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Sea ice, or frozen ocean water, freezes and melts every year in the Arc-
tic. Forecasts of where sea ice will be located weeks to months in advance
have become more important as the amount of sea ice declines due to cli-
mate change, for maritime planning and other uses. Typical sea ice forecasts
are made with ensemble models, physics-based models of sea ice and the
surrounding ocean and atmosphere. This paper introduces Mixture Contour
Forecasting, a method to forecast sea ice probabilistically using a mixture of
two distributions, one based on postprocessed output from ensembles and the
other on observed sea ice patterns in recent years. At short lead times, these
forecasts are better calibrated than unadjusted dynamic ensemble forecasts
and other statistical reference forecasts. To produce these forecasts, a statisti-
cal technique is introduced that directly models the sea ice edge contour, the
boundary around the region that is ice-covered. Mixture Contour Forecasting
and reference methods are evaluated for monthly sea ice forecasts for 2008–
2016 at lead times ranging from 0.5–6.5 months using one of the European
Centre for Medium-Range Weather Forecasts ensembles.

1. Introduction. Sea ice, or frozen ocean water, freezes and melts annually in response
to seasonal changes in atmospheric and oceanic processes. Since the satellite record began in
1979, the amount of sea ice in the Arctic has declined rapidly (Comiso et al. (2008), Stroeve
et al. (2012)). Continued reduction in sea ice is expected as the effects of climate change
increase. Reduced sea ice cover allows for increased Arctic shipping (Smith and Stephenson
(2013), Melia, Haines and Hawkins (2016)). Since waters without sea ice are more easily
navigable than waters with sea ice, the importance of forecasting sea ice has increased in
response. Reliable estimates of a ship’s probability of encountering sea ice are needed to plan
maritime routes that avoid sea ice. In this paper we develop statistical methods to accurately
predict the probability of encountering sea ice.

Sea ice concentration, or the percent of ice-covered area, has been derived from satellite
measurements for a little over 40 years and is reported on a grid. For navigational purposes
the concentration field can be reduced to a binary field indicating the presence or absence
of sea ice. Prediction efforts focus on the location of the ice edge contour or the boundary
line that separates ice-covered regions and open water. We follow the convention in sea-ice
research of categorizing a grid box as ice covered if its concentration is at least 15%. This
thresholding is necessary because of potentially low accuracy of satellite products at low
concentrations. Concentration reduces from about 50% to near 0% over a small region, so
the area classified as sea ice is only weakly affected by the exact threshold used.

Hierarchical spatiotemporal generalized linear models have been introduced for Arctic
sea ice (Zhang and Cressie (2019, 2020)). However, many operational sea ice forecasts are
informed by numerical prediction systems. These systems integrate systems of differential
equations to represent the physical processes that drive sea ice formation and melting. These
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systems are run multiple times with slightly varied initial conditions. The resulting collec-
tion of forecasts, called the ensemble, is skillful in predicting the total area or extent of sea
ice at seasonal time scales in retrospective forecasts (e.g., Chevallier et al. (2013), Msadek
et al. (2014), Sigmond et al. (2013), Wang, Chen and Kumar (2013)) and in current fore-
casts (Blanchard-Wrigglesworth et al. (2015)). Skill has also been shown at regional scales
(Bushuk et al. (2017)) and for spatial fields for some ensembles at short lead times (Zampieri,
Goessling and Jung (2018)).

However, errors in ensembles are common because the underlying systems of differen-
tial equations are only approximations of the true physical processes, initial conditions are
not fully known and subgrid scale phenomena are not represented (Guemas et al. (2016),
Blanchard-Wrigglesworth et al. (2015)). Forecasts can be biased and/or poorly calibrated.
Bias means the average behavior is systematically predicted incorrectly, and poor calibration
means that the range of predicted sea ice states does not reflect the observed variability.

Statistical postprocessing, or methods that incorporate or adjust information from ensem-
ble forecasts, can be applied to address ensembles’ weaknesses while maintaining much of
the skill they provide. In this paper we develop Mixture Contour Forecasting (MCF), a post-
processing method to improve the calibration of sea ice forecasts. First, a method for gen-
erating distributions of sea ice edge contours is developed. The mean location of the sea ice
edge contour in these distributions is informed by the mean location of the sea ice edge con-
tour obtained from ensembles. These generated contour distributions are then weighted with
climatological information to account for the time-varying skill of ensemble forecasts and
aspects of sea ice that cannot be represented with a contour boundary, such as holes in the sea
ice. The MCF method gives better calibrated and more accurate forecasts than the unadjusted
ensemble and better calibrated forecasts than existing postprocessing techniques.

The paper is organized as follows. In Section 2, a Bayesian model for generating distribu-
tions of the sea ice edge contour is introduced. This contour model is fit to observed ice edge
contours from recent years. The distribution’s prior is informed by the mean ice edge pre-
dicted from the ensemble. In Section 3, the contour model is combined with climatological
information using a finite mixture model. In Section 4, the performance of MCF is compared
with other post-processing and statistical forecasting techniques. Section 5 concludes with
discussion.

2. Contour model. In this section we develop a Bayesian model for the distribution of
sea ice edge contours. The method works by directly modeling contours as a sequence of
connected points.

2.1. Notation and setup. A contour is the boundary line enclosing a defined area which
here is the region that contains sea ice. A contour, denoted by S, can be represented as an
ordered sequence of N spatial points, (S1, . . . , SN), where each Si is an (x, y) coordinate pair.
Connecting Si to Si+1 for all i = 1, . . . ,N − 1 and SN to S1 encloses an area. To generate a
distribution of contours, we need a way to generate realizations of S.

While the sea ice edge is often referred to as a single entity, it is actually a collection of
edges defining multiple contiguous areas of sea ice. These contours are modeled separately.
We focus on five regions shown in the map in Figure 1. We selected these regions by mod-
ifying an existing region mask (Cavalieri and Parkinson (2012)) obtained from the National
Snow & Ice Data Center (2017). We excluded parts of the Arctic ocean where sea ice does
not typically form in one contiguous section, since a contour model is not appropriate for
these areas. For notational simplicity we do not subscript the regions and refer to the sea ice
edge contour in a given region as S.

In typical regions, sea ice is formed in contiguous sections bordering land. In these regions,
S is formed by a sequence of points that proceed from the coastline, into the ocean and back
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FIG. 1. Map of the Arctic ocean regions analyzed. Points indicate B , the location of the fixed set of boundary
points, in typical regions. The ‘+’ symbol denotes the location of B in the Central Arctic region.

to the coastline. We can reduce the number of points that need to be estimated by fixing a
set of boundary points, B = (B1, . . . ,Bn), on land and considering how far into the ocean
the contour extends at each boundary location. The subset of points in S that must be fit are
denoted by S̃ and are indexed 1, . . . , n.

We lay out an ordered series of parallel lines, L = (L1, . . . ,Ln), that cover the region,
with one line for each Bi . Each Li extends from its corresponding point Bi to the edge of the
region. We assume that one point on the contour, S̃i , lies on each line Li . We let yi be the
line segment extending from point Bi on the coastline to point S̃i on the contour. The set of
all line segments is denoted by Y = (y1, . . . , yn). The contour is formed by connecting the
points Bi to Bi+1 for all i = 1, . . . , n − 1, Bn to S̃n, S̃i to S̃i−1 for all i = n, . . . ,2 and S̃1 to
B1. The left panel of Figure 2 illustrates these variables for the Bering Sea region. The angle
of all lines in L is set to approximately match the direction the sea ice extends off the land.

FIG. 2. Hypothetical sea ice edge contours (S), sets of fixed boundary points (B) and parallel lines (L) on
which the points S̃ will be generated for the Bering Sea region (left) and for the Central Arctic region (right). The
bold line designates the observed ice-covered line segment for the 14th (left) and 33rd (right) lines.
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FIG. 3. Illustration of a hypothetical line segment Li that crosses over a section of land. Line Li starts at point
Bi , denoted by a “+” sign, and ends at the black circle.

Sea ice in the Central Arctic region is not generally formed off a land boundary. To rep-
resent this region’s contour, we fix all the lines in L to originate from a single fixed point
rather than from a sequence of points. So, for this region Bi = Bj for all Bi,Bj ∈ B . The
lines extend at fixed angles evenly spaced around a circle, as illustrated in the right panel of
Figure 2. In this case, S̃ = S and n = N .

Note that, given B , Y and the angles of all lines in L, we have enough information to iden-
tify each S̃i . We need only compute the length of each line segment yi ∈ Y . Each coordinate
of the contour is then

(2.1) S̃i = Bi + (‖yi‖ cos(θi),‖yi‖ sin(θi)
)
,

where ‖ · ‖ denotes the length of the line segment and θi is the angle of line Li . Since B and
L are fixed, we need only develop a statistical model for generating the length of the line
segments in Y to generate distributions of contours.

2.2. Statistical model. For the sea ice application, each line Li is bounded below by zero
and above by land or regions boundaries. Additionally, some Li cross over land areas where
sea ice cannot be observed. These constraints make it natural to model the proportion of each
line that is ice covered, rather than the length of the line segments that compose Y directly.

We now introduce notation for modeling proportions. These variables are illustrated in
Figure 3. We split each Li into sets of line segments that are in the ocean and sets of line
segments that are on land. Let Ri = {Ri,1, . . . ,Ri,Ki

} denote the Ki ocean line segments for
Li , and let H i = {Hi,1, . . . ,Hi,Ki−1} denote the Ki − 1 land line segments for Li . Note that

(2.2) ‖Li‖ =
Ki∑
k=1

‖Ri,k‖ +
Ki−1∑
k=1

‖Hi,k‖ = ‖Ri‖ + ‖H i‖.

In the case where Li just goes through ocean, Ri = Ri1 = Li and H i = ∅.
Since the line segments forming any H i cannot contain sea ice, we focus on modeling the

proportion of the corresponding Ri that are ice covered. More formally, let

(2.3) πi = ‖yi ∩ Ri‖
‖Ri‖ ,

where the numerator denotes the length of yi that intersects the ocean line segments and the
denominator denotes the total length of ocean line segments in Li . The set of all proportions
is denoted by π = (π1, . . . , πn).

We develop a model for π that can be used to generate Y and corresponding S̃. For ease
of modeling we transform the proportions to the real line. Let

(2.4) π̃i =

⎧⎪⎪⎨
⎪⎪⎩

logit(πi) for ε ≤ πi ≤ 1 − ε,

logit(ε) for πi < ε,

logit(1 − ε) for πi > 1 − ε,

where logit(x) = log(x/(1 − x)) and ε is small. In our implementation ε = 0.01. The set of
transformed proportions, π̃ , are modeled using a multivariate normal distribution,

(2.5) π̃ ∼ N(μ,�),

where μ is an n × 1 mean vector and � is an n × n covariance matrix.
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The data generating process for S̃ is then as follows. First, an underlying random vector,
π̃ , is drawn, Then, each π̃i is transformed back to a proportion, that is, πi = ilogit(π̃i) where
ilogit(x) = exp(x)/(1 + exp(x)). The length of the corresponding yi is computed from πi as
follows. Let D denote the maximum index of a line segment of Ri that is fully ice covered,

(2.6) D = argmax
d

{∑d
k=1 ‖Ri,k‖
‖Ri‖ < πi

}
.

The length of yi is then

(2.7) ‖yi‖ = πi‖Ri‖ +
D−1∑
k=1

‖Hi,k‖.

In other words, yi is composed of πi proportion of Ri and all the line segments of H i that
must be crossed to reach the Dth segment of Ri . For all i, the lengths of yi are then used to
compute S̃i using equation (2.1). Connecting the points in S̃, along with the points in B , if
applicable, produces a generated contour.

In rare cases the generated values in S̃ will result in a contour that intersects itself. When
these self-intersections occur, the contour fails to be a boundary around a single contiguous
area. A small adjustment to the modeled line is made to the part(s) of the contours that have
self-intersections. Each part of the contour that contains a self-intersection is replaced with
an approximation that does not have a self-intersection obtained using the Douglas–Peuker
algorithm (Douglas and Peucker (1973)). Details of this adjustment are given in the Sup-
plementary Material A Section 3 (Director, Raftery and Bitz (2021)). The generated contour
also, occasionally, comes very close to touching a region boundary or land without actually
touching it. Since this is physically unrealistic, ‖yi‖ values that are within half the nominal
length of a grid box (12.5 nominal kilometers) of a region or land boundary are adjusted to
exactly align with the region or land boundary. The total area involved in both adjustments is
very small. These adjustments just ensure that any individual generated contour looks physi-
cally realistic.

2.3. Parametric covariance. To allow for efficient fitting of equation (2.5), we define a
parametric covariance structure. In sea ice observations, the mean and covariance of the ice-
covered proportion of each line varies substantially within and across regions. To represent
these features well, we need a statistical model with a reasonably flexible covariance struc-
ture. The values of π̃i and π̃j tend to be more similar when Li and Lj are close together. So,
we structure our covariance in typical regions based on the differences between the indices
of the lines in L. We let � = �(σ , κ), where σ = (σ1, . . . , σn) and κ > 0. The element, �ij ,
in the ith row and j th column of this covariance is

(2.8) �ij = σiσj exp
(
−|i − j |

κ

)
,

where | · | denotes the absolute value.
In the Central Arctic region, the lines are laid out in a circle so that the first and last

lines are close to each other despite their indices being far apart. The difference between the
indices of line i and line j does not necessarily correspond to the distance between lines
Li and Lj . So, we apply an alternative covariance function based on the difference between
angles θi and θj . Various covariance functions based on differences between angles have
been proposed (Gneiting (2013)). Like the other regions, we apply an exponential covariance
structure where σ = (σ1, . . . , σn), κ > 0, and the element in the ith row and j th column of
the covariance matrix is

(2.9) �ij = σiσj exp
(
−d(θi, θj )

κ

)
,

where d(θi, θj ) ∈ [0, π] is the smaller angle between θi and θj .
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We find that an exponential covariance structure fits the data well. This covariance struc-
ture allows for the correlation to drop off rapidly as lines become farther apart while maintain-
ing some nonzero correlation among all lines. Allowing for the latter behavior is needed, since
some region-wide correlation would be expected given large-scale phenomena that could oc-
cur across a region, such as a particularly cold or warm month.

2.4. Number of lines in L. Setting n, the number of lines in L, involves tradeoffs between
accuracy and computation time. With more lines, contours can be represented in more detail.
However, computation increases with the corresponding increase in the size of the covariance
matrix. We set n = 90 in the Central Arctic region and scale n for other regions relative to
how their area compares to the area of the Central Arctic region. More discussion of how n

is selected is given in the Supplementary Material A Section 2 (Director, Raftery and Bitz
(2021)).

2.5. Prior distribution of the mean sea ice edge, μ. Parameters are estimated with a
Bayesian approach. The ensemble forecast informs the likely location of the mean sea ice
edge. Using the ensemble output, we place a strong prior on μ, the mean sea ice edge. We
adjust the ensemble output with contour shifting, a technique to reduce systematic bias, be-
fore using it in the prior (Director, Raftery and Bitz (2017)).

2.5.1. Contour shifting. We apply the contour shifting method introduced in Director,
Raftery and Bitz (2017) for the Central Arctic region to all regions. We summarize the method
using the notation in Section 2. For some historical training period preceding the forecast
year, we compare the ice edge predicted by the ensemble mean forecast to the observed ice
edge. For each year j and line Li in a particular region, we record the length of the line
segments extending from each point on the coastline, Bi , to the corresponding point on the
observed ice edge contour, S̃obs

i,j . We also record the lengths of the line segments from each

point on the coastline, Bi , to the corresponding point on the ensemble mean ice edge, S̃ens
i,j .

We denote these lengths by ‖yobs
i,j ‖ and ‖yens

i,j ‖, respectively. Assuming linear change in these
lengths over time, we estimate the length to which the sea ice will extend on line Li at some
new time point t for the observed ice edge,∥∥ŷobs

i,t

∥∥ = α̂obs
i + β̂obs

i t,(2.10)

and the ensemble mean ice edge, ∥∥ŷens
i,t

∥∥ = α̂ens
i + β̂ens

i t .(2.11)

Here, α̂obs
i , α̂ens

i , β̂obs
i , and β̂ens

i denote fitted regression coefficients. These regressions are fit
using Huber M-estimation, a form of robust linear regression (Huber (2011)).

The difference between ‖ŷobs
i,t ‖ and ‖ŷens

i,t ‖ gives the expected difference between the length
predicted by the mean ensemble and the length that will be observed at time t . So, the fore-
casted length on line Li at time t is expected to be

(2.12)
∥∥ŷCS

i,t

∥∥ = ∥∥yens
i,t

∥∥ + (∥∥ŷobs
i,t

∥∥ − ∥∥ŷens
i,t

∥∥)
,

where the superscript CS indicates that the contour shifting adjustment has been made.
Each adjusted length, ‖yCS

i,t ‖, can be combined with the corresponding Bi and Li values
as in Section 2.1 to produce new ice edge contours. The resulting contours may have self-
intersections. These self-intersections are corrected in the same way as when they occur with
generated contours as described in Section 2.2 and in Supplementary Material A Section 3
(Director, Raftery and Bitz (2021)). Contours from ensembles that have been adjusted to
reduce bias are referred to as contour shifted. These contours have reduced systematic error
compared to the initial ensemble forecasts.
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2.5.2. Prior for mean proportions ice covered. We can now incorporate this reduced
bias form of the forecasted ensemble mean ice edge contour into the prior for μ. We use the
following prior distribution:

μ ∼ N(μ0,�0),(2.13)

where μ0 is an n × 1 mean vector informed by the ensemble forecast. Let

(2.14) πCS
i,t = ‖yCS

i,t ∩ Ri‖
‖Ri‖

denote the proportion of Ri that yCS
i,t covers in the contour shifted ensemble mean ice edge.

Then, for all i, let

(2.15) μ0,i =

⎧⎪⎪⎨
⎪⎪⎩

logit
(∥∥πCS

i,t

∥∥)
for ε ≤ πCS

i,t ≤ 1 − ε,

logit(ε) for πCS
i,t < ε,

logit(1 − ε) for πCS
i,t > 1 − ε.

The matrix �0 is a n × n diagonal covariance matrix. Details on setting �0 are given in
the Supplementary Material A Section 4.2 (Director, Raftery and Bitz (2021)).

2.6. Prior for �. For the priors for the covariance parameters, σ and κ , we only use
information about the physical constraints. While ensembles could provide information about
covariance, the variability of the ensembles we have analyzed do not align with the variability
seen in observations.

Since standard deviation values are bounded below and considerable differences in vari-
ances exist for the π̃i values, we select an independent uniform prior for each σi such that

σ0,i
iid∼ Unif(ασ,0, βσ,0).(2.16)

Details on setting ασ,0 and βσ,0 are given in the Supplementary Material A Section 4.3
(Director, Raftery and Bitz (2021)). With little information from which to anticipate how
correlation decreases with distance, we use the following vague prior for κ ,

κ0 ∼ Unif(ακ,0, βκ,0),(2.17)

where ακ,0 = 0.05 and βκ,0 = 20. This prior ensures that κ remains positive.

2.7. Posterior distribution. To fit this model, we need a set of observed contours drawn
from the same distribution. We treat the contours in the P years immediately preceding the
forecast year as independent samples. With this approach we assume that the distribution of
the contours is stationary over the P -year period. While this stationarity assumption is not
strictly true given climate change, for decadal time scales the effects of the climate change
trend on sea ice are small relative to year-to-year variability. Therefore, we fix P and assume
these recent observations provide a reasonable basis on which to build a Bayesian model. We
index the years with the subscripts j = 1, . . . ,P . We denote the set of n observed proportions
in year j by π̃ j . The element π̃ij is the proportion of Ri that yij covers in year j .

Combining the likelihood for the observed proportions with the prior distributions intro-
duced in Sections 2.5 and 2.6 gives the posterior distribution

P∏
j=1

{
p(π̃ j ,μ,σ , κ)

}
p(μ)p(σ )p(κ) =

P∏
j=1

{
N

(
π̃ j |μ,�(σ , κ)

)}
N(μ|μ0,�0)

×
n∏

i=1

{
Unif(σi |ασ,0, βσ,0)

}
Unif(κ|ακ,0, βκ,0).

(2.18)

The posterior means of μ and � can be used with equations (2.5), (2.8) and (2.9) to gener-
ate π̃ .
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2.8. Model fitting. We sample from the posterior distribution in equation (2.18) for each
region independently with Markov chain Monte Carlo (MCMC), using the observed sea ice
in the preceding P years. We use Metropolis steps for updating each μi , σi and κ . Normal
proposals are used for each parameter at each iteration centered at their current value. Log ac-
ceptance rates are given in Supplementary Material A Section 5.1 (Director, Raftery and Bitz
(2021)). MCMC diagnostics are given in Supplementary Material A Section 5.2 (Director,
Raftery and Bitz (2021)). Regions that are either completely filled with sea ice or contain no
sea ice in all training years are omitted from model fitting. In such cases we predict full ice-
cover or no sea ice, respectively. In some months of the year, the observed proportions at the
start and/or end of the fixed boundary lines are 0 or 1 for all observed P . We fix these lines
with proportions of 0 or 1 rather than fit them. This omission in fitting avoids estimating an
excessively high κ due to perfect correlation among the lines in these sections. In the Central
Arctic region, sets of lines bordering the Canadian Archipelago that have proportion 1 for all
P years are fixed in the same way.

3. Mixture contour forecasting. The contour model described in Section 2 generally
provides reasonable forecasts of the sea ice edge contour but does have some limitations for
predicting sea ice presence. First, these forecasts only focus on the contour. While the vast
majority of the sea ice is contained within contiguous areas within the main sea ice edge,
small areas of sea ice sometimes form away from this main area. Areas of open water, called
polynyas, also sometimes form within the main sea ice area. The contour model proposed in
the previous section cannot represent these features. Second, forecasts of this type are tied to
the existing ensemble forecast, so if the initial ensemble forecast is not very accurate, such
as at long lead times, the resulting forecast will not be very skillful. We address these weak-
nesses by developing a mixture model that combines the contour model with a climatological
forecast that has different strengths and weaknesses.

MCF produces a forecast distribution that is a mixture, or weighted average, of two com-
ponent distributions: the contour model introduced in the previous section and a distribution
that represents recent climatology. Here, we define the climatology forecast for each grid box
as the proportion of times sea ice has been present in that grid box in the P years preceding
the forecast year.

The climatology forecast has different attributes than the contour model. The climatology
forecast can represent features such as polynyas and sea ice away from the main ice edge
contours. However, this forecast’s reliance on only the small number of observations in the
past P years means that it does not capture all plausible ice edges. This weakness of the
climatology forecast is greatest in the highly variable months around the sea ice minimum.

The weighting of the two models can be viewed as a simple case of ensemble Bayesian
model averaging (Raftery et al. (2005)). The weight is estimated by maximum likelihood
using observations and predictions from preceding years. Let w be the weight of the con-
tour model and 1 − w the weight of the climatology distribution. Also, let γs,t be a binary
indicator of sea ice presence for grid box s and year t in the training period. Let gp(γs,t )

and gc(γs,t ) be the predicted Bernoulli probability of sea ice presence in grid box s at time
t obtained from the contour model and the climatology, respectively. In the former case the
predicted probability is the proportion of time that grid box s is within the area enclosed by
the generated contours at time t . The predicted probability of sea ice presence at grid box s

at time t is then

(3.1) p(γs,t ) = wgp(γs,t ) + (1 − w)gc(γs,t ).

Assuming that errors in space and time are independent, the corresponding log-likelihood
is

l(w) = ∑
t

∑
s

log
{
wasgp(γs,t ) + (1 − w)asgc(γs,t )

}
.(3.2)
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The variable as is the proportion of the entire area that is in grid box s, that is,
∑

s as = 1.
Use of as is needed, since the grid boxes do not all have the same area. Assuming spatial
and temporal independence is almost certainly inaccurate, but Raftery et al. (2005) found in
a similar case that results were not particularly sensitive to this assumption.

To maximize this log-likelihood, we use the expectation-maximization algorithm (Demp-
ster, Laird and Rubin 1977). This optimization algorithm can be applied in situations where,
if some unobserved quantity were known, estimation of the variable(s) of interest would be
simple. In this case, estimating w would be easy if we knew for every grid box and time point
whether the climatology model or the contour model estimated the observed sea ice presence
more accurately. So, we introduce the latent variable zp,s,t which has value 1 if the contour
model is the best forecast for grid box s in year t and 0 otherwise. The variable zc,s,t is de-
fined analogously for climatology. Note that only one of the parameters zc,s,t or zp,s,t could
truly be 1; but, for estimation, these parameters can take any value in the interval [0,1]. Also,
note ẑp,s,t = 1 − ẑc,s,t . Then, the E-step is

ẑ
(j)
p,s,t = w(j−1)asgp(γs,t )

w(j−1)asgp(γs,t ) + (1 − w(j−1))asgc(γs,t )
,(3.3)

and the M-step is

w(j) =
∑

t

∑
s as ẑ

(j)
p,s,t∑

t

∑
s as

(3.4)

for the j th iteration. To avoid degeneracies, any (s, t) pairs where gp(γs,t ) = gc(γs,t ) are
omitted from this maximization. Therefore, the denominator in equation (3.4) may be unequal
to the number of years in the training period.

4. Method evaluation.

4.1. Model outputs and observations. All postprocessing methods are applied to the fifth
generation of the European Centre for Medium-Range Weather Forecasts (ECMWF) sea-
sonal forecasting system (SEAS5) (Johnson et al. (2019), European Centre for Medium-
Range Weather Forecasts (2017)). The relevant model output can be downloaded from the
Copernicus Climate Change Service Climate Data Store (Copernicus Climate Change Service
(2019)). Among a set of publicly available ensembles without postprocessing, ECMWF has
been shown to generally be the most skillful (Zampieri, Goessling and Jung (2018)). The 25-
member ensemble ECMWF forecasts are initialized monthly and extend to 215 days. Model
output was regridded to the National Snow and Ice Data Center Polar stereographic grid with
an approximately 25 km by 25 km grid (National Snow & Ice Data Center (2017)) using a
nearest-neighbors method (Zhuang (2018)). Daily model output was averaged to monthly to
match observations.

We evaluate forecast accuracy by comparing predictions to a monthly-averaged concentra-
tion produced from the National Aeronautics and Space Administration satellites Nimbus-7
SMMR and DMSP SSM/I-SSMIS (Comiso (2017)). These data are downloaded from the
National Snow and Ice Data Center. Sea ice presence is defined as having concentration of at
least 0.15.

We evaluate forecasting skill for monthly-averaged sea ice at lead times of 0.5 months to
6.5 months in the year 2008–2016. We report lead times treating the monthly mean as the
halfway point within a month. For example, the 0.5-month lead forecast for January refers to
the average of the first 31 days of a forecast initialized on January 1st. Grid boxes that are
coded as land in the observations, the ensemble or the IceCast R package (Director, Raftery
and Bitz (2021)) are treated as land.
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TABLE 1
Summary of forecast types evaluated. Probabilistic forecasts give estimates in the interval [0,1], and binary

forecasts indicate predicted sea ice presence

Forecast Probabilistic Binary

Ensemble proportion of ensemble members
predicting sea ice

indicator of whether median ensemble
member predicts sea ice

Contour ensemble mean forecast adjusted with
contour shifting and calibrated by
generating contours

ensemble mean forecast adjusted with
contour shifting

Climatology proportion of observations in the 10 years
preceding the forecast year that contain
sea ice

indicator of whether at least five of the 10
years preceding the forecast year
contained sea ice

Mixture Contour
Forecast (MCF)

forecast formed by weighting probability
densities from climatology and the
contour model

indicator of whether forecast formed by
weighting probability densities from
climatology and the contour model
predicts sea ice with p ≥ 0.5

Trend Adjusted Quantile
Mapping (TAQM)

ensemble postprocessed using technique
in Dirkson, Merryfield and Monahan
(2019)

NA

Damped Persistence NA indicator of whether predicted
concentration from a damped persistence
forecast is at least 0.15 (modified from
Wayand, Bitz and
Blanchard-Wrigglesworth (2019))

The forecasts previously described are summarized in lines 1–4 of Table 1. Beginning in
1993, all years preceding the forecast year are used in fitting contour shifting. A 10-year
rolling window is used to fit the statistical model for generating contours and in the climatol-
ogy forecast weighted in MCF. A three-year rolling window is used to determine the weights
in MCF. Performance accuracy is generally insensitive to moderate changes in these training
lengths. (See Supplementary Material A Section 6 (Director, Raftery and Bitz (2021)).) One
hundred contours are generated for each forecast.

4.2. Reference forecasts. We compare our results to two additional reference forecasts
summarized in lines 5–6 of Table 1. Trend-adjusted quantile mapping (TAQM) is another
recently developed statistical postprocessing method for sea ice (Dirkson, Merryfield and
Monahan (2019)). TAQM fits a parametric probability distribution to ensemble model out-
put and applies a specialized version of quantile mapping to produce probabilistic forecasts
of concentration. TAQM does not predict the probability of sea ice presence directly, but
Dirkson, Merryfield and Monahan (2019) do use the resulting distribution of the concentra-
tion to predict the probability of sea ice presence. We also compute a damped persistence
forecast in a manner similar to Wayand, Bitz and Blanchard-Wrigglesworth (2019). Exact
implementation details are given in Supplementary Material A Section 7 (Director, Raftery
and Bitz (2021)).

4.3. Visualizing forecasts. Uncertainty information is needed for maritime planning to
adequately evaluate risks and benefits. Like Gneiting, Balabdaoui and Raftery (2007), we
consider accurate model calibration to be vital for probabilistic forecasts. We illustrate the
importance of calibration in this context with Figure 4, which shows samples of four proba-
bilistic forecasts for September 2008. The corresponding observed sea ice edge for September
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FIG. 4. Forecasts of the probability of sea ice presence for September 2008 using different methods. The fore-
casts are described in Table 1. The bold line is the observed sea ice edge contour.

2008 is also plotted for reference. Figure 4 illustrates the types of forecasting errors that can
occur when forecasts are not calibrated. Specifically, events with low predicted probability
occur more often than expected, and/or events with high predicted probability occur less often
than expected.

For the contour model and MCF, the observed contour is almost entirely contained within
regions with positive probability and has only small areas where sea ice is predicted with
probability 1 but sea ice is not present in observations. The MCF forecast is slightly more
variable than the contour model, reflecting its weighting with climatology. Since w is high
for September at a 1.5-month lead time, the difference between the contour model and MCF
is small. In cases where w, the weight on the contour model, is lower, the difference between
the contour model and MCF may be larger. For the climatology and ensemble forecasts, the
observed contour goes through some regions with probability 0, suggesting that these fore-
casts are not sufficiently variable. Discrepancies like these between the forecasted probability
and what will likely occur makes maritime planning and risk mitigation difficult.

4.4. Assessing calibration. We now evaluate model calibration for the probabilistic fore-
casts with reliability diagrams. These diagrams plot the forecasted probability of observing
sea ice against the proportion of times sea ice was observed. A perfectly calibrated forecast
would have all points on the y = x line, that is, grid boxes forecasted to contain sea ice with
a given probability contain sea ice the same proportion of the time. So, the closer the points
lie to the y = x line, the better calibrated the forecast is.

Shipping varies seasonally in the Arctic, with more shipping in months around the an-
nual sea ice minimum in September (Ellis and Brigham (2009)). We emphasize performance
in these peak shipping months. In Figure 5, we show the reliability diagrams for the peak-
shipping months for the probabilistic forecasts. Predictions from MCF are substantially better



722 H. M. DIRECTOR, A. E. RAFTERY AND C. M. BITZ

FIG. 5. Average proportion of the time sea ice was present against the predicted probability of sea ice presence
for the ECMWF forecasts: unadjusted (left), after post-processing with MCF (middle) and TAQM (right). Fore-
casts are grouped into lead times of 0.5 and 1.5 months (top) and 2.5–6.5 months (bottom). Perfect calibration
would give all points on the y = x line.

calibrated than the ensemble and better calibrated than TAQM during these months, espe-
cially at short lead times. Supplementary Material A Figures 5–6 show that MCF always
improves calibration over the unadjusted ensemble and generally improves calibration com-
pared to TAQM (Director, Raftery and Bitz (2021)). We note that MCF has been designed
specifically for predicting sea ice presence, while TAQM addresses the more general goal
of forecasting concentration. The difference in calibration performance between MCF and
TAQM highlights the benefit for maritime planning of having a method focused exclusively
on predicting sea ice presence. TAQM remains valuable for its broader applicability.

FIG. 6. Average Brier scores by month for the test years 2008–2016 for the probabilistic forecasts. The Brier
Score for each grid box is weighted based on its area. Forecasts are described in Table 1.
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4.5. Assessing accuracy. We evaluate forecast accuracy using Brier scores (Brier
(1950)). We compute average area-weighted Brier scores over the T = 9 years in the test
set as

(4.1)

∑
t

∑
s as(fs,t − os,t )

2

T
,

where fs,t and os,t denote the forecast and observation in grid box s in year t . The value
as is the proportion of the total area that is in grid box s. The observed value is 1 when
concentration is at least 0.15 and 0 otherwise. For probabilistic forecasts, fi,j ∈ [0,1], and
for binary forecasts, fi,j ∈ {0,1}.

In Figure 6, we plot the average Brier score in peak-shipping months by lead time for the
probabilistic forecasts. The ensemble forecasts typically have increasing Brier scores as lead
time increases. Our contour model generally improves forecast accuracy, and MCF improves
accuracy further. TAQM also generally improves accuracy of forecasts.

With MCF as lead time increases, performance converges to equal or better performance
than climatology. Supplementary Material A Figure 7 shows the average weight placed on the
contour model for the years in the test set (Director, Raftery and Bitz (2021)). High weights
occur at short lead times, reflecting that the ensemble typically has the most skill shortly after
it is initialized. High weights also occur in months around the sea ice minimum in September.
These are periods of high year-to-year variability; so, climatology tends to perform poorly,
and the ensemble’s ability to simulate evolving physical conditions becomes more important.

Supplementary Material A Figures 1–2 show that TAQM and MCF have similar overall
accuracy but that the pattern of their performance by lead time and month varies (Director,
Raftery and Bitz (2021)). For peak shipping months, MCF outperforms TAQM. For the short-
est lead time of 0.5 months, the damped persistence forecast performs best, but its skill de-
cays rapidly with lead time. The performance of the damped persistence forecast indicates
that there could be a role for the current observed state of the sea ice in forecasting but that
the role would need to be restricted to very short lead times. In summary, MCF provides the
best calibrated forecasts year round and accurate forecasts during peak-shipping months.

We also briefly assess binary forecasts (see Supplementary Material A Figures 3–4
(Director, Raftery and Bitz (2021))). The contour shifted forecast improves accuracy com-
pared to the ensemble. This result indicates contour shifting reduces some systematic bias in
typical ensembles. Binary MCF performs similarly to the contour shifted forecast. However,
MCF substantially outperforms the contour shifted ensemble when the ensemble forecast is
poor. This case illustrates that the adaptive weighting provided by MCF is valuable when
issuing binary forecasts as well as probabilistic forecasts.

5. Discussion. We have introduced the MCF method for issuing sea ice forecasts. MCF
forecasts are probabilistic and calibrated. Their predicted probability of sea ice presence at
a given location approximately matches the proportion of times sea ice will be observed at
these locations. For most lead times and forecast months, probabilistic MCF forecasts are
also as or more accurate than the inital ECMWF ensemble and the other postprocessed and
statistical forecasts.

Because MCF provides calibrated and relatively accurate forecasts, MCF could increase
operational sea ice forecasting skill and, thereby, improve maritime planning in the Arctic.
As Arctic routes are planned, the risk of encountering sea ice where it is not expected must
be weighed against the cost savings of a shorter route. Vessels in the Arctic have an ice
classification regulating where they can legally and safely travel. For vessels that are easily
damaged in sea ice, any sea ice poses great risk. In contrast, ships that are designed to travel
safely through sea ice may gain speed and efficiency by avoiding sea ice but do not need to
completely avoid it.
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Sea ice predictions can be misclassified in two ways: predicting the presence of sea ice
when it is absent and predicting the absence of sea ice when it is present. Our model eval-
uation weights both types of misclassification errors equally. However, accounting for the
different costs of the two types of error could be useful. MCF enables planning routes using
decisions rules that incorporate the probability of sea ice presence. For example, a ship that
has high risk of damage when traversing sea ice might elect to only consider routes through
areas with very low probability of sea ice.

We have also developed a framework for directly modeling contours. While forecasts could
likely be made with field-based geostatistical models (e.g., Zimmerman and Stein (2010))
or by identifying the exceedance level contours estimated from fields (Bolin and Lindgren
(2015), French and Hoeting (2016)), these approaches may have limitations for this applica-
tion. Most of the error in sea ice forecasts occurs in the region where a rapid transition from
fully ice-covered regions to open water occurs (Tietsche et al. (2014)). Whether sea ice will
be found in grid boxes in the interior of the sea ice region and far from the sea ice edge is
essentially known in advance. So placing the majority of the computational cost and model-
ing effort on the boundary is valuable. MCF provides a framework for modeling that could
be extended to other situations where the boundary is of interest.

As implemented in this paper, estimates of the covariance of the sea ice edge are based on
the covariance estimated from the preceding years. These estimates are, therefore, indepen-
dent of the covariance of the sea ice edge in the ensemble members. However, the ensemble
could plausibly give information about the expected covariance that could not be obtained
from past observations. For example, sea ice is expected to continue to become thinner. Thin-
ner sea ice is more affected by variation in meteorological conditions, so the variance of sea
ice extent will likely increase (Holland, Bailey and Vavrus (2011)). Effects like these are cap-
tured by the ensemble but are not in past observations. As such, incorporating the covariance
in the ensemble could further improve forecast skill. However, the spread of the ensemble
does not align with observed variability, and the relationship between variability in observa-
tions and variability in the ensemble is inconsistent both spatially and temporally. Assessment
of when the ensemble covariance is informative and how it relates to the observed covariance
is needed before it will be feasible to incorporate the ensemble covariance into MCF.

The ECMWF ensemble used in Section 4 is not the only ensemble prediction system.
Since MCF does not use any specific features of the ECMWF ensemble, the postprocessing
techniques developed in this paper could be directly applied to other ensembles. However,
model biases and calibration issues vary, so exact performance would need to be assessed.
Different ensembles also vary in which forecast months they perform well and vary more by
the extent to which skill declines with lead time (Zampieri, Goessling and Jung (2018)). So,
extending MCF to use multiple ensemble members, as has been done with other forecasting
methods (e.g., Dirkson, Denis and Merryfield (2019), Raftery et al. (2005)), could provide
further skill.

Our analysis of sea ice forecasting highlights situations where statistical postprocessing
provides value. Many aspects of physical processes are known to evolve following established
equations. Such information can only be crudely approximated with an observational data-
driven approach. On the other hand, physical models are often biased or poorly calibrated, and
statistical post-processing methods can be effective in remedying these problems. Combining
the strengths of physical and statistical modeling can create predictions that are more accurate
than either modeling framework alone.
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