannot be too large in the sense that

lim sup
δ→0

lim sup
n→∞

P
(
Mn < ak − g2(a1, . . . , ak−1) + ε|Cδ

n

)= 1.
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Theorem 2.6 claims that for certain values of (a1, . . . , ak) (condition (i) or (ii) in The-
orem 2.6), delocalization happens in the sense that (17) holds. On the other hand, when
(a1, . . . , ak−1) ∈ S1 and ak > g2(a1, . . . , ak−1), as we predicted before, it is plausible to ex-
pect that the localization phenomenon happens. Since Theorem 2.6 provides the upper tail
estimate (18) for the maximum component, if we have an analogous lower tail estimate:

lim sup
δ→0

lim sup
n→∞

1

n
logP

(
Mn ≤ ak − g2(a1, . . . , ak−1) − ε|Cδ

n

)
< 0,(19)

then we can deduce that Mn approximates to ak − g2(a1, . . . , ak−1) as n → ∞ followed by
δ → 0, which implies the localization phenomenon. Unfortunately, using the large deviation
result Theorem 2.5, one can check that (19) is false in general: indeed,

lim
δ→0

lim
n→∞

1

n
logP

(
Mn ≤ ak − g2(a1, . . . , ak−1) − ε|Cδ

n

)= 0(20)

(see Section 4.2 for the explanations). Therefore, in order to obtain the lower tail estimate of
type (19), we need to scale down the scaling factor n. Remarkably, it turns out that unlike the
upper tail estimate (18) or the delocalization estimate (16), the correct scaling factor in (19)
highly depends on the detailed structures of the functions φi ’s:

lim sup
δ→0

lim sup
n→∞

1

g(n)
logP

(
Mn ≤ ak − g2(a1, . . . , ak−1) − ε|Cδ

n

)
< 0,(21)

for some function g heavily relying on φi ’s. Also, since the scaling factor g(n) grows slowly
than n, unlike the estimate (16) or (18), the left-hand side of the lower tail estimate (21) is
sensitive to the particular choice of the reference measure of the form(

1

Z
ep1φ1+···+pkφk dx

)⊗N

due to the following Remark 2.7.

REMARK 2.7. We have developed theories under the particular reference measure P =
λ⊗N with λ given by (8) since it is a probability measure and once conditioned on the con-
straint Cδ

n, it behaves like the uniform distribution, which is of our main interest. In order to
explain this rigorously, let us consider the probability measure ν on (0,∞) given by

ν = 1

Z
ep1φ1+···+pkφk dx.(22)

Then, one can check that for any n ∈ N, δ > 0, and Borel set A in (R+)n,

e−2n(|p1|+···+|pk |)δ Leb(A ∩ Cδ
n)

Leb(Cδ
n)

≤ ν⊗n(A|Cδ
n

)

≤ e2n(|p1|+···+|pk |)δ Leb(A ∩ Cδ
n)

Leb(Cδ
n)

.

(23)

Thus, for any probability measure ν of the form (22),

lim sup
δ→0

lim sup
n→∞

1

n
logν⊗N

(
A|Cδ

n

)

= lim sup
δ→0

lim sup
n→∞

1

n
log(Leb)⊗N

(
A|Cδ

n

)(24)
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and

lim inf
δ→0

lim inf
n→∞

1

n
logν⊗N(A|Cδ

n

)= lim inf
δ→0

lim inf
n→∞

1

n
log(Leb)⊗N(A|Cδ

n

)
.

This implies that Theorems 2.5 and 2.6 hold under general reference measures of type (22),
particularly under the uniform distribution which is of our main interest. Also, the limiting
law of the finite marginal distributions of (9) are identical under any reference measures of
type (22) (see Remark 3.10).

On the other hand, the lower tail estimate of type (21) depends on the particular choice of
the reference measure (22). This is because the scaling factor g(n) in (21) grows slower than
n at infinity. In fact, if we switch the reference measure from (ν1)

⊗N to (ν2)
⊗N for ν1 and ν2

of the form (22), then the cost arising from this change is O(eCnδ) in the sense that for some
constant C,

e−nCδν⊗n
2

(
A|Cδ

n

)≤ ν⊗n
1

(
A|Cδ

n

)≤ enCδν⊗n
2

(
A|Cδ

n

)
.

Since the scaling factor g(n) grows slowly than n at infinity, for any fixed δ > 0,

lim
n→∞

1

g(n)
log
(
eCnδ)= ∞.

This implies that the left-hand side of the lower tail estimate (21) is sensitive to the particular
choice of the reference measure of the form (22).

Now, let us study the localization phenomenon by establishing the lower tail estimate
(21). Since we have already proved in Theorem 2.6 that localization does not happen when
(a1, . . . , ak−1) ∈ S2, we only consider the case (a1, . . . , ak−1) ∈ S1. Then, one can choose a
(unique) probability measure ν on (0,∞) of the form

ν = 1

Z
ep1φ1+···+pk−1φk−1 dx(25)

(Z is a normalizing constant) satisfying∫
φ1 dν = a1, . . . ,

∫
φk−1 dν = ak−1

(see Lemma 3.12 for the explanations). Note that ν = λ∗, which is the limiting distribution
in Theorem 2.4 when ak ≥ g2(a1, . . . , ak−1), satisfies this condition. Let us denote 1 ≤ m ≤
k − 1 by the largest index such that pm �= 0. As explained in Remark 2.7, the lower tail
estimate (21) depends on the particular choice of the reference measure of form (22), and we
will establish it under the reference measure Q := ν⊗N.

The reason why we consider such reference measure to establish the lower tail estimate
(21) is as follows. For the probability measure μ of the form (25), let us denote Iμ by the
(weak) large deviation rate function for the sequence (S1

n, . . . , Sk
n) under μ⊗N. Then, when

(a1, . . . , ak−1) ∈ S1 and ak > g2(a1, . . . , ak−1), due to the estimate (20) and Remark 2.7,

μ⊗N(Cδ
n

)= e−nIμ(a1,...,ak)+r1(n,δ)

and

μ⊗N
({

Mn < ak − g2(a1, . . . , ak−1) − ε
}∩ Cδ

n

)= e−nIμ(a1,...,ak)+r2(n,δ)

for r1(n, δ), r2(n, δ) satisfying limδ→0 limn→∞ ri (n,δ)
n

= 0 for i = 1,2. In order to establish
the lower tail estimate of type (21), we need to analyze the lower order terms r1(n, δ), r2(n, δ)

since the scaling factor g(n) grows slowly than n. Since the standard large deviation result
does not reveal the finer behavior of r1(n, δ) and r2(n, δ), in order to capture this detailed
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structure we choose a probability measure μ such that Iμ(a1, . . . , ak) = 0. Since the prob-
ability measure ν chosen above satisfies

∫
φk dν = g2(a1, . . . , ak−1) (see Lemma 3.12), ac-

cording to the law of large numbers and the estimate (98) in Lemma A.1, I ν(a1, . . . , ak) = 0
whenever ak > g2(a1, . . . , ak−1).

As mentioned before, unlike the upper tail estimate (18) or the delocalization estimate (16),
the scaling factor in the lower tail estimate (21) heavily relies on the structures of functions
φi ’s in a complicated way. Roughly speaking, for a large class of functions φi ’s satisfying
some technical conditions, the lower tail estimate (21) holds with the scaling factor g(n) :=
(φm ◦ φ−1

k )(n). We prove this in the particular case when g(n) grows as nγ (0 < γ < 1)
for the following two reasons: first of all, we try to keep arguments as simple as possible
in order to separate the key ideas of the proof from technical details. Secondly, when φi ’s
are polynomials, which is of our main interest due to its broad applications in geometry and
PDE theory, g(n) ≈ nγ for some 0 < γ < 1. The following theorem provides the lower tail
estimate for the maximum component, and describes the localization phenomenon:

THEOREM 2.8. Suppose that (a1, . . . , ak−1) ∈ S1 and ak > g2(a1, . . . , ak−1). Assume
further that there exist 0 < γ1, . . . , γk−1 < 1 such that for each 1 ≤ i ≤ k − 1,

lim
x→∞

(φi ◦ φ−1
k )(x)

xγi
= 1.(26)

If the reference measure Q and the index m are chosen as above, then for any ε > 0,

lim sup
δ→0

lim sup
n→∞

1

nγm
logQ

(
Mn < ak − g2(a1, . . . , ak−1) − ε|Cδ

n

)
< 0.(27)

In particular, localization happens in the sense that for any ε > 0,

lim
δ→0

lim
n→∞Q

(∣∣Mn − (ak − g2(a1, . . . , ak−1)
)∣∣< ε|Cδ

n

)= 1.(28)

Since the scaling factor in the lower tail estimate (27) grows slowly than n, we need a
completely different approach from the standard large deviation theory to prove the estimate
(27). In order to accomplish this, we partially adapt the method used in [2]. As mentioned
before, following the proof of Theorem 2.8, one can check that for a large class of functions
φi ’s satisfying some technical assumptions, the lower tail estimate (27) with the scaling factor
g(n) := (φm ◦ φ−1

k )(n) holds as well.
It is important to note that Theorem 2.6 and Theorem 2.8 provide a complete picture of

the localization and delocalization phenomena of the microcanonical ensembles with mul-
tiple constraints. In fact, let us assume that (a1, . . . , ak−1) ∈ S1, and take the correspond-
ing reference measure Q as in Theorem 2.8. If ak > g2(a1, . . . , ak−1), then the localization
happens in the sense of (28), and the delocalization happens at all of the other sites (see
Theorem 4.2 for details). On the other hand, if ak ≤ g2(a1, . . . , ak−1), then localization phe-
nomenon does not happen according to Theorem 2.6 and Remark 2.7. Note that as mentioned
before, when (a1, . . . , ak−1) ∈ S2, whatever ak is, localization phenomenon does not occur
(see Theorem 2.6).

It is also crucial to note that when the localization happens, the maximum component Mn

behaves differently in the upper tail and lower tail regime. In fact, the upper tail estimate is
universal in the sense that the estimate (18) holds with the scaling factor n for any functions
φi ’s satisfying Assumption 1. On the other hand, the lower tail estimate (27) is not universal
in the sense that the scaling factor heavily relies on the structures of functions φi ’s. In the case
when the localization does not happen (condition (i) or (ii) in Theorem 2.6), the delocalization
estimate (16) is universal.
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3. Large deviations and equivalence of ensembles results. In this section, we char-
acterize the limit distribution to which the finite marginal distribution of (9) converges. As
explained in Section 2, it exhibits a phase transition phenomenon. In Section 3.1, we briefly
review the theory of large deviations and the classical equivalence of ensembles result. In
Section 3.2 and 3.3, we prove Theorem 2.1 using a large deviation theory. In Section 3.4,
we precisely characterize the limit distribution λ∗ in Theorem 2.1 and conclude the proof of
Theorem 2.4. Finally, in Section 3.5, we study a structure of the large deviation rate function
for several empirical means.

3.1. Preliminaries: Large deviation principle in statistical mechanics and the Gibbs con-
ditioning principle. The theory of large deviations has played an essential role in the equilib-
rium statistical mechanics. The sequence of probability distributions μn on the Polish space
S are said to satisfy the large deviation principle (LDP) with the rate function I provided
that for all Borel sets A,

− inf
x∈Ao

I (x) ≤ lim inf
n→∞

1

n
logμn

(
Ao)≤ lim sup

n→∞
1

n
logμn(Ā)

≤ − inf
x∈Ā

I (x).

We say that weak LDP holds when the upper bound

lim sup
n→∞

1

n
logμn(Ā) ≤ − inf

x∈Ā
I (x)

holds only for compact sets Ā. We require the rate function I : S → [0,∞] to be lower
semicontinuous. I is said to be a good rate function if the set {x ∈ S|I (x) ≤ c} is compact
for any c ∈ R.

Once we have a large deviation principle for the sequence of probability distributions, we
are able to study asymptotic behaviors of the conditional distributions. This can be rigorously
stated as follows, which is called the Gibbs conditioning principle (see [12], Theorem 7.1).

THEOREM 3.1. Let Pn be probability distributions on the Polish space S satisfying the
large deviation principle with a good rate function I . Suppose that F and Fε (ε > 0) are
closed sets in S such that:

(i) I (F ) := infx∈F I (x) < ∞.
(ii) Pn(Fε) > 0 for all n and ε > 0.

(iii) F =⋂ε>0 Fε .
(iv) F ⊂ (Fε)

o for all ε > 0.

Define MF be a collection of x ∈ F that minimize I over the set F . Then, for any open set G

containing MF ,

lim sup
ε→0

lim sup
n→∞

1

n
logPn

(
Gc|Fε

)
< 0.(29)

If in addition MF = {x0} is a singleton, then

lim
ε→0

lim
n→∞Pn(·|Fε) = δx0 .(30)

Theorem 3.1 claims that as n → ∞ followed by ε → 0, conditional distributions Pn(·|Fε)

get concentrated on the states at which the rate function is minimized over the constraint F .
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Theorem 3.1 is a direct consequence of the definition of large deviation principle and the fact
that

inf
x∈F

I (x) = lim
ε→0

inf
x∈Fε

I (x),(31)

which is true for a good rate function I (see [3], Lemma 4.1.6). However, in many cases, Pn

only satisfy the weak LDP with a possibly nongood rate function. We now present a slightly
generalized version of Theorem 3.1 which is useful in this paper.

THEOREM 3.2. Let Pn be probability distributions on the Polish space S satisfying the
weak large deviation principle with a rate function I . Assume that a set {I ≤ c} ∩ Fε is
compact for any c ∈ R and ε > 0. Then, the same conclusions (29) and (30) hold under the
same assumptions (i)–(iv) in Theorem 3.1.

PROOF. As in Theorem 3.1, it immediately follows from the definition of large deviation
principle and the identity (31). We now show that (31) holds if {I ≤ c} ∩ Fε is compact for
each c ∈ R and ε > 0. Since F ⊂ Fε , it suffices to show that for any η > 0,

a := lim
ε→0

inf
x∈Fε

I (x) ≥ inf
x∈F

I (x) − η.(32)

Since the set {I ≤ a + η} ∩ Fε is compact and closed,

{I ≤ a + η} ∩ F =⋂
ε

{{I ≤ a + η} ∩ Fε

}

is also nonempty. This implies (32), which concludes the proof. �

As an application of the Gibbs conditioning principle, one can deduce the following classi-
cal result in the equilibrium statistical mechanics, which is called the principle of equivalence
of ensembles (see [14], Chapter 5).

THEOREM 3.3. Let λ ∈ M1(S) and φ : S → R be a bounded continuous function. Let
us define a := λ-essinf φ and b := λ-esssup φ. For β ∈ R, define μβ ∈ M1(S) by dμβ :=

1
Zβ

e−βφ dλ. Suppose that {Xk}’s are i.i.d. with individual distribution given by λ. Then, for
z ∈ (a, b), there exists a unique β such that

lim
δ→0+ lim

n→∞P

(
X1 ∈ ·

∣∣∣∣∣∣∣φ(X1) + · · · + φ(Xn)

n
− z

∣∣∣∣≤ δ

)
= μβ.

Here, the inverse temperature β is chosen to satisfy
∫
S φ dμβ = z.

It is not hard to check that similar result holds under the several constraints of type (6)
with bounded and continuous observables φi’s. We refer to [4] for the generalized version of
Theorem 3.3, where the constraint is given by the bounded continuous interacting potentials.
See also [7] for the case when the constraint is given by possibly unbounded interactions.

3.2. Large deviations for the joint law of empirical distributions and several empirical
means. In this section, we obtain the large deviation results for the joint law of empirical
distributions and several empirical means, which will play a crucial role in proving Theo-
rem 2.1.
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THEOREM 3.4. Under the reference measure P, the sequence (Ln,S
1
n, . . . , Sk

n) in
M1(R

+) × (R+)k satisfies the weak LDP with a rate function J given by

J (μ,v1, . . . , vk)

=
⎧⎨
⎩H(μ|λ) if

∫
φ1 dμ = v1, . . . ,

∫
φk−1 dμ = vk−1,

∫
φk dμ ≤ vk,

∞ otherwise.

This theorem will be crucially used to examine a thermodynamic behavior of the con-
ditional distribution (9), with the aid of the Gibbs conditioning principle. In fact, once the
weak LDP for the sequence (Ln,S

1
n, . . . , Sk

n) is established, using Theorem 3.2, one can es-
tablish the asymptotic behavior of conditional distributions P(Ln ∈ ·|Cδ

n) by solving a certain
variational problem. This will be done in details in the rest of this section.

In view of Remark 2.7, one can also consider LDP under general reference measures
( 1
Z

ep1φ1+···+pkφk dx)⊗N: a sequence (Ln,S
1
n, . . . , Sk

n) enjoys the weak LDP with a rate func-
tion

J (μ,v1, . . . , vk)

=
⎧⎨
⎩−h(μ) − p1v1 − · · · − pkvk + C

∫
φi dμ = vi(1 ≤ i < k),

∫
φk dμ ≤ vk,

∞ otherwise,

for some constant C. Therefore, by the Gibbs conditioning principle, a particular choice of
p1, . . . , pk does not affect the large deviation asymptotic behavior of the conditional distri-
butions P(Ln ∈ ·|Cδ

n). This will be discussed in Remark 3.5. In Theorem 3.4, the reference
measure ( 1

Z
e−φ1(x) dx)⊗N is considered.

PROOF. We follow the argument in [11]. We apply [3], Theorem 6.1.3, to obtain the
weak LDP for the sequence (Ln,S

1
n, . . . , Sk

n). This sequence is the empirical mean of the
i.i.d. random variables (δXi

, φ1(Xi), . . . , φk(Xi)) taking values in M1(R
+) × (R+)k . Let us

denote X := M(R+)×Rk , which is equipped with the product topology of weak topology on
the space of measures and the standard topology on Rk , and similarly define E := M1(R

+)×
(R+)k . It is not hard to check that Assumption 6.1.2 in [3] is satisfied in this setting (see [11],
Lemma 3.2, for explanations in the case of k = 1). Thus, applying [3], Theorem 6.1.3, one
can conclude that under the reference measure P, the sequence (Ln,S

1
n, . . . , Sk

n) satisfies the
weak LDP with a rate function J given by

J (μ,v1, . . . , vk) = sup
f ∈Cb(R

+),p1,...,pk∈R

{∫
f dμ + p1v1 + · · · + pkvk

− log
∫

ef +p1φ1+···+pkφk dλ

}
.

(33)

It is easy to check that for any function f ∈ Cb(R
+), (p1, . . . , pk) satisfies∫

ef +p1φ1+···+pkφk dλ < ∞
if and only if (p1, . . . , pk) belongs to the set

D := {pk < 0} ∪ {pk = 0,pk−1 < 0} ∪ · · · ∪ {pk = · · · = p3 = 0,p2 < 0}
∪ {pk = · · · = p3 = p2 = 0,p1 < 1}(34)

thanks to the Assumption 1. Thus, it suffices to take the supremum over the set D in the
expression (33). For each (p1, . . . , pk) ∈ D, let us define the auxiliary probability measure
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ν(p1,...,pk) on (0,∞) whose distribution is given by 1
Z(p1,...,pk) e

p1φ1+···+pkφk dλ (Z(p1,...,pk) is
a normalizing constant). Using the variation formula for the relative entropy,

H(μ|ν) = sup
f ∈Cb

{∫
f dμ − log

∫
ef dν

}
,

one can rewrite (33) as

J (μ,v1, . . . , vk)

= sup
(p1,...,pk)∈D

{
p1v1 + · · · + pkvk − logZ(p1,...,pk)

+ sup
f ∈Cb

(∫
f dμ − log

∫
ef dν(p1,...,pk)

)}

= sup
(p1,...,pk)∈D

{
p1v1 + · · · + pkvk − logZ(p1,...,pk) + H

(
μ|ν(p1,...,pk)

)}

= sup
(p1,...,pk)∈D

{
p1v1 + · · · + pkvk + H(μ|λ) −

∫
(p1φ1 + · · · + pkφk) dμ

}
.

If we define the set T ⊂ M1(R
+) by

T :=
{
μ ∈ M1

(
R+) : ∫ φ1 dμ = v1, . . . ,

∫
φk−1 dμ = vk−1,

∫
φk dμ ≤ vk

}
,

then one can easily check that J (μ,v1, . . . , vk) = H(μ|λ) when μ ∈ T and ∞ otherwise.
�

REMARK 3.5. We present several remarks regarding Theorem 3.4.
1. If each function φi ’ is bounded and continuous, then it is obvious that the sequence

(Ln,S
1
n, . . . , Sk

n) satisfies the (full) LDP with a rate function J bounded defined by

J bounded(μ, v1, . . . , vk)

=
⎧⎨
⎩H(μ|λ)

∫
φ1 dμ = v1, . . . ,

∫
φk dμ = vk,

∞ otherwise.

Theorem 3.4 implies that when φi ’s are unbounded functions satisfying Assumption 1, the
rate function J (μ,v1, . . . , vk) may be finite even when

∫
φk dμ �= vk since the weak topology

induced on the space of probability measures is not strong enough to capture the behavior near
the infinity. Note that J (μ,v1, . . . , vk) = ∞ if

∫
φi dμ �= vi for some 1 ≤ i ≤ k − 1 since φk

controls other functions φ1, . . . , φk−1.
2. When we consider the pair of empirical distributions and a single empirical mean,

the large deviation result Theorem 3.4 reads as follows (see [11], Lemma 3.3, in the case
of φ(x) = xp under the generalized Gaussian distribution): under the reference measure
( 1
Z

e−φ dx)⊗N, the sequence (Ln,
φ(X1)+···+φ(Xn)

n
) satisfies the (full) LDP with a good rate

function

J (μ,v) =
⎧⎨
⎩H(μ|λ) + v −

∫
φ dμ if

∫
φ dμ ≤ v,

∞ otherwise.

3. For any fixed positive integer j , let us define

Si
n−j := φi(Xj+1) + · · · + φi(Xn)

n − j
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for each 1 ≤ i ≤ k. Then, under the reference measure P, the sequence (Ln,S
1
n−j , . . . , S

k
n−j )

satisfies the weak LDP with the same rate function J defined in Theorem 3.4. Indeed,
(Ln,S

1
n, . . . , Sk

n) and (Ln,S
1
n−j , . . . , S

k
n−j ) are exponentially equivalent sequences since for

any realization,

lim sup
n→∞

d

(
1

n
(δX1 + · · · + δXn),

1

n − j
(δXj+1 + · · · + δXn)

)

≤ lim sup
n→∞

2j

n
= 0

(d denotes the metric (7)).
4. For the probability measure μ � dx satisfying the condition∫

φ1 dμ = v1, . . . ,

∫
φk−1 dμ = vk−1,

∫
φk dμ ≤ vk,(35)

the rate function J in Theorem 3.4 can be written in terms of the differential entropy h(·): for
some constant C,

H(μ|λ) =
∫

log
(

dμ

dλ

)
dμ

=
∫

log
(

dμ

dx

)
dμ +

∫
log
(

dx

dλ

)
dμ

= −h(μ) +
∫

φ1 dμ + C = −h(μ) + v1 + C.

(36)

In general, if the reference measure λ on (0,∞) is given by

λ = 1

Z
ep1φ1+···+pkφk dx

for some (p1, . . . , pk) for which the normalizing constant Z is finite, then by the same ar-
gument as in Theorem 3.4, the sequence (Ln,S

1
n, . . . , Sk

n) under λ⊗N satisfies the weak LDP
with the rate function J given by

J (μ,v1, . . . , vk)

=
⎧⎨
⎩H(μ|λ) − pk

(
vk −

∫
φk dμ

) ∫
φi dμ = vi (1 ≤ i ≤ k − 1),

∫
φk dμ ≤ vk,

∞ otherwise.

For a probability measure μ � dx satisfying the condition (35), the rate function J can be
written as

H(μ|λ) − pk

(
vk −

∫
φk dμ

)
= −h(μ) − p1v1 − · · · − pkvk + C.

Thus, in view of the Gibbs conditioning principle, conditional distributions P(Ln ∈ ·|Cδ
n)

weakly converge to the dirac mass at λ∗ as n → ∞ followed by δ → 0, where λ∗ is a prob-
ability distribution maximizing the differential entropy h(μ) over the constraint (10) (see
Section 3.3 for details). Therefore, the asymptotic behavior of P(Ln ∈ ·|Cδ

n) does not depend
on particular values of p1, . . . , pk .

We need the following simple lemma to ensure the existence and uniqueness of a mini-
mizer of the relative entropy H(·|λ) over the set (10).
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LEMMA 3.6. The following set is closed, compact and convex:

T :=
{
μ ∈ M1

(
R+) : ∫ φ1 dμ = v1, . . . ,

∫
φk−1 dμ = vk−1,

∫
φk dμ ≤ vk

}
.

PROOF. Suppose that μn ∈ T and μn → μ as n → ∞. We first show the closedness of
T by proving that μ ∈ T . According to the Portmanteau theorem,

∫
φk dμ ≤ vk is obvious.

Fix any 1 ≤ i ≤ k − 1 and let us show that
∫

φi dμ = vi . Using Assumption 1 and the fact
that
∫

φk dμn ≤ vk , one can conclude that for any ε > 0, there exists M > 0 such that for all
n,
∫

φi1[M,∞) dμn < ε.
This implies that

∫
φi1(0,M) dμn > vi − ε. Since μn → μ and φi1(0,M) ∈ Cb(R

+), we
have limn

∫
φi1(0,M) dμn = ∫ φi1(0,M) dμ. Therefore, we have

∫
φi1(0,M) dμ ≥ vi − ε, and

since ε is arbitrary, we obtain
∫

φi dμ ≥ vi . On the other hand, thanks to the Portmanteau
theorem,

∫
φi dμ ≤ vi . Thus,

∫
φi dμ = vi , which concludes the closedness of T .

Compactness of T immediately follows from the Prokhorov’s theorem and Assumption 1.
Convexity of T is also obvious. �

According to the Sanov’s theorem, the sequence of empirical distributions Ln satisfy the
LDP with a rate function H(·|λ). Also, due to the generalized version of Cramér’s theorem
(see [3], Theorem 6.1.3), the sequence (S1

n, . . . , Sk
n) satisfies the weak LDP with a rate func-

tion I (v1, . . . , vk) which is the Legendre transform of the logarithmic moment generating
function:

H(p1, . . . , pk) = log
∫

ep1φ1+···+pkφk dλ.

Since a map μ → ∫
φi dμ may not be continuous, the rate function I cannot be directly ob-

tained from the Sanov’s theorem as a simple application of the standard contraction principle.
However, applying Theorem 3.4, one can obtain the noncontinuous version of the contraction
principle. It reveals the relation between two rate functions H(·|λ) and I .

PROPOSITION 3.7. Under the reference measure P, the sequence (S1
n, . . . , Sk

n) in (R+)k

satisfies the weak LDP with a rate function I (v1, . . . , vk) given by

I (v1, . . . , vk) = inf
μ∈M1(R

+)

{
H(μ|λ) :

∫
φ1 dμ = v1, . . . ,

∫
φk−1 dμ = vk−1,

∫
φk dμ ≤ vk

}
.

(37)

Also, I (v1, . . . , vk) is the Legendre transform of H(p1, . . . , pk) defined in (13).

PROOF. Let us apply the contraction principle to the projection π : (Ln,S
1
n, . . . , Sk

n) →
(S1

n, . . . , Sk
n). Since J is not necessarily a good rate function, in order that contraction princi-

ple works, we need to check that for I (v1, . . . , vk) defined in (37),{
(v1, . . . , vk) : I (v1, . . . , vk) ≤ c

}= π
({

(μ, v1, . . . , vk) : J (μ,v1, . . . , vk) ≤ c
})

(38)

holds, and that this set is a closed set (see the proof of [3], Theorem 4.2.1). Note that since

T :=
{
μ ∈ M1

(
R+) : ∫ φ1 dμ = v1, . . . ,

∫
φk−1 dμ = vk−1,

∫
φk dμ ≤ vk

}

is a closed set according to Lemma 3.6, the infimum of H(·|λ) is attained over T when
I (v1, . . . , vk) < ∞. This implies that the equality in (38) holds. Also, since the sub-level set
{H(·|λ) ≤ c} is compact with respect to the weak topology, under the projection π , the image
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of {(μ, v1, . . . , vk)|J (μ,v1, . . . , vk) ≤ c} is closed. Therefore, the contraction principle is
applicable, and the sequence (S1

n, . . . , Sk
n) satisfies the weak LDP with a rate function

I (v1, . . . , vk) := inf
μ∈M1(R

+)
J (μ, v1, . . . , vk),

which immediately implies (37). Also, due to the uniqueness property of the rate function,
the second part of proposition is obvious. �

REMARK 3.8. From the definition of the admissible set, for (a1, . . . , ak) ∈A,{
μ ∈ M1

(
R+) : h(μ) �= −∞,

∫
φi dμ = ai (1 ≤ i ≤ k − 1),

∫
φk dμ ≤ ak

}

is a nonempty set. Thus, according to Proposition 3.7, whenever (a1, . . . , ak) ∈ A,
I (a1, . . . , ak) < ∞ (see the identity (36)). This implies that for (a1, . . . , ak) ∈ A, the mi-
crocanonical distribution P((X1, . . . ,Xn) ∈ ·|Cδ

n) is well defined since for each δ > 0,
lim infn→∞ 1

n
logP(Cδ

n) ≥ −I (a1, . . . , ak) > −∞.
On the other hand, I (a1, . . . , ak) = ∞ when ak < g1(a1, . . . , ak−1).

Now, let us define λ∗ = λ∗(a1, . . . , ak) to be a unique minimizer of the relative entropy
H(·|λ) over the set{

μ ∈ M1
(
R+) : ∫ φ1 dμ = a1, . . . ,

∫
φk−1 dμ = ak−1,

∫
φk dμ ≤ ak

}
.

The existence and uniqueness of a minimizer follows from Lemma 3.6 and the lower semi-
continuity, compact sublevel sets, strict convexity properties of the relative entropy functional
H(·|λ). Note that λ∗ is also a unique maximizer of the differential entropy h(·) due to the
identity (36).

3.3. Proof of Theorem 2.1. In this section, we conclude the proof of Theorem 2.1. As
an application of the Gibbs conditioning principle, combined with the large deviation result
for the sequence (Ln,S

1
n, . . . , Sk

n) obtained in Theorem 3.4, one can prove the following
result.

LEMMA 3.9. For any open set G containing λ∗,

lim sup
δ→0

lim sup
n→∞

1

n
logP

(
Ln /∈ G|Cδ

n

)
< 0.

PROOF. For each 0 < δ < min{a1, . . . , ak}, define closed sets F,Fδ ⊂M1(R
+)× (R+)k

by

F = {(Ln,S
1
n, . . . , Sk

n

)|S1
n = a1, . . . , S

k
n = ak

}
and

Fδ = {(Ln,S
1
n, . . . , Sk

n

)|Sk
n ∈ [a1 − δ, a1 + δ], . . . , Sk

n ∈ [ak − δ, ak + δ]}.
It is obvious that F =⋂δ>0 Fδ and F ⊂ (Fδ)

o. Also, the infimum of J (μ,v1, . . . , vk) over
the constraint v1 = a1, . . . , vk = ak is attained at (μ, v1, . . . , vk) = (λ∗, a1, . . . , ak), and G ×
(R+)k is an open neighborhood of (λ∗, a1, . . . , ak). In addition, since sets {μ : H(μ|λ) ≤ c}
in M1 and [a1 − δ, a1 + δ] × · · · × [ak − δ, ak + δ] in Rk are compact, by the definition
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of a rate function J (see Theorem 3.4), {J ≤ c} ∩ Fδ is compact in M1 × Rk . Therefore,
according to the Gibbs conditioning principle Theorem 3.2,

lim sup
δ→0

lim sup
n→∞

1

n
logP

(
Ln /∈ G|Cδ

n

)

= lim sup
δ→0

lim sup
n→∞

1

n
logP

((
Ln,S

1
n, . . . , Sk

n

) ∈ Gc ×Rk|Cδ
n

)
< 0. �

As a corollary of the previous lemma, one can finish the proof of Theorem 2.1.

PROOF OF THEOREM 2.1 . Recall that a unique maximizer of the differential entropy
h(·) over the set (10) coincides with a unique minimizer of the relative entropy H(·|λ) over
the same set (10) (see the identity (36)). As a consequence of Lemma 3.9, we have

lim
δ→0

lim
n→∞P

(
Ln ∈ ·|Cδ

n

)= δλ∗ .

According to [16], Proposition 2.2, this implies that for any fixed positive integer j ,

lim
δ→0

lim
n→∞P

(
(X1, . . . ,Xj ) ∈ ·|Cδ

n

)→ (
λ∗)⊗j

. �

REMARK 3.10. Note that according to (24), Lemma 3.9 also holds under the uniform
distribution on the constraint Cδ

n, which is of our main interest. Thus, the result in Theo-
rem 2.1 holds under the uniform distribution as well.

3.4. Characterization of the maximizer in Theorem 2.1. In this section, we characterize
the (unique) maximizer of the differential entropy h(·) over the set (10). Interestingly, it
turns out that the maximizers have different forms in the case of (a1, . . . , ak−1) ∈ S1 and
(a1, . . . , ak−1) ∈ S2. We first analyze the sets S1, S2 and the function g2 defined in (15) in a
more detailed way.

REMARK 3.11. For (v1, . . . , vk−1) ∈ S1, there exist unique p1, . . . , pk−1 satisfying (14).
This can be verified using the following facts:

• If (v1, . . . , vk−1, z) ∈ ∂H(p1, . . . , pk−1,0) for some p1, . . . , pk−1, then for all z < w,
(v1, . . . , vk−1,w) ∈ ∂H(p1, . . . , pk−1,0).

• Rate function I is differentiable on A.

Since H(p1, . . . , pk−1,pk) = ∞ for pk > 0, the first fact follows from the definition of the
subdifferential of convex functions. The second fact immediately follows from the essentially
strictly convexity of H and the fact that A ⊂ dom(I ). In fact, the essentially strictly convexity
of H implies the essentially smoothness of I (see [15], Theorem 26.3). Since A ⊂ dom(I )

and A is open, the essentially smoothness of I implies that I is differentiable on A.
Suppose that there exist (p1, . . . , pk−1) and (p′

1, . . . , p
′
k−1) satisfying (14). Using the first

fact above, there exists vk such that (v1, . . . , vk) ∈ A and

(v1, . . . , vk) ∈ ∂H(p1, . . . , pk−1,0), (v1, . . . , vk) ∈ ∂H
(
p′

1, . . . , p
′
k−1,0

)
.

Since H is convex and lower semicontinuous, using the duality of H and I , we have
(p1, . . . , pk−1,0), (p′

1, . . . , p
′
k−1,0) ∈ ∂I (v1, . . . , vk−1, vk). Since I is differentiable on A,

(p1, . . . , pk−1) satisfying (14) is unique.

The following lemma reveals useful properties of the sets S1, S2, and provides a formula
for the function g2.
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LEMMA 3.12. Suppose that (v1, . . . , vk−1) ∈ S1. Then, for p1, . . . , pk−1 satisfying (14),

vi = 1

Z

∫
φie

p1φ1+···+pk−1φk−1 dλ(39)

(Z is a normalizing constant Z = ∫ ep1φ1+···+pk−1φk−1 dλ) for 1 ≤ i ≤ k − 1 and

g2(v1, . . . , vk−1) = 1

Z

∫
φke

p1φ1+···+pk−1φk−1 dλ.(40)

Suppose that (v1, . . . , vk−1) ∈ S2. Then, for any vk such that (v1, . . . , vk) ∈ A, there exist
p1, . . . , pk such that pk < 0 and

vi = 1

Z

∫
φie

p1φ1+···+pkφk dλ(41)

(Z is a normalizing constant Z = ∫ ep1φ1+···+pkφk dλ) for 1 ≤ i ≤ k.

PROOF. Let us consider the first case (v1, . . . , vk−1) ∈ S1. By the definition of the set S1,
there exist vk and (unique) p1, . . . , pk−1 satisfying

(v1, . . . , vk−1, vk) ∈ ∂H(p1, . . . , pk−1,0).(42)

This implies that for any ε > 0, H(p1, . . . , pk−1,−ε) − H(p1, . . . , pk−1,0) ≥ −εvk . Divid-
ing this by −ε and then sending ε → 0+, using Fatou’s lemma,

1

Z

∫
φke

p1φ1+···+pk−1φk−1 dλ ≤ vk.(43)

Here, Z is a normalizing constant Z = ∫ ep1φ1+···+pk−1φk−1 dλ. This obviously implies that
for any 1 ≤ i ≤ k,

wi := 1

Z

∫
φie

p1φ1+···+pk−1φk−1 dλ < ∞.(44)

Using (42) again, for each 1 ≤ i ≤ k − 1 and for any ε > 0, c ∈R, we have

lim
ε→0+

1

ε

[
H(p1, . . . , pi + εc, . . . , pk−1,−ε) − H(p1, . . . , pi, . . . , pk−1,0)

]
≥ cvi − vk.

(45)

Using dominated convergence theorem, let us check that left-hand side of (45) is equal to
cwi − wk . Indeed, if we denote A,Aε (ε > 0) by

A := ep1φ1+···+piφi+···+pk−1φk−1, Aε := ep1φ1+···+(pi+εc)φi+···+pk−1φk−1−εφk ,

then the left-hand side of (45) can be written as

lim
ε→0+

[
log
∫

Aε dλ − log
∫

Adλ∫
Aε dλ − ∫ Adλ

·
∫

Aε dλ − ∫ Adλ

ε

]
.(46)

Note that limε→0+ Aε−A
ε

= limε→0+ A · eε(cφi−φk)−1
ε

= cφiA−φkA. If we choose M > 0 such

that x ≥ M ⇒ cφi(x) < φk(x), then for x ≥ M and ε > 0, |A · eε(cφi−φk)−1
ε

| ≤ A(φk − cφi).
Also, if we denote N := sup0<x≤M |cφi − φk| < ∞, then for x ∈ (0,M) and 0 < ε < 1,

|A · eε(cφi−φk)−1
ε

| ≤ A(eN − 1). Note that A(φk − cφi) ∈ L1(dλ) due to (44), and A ∈ L1(dλ)

since (p1, . . . , pk−1,0) ∈ dom(H). Therefore, applying the dominated convergence theorem,

lim
ε→0+

∫
Aε − A

ε
dλ =

∫
(cφi − φk)e

p1φ1+···+pk−1φk−1 dλ.(47)
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Also, since supx∈(0,∞)(cφi − φk) < ∞ and A ∈ L1(dλ), as an application of the dominated
convergence theorem, one can deduce that limε→0+

∫
Aε dλ = ∫ Adλ. Thus,

lim
ε→0+

log
∫

Aε dλ − log
∫

Adλ∫
Aε dλ − ∫ Adλ

=
[∫

ep1φ1+···+pk−1φk−1 dλ

]−1
.(48)

Using (46), (47) and (48), one can deduce that the left-hand side of (45) is equal to cwi −
wk , and thus we have cwi − wk ≥ cvi − vk . Since c is arbitrary, we obtain wi = vi , which
implies (39). Also, using the convexity of H , it is easy to check that (w1, . . . ,wk−1,wk) ∈
∂H(p1, . . . , pk−1,0). Since any vk for which (42) holds satisfies (43), we obtain (40).

Finally, let us consider the case when (v1, . . . , vk−1) ∈ S2 and (v1, . . . , vk−1, vk) ∈ A.
Since (v1, . . . , vk) ∈ A ⊂ int(dom(I )) and I is essentially smooth, I is differentiable at
(v1, . . . , vk). If we choose (p1, . . . , pk) ∈ ∂I (v1, . . . , vk), then by the Legendre duality, we
have (v1, . . . , vk) ∈ ∂H(p1, . . . , pk). Since (v1, . . . , vk−1) ∈ S2, pk �= 0. This in turn implies
that pk < 0 since (p1, . . . , pk) ∈ dom(∂H) ⊂ dom(H) = D. Thus, H is differentiable at
(p1, . . . , pk), and we immediately obtain (41). �

Using Lemma 3.12, one can characterize a (unique) maximizer of the differential entropy
h(·) over the set (10).

PROPOSITION 3.13. Assume that λ∗ is a unique maximizer of h(·) over the set (10). In
the case of (a1, . . . , ak−1) ∈ S1 and ak ≥ g2(a1, . . . , ak−1),

λ∗ = 1

Z
ep1φ1+···+pk−1φk−1 dx(49)

for p1, . . . , pk−1 satisfying
∫

φi dλ∗ = ai for 1 ≤ i ≤ k − 1.
On the other hand, either in the case of

(i) (a1, . . . , ak−1) ∈ S2 or
(ii) (a1, . . . , ak−1) ∈ S1 and ak < g2(a1, . . . , ak−1),

λ∗ = 1

Z
ep1φ1+···+pkφk dx(50)

for p1, . . . , pk satisfying pk < 0 and
∫

φi dλ∗ = ai for 1 ≤ i ≤ k. In all cases, Z denotes the
normalizing constant.

PROOF. Let us first consider the case (a1, . . . , ak−1) ∈ S1 and ak ≥ g2(a1, . . . , ak−1).
According to Lemma 3.12, there exists a probability measure ν of the form (49) satisfying∫

φi dν = ai for 1 ≤ i ≤ k − 1 and
∫

φk dν = g2(a1, . . . , ak−1) ≤ ak (recall that dλ is given
by (8)). It is easy to check that ν is the maximizer of h(·) over the set (10). In fact, for any
probability measure μ � dx,

−h(μ) = H(μ|ν) + p1

∫
φ1 dμ + · · · + pk−1

∫
φk−1 dμ + C

≥ p1a1 + · · · + pk−1ak−1 + C,

and the equality is attained if and only if μ = ν.
Let us now consider the other cases, (i) and (ii). In each case, we first show the existence

of a probability measure ν of the form (50) satisfying
∫

φi dν = ai for 1 ≤ i ≤ k. In the case
of (i), it is already proved in Lemma 3.12, so we consider the case (ii). For (p1, . . . , pk) ∈
∂I (a1, . . . , ak), we have (a1, . . . , ak) ∈ ∂H(p1, . . . , pk) by the Legendre duality. Since ak <
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g2(a1, . . . , ak−1), we have pk �= 0, which in turn implies pk < 0. This implies that H is
differentiable at (p1, . . . , pk), and for 1 ≤ i ≤ k,

ai = 1

Z

∫
φie

p1φ1+···+pkφk dλ.

Now, as before, one can check that ν is the maximizer of h(·) over the set (10). In fact, since
pk < 0, for any probability measure μ � dx,

−h(μ) = H(μ|ν) + p1

∫
φ1 dμ + · · · + pk

∫
φk dμ + C

≥ p1a1 + · · · + pkak + C,

and the equality is attained if and only if μ = ν. �

PROOF OF THEOREM 2.4. Theorem 2.1 and Proposition 3.13 immediately conclude the
proof. �

3.5. Structure of the rate function I . In this section, we establish useful properties of the
rate function I . Recall that I is the weak LDP rate function for the sequence (S1

n, . . . , Sk
n)

under the reference measure P (see Proposition 3.7). It turns out that I (v1, . . . , vk) behaves
differently when (v1, . . . , vk−1) ∈ S1 and (v1, . . . , vk−1) ∈ S2.

PROPOSITION 3.14. For each (v1, . . . , vk−1) ∈ (R+)k−1, the rate function I (v1, . . . ,

vk−1, ·) is nonincreasing. In the case of (v1, . . . , vk−1) ∈ S1,

I (v1, . . . , vk−1, z) > I (v1, . . . , vk−1,w)(51)

for all z,w ∈ R+ satisfying z < w ≤ g2(v1, . . . , vk−1) and (v1, . . . , vk−1,w) ∈ A. Also,
I (v1, . . . , vk−1, ·) is constant on the interval [g2(v1, . . . , vk−1),∞).

On the other hand, in the case of (v1, . . . , vk−1) ∈ S2,

I (v1, . . . , vk−1, z) > I (v1, . . . , vk−1,w)(52)

for all z,w ∈ R+ satisfying z < w and (v1, . . . , vk−1,w) ∈ A.

PROOF. The proof consists of three steps.
Step 1. Nonincreasing property on (0,∞): recall the variational formula

I (v1, . . . , vk) = sup
(p1,...,pk)∈D

(
p1v1 + · · · + pkvk − H(p1, . . . , pk)

)
,

with the domain D defined in (34). For each (p1, . . . , pk) ∈ D, whenever z < w,

p1v1 + · · · + pk−1vk−1 + pkz − H(p1, . . . , pk)

≥ p1v1 + · · · + pk−1vk−1 + pkw − H(p1, . . . , pk).

Thus, I (v1, . . . , vk−1, z) ≥ I (v1, . . . , vk−1,w) when z < w.
Step 2. Case (v1, . . . , vk−1) ∈ S1: if z < g1(v1, . . . , vk−1), then (51) is obvious since

I (v1, . . . , vk−1, z) = ∞ (see Remark 3.8). Now, assume that for some g1(v1, . . . , vk−1) ≤
z < w ≤ g2(v1, . . . , vk−1),

I (v1, . . . , vk−1, z) = I (v1, . . . , vk−1,w) < ∞.

Since I (v1, . . . , vk−1, ·) is nonincreasing, I (v1, . . . , vk−1, ·) is constant on the interval [z,w].
Thus, for any y ∈ (z,w), the subgradient (p1, . . . , pk) of I at (v1, . . . , vk−1, y) should satisfy
pk = 0. Since H and I are conjugate to each other, (v1, . . . ,
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vk−1, y) ∈ ∂H(p1, . . . , pk−1,0). This contradicts the definition of g2(v1, . . . , vk−1) since
y < g2(v1, . . . , vk−1). Thus, (51) holds for z,w satisfying z < w ≤ g2(v1, . . . , vk−1) and
(v1, . . . , vk−1,w) ∈ A.

Now, let us prove that I (v1, . . . , vk−1, ·) is constant on the interval [g2(v1, . . . , vk−1),∞).
Due to the definition of g2 and the fact (i) in Remark 3.11, for arbitrary ε > 0, we have
(v1, . . . , vk−1, g2(v1, . . . , vk−1) + ε) ∈ ∂H(p1, . . . , pk−1,0). This implies that

I
(
v1, . . . , vk−1, g2(v1, . . . , vk−1) + ε

)+ H(p1, . . . , pk−1,0)

= (v1, . . . , vk−1, g2(v1, . . . , vk−1) + ε
) · (p1, . . . , pk−1,0).

(53)

Therefore, for any x > 0, using (53) and denoting P := (p1, . . . , pk−1,0),

I
(
v1, . . . , vk−1, g2(v1, . . . , vk−1) + x

)
≥ (v1, . . . , vk−1, g2(v1, . . . , vk−1) + x

) · P − H(P )

= (v1, . . . , vk−1, g2(v1, . . . , vk−1) + ε
) · P − H(P )

= I
(
v1, . . . , vk−1, g2(v1, . . . , vk−1) + ε

)
.

Since x > 0 is arbitrary and I (v1, . . . , vk−1, ·) is nonincreasing, it follows from the above
inequality that I (v1, . . . , vk−1, ·) is constant on the interval [g2(v1, . . . , vk−1) + ε,∞). Since
ε > 0 is arbitrary and I is lower semicontinuous, I (v1, . . . , vk−1, ·) is constant on the interval
[g2(v1, . . . , vk−1),∞).

Step 3. Case (v1, . . . , vk−1) ∈ S2: if z < g1(v1, . . . , vk−1), then (52) is obvious since
I (v1, . . . , vk−1, z) = ∞. Let us assume that for some g1(v1, . . . , vk−1) ≤ z < w,

I (v1, . . . , vk−1, z) = I (v1, . . . , vk−1,w) < ∞.

Then, for any y ∈ (z,w), the subgradient (p1, . . . , pk) of I at (v1, . . . , vk−1, y) should satisfy
pk = 0. Thus, by the Legendre duality, we have (v1, . . . , vk−1, y) ∈ ∂H(p1, . . . , pk−1,0), and
this contradicts the definition of S2. Since we already proved the nonincreasing property of
I (v1, . . . , vk−1, ·), proof is concluded. �

Proposition 3.14 will play a crucial role in analyzing the localization and delocalization
phenomena of the microcanonical ensembles in Section 4.

4. Localization and delocalization of microcanonical ensembles. When the micro-
canonical ensemble is given by a single constraint, localization phenomenon does not happen
in general (see Section 5.1 and Proposition 5.2 for details). However, when the microcanoni-
cal ensemble is given by multiple constraints, complicated localization behaviors can happen,
as explained in Section 2. In this section, we systematically study the localization and delo-
calization phenomena of such ensembles using the theory of large deviations.

4.1. Large deviations for the joint law of empirical distributions and the maximum com-
ponent. Let us define the maximum component Mn by

Mn := max1≤i≤n φk(Xi)

n
.

The key ingredient that reveals the localization behavior is the large deviation result for the
maximum component Mn. In order to capture the finer behavior of the microcanonical en-
sembles, we obtain a large deviation result for a sequence of joint law (Ln,Mn). As a con-
sequence of the results developed in Section 3, we show that the joint law (Ln,Mn) enjoys a
LDP with a rate function expressed in terms of J and I .
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THEOREM 4.1. For any Borel set A in M1(R
+) ×R+,

− inf
(μ,z)∈Ao

J max
1 (μ, z) ≤ lim inf

δ→0
lim inf
n→∞

1

n
logP

(
(Ln,Mn) ∈ Ao|Cδ

n

)

≤ lim sup
δ→0

lim sup
n→∞

1

n
logP

(
(Ln,Mn) ∈ Ā|Cδ

n

)≤ − inf
(μ,z)∈Ā

J max
1 (μ, z)

with a rate function J max
1 given by

J max
1 (μ, z) := J (μ,a1, . . . , ak−1, ak − z) − I (a1, . . . , ak).(54)

Since we have formulas for the rate functions J and I ,

J (μ,v1, . . . , vk)

=
⎧⎨
⎩H(μ|λ) if

∫
φ1 dμ = v1, . . . ,

∫
φk−1 dμ = vk−1,

∫
φk dμ ≤ vk,

∞ otherwise.

(see Theorem 3.4) and

I (v1, . . . , vk) = inf
μ∈M1(R

+)

{
H(μ|λ) :

∫
φ1 dμ = v1, . . . ,

∫
φk−1 dμ = vk−1,

∫
φk dμ ≤ vk

}

(see Proposition 3.7), one can express a rate function J max
1 in (54) in terms of the relative

entropy. Recalling the fact that H(μ|λ) = −h(μ) + ∫ φ1 dμ + C for some constant C, rate
function J max

1 can be expressed in terms of the differential entropy and a function K

K(a1, . . . , ak)

:= inf
μ∈M1(R

+)

{
−h(μ) :

∫
φ1 dμ = a1, . . . ,

∫
φk−1 dμ = ak−1,

∫
φk dμ ≤ ak

}
,

which appear in Theorem 2.5. We first prove Theorem 4.1 using the results of Section 3, and
then explain why J max

1 is equal to the rate function J max in Theorem 2.5.

PROOF. Throughout this proof, we use the notations

Si
n−j := φi(Xj+1) + · · · + φi(Xn)

n − j
,Ln−j := 1

n − j
(δXj+1 + · · · + δXn)

for any fixed index j and 1 ≤ i ≤ k. Also, for r > 0 and μ ∈ M1(R
+), define B(μ, r),

B̄(μ, r) ⊂ M1(R
+) by

B(μ, r) := {ν : d(ν,μ) < r
}
, B̄(μ, r) := {ν : d(ν,μ) ≤ r

}
.

Recall that d is a metric defined in (7) that induces the weak convergence of probability
measures.

Step 1. Upper bound large deviations: it is obvious that

P
(
(Ln,Mn) ∈ Ā|Cδ

n

)≤ nP

((
Ln,

φk(X1)

n

)
∈ Ā|Cδ

n

)
.(55)

According to the LDP for the sequence (S1
n, . . . , Sk

n), for each δ > 0, we have

lim inf
n→∞

1

n
logP

(
Cδ

n

)≥ − inf
vi∈(ai−δ,ai+δ)

I (v1, . . . , vk) ≥ −I (a1, . . . , ak).(56)
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Let us define Aδ by a collection of (μ, y) ∈ M1(R
+) × R+ for which there exists x ∈ R+

satisfying (μ, x) ∈ Ā and |y − (ak − x)| < δ. Then, using the condition (iii) in Assumption 1,
for sufficiently large n,{(

Ln,
φk(X1)

n

)
∈ Ā

}
∩ Cδ

n ⇒ Bδ
n :=

k−1⋂
i=1

{∣∣Si
n−1 − ai

∣∣< 2δ
}∩ {(Ln,S

k
n−1
) ∈ Aδ}.

According to the LDP result Theorem 3.4 and Remark 3.5,

lim sup
n→∞

1

n
logP

((
Ln,S

1
n−1 · · · , Sk

n−1
) ∈ Bδ

n

)
≤ − inf

(μ,vk)∈Aδ,v1∈[a1−2δ,a1+2δ],...,vk−1∈[ak−1−2δ,ak−1+2δ]
J (μ,v1, . . . , vk)

(57)

Note that since the sequence {Ln} under P is exponentially tight and
∏k−1

i=1 [ai −2δ, ai +2δ]×
[0, ak + δ] is compact, the weak LDP result Theorem 3.4 is applicable. Sending δ → 0, using
[3], Lemma 4.1.6,

lim
δ→0

inf
(μ,vk)∈Aδ,v1∈[a1−2δ,a1+2δ],...,vk−1∈[ak−1−2δ,ak−1+2δ]

J (μ,v1, . . . , vk)

= inf
(μ,vk)∈Ā

J (μ,a1, . . . , ak−1, ak − z).
(58)

Note that although J is not necessarily a good rate function, [3], Lemma 4.1.6, is applicable
since intervals [ai − 2δ, ai + 2δ] and [0, ak + δ] are compact and the relative entropy has
compact sub-level sets. Therefore, using (56), (57), and (58),

lim sup
δ→0

lim sup
n→∞

1

n
logP

((
Ln,

φk(X1)

n

)
∈ Ā|Cδ

n

)

≤ lim sup
δ→0

lim sup
n→∞

1

n
logP

({(
Ln,

φk(X1)

n

)
∈ Ā

}
∩ Cδ

n

)
− lim inf

δ→0
lim inf
n→∞

1

n
logP

(
Cδ

n

)
≤ − inf

(μ,z)∈Ā
J max

1 (μ, z).

This and (55) conclude the proof of upper bound large deviation.
Step 2. Lower bound large deviations: it suffices to show that for any z, ε > 0 and open set

U containing arbitrary μ ∈ M1(R
+),

−J max
1 (μ, z) ≤ lim inf

δ→0
lim inf
n→∞

1

n
logP

(
(Ln,Mn) ∈ U × (z − ε, z + ε)|Cδ

n

)
.(59)

If
∫

φk dμ > ak − z or
∫

φi dμ �= ai for some 1 ≤ i ≤ k − 1, then (59) is obvious since
J max

1 (μ, z) = ∞. Thus, throughout the proof we assume that
∫

φk dμ ≤ ak − z and
∫

φi dμ =
ai for 1 ≤ i ≤ k − 1. Since φk is bounded from below and continuous, according to the
Portmanteau theorem, there exists r0 > 0 such that

d(ν,μ) < r0 ⇒
∫

φk dν >

∫
φk dμ − z.(60)

Take a positive integer j ≥ 2 such that ak − jz <
∫

φk dμ ≤ ak − (j − 1)z, and denote 0 ≤
w := ak − (j − 1)z − ∫ φk dμ < z. Also, define two events E1

n,δ and E2
n by

E1
n,δ :=

j−1⋂
i=1

{∣∣∣∣φk(Xi)

n
− z

∣∣∣∣≤ δ

4(j − 1)

}
∩
{∣∣∣∣φk(Xj )

n
− w

∣∣∣∣≤ δ

4

}
,

E2
n :=

n⋂
i=j+1

{
φk(Xi)

n
< z

}
.
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It is obvious that for sufficiently small δ > 0,

E1
n,δ ∩ E2

n ⇒ Mn ∈ (z − ε, z + ε).

Therefore, for the open set U = B(μ, r) with r < r0
2 , for sufficiently small δ > 0,

lim inf
n→∞

1

n
logP

(
(Ln,Mn) ∈ U × (z − ε, z + ε)|Cδ

n

)

≥ lim inf
n→∞

1

n
logP

({Ln ∈ U} ∩ E1
n,δ ∩ E2

n|Cδ
n

)
(61)

≥ lim inf
n→∞

1

n
logP

({Ln ∈ U} ∩ E1
n,δ ∩ E2

n ∩ Cδ
n

)− lim sup
n→∞

1

n
logP

(
Cδ

n

)
.

According to [3], Lemma 4.1.6,

lim sup
δ→0

lim sup
n→∞

1

n
logP

(
Cδ

n

)

≤ lim sup
δ→0

[
− inf

v1∈[a1−δ,a1+δ],...,vk∈[ak−δ,ak+δ] I (v1, . . . , vk)
]

(62)

= −I (a1, . . . , ak).

Also, it is obvious that

P
({Ln ∈ U} ∩ E1

n,δ ∩ E2
n ∩ Cδ

n

)
= P
({Ln ∈ U} ∩ E1

n,δ ∩ Cδ
n

)− P
({Ln ∈ U} ∩ E1

n,δ ∩ (E2
n

)c ∩ Cδ
n

)
≥ P
({Ln ∈ U} ∩ E1

n,δ ∩ Cδ
n

)
− (n − j)P

(
{Ln ∈ U} ∩ E1

n,δ ∩
{
φk(Xj+1)

n
≥ z

}
∩ Cδ

n

)
.

(63)

Let us first estimate the following quantity:

lim inf
δ→0

lim inf
n→∞

1

n
logP

({
Ln ∈ B(μ, r)

}∩ E1
n,δ ∩ Cδ

n

)
.

For sufficiently small δ > 0, one can take open sets Dδ
n in (R+)k such that for sufficiently

large n,

k−1∏
i=1

(
ai − δ

2
, ai + δ

2

)
×
(∫

φk dμ − δ

2
,

∫
φk dμ + δ

2

)
⊂ Dδ

n

and

E1
n,δ ∩ {(S1

n−j , . . . , S
k−1
n−j , S

k
n−j

) ∈ Dδ
n

} ⇒ E1
n,δ ∩ Cδ

n
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thanks to the condition (iii) in Assumption 1. Therefore, according to the LDP result Theo-
rem 3.4, for sufficiently small δ > 0,

lim inf
n→∞

1

n
logP

({
Ln ∈ B(μ, r)

}∩ E1
n,δ ∩ Cδ

n

)

≥ lim inf
n→∞

1

n
logP

({
Ln−j ∈ B

(
μ,

r

2

)}
∩ E1

n,δ ∩ {(S1
n−j , . . . , S

k
n−j

) ∈ Dδ
n

})

≥ lim inf
n→∞

1

n
logP

(
E1

n,δ

)

+ lim inf
n→∞

1

n
logP

((
Ln−j , S

1
n−j , . . . , S

k
n−j

) ∈ B

(
μ,

r

2

)
× Dδ

n

)

≥ − inf
ν∈B(μ, r

2 ),(v1,...,vk)∈Dδ
n

J (ν, v1, . . . , vk)

≥ −J

(
μ,a1, . . . , ak−1,

∫
φk dμ

)

= −H(μ|λ) = −J (μ,a1, . . . , ak−1, ak − z).

(64)

Note that in the fourth line, we used (98) in Lemma A.1.
Now, let us show that

lim sup
δ→0

lim sup
n→∞

1

n
logP

({
Ln ∈ B(μ, r)

}∩ E1
n,δ ∩

{
φk(Xj+1)

n
≥ z

}
∩ Cδ

n

)

= −∞.

(65)

Note that under E1
n,δ ∩ {φk(Xj+1)

n
≥ z} ∩ Cδ

n,

ak −
∫

φk dμ + z − δ

2
<

φk(X1) + · · · + φk(Xj+1)

n
≤ ak + δ,

which implies that
∫

φk dμ > z − 3δ
2 . Thus, if

∫
φk dμ < z, then E1

n,δ ∩ {φk(Xj+1)

n
≥ z} ∩Cδ

n is
an empty set for sufficiently small δ > 0, which implies (65). Thus, from now on we assume
that
∫

φk dμ ≥ z. One can take closed sets Fδ
n in (R+)k such that for sufficiently large n,

Fδ
n ⊂

k−1∏
i=1

[ai − 2δ, ai + 2δ] ×
[
0,

∫
φk dμ − z + 2δ

]

and

E1
n,δ ∩

{
φk(Xj+1)

n
≥ z

}
∩ Cδ

n ⇒ (
S1

n−j−1, . . . , S
k
n−j−1

) ∈ Fδ
n .

Applying the LDP result Theorem 3.4 and Remark 3.5, we have

lim sup
n→∞

1

n
logP

({
Ln ∈ B(μ, r)

}∩ E1
n,δ ∩

{
φk(Xj+1)

n
≥ z

}
∩ Cδ

n

)

≤ lim sup
n→∞

1

n
logP

((
Ln,S

1
n−j−1, . . . , S

k
n−j−1

) ∈ B̄(μ, r) × Fδ
n

)
(66)

≤ − inf
ν∈B̄(μ,r),(v1,...,vk)∈Fδ

n

J (ν, v1, . . . , vk).

Taking a limit δ → 0, using [3], Lemma 4.1.6,

lim
δ→0

inf
ν∈B̄(μ,r),(v1,...,vk)∈Fδ

n

J (ν, v1, . . . , vk) = inf
ν∈B̄(μ,r),vk∈[0,

∫
φk dμ−z]

J (ν, a1, . . . , ak−1, vk).
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Since we chose r0 satisfying (60) and r <
r0
2 ,

inf
ν∈B̄(μ,r),vk∈[0,

∫
φk dμ−z]

J (ν, a1, . . . , ak−1, vk) = −∞.

Therefore, sending δ → 0 in (66), one can deduce (65). Applying (65) and (64) to (63), we
obtain

lim inf
δ→0

lim inf
n→∞

1

n
logP

({
Ln ∈ B(μ, r)

}∩ E1
n,δ ∩ E2

n,δ ∩ Cδ
n

)
≥ −J (μ,a1, . . . , ak − z).

(67)

Thus, using (61), (62) and (67), we finally obtain (59) since

lim inf
δ→0

lim inf
n→∞

1

n
logP

(
(Ln,Mn) ∈ B(μ, r) × (z − ε, z + ε)|Cδ

n

)
≥ −J (μ,a1, . . . , ak−1, ak − z) + I (a1, . . . , ak)

= −J max
1 (μ, z). �

PROOF OF THEOREM 2.5. Recall that when μ � dx, H(μ|λ) = −h(μ) + ∫ φ1 dμ + C

for some constant C. Thus, using Proposition 3.7 and the rate function formula for J in
Theorem 3.4, one can conclude that

J max
1 (μ, z)

=
⎧⎨
⎩−h(μ) − K(a1, . . . , ak)

∫
φi dμ = ai (1 ≤ i ≤ k − 1),

∫
φk dμ ≤ ak − z,

∞ otherwise,

for

K(a1, . . . , ak)

= inf
μ∈M1(R

+)

{
−h(μ) :

∫
φ1 dμ = a1, . . . ,

∫
φk−1 dμ = ak−1,

∫
φk dμ ≤ ak

}
.

This concludes the proof of Theorem 2.5. �

4.2. Localization and delocalization. In this section, we study the localization and de-
localization phenomena using the large deviation result Theorem 2.5. First, we prove Theo-
rem 2.6, which is about the delocalization result.

PROOF OF THEOREM 2.6. First, let us consider the case when (a1, . . . , ak−1) ∈ S1 and
ak > g2(a1, . . . , ak−1). Applying the LDP result Theorem 4.1 and Proposition 3.7,

lim sup
δ→0

lim sup
n→∞

1

n
logP

(
Mn ∈ [ak − g2(a1, . . . , ak−1) + ε, ak

]|Cδ
n

)
≤ − inf

z∈[ak−g2(a1,...,ak−1)+ε,ak]
I (a1, . . . , ak−1, ak − z) + I (a1, . . . , ak)

= − inf
w∈[0,g2(a1,...,ak−1)−ε] I (a1, . . . , ak−1,w) + I (a1, . . . , ak) < 0.

The last inequality follows from Proposition 3.14.
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Now, suppose that (i) or (ii) holds. Applying the LDP result Theorem 4.1 and Proposi-
tion 3.7 again, we have

lim sup
δ→0

lim sup
n→∞

1

n
logP

(
Mn ∈ [ε, ak]|Cδ

n

)
≤ − inf

z∈[ε,ak]
I (a1, . . . , ak−1, ak − z) + I (a1, . . . , ak)

= − inf
w∈[0,ak−ε] I (a1, . . . , ak−1,w) + I (a1, . . . , ak) < 0.

The last inequality follows from Proposition 3.14. �

We have shown that when (a1, . . . , ak) satisfies (i) or (ii) in Theorem 2.6, localization does
not happen. We now consider the case when (a1, . . . , ak−1) ∈ S1 and ak > g2(a1, . . . , ak−1).
As explained in Section 2, unlike the upper tail estimate (18) for the maximum component
Mn, the lower tail estimate

lim sup
δ→0

lim sup
n→∞

1

n
logP

(
Mn ≤ ak − g2(a1, . . . , ak−1) − ε|Cδ

n

)
< 0(68)

does not hold. In fact, according to the large deviation result Theorem 4.1 and Proposi-
tion 3.14, we have

lim inf
δ→0

lim inf
n→∞

1

n
logP

(
Mn < ak − g2(a1, . . . , ak−1) − ε|Cδ

n

)
≥ − inf

z∈[0,ak−g2(a1,...,ak−1)−ε)
I (a1, . . . , ak−1, ak − z) + I (a1, . . . , ak−1, ak) = 0.

As mentioned in Section 2, unlike the upper tail estimate (18), the correct scaling factor in
the lower tail estimate of type (68) highly depends on the structures of functions φi ’s. We
now prove Theorem 2.8, which is about the lower tail estimate and the localization result.
Since the correct scaling factor grows slowly than n, the proof is completely different from
the standard large deviation arguments we have used so far, and we partially adapt the idea in
[2].

PROOF OF THEOREM 2.8. We partially follow the argument in [2]. Recall that 1 ≤ m ≤
k − 1 is the largest index such that pm �= 0, and it is obvious that pm < 0. Throughout the
proof, we define s := ak − g2(a1, . . . , ak−1) and choose a sufficiently small θ > 0 such that
pm + 3θ < 0. In order to alleviate the notation, we define γ := γm. Choose two numbers
0 < α,β < 1 satisfying

1

2
(1 + γ + 2α) < β < 1.(69)

We first compute the lower bound of lim infn→∞ 1
nγ logQ(Cδ

n). It is obvious that

k−1⋂
i=1

{∣∣Si
n−1 − ai

∣∣< δ

2

}
∩
{∣∣Sk

n−1 − g2(a1, . . . , ak−1)
∣∣< δ

2

}
∩
{∣∣∣∣φk(X1)

n
− s

∣∣∣∣< δ

2

}

⇒ Cδ
n.

Since
∫

φi dν = ai for 1 ≤ i ≤ k − 1 and
∫

φk dν = g2(a1, . . . , ak−1) (see Lemma 3.12),
according to the law of large numbers,

lim
n→∞Q

(
k−1⋂
i=1

{∣∣Si
n−1 − ai

∣∣< δ

2

}
∩
{∣∣Sk

n−1 − g2(a1, . . . , ak−1)
∣∣< δ

2

})
= 1.(70)
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Thus, combining (100) in Lemma A.1 with (70), we obtain

lim inf
δ→0

lim inf
n→∞

1

nγ
logQ

(
Cδ

n

)≥ pmsγ .(71)

Now, let us compute the upper bound of

lim sup
δ→0

lim sup
n→∞

1

nγ
logQ

({Mn < s − ε} ∩ Cδ
n

)
.

For n ∈ N, let us choose f (n) satisfying φk(f (n)) = nα , and define un := E
ν[φk(Xi) ×

1Xi≤f (n)]. Note that f is increasing and limn→∞ f (n) = ∞. Using Assumption 1, the con-
dition (26), and the change of variables, for sufficiently large n,

g2(a1, . . . , ak−1) − un =
∫ ∞
f (n)

φk dν

≤
∫ ∞
f (n)

φke
(pm+θ)φm dx

≤
∫ ∞
nα

ye(pm+2θ)yγ

yM dy ≤ C exp
(
(pm + 3θ)nαγ ).

(72)

Define the event E1
n by

E1
n :=

{∣∣∣∣∣
n∑

i=1

(
φk(Xi)1Xi≤f (n) − un

)∣∣∣∣∣> nβ

}
.

Since 0 ≤ φk(Xi)1Xi≤f (n) ≤ nα , according to the Hoeffding’s inequality [10],

Q
(
E1

n

)≤ 2 exp
(−2n2β−1−2α).(73)

Now, define E2
n to be the event for which there exists the set of indices I satisfying |I | =

h(n) := [nγ− αγ
2 ] such that Xi > f (n) for all i ∈ I . Then, using Assumption 1 and the change

of variables, for sufficiently large n,

Q
(
E2

n

)
<

(
n

h(n)

)[∫ ∞
f (n)

e(pm+θ)φm dx

]h(n)

< Cnh(n)

[∫ ∞
nα

e(pm+2θ)yγ

yM dy

]h(n)

< C exp
[
C(pm + 3θ)nγ+ αγ

2
]
.

(74)

Finally, let us fix a constant η > 0 satisfying

s − ε <

(
s

(s + η)γ

) 1
1−γ

,(75)

and then define E3
n to be the event for which

∑
i∈I φm(Xi) > (s+η)γ nγ for some I satisfying

|I | < h(n). Using the result (99) in Lemma A.1, for sufficiently large n,

Q
(
E3

n

)
< C exp

[
(pm + 2θ)

(
(s + η)γ nγ − Ch(n)

)]
.(76)

Now, let us check that

(
E1

n

)c ∩ (E2
n

)c ∩ (E3
n

)c ∩ Cδ
n ⇒

{
Mn >

(
s − 2δ

(s + η)γ

) 1
1−γ
}

∩ Cδ
n.(77)

If we define I := {1 ≤ i ≤ n|Xi > f (n)}, then (E2
n)

c ∩ (E3
n)

c imply |I | < h(n) and∑
i∈I

φm(Xi) ≤ (s + η)γ nγ .(78)
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Under the event (E1
n)

c ∩ Cδ
n, |∑i∈I φk(Xi) − (ak − un)n| < δn + nβ . Combining this with

(72), we obtain∣∣∣∣∑
i∈I

φk(Xi) − sn

∣∣∣∣=
∣∣∣∣∑
i∈I

φk(Xi) − (ak − g2(a1, . . . , ak−1)
)
n

∣∣∣∣
< δn + nβ + C exp

(
C(pm + 3θ)nαγ )=: r(n).

(79)

Thus, using (78), (79), we have

sn − r(n) <
∑
i∈I

φk(Xi) ≤
[
max
i∈I

φk(Xi)

φm(Xi)

]
·∑

i∈I

φm(Xi) ≤
[
max
i∈I

φk(Xi)

φm(Xi)

]
· (s + η)γ nγ ,

which implies that for some index i, φk(Xi)/φm(Xi) ≥ (sn − r(n))/(s + η)γ nγ ). Thus,
combining this with the condition (26), for sufficiently large n, M

1−γ
n ≥ s−2δ

(s+η)γ
, since

limn→∞ r(n)
n

= δ (recall that pm + 3θ < 0). This concludes the proof of (77).
Therefore, using (73), (74), (76) and (77), for each δ > 0,

lim sup
n→∞

1

nγ
logQ

({
Mn <

(
s − 2δ

(s + η)γ

) 1
1−γ
}

∩ Cδ
n

)

≤ lim sup
n→∞

1

nγ
logQ

(
E1

n ∪ E2
n ∪ E3

n

)≤ (pm + 2θ)(s + η)γ

(80)

(recall that due to the condition (69), 2β − 1 − 2α > γ ). Note that due to the condition (75),
for sufficiently small δ > 0,

s − ε <

(
s − 2δ

(s + η)γ

) 1
1−γ

.

Thus, using (71) and (80), for such η > 0,

lim sup
δ→0

lim sup
n→∞

1

nγ
logQ

(
Mn < s − ε|Cδ

n

)

≤ lim sup
δ→0

lim sup
n→∞

1

nγ
logQ

({
Mn <

(
s − 2δ

(s + η)γ

) 1
1−γ
}

∩ Cδ
n

)

− lim inf
δ→0

lim inf
n→∞

1

nγ
logQ

(
Cδ

n

)
≤ (pm + 2θ)(s + η)γ − pmsγ .

(81)

Since for sufficiently small θ > 0, (pm + 2θ)(s + η)γ − pmsγ < 0 (recall that pm + 2θ < 0),
proof of (27) is concluded.

Now, let us prove (28). Recall that we have the upper tail estimate

lim sup
δ→0

lim sup
n→∞

1

n
logQ

(
Mn ≥ ak − g2(a1, . . . , ak−1) + ε|Cδ

n

)
< 0(82)

according to Theorem 2.6. Indeed, changing the reference measure from P to Q does not
affect the estimate (82) due to the observation Remark 2.7. Combining (82) with (27), (28)
immediately follows. �

Theorem 2.8 claims that when (a1, . . . , ak−1) ∈ S1 and ak > g2(a1, . . . , ak−1), localization
happens in the sense that (28) holds. One can also show that localization only happens at the
single site. Let us denote Nn by the second largest component among φk(Xi)

n
’s, and prove that

Nn gets closer to zero in the following sense.
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THEOREM 4.2. Under the same condition as in Theorem 2.8, for ε > 0,

lim
δ→0

lim
n→∞Q

({∣∣Mn − (ak − g2(a1, . . . , ak−1)
)∣∣< ε

}∩ {|Nn| < ε
}|Cδ

n

)= 1.(83)

PROOF. Throughout the proof, we use the notation s := ak − g2(a1, . . . , ak−1),

Si
n−2 := φi(X3) + · · · + φi(Xn)

n − 2
for each 1 ≤ i ≤ k. In order to prove (83), it suffices to prove that

lim
δ→0

lim
n→∞Q

({|Mn − s| < ε
}∩ {|Nn| ≤ 2ε

}|Cδ
n

)= 1.

Thanks to Theorem 2.8, it reduces to show that

lim
δ→0

lim
n→∞Q

({|Mn − s| < ε
}∩ {|Nn| > 2ε

}|Cδ
n

)= 0.

Thus, proof is concluded once we show the stronger statement

lim sup
δ→0

lim sup
n→∞

1

n
logQ

({|Mn − s| < ε
}∩ {|Nn| > 2ε

}|Cδ
n

)
< 0.(84)

According to Remark 2.7, it suffices to prove the estimate (84) under the reference measure
P instead of Q. One can take closed sets Fδ

n such that for sufficiently large n,

Fδ
n ⊂

k−1∏
i=1

[ai − 2δ, ai + 2δ] × [0, ak − s − ε + 2δ]

and {∣∣∣∣φk(X1)

n
− s

∣∣∣∣< ε

}
∩
{
φk(X2)

n
> 2ε

}
∩ Cδ

n ⇒ (
S1

n−2, . . . , S
k
n−2
) ∈ Fδ

n .

Since the sequence of empirical means (S1
n, . . . , Sk

n) satisfy the weak LDP with a rate function
I , we have

lim inf
n→∞

1

n
logP

(
Cδ

n

)≥ − inf
vi∈(ai− δ

2 ,ai+ δ
2 )

I (v1, . . . , vk) ≥ −I (a1, . . . , ak)

and

lim sup
n→∞

1

n
logP

((
S1

n−2, . . . , S
k
n−2
) ∈ Fδ

n

)
≤ − inf

v1∈[a1−2δ,a1+2δ],...,vk−1∈[ak−1−2δ,ak−1+2δ],vk∈[0,ak−s−ε+2δ] I (v1, . . . , vk).

Sending δ → 0, using [3], Lemma 4.1.6, and Proposition 3.14,

lim
δ→0

inf
v1∈[a1−2δ,a1+2δ],...,vk−1∈[ak−1−2δ,ak−1+2δ],vk∈[0,ak−s−ε+2δ] I (v1, . . . , vk)

= inf
vk∈[0,ak−s−ε] I (a1, . . . , ak−1, vk)

= I
(
a1, . . . , ak−1, g2(a1, . . . , ak−1) − ε

)
> I (a1, . . . , ak−1, ak).

Therefore, combining previous estimates together,

lim sup
δ→0

lim sup
n→∞

1

n
logP

({∣∣∣∣φk(X1)

n
− s

∣∣∣∣< ε

}
∩
{
φk(X2)

n
> 2ε

}
|Cδ

n

)

≤ lim sup
δ→0

lim sup
n→∞

1

n
logP

((
S1

n−2, . . . , S
k
n−2
) ∈ Fδ

n

)− lim inf
δ→0

lim inf
n→∞

1

n
logP

(
Cδ

n

)
< 0.

This concludes the proof of (84). �
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5. Examples. In this section, we present some concrete examples of the microcanonical
distributions for which the aforementioned theories can be applied. In particular, we estab-
lish the principle of equivalence of ensembles, and study the localization and delocalization
phenomena.

5.1. Single constraint. We first consider the microcanonical ensemble given by a single
constraint with an unbounded macroscopic observable. We refer to [3], Section 7.3, for the
equivalence of ensembles result for this case. In this section, using the large deviation results
obtained in Section 3, we derive the equivalence of ensembles result in a different way. We
also prove that localization cannot happen.

Suppose that a function φ : (0,∞) → (0,∞) satisfies the conditions (i) and (ii) in As-
sumption 1. Define λ to be a probability measure on (0,∞) whose distribution is given by
1
Z

e−φ dx. The reference measure on the configuration space (0,∞)N is given by P = λ⊗N,
and let us denote Xi : � → (0,∞) by the projection onto the ith coordinate. Let us con-
sider the microcanonical ensemble P((X1, . . . ,Xn) ∈ ·|Cδ

n), where the constraint is given
by

Cδ
n :=

{∣∣∣∣φ(X1) + · · · + φ(Xn)

n
− a

∣∣∣∣≤ δ

}
.(85)

We define Sn := φ(X1)+···+φ(Xn)
n

and H(p) := log
∫

epφ dλ. Note that H(p) < ∞ if and only
if p < 1, and H is differentiable on the interval (−∞,1). Thanks to the Cramér’s theorem,
the sequence Sn under the reference measure P satisfies the (full) LDP with a good rate
function I which is the Legendre transform of H .

Throughout this section, we assume that a belongs to the image of (−∞,1) under the map
H ′ in order that the conditional distribution is well defined. In fact, if a = H ′(p) for some
p ∈ (−∞,1), then p ∈ ∂I (a), which implies that I (a) < ∞. We first derive the equivalence
of ensembles result.

PROPOSITION 5.1. For any fixed positive integer j ,

lim
δ→0

lim
n→∞P

(
(X1, . . . ,Xj ) ∈ ·|Cδ

n

)= (λ∗)⊗j
.(86)

Here λ∗ is a probability measure on (0,∞) whose distribution is given by 1
Z

epφ dλ for p ∈
(−∞,1) satisfying H ′(p) = a, or equivalently

∫
φ dλ∗ = a.

PROOF. Uniqueness of p ∈ (−∞,1) satisfying H ′(p) = a is obvious since H is strictly
convex on (−∞,1). According to the LDP result for the single constraint case (see Re-
mark 3.5) and the Gibbs conditioning principle, (86) holds for λ∗ which is a unique minimizer
of

μ �→ H(μ|λ) + a −
∫

φ dμ(87)

over the constraint
∫

φ dμ ≤ a. For any μ � dx with
∫

φ dμ ≤ a,

H(μ|λ) + a −
∫

φ dμ = H
(
μ|λ∗)+ p

∫
φ dμ + a −

∫
φ dμ + C

≥ a − (1 − p)a + C

(88)

for some universal constant C. Also, equality holds if and only if μ = λ∗ since
∫

φ dλ∗ = a.
Thus, the infimum of (87) is uniquely obtained at μ = λ∗. This concludes the proof.
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Note that in the view of (88), since H(μ|λ)+a − ∫ φ dμ = −h(μ)+a, one can also check
that

λ∗ = arg max∫
φ dμ≤a

h(μ) = arg max∫
φ dμ=a

h(μ).(89)
�

As in Remark 3.10, Proposition (5.1) holds under the uniform distribution on the constraint
Cδ

n as well. Proposition (5.1) claims that in the equivalence of ensembles viewpoint, when we
consider the uniform distribution on the single constraint (85) with an unbounded function φ,
it behaves similarly to the case when φ is bounded (see Theorem 3.3 for bounded φ). This is
a striking difference from the multiple constraints case we have discussed so far.

Now, we show that localization cannot happen when the microcanonical ensemble is given
by a single constraint (85).

PROPOSITION 5.2. For any ε > 0,

lim sup
δ→0

lim sup
n→∞

1

n
logP

(
Mn ≥ ε|Cδ

n

)
< 0.

In particular, localization does not happen in the sense that

lim
δ→0

lim
n→∞P

(
Mn < ε|Cδ

n

)= 1.

PROOF. Let us choose a reference measure dν = 1
Z

ecφ dλ for c < 1 such that
∫

φ dν > a.
In fact, such c exists since limp→1− H(p) = ∞ and H is strictly convex. According to the
Cramér’s theorem, the sequence Sn under the new reference measure Q := ν⊗N satisfies
the (full) LDP with a good rate function Ī (v) which is the Legendre transform of H̄ (p) =
log
∫

epx dν(x). Thus, for each δ > 0,

lim inf
n→∞

1

n
logQ

(
Cδ

n

)≥ − inf
v∈(a−δ,a+δ)

Ī (v) ≥ −Ī (a).(90)

For sufficiently large n, we have{
φ(X1)

n
∈ [ε, a]

}
∩ Cδ

n ⇒ Sn−1 := φ(X2) + · · · + φ(Xn)

n − 1
∈ [0, a − ε + 2δ].

Using the fact that Q(Mn ∈ [ε, a]) ≤ nQ(
φ(X1)

n
∈ [ε, a]), we have

lim sup
n→∞

1

n
logQ

({
Mn ∈ [ε, a]}∩ Cδ

n

)

≤ lim sup
n→∞

1

n
logQ

({
φ(X1)

n
∈ [ε, a]

}
∩ Cδ

n

)

≤ lim sup
n→∞

1

n
logQ

(
Sn−1 ∈ [0, a − ε + 2δ])≤ − inf

v∈[0,a−ε+2δ] Ī (v).

(91)

Sending δ → 0, applying [3], Lemma 4.1.6, we have

lim
δ→0

inf
v∈[0,a−ε+2δ] Ī (v) = inf

v∈[0,a−ε] Ī (v).(92)

Now, let us prove that

inf
v∈[0,a−ε] Ī (v) > Ī (a).(93)
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According to [3], Lemma 2.2.5, Ī is nonincreasing on the interval (0,
∫

φ dν). Since
∫

φ dν >

a, this implies that infv∈[0,a−ε] Ī (v) = Ī (a − ε). If Ī (a − ε) = Ī (a), then Ī (v) = Ī (a) for all
v ∈ (a − ε, a), which means that Ī ′(v) = 0. Thus, v ∈ ∂H̄ (0) for all v ∈ (a − ε, a), which
leads to the contradiction since H̄ is differentiable at 0. Thus, Ī (a − ε) �= Ī (a), and since Ī

is nonincreasing on the interval (0,
∫

φ dν), (93) is proved.
Therefore, using (90), (91), (92), and (93),

lim sup
δ→0

lim sup
n→∞

1

n
logQ

(
Mn ∈ [ε, a]|Cδ

n

)

≤ lim sup
δ→0

lim sup
n→∞

1

n
logQ

({
Mn ∈ [ε, a]}∩ Cδ

n

)− lim inf
δ→0

lim inf
n→∞

1

n
logQ

(
Cδ

n

)
≤ − inf

v∈[0,a−ε] Ī (v) + Ī (a) < 0.

Note that according to (24),

lim sup
δ→0

lim sup
n→∞

1

n
logP

(
A|Cδ

n

)= lim sup
δ→0

lim sup
n→∞

1

n
logQ

(
A|Cδ

n

)
for any Borel set A. Therefore, the proof is concluded. �

5.2. Two constraints: lp spheres. In this section, we consider the microcanonical dis-
tribution given by two lp-constraints. In particular, we consider the case φ1(x) = x and
φ2(x) = x2. This type of the microcanonical ensemble was previously studied by Chatter-
jee [2]. He established the convergence of finite marginal distributions and the localization
phenomenon. However, the approach used in [2] is ad hoc and only adapted to the special
case, so in this section we obtain the result using the unifying theory developed throughout
this paper.

It is obvious that φ1(x) = x and φ2(x) = x2 satisfy Assumption 1. Note that the reference
measure P on the configuration space (0,∞)N is given by P = exp(1)⊗N. Since

∫
x2 dμ ≥

(
∫

x dμ)2 for any μ ∈ M1(R
+) and{

μ ∈ M1
(
R+) : μ � dx,

∫
xdμ = v1,

∫
x2 dμ ≤ v2

}

is a nonempty set whenever v2 > v2
1 , we have g1(v1) = v2

1 . This means that A1 = R+, and
the admissible set is defined by

A = {(v1, v2) ∈ (0,∞)2 : v2 > v2
1
}
.

We have v1 ∈ π1(∂H(p1,0)) for p1 satisfying
∫

xep1x dλ∫
ep1x dλ

= v1 (see Definition 2.3 for the

meaning of projection π1). For such p1 (p1 = 1 − 1
v1

), one can check that ∂H(p1,0) =
{(v1, v2) ∈ (0,∞)2|v2 ≥ 2v2

1} using the fact that
∫

x2ep1x dλ∫
ep1x dλ

= 2v2
1 . Thus, g2 can be chosen

as g2(v1) = 2v2
1 . Obviously, S1 = R+ and S2 is an empty set. Also, according to Proposi-

tion 3.14, a weak LDP rate function I for the sequence (S1
n, S2

n) satisfies that for any c > 0,

I
(
v1,2v2

1
)= I

(
v1,2v2

1 + c
)
.(94)

For r2 < s < 2r2, define Gr,s by a probability measure on (0,∞) whose distribution is of the
form 1

Zr,s
eαx+βx2

dx and satisfying∫
x dGr,s = r,

∫
x2 dGr,s = s.(95)

The existence of such measure can be deduced from Proposition 3.13. We first derive the
following equivalence of ensembles result as an application of Theorem 2.4.
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PROPOSITION 5.3. Fix any positive integer j . When a2
1 < a2 < 2a2

1 ,

lim
δ→0

lim
n→∞P

(
(X1, . . . ,Xj ) ∈ ·|Cδ

n

)= G⊗j
a1,a2

.

On the other hand, in the case of a2 ≥ 2a2
1 ,

lim
δ→0

lim
n→∞P

(
(X1, . . . ,Xj ) ∈ ·|Cδ

n

)= exp(a1)
⊗j .

Finally, let us derive the localization and delocalization result. Let us denote Mn by the

maximum component Mn := maxi
X2

i

n
. Since

∫
x dλ = 1 and φ1, φ2 satisfy the condition (26),

the results of Theorems 2.6 and 2.8 read as follows.

PROPOSITION 5.4. Suppose that a1 = 1, and fix any ε > 0. In the case of 1 < a2 ≤ 2,
localization does not happen in the sense that

lim
δ→0

lim
n→∞P

(
Mn > ε|Cδ

n

)= 0.

On the other hand, in the case of a2 > 2, localization happens in that

lim
δ→0

lim
n→∞P

(∣∣Mn − (a2 − 2)
∣∣> ε|Cδ

n

)= 0.

Note that when a2 > 2, the upper tail estimate for Mn (18) reads as

lim sup
δ→0

lim sup
n→∞

1

n
logP

(
Mn ≥ a2 − 2 + ε|Cδ

n

)
< 0,

and the lower tail estimate for Mn (27) reads as

lim sup
δ→0

lim sup
n→∞

1√
n

logP
(
Mn < a2 − 2 − ε|Cδ

n

)
< 0

since γ1 = 1
2 . As explained in Section 2, the maximum component Mn behaves differently in

the upper tail and lower tail regime.

5.3. Three constraints: lp spheres. The last example we consider is the microcanon-
ical ensemble given by three lp-constraints. In particular, we assume that φi(x) = xi for
i = 1,2,3. It is obvious that these functions satisfy Assumption 1. Note that the reference
measure P on the configuration space (0,∞)N is given by P = exp(1)⊗N. It is not hard to

check that A1 = {(v1, v2) ∈ (0,∞)2|v2
1 < v2}, g1(v1, v2) = v2

2
v1

, and the admissible set A is
given by

A= {(v1, v2, v3) ∈ (0,∞)3 : v2
1 < v2, v

2
2 < v1v3

}
.

We first characterize the sets S1 and S2.

LEMMA 5.5. The sets S1, S2 ⊂ (0,∞)2 are given by

S1 = {(v1, v2) : v2
1 < v2 ≤ 2v2

1
}
, S2 = {(v1, v2) : 2v2

1 < v2
}
.

PROOF. We first prove the statement for S1.
Step 1. If v2

1 < v2 ≤ 2v2
1 , then there exist p1,p2, v3 such that (v1, v2, v3) ∈ ∂H(p1,p2,0):

first, we claim that there exist p1,p2 satisfying that for i = 1,2, vi = 1
Z

∫
xiep1x+p2x

2
dλ (Z

is a normalizing constant Z = ∫ ep!x+p2x
2
dλ). In fact, when v2

1 < v2 < 2v2
1 , this is proved
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in Section 5.2, and when v2 = 2v2
1 , one can choose p1 = 1 − 1

v1
,p2 = 0. Therefore, for

g2(v1, v2) defined by

g2(v1, v2) = 1

Z

∫
x3ep1x+p2x

2
dλ,

we have ∂H(p1,p2,0) = {(v1, v2,w) : w ≥ g2(v1, v2)} according to Lemma 3.12. This con-
cludes the proof of Step 1.

Step 2. If 2v2
1 < v2, then there does not exist p1,p2, v3 such that (v1, v2, v3) ∈

∂H(p1,p2,0): suppose that such p1,p2, v3 exist. Then, by Lemma 3.12, for i = 1,2,
vi = 1

Z

∫
xiep1x+p2x

2
dλ. We have p2 < 0 since v2 = 2v2

1 if p2 = 0. This implies that the

logarithmic moment generating function H1(p1,p2) = log
∫

ep1x+p2x
2
dλ is differentiable at

(p1,p2), and (v1, v2) ∈ ∂H1(p1,p2). By the Legendre duality, (p1,p2) ∈ ∂I1(v1, v2), where
I1 is a Legendre dual of H1. However, due to (94), p2 = 0 since v2 > 2v2

1 , which leads to the
contradiction.

The statement for S2 is obvious since S2 = A1 ∩ Sc
1. �

As an application of Theorem 2.4 and Lemma 5.5, we can deduce the following equiva-
lence of ensembles result.

PROPOSITION 5.6. Fix any positive integer j . Then,

lim
δ→0

lim
n→∞P

(
(X1, . . . ,Xj ) ∈ ·|Cδ

n

)= (λ∗)⊗j
,

where λ∗ is characterized as follows: in the case of a2
1 < a2 ≤ 2a2

1 and a3 ≥ g2(a1, a2),

λ∗ = 1

Z
ep1x+p2x

2
dx

for p1,p2 satisfying
∫

xi dλ∗ = ai for i = 1,2.
On the other hand, either in the case

(i) 2a2
1 < a2 or

(ii) a2
1 < a2 ≤ 2a2

1 and a3 < g2(a1, a2),

λ∗ = 1

Z
ep1x+p2x

2+p3x
3
dx

for p1,p2,p3 satisfying p3 < 0 and
∫

xi dλ∗ = ai for i = 1,2,3.

Finally, since φi ’s satisfy the condition (26), one can derive the localization and delocal-
ization result as applications of Theorems 2.6 and 2.8.

PROPOSITION 5.7. Suppose that (a1, a2) ∈ S2. Then, localization does not happen in
the sense that

lim
δ→0

lim
n→∞P

(
Mn > ε|Cδ

n

)= 0.(96)

On the other hand, assume that (a1, a2) ∈ S1. In the case of a3 ≤ g2(a1, a2), localization does
not happen in the sense that (96) holds. However, in the case of a3 > g2(a1, a2), under the
reference measure Q= ν⊗3 with ν of the form

ν = 1

Z
ep1x+p2x

2
dx,(97)

satisfying
∫

xi dν = ai for i = 1,2, localization happens in the sense that

lim
δ→0

lim
n→∞Q

(∣∣Mn − (a3 − g2(a1, a2)
)∣∣> ε|Cδ

n

)= 0.
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Note that when a3 > g2(a1, a2), the upper tail estimate for Mn (18) reads as

lim sup
δ→0

lim sup
n→∞

1

n
logQ

(
Mn ≥ a3 − g2(a1, a2) + ε|Cδ

n

)
< 0,

and the lower tail estimate for Mn (27) reads as

lim sup
δ→0

lim sup
n→∞

1

nγ
logQ

(
Mn < a3 − g2(a1, a2) − ε|Cδ

n

)
< 0.

Here, γ = 1
3 when p2 = 0 in the expression (97), and γ = 2

3 when p2 < 0 in the expression
(97), since γi = i

3 for i = 1,2.

APPENDIX: AUXILIARY LEMMA

We prove the following auxiliary lemma frequently used in the paper.

LEMMA A.1. Suppose that Assumption 1 holds. Also, for some 1 ≤ m ≤ k − 1, consider
the probability distribution ν = 1

Z
ep1φ1+···+pmφm dx on (0,∞) with pm < 0. Then, for any

number M ≥ 0 and ε > 0,

lim
n→∞

1

n
logν

(∣∣∣∣φk(X1)

n
− M

∣∣∣∣< ε

)
= 0.(98)

Let us denote Q by the product measure Q = ν⊗N. Then, for any 0 < θ < −pm, there exists
C = C(θ) > 0 such that

Q

( j∑
i=1

φm(Xi) > M

)
< C(M − Cj)j−1 exp

[
(pm + θ)(M − Cj)

]
(99)

for any j ∈ N, M > Cj + 2.
Furthermore, under the additional condition (26),

lim inf
n→∞

1

nγm
logν

(∣∣∣∣φk(X1)

n
− M

∣∣∣∣< ε

)
≥ pmMγm.(100)

PROOF. Note that due to Assumption 1, for any θ > 0, there exists C = C(θ) such that

x > C ⇒ (pm − θ)φm < p1φ1 + · · · + pmφm < (pm + θ)φm.

Let us first prove (98). Since m < k, thanks to the condition (iii) in Assumption 1, there exists
0 < δ < 1 such that for sufficiently large y,

∑m
i=1 piφi(φ

−1
k (y)) < (pm + δ)y1−δ . Thus, using

the condition (C4) in Assumption 1 and the change of variables, for sufficiently large n,

ν

(∣∣∣∣φk(X1)

n
− M

∣∣∣∣< ε

)
=
∫ (M+ε)n

(M−ε)n
e
∑m

i=1 piφi(φ
−1
k (y)) 1

φ′
k(φ

−1
k (y))

dy

<

∫ (M+ε)n

(M−ε)n
Ce(pi+δ)y1−δ

yC dy

< Cεne(pi+δ)((M+ε)n)1−δ (
(M + ε)n

)C
.

After taking log and dividing by n, and then sending n → ∞, we obtain (98).
Let us now prove (99). If we define Yi := φm(Xi), then Yi ’s are i.i.d. whose individual

distribution is given by 1
Z

e
∑m

i=1 piφi(φ
−1
m (y)) 1

φ′
m(φ−1

m (y))
dy on (0,∞). Using Assumption 1, for

any 0 < θ < −pm, there exists C such that

y > C ⇒ 1

Z
e
∑m

i=1 piφi(φ
−1
m (y)) 1

φ′
m(φ−1

m (y))
<

1

Z′ e
(pm+θ)y(101)
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(Z′ = ∫ e(pm+θ)y dy is a normalizing constant). Let us denote Z1,Z2, . . . by i.i.d. random
variables whose individual distribution is given by exp(pm + θ). Then, (101) implies that for
any K > 0,

Q

( j∑
i=1

φm(Xi)1φm(Xi)≥C > K

)
≤Q

( j∑
i=1

Zi > K

)
(102)

by the simple coupling argument. Using the fact that law of
∑j

i=1 Zi is Gamma(j,pm + θ),
it is easy to check that for K > 2,

Q

( j∑
i=1

Zi > K

)
< CKj−1e(pm+θ)K(103)

(we refer to [2] for the estimate (103) in the case Gamma(j,1) distribution). On the other
hand, it is obvious that

j∑
i=1

φm(Xi) > M ⇒
j∑

i=1

φm(Xi)1φm(Xi)≥C > M − Cj.(104)

Thus, (102), (103), and (104) conclude the proof of (99).
Finally, let us prove (100) under the additional condition (26). Using Assumption 1, con-

dition (26), and the change of variables, for any θ, η > 0,

ν

(∣∣∣∣φk(X1)

n
− M

∣∣∣∣< η

)
> Cηne(pm−θ)((M+η)n)γm (

(M − η)n
)C

for sufficiently large n. After taking log, dividing by n, sending n → ∞, and then sending
θ → 0, we have

lim inf
n→∞

1

nγm
logν

(∣∣∣∣φk(X1)

n
− M

∣∣∣∣< η

)
≥ pm(M + η)γm.

Since for 0 < η < ε,

lim inf
n→∞

1

nγm
logν

(∣∣∣∣φk(X1)

n
− M

∣∣∣∣< ε

)
> lim inf

n→∞
1

nγm
logν

(∣∣∣∣φk(X1)

n
− M

∣∣∣∣< η

)
,

and η > 0 can be arbitrary small, we obtain (100). �
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