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The National Resources Inventory, a longitudinal survey of character-
istics related to natural resources and agriculture on nonfederal U.S. land,
has increasingly received requests for substate estimates in recent years. We
consider estimation of erosion in subdomains of the Boone-Raccoon River
Watershed. This region is of interest for its proximity to intensively cropped
areas as well as important waterbodies. The NRI application requires a small
area prediction approach that can handle nonlinear relationships and appro-
priately incorporate survey weights that may have nontrivial relationships to
the response variable. Because of the informative design, the conditional dis-
tribution required to define a standard empirical Bayes predictor is unknown.
We develop a prediction approach that utilizes the approximate distribution of
survey weighted score equations arising from a specified two-level superpop-
ulation model. We apply the method to construct estimates of mean erosion
in small watersheds. We investigate the robustness of the procedure to an as-
sumption of a constant dispersion parameter and validate the properties of the
procedure through simulation.

1. Introduction. The National Resources Inventory (NRI) is a longitudinal survey of
nonfederal land in the United States. The NRI has traditionally published estimates at the
state level (USDA, 2018). In recent years, requests for substate estimates have become more
frequent. The Boone-Raccoon River watershed, which is primarily located in Central Iowa
and Southern Minnesota, has been of interest from water quality and conservation perspec-
tives. We consider prediction of soil loss due to sheet and rill erosion for the year 2007 in
nine domains defined by hydrologic units in the Boone-Raccoon River watershed. We de-
velop a small area prediction procedure that accounts for the complexity of the NRI survey
and appropriately models nonlinear relationships observed in the data. In this Introduction
we first provide further background on the motivating NRI application. We then explain why
existing methods for small area estimation under informative sampling are not immediately
applicable to our problem. Finally, we overview our approach and the organization of the rest
of this article.

1.1. NRI design and estimation procedures. The NRI objectives necessitate complex de-
sign and estimation procedures. We provide an overview to motivate the importance of the
sample weights in our study. We refer the reader to Nusser and Goebel (1997) for further
detail.

A “foundation sample” of approximately 300,000 primary sampling units supported the
publication of estimates every five years from 1982 to 1997. A typical primary sampling
unit in the NRI is defined as a 0.5 mile2 area of land. The segments are grouped into strata
defined by a rectangular grid derived from the Public Land Survey System (PLSS) of the
United States. The sampling rates within strata are unequal and typically range from 2% to
4%. Three point locations are selected from each segment. The “restricted randomization”
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procedure used to select the points maintains geographic spacing between sample points,
thereby improving efficiency relative to a simple random sample. To ensure unbiased esti-
mation, the restricted randomization procedure maintains the basic property of a probability
sample; namely, every location in the segment has a chance to be selected into the sample of
three points (Lohr, 2009). The same 300,000 segments in the foundation sample are observed
every five years during 1982–1997. The technique of revisiting the same sampling units over
time supports NRI’s objective of providing reliable estimates of both gross and net change.

In the year 2000, the NRI began collecting data annually instead of every five years. The
goals that motivated this change were to distribute the workload more evenly and to enable
construction of annual estimates. Collecting data for all 300,000 segments in the foundation
sample on an annual basis is too resource intensive. Therefore, the transition to annual data
collection necessitated a change to the sample design, as detailed in Breidt and Fuller (1999).

To facilitate the annual data collection, the NRI transitioned to a supplemented panel de-
sign in 2000. The general idea of a supplemented panel design is to observe a portion of
sampling units every year and to collect data for a different subset of units periodically. The
set observed annually improves estimators of change over time. The supplementary segments
observed periodically improve estimators of level for a particular year. The application of the
supplemented panel design to the NRI involves dividing the foundation panel into two parts.
A subsample of approximately 40,000 segments, designated as the “core” panel, is observed
annually. Each year, a different subset of approximately 30,000 segments is selected for ob-
servation and designated as the “rotation panel” (or supplement). The union of the core and
rotation samples comprise the annual sample of approximately 70,000 segments. The core
and rotation samples are each selected from the foundation using stratified sampling. Char-
acteristics observed for all segments in the foundation sample in the 1997 NRI define the
strata boundaries. Strata representing categories that are judged to have a high probability
of change or that are of interest to the USDA have relatively high sampling rates. The NRI
design creates an unbalanced data structure. Segments in the core panel have data collected
every year, while segments in the roation panels have planned missing values.

The NRI estimation procedures convert the raw, collected data to a user-friendly database
with intuitive properties. Imputation procedures create a complete time series for every point
in the final estimation data set. Raking ratio adjustments (Deville, Särndal and Sautory, 1993)
are applied to inverse inclusion probabilities to preserve both external and internal control to-
tals. Administrative sources supply the total area of the state, the federal area, the area in
certain waterbodies and the agricultural area enrolled in the Conservation Reserve Program
(CRP). The adjusted NRI sample weights approximately preserve these external control to-
tals. The 1997 NRI is the last year in which all foundation segments were simultaneously
observed. Therefore, the weights are adjusted to approximately maintain a subset of esti-
mates obtained in the 1997 NRI. Following the transition to annual data collection in 2000,
the NRI estimation procedures begin by constructing a set of state-level estimates that ac-
count for the temporal correlation induced by the supplemented panel design. A further set
of adjustments preserves these state-level estimates.

The NRI uses the grouped jackknife (Wolter, 2007) for variance estimation. The jackknife
maintains NRI’s basic objective of providing a user-friendly data set, as the procedure trans-
fers the burden of variance estimation from the data user to the data producer. Each record
in the final estimation database is equipped with 29 replicate weights for variance estima-
tion. Constructing the replicate weights is an intensive process that involves repeating the
basic steps of estimation after omitting a subset of segments. After the difficult process of
constructing the replicates is complete, a user can estimate the variance of nearly any pa-
rameter of interest with the supplied replicates. The resulting jackknife variance estimates
appropriately reflect the NRI sample design and estimation procedures.
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TABLE 1
Number of PSUs in each eight-digit hydrologic unit in the Boone-Raccoon River Watershed

1 2 3 4 5 6 7 8 9

# PSU 295 120 129 171 85 249 117 198 133

Ultimately, each record in the final estimation data set has a complete time series, a sin-
gle estimation weight and a set of 29 replicate weights for variance estimation. The final
weights appropriately reflect the NRI design as well as the imputation and reweighting oper-
ations used in estimation. As such, the final NRI sample weight is the relevant weight for our
analysis.

1.2. Sheet and rill erosion in the NRI. One of the primary characteristics of interest in
the NRI is a measure of sheet and rill erosion defined by the Universal Soil Loss Equation
(USLE). The USLE, which provides the response variable y for our analysis, is a product of
five factors (Wischmeir and Smith, 1965). Specifically,

y = RK(LS)CP,(1)

where R is a rainfall factor, K is a soil erodibility index, LS is a measure of slope length
and steepness, C represents crop managements and P represents conservation practices. The
estimate of mean erosion and the corresponding coefficient of variation for the full Boone-
Raccoon River Watershed are 3.03 tons/acre and 7.35%, respectively. Watersheds are ar-
ranged hierarchically, and the small areas of interest are nine eight-digit hydrologic units
nested in the four-digit Boone-Raccoon River Watershed. (The digits refer to a hierarchi-
cal labeling system, the details of which are irrelevant for our work.) As shown in Table 1,
the number of primary sampling units in each eight-digit hydrologic unit ranges from 85
to 295. Despite the relatively large sample sizes for the eight-digit hydrologic units, several
of the estimated CVs exceed 10%. Our goal for small area estimation will be to construct
improved estimates of erosion for eight-digit hydrologic units in the Boone-Raccoon River
Watershed.

Auxiliary variables related to the R and K factors of equation (1) are available for the full
population from the Soil Survey of the Natural Resources Conservation Service. Although
these auxiliary variables, called “rfactdcp” and “kffactdcp,” are not exactly the USLE R and
K factors, we refer to them as USLE R and K factors for short. Figure 1 shows a plot of y

against K with symbols representing the five different values of R in the data set. The line in
the plot is the lowess line relating y to K . The mean erosion increases with K , as expected.
The variation in erosion values increases with the mean. The plot also indicates a right skew
in the conditional distribution of erosion for a given value of K .

The nature of the NRI application introduces several challenges. First, nonlinear relation-
ships between erosion and K make linear models inadequate. As we discuss in more detail in
Section 3, evidence exists of nontrivial relationships between the erosion response variables
and the NRI estimation weight, after accounting for the information in the R and K covari-
ates. Therefore, accounting for the possibly informative nature of the complex NRI survey
sample is important.

1.3. Related literature: Nonlinear small area models and informative sampling. The
small area procedure that we define in Section 2 combines characteristics of the two main
categories of small area models, unit-level models and area-level models. The foundational
works of Battese, Harter and Fuller (1988) and Fay and Herriot (1979) use linear models for
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FIG. 1. Plot of USLE erosion against K with symbols corresponding to R. Solid line is lowess fit of y on K .

the unit-level and area-level model approaches, respectively. Numerous extensions of these
approaches to nonlinear models have been developed. A comprehensive review is outside
the scope of this paper but can be found in Jiang and Lahiri (2006), Pfeffermann (2013),
Rao (2015) and Rao and Molina (2015). In the context of the NRI, Nandram and Sedransk
(2002) and Erciulescu and Fuller (2019) define small area predictors of the proportion of land
where an erosion tolerance threshold is exceeded using Bayesian and frequentist procedures,
respectively. These methods do not consider the effect of the complex NRI design. The scat-
terplot of the NRI erosion data exhibits a right skewness, suggesting a skewed distribution for
the unit-level responses, such as gamma or log-normal. Berg, Chandra and Chambers (2016)
compare small area predictions based on log-normal and gamma distributions through simu-
lation and conclude that the gamma distribution appears to be more robust. Dreassi, Petrucci
and Rocco (2014) use a zero-inflated gamma distribution to model grape production in Italy.
Jiang (2003) develops empirical Bayes small area predictors under a generalized linear mixed
model.

The sample design is said to be informative for a specified small area model if the model
for the population does not hold conditionally for the selected sample. If the sample design
is informative for the specified small area model, then estimators that ignore the sampling
design are biased. Small area procedures under an informative sampling design include You
and Rao (2002), Pfeffermann and Sverchkov (2007) and Verret, Rao and Hidiroglou (2015).

You and Rao (2002) define a pseudo-EBLUP for a linear mixed effects model. Their ap-
proach begins with the linear unit-level model of Battese, Harter and Fuller (1988). They then
modify the optimal predictor for the unit-level model to incorporate the sampling weights,
replacing unweighted sums with corresponding survey-weighted sums. The You and Rao
(2002) predictor of the small area mean is design-consistent as the small area sample size
increases. The You and Rao (2002) estimator of the regression coefficient is design consis-
tent, and the weight assigned to the direct estimator in the convex combination that defines
the predictor approaches one as the area sample size increases. The You and Rao (2002) pro-
cedure is presented under the unit-level linear model. Ghosh and Maiti (2004) incorporate
survey weights in predictors developed under an assumption that the distribution of the re-
sponse is in the natural exponential quadratic variance function family, but their approach
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only permits area level covariates. Our approach is closely related to You and Rao (2002)
for the linear model but extends to nonlinear models. Unlike Ghosh and Maiti (2004), our
prediction approach allows for unit-level covariates.

Pfeffermann and Sverchkov (2007) exploit relationships between the mean of the selection
probabilities, the sample distribution, the population distribution and the inclusion probabil-
ity to define a small area procedure for an informative design. Their procedure applies to
nonlinear models but relies on an interpretation of the weight as an inverse inclusion prob-
ability. Because the NRI weight results from complex estimation operations, the approach
of Pfeffermann and Sverchkov (2007) does not directly apply. Additionally, the approach of
Pfeffermann and Sverchkov (2007) uses a parametric model for the inverse inclusion proba-
bility as a function of the response variable. An advantage of our procedure is that a model
for the weight is not required.

Verret, Rao and Hidiroglou (2015) augment the unit-level model of Battese, Harter and
Fuller (1988) with an additional covariate defined as a function of the selection probabilities.
The augmented model approach can handle an informative sampling design successfully, but
it requires the population mean of the selection probabilities. The approaches of Pfeffermann
and Sverchkov (2007) and You and Rao (2002) only require the weights for sampled ele-
ments. Because the NRI weight is only available for sampled elements, the method of Verret,
Rao and Hidiroglou (2015) does not directly apply.

You and Rao (2002), Pfeffermann and Sverchkov (2007), and Verret, Rao and Hidiroglou
(2015) focus on the unit-level linear mixed effects model. Zimmermann and Munnich (2018)
consider the unit-level log-normal model of Berg and Chandra (2014) under informative sam-
pling. They adapt the procedures of Verret, Rao and Hidiroglou (2015) and of You and Rao
(2002) to the log-normal model. As discussed above, these procedures are too restrictive to
meet the needs of the NRI application.

The approach of composite likelihood has been used to construct estimators of regression
parameters for linear and nonlinear mixed models in the presence of informative sampling
(Asparouhov, 2006; Yi, Rao and Li, 2016). The composite likelihood does not furnish a nat-
ural predictor of a random effect because the appropriate conditional distribution to use is
unclear. We solve this problem through the use of an approximate predictive distribution
derived from the large-sample distribution of a set of estimating equations.

1.4. Overview and innovation of proposed methodology. The NRI application motivates
us to develop a small area estimation procedure that permits a general distributional form
and simultaneously accounts for an informative survey design. The crux of our approach is
the large sample distribution of appropriately weighted estimating equations that arise from
a specified model for the superpopulaton. We then define predictors of small area parameters
based on an approximate predictive distribution that derives from the combination of the spec-
ified distribution of the area random effects and the approximate distribution of the weighted
estimating equations. We formalize the approximate predictive distribution precisely in Sec-
tion 2.

The small area procedure that we propose builds on the method developed in Kim, Park
and Lee (2017) to estimate the parameters of a generalized linear mixed model under infor-
mative cluster sampling. While Kim, Park and Lee (2017) focus on estimating fixed model
parameters, we develop a procedure to predict random small area parameters. A direct ex-
tension of Kim, Park and Lee (2017) to the small area estimation context would apply only
to a particular type of cluster sample design in which primary sampling units are the same
as the small areas. In practice, however, the small areas of interest may differ from design
clusters and may even be defined after the sample is selected. The small area procedure that
we propose applies to a general sample design, including an element sample design or a clus-
ter design in which primary sampling units differ from small areas. In our NRI application
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the NRI segments have no connection to the watersheds for which small area estimates are
desired. A more subtle innovation of our work, relative to Kim, Park and Lee (2017), relates
to variance estimation. We define an estimator of the MSE of the small area predictor that
decomposes into a sum of two terms, analogous to the widely-used “g1” and “g2” of Prasad
and Rao (1990). The first term is the conditional variance of the small area parameter given
the observed estimating equation, calculated under the approximate predictive distribution.
The second term accounts for the variance of the estimator of the fixed model parameter. We
provide explicit expressions for the asymptotic variance of the fixed parameter estimator for
gamma and Gaussian response distributions. The expressions for the variance estimator that
we provide are simpler (and, therefore, more readily applicable) than the variance expres-
sion in Kim, Park and Lee (2017). A further innovation of our study, over Kim, Park and
Lee (2017), is that we examine the robustness of our estimator, MSE estimator, and variance
estimator to departures from the model assumptions. In particular, we consider the effects
of a nonconstant dispersion parameter and the departure from an assumption of normally
distributed random effects.

We use the approximate prediction procedure to construct small area estimates of erosion
rates for watersheds nested in the Boone-Raccoon River watershed. We describe the proce-
dure in general terms in Section 2. We apply a specific version of the approach that uses a
gamma response distribution with a log link to the NRI data in Section 3. We validate the
properties of the procedures through simulation in Section 4. Details of variance estimators
are presented in the Appendix. A supplementary document contains additional simulations
and details of the data analysis that are omitted from the main document for brevity.

2. Two-level model for small area estimation under informative sampling.

2.1. Super-population, finite population, and samples for small area prediction. Let yij

be associated with the characteristic of interest for unit j in area i. Assume the population
distribution for yij satisfies

yij | (vi,xij )
ind∼ f1(yij | vi,xij ,ψ1), j = 1, . . . ,Ni,(2)

where vi is an area-level random effect with distribution

vi
ind∼ f2(vi | zi ,ψ2), i = 1, . . . ,D,(3)

xij is a vector of covariates that are known for j = 1, . . . ,Ni and i = 1, . . . ,D and zi is a
vector of area-level covariates. The zi may include Ni , which implies that the area size can
be informative (Neuhaus and McCulloch, 2011). The model should be specified such that ψ1
and ψ2 are identifiable, meaning that (ψ1,ψ2) �= (ψ ′

1,ψ
′
2) implies

f (y | ψ1,ψ2) �= f
(
y | ψ ′

1,ψ
′
2
)

for at least one y in the sample space, where

f (y | ψ1,ψ2) =
D∏

i=1

∫ ∞
−∞

Ni∏
j=1

f1(yij | vi,xij ,ψ1)f2(vi | zi ,ψ2) dvi.

For example, if the model has an intercept, then the intercept should be contained in ψ1 or
ψ2 but not both. In the specific models that we work with, ψ1 contains regression parameters
and a variance parameter, and f2 is a normal distribution with mean 0 and variance ψ2.
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We assume a finite population is generated from the super-population model (2)–(3). The
finite population consists of {yij : j = 1, . . . ,Ni} for i = 1, . . . ,D. We assume that the unit-
level covaraite xij is available for the full population of elements in area i and that the co-
variate zi is observed for i = 1, . . . ,D. The finite population mean of interest is

Ȳi = 1

Ni

Ni∑
j=1

yij .

We now assume that a probability sample is selected from the finite population and let
A2i be the index set of the sample elements in area i. We observe yij for j ∈ A2i and i ∈ A1,
where A1 denotes the set of areas with at least one sampled element. The precise definition of
A1 is A1 = {i : |A2i | > 0, i = 1, . . . ,D}. We assume that the survey furnishes a set of sample
weights wij for j ∈ A2i and i ∈ A1. Note that the sample weights are only required for
elements in the sample (not for the full population). A simple weight is the inverse inclusion
probability, wij = π−1

ij . For designs in which the areas are the same as primary sampling

units, π−1
ij is of the form π−1

ij = π−1
I i π−1

j |i , where πj |i is the probability of selecting element
j given area i and πIi is the inclusion probability of area i. For some surveys, such as the
motivating NRI application, the weight wij may incorporate adjustments for missing data or
calibration to control totals. A direct estimator of Ȳi , called a Hajek estimator, is defined as

ˆ̄Ywi =
∑

j∈A2i
wij yij∑

j∈A2i
wij

.

If the area sample size is small, then ˆ̄Ywi may have an undesirably large variance.
Our aim is to exploit the super-population model (2)–(3) to obtain a predictor of Ȳi that is

more efficient than ˆ̄Ywi . To accomplish this goal, we consider the parameter defined by

θi = 1

Ni

Ni∑
j=1

E(yij | vi,xij ,ψ1),(4)

where the expectation is with respect to the distribution f1 in (2). Since

(Ȳi − θi) | vi = Op

(
1√
Ni

)
,

we can safely ignore the error term in Ȳi − θi . The small area parameter θi is a function of vi ,
the area-specific random effect for area i. The best prediction of vi , given the sample under
squared error loss, is

v∗
i = E

(
vi | x(s)

i ,y
(s)
i ,zi;ψ1,ψ2

) =
∫

vif1(y
(s)
i | x(s)

i , vi;ψ1)f2(vi | ψ2) dvi∫
f1(y

(s)
i | x(s)

i , vi;ψ1)f2(vi | ψ2) dvi

,

where x
(s)
i and y

(s)
i are the sampled part of xij and yij , respectively, in area i. As discussed

in Section 1.3, without additional assumptions we cannot obtain the joint density f1(y
(s)
i |

x
(s)
i , vi;ψ1) of the sample elements in area i from the population model. A new approach is

proposed in the next subsection.

2.2. Approximate best prediction. To motivate the proposed method, we note that vi are
treated as fixed in (2), the level 1 model in the multilevel model structure. If the area random
effects were treated as fixed effects, an estimating equation for vi is given by

S1i (vi,ψ1) = ∑
j∈A2i

wijS1ij (vi,ψ1),(5)
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where

S1ij (vi,ψ1) = ∂

∂vi

log
{
f1(yij | vi,xij ,ψ1)

}
.(6)

Let v̂i(ψ1) satisfy S1i (v̂i(ψ1),ψ1) = 0 for i = 1, . . . ,D. As shorthand, we use v̂i (ψ1) = v̂i ,
with the understanding that v̂i depends on ψ1. The v̂i is the profile pseudo maximum likeli-
hood estimator (PMLE) of vi , and it will play the central role in obtaining the approximate
prediction model under informative sampling. We may assume

v̂i | vi ∼ g(v̂i | vi,ψ1),(7)

where g is a specified distribution for the sampling distribution of v̂i . We motivate a normal
approximation for the distribution of v̂i (ψ1) from an asymptotic framework in which |A2i | →
∞ as Ni → ∞. Under common regularity conditions on the design and super-population
model (Fuller, 2011), the Central Limit Theorem implies that

v̂i | vi
·∼ N(vi,V1i ),(8)

where V1i = {Hi(vi,ψ1)}−1Vπi{S1i (vi,ψ1) | vi}{Hi(vi,ψ1)}−1, Hi(vi,ψ1) = E{∂S1i (vi,

ψ1)/(∂vi)} and Vπi{S1i (vi,ψ1) | vi} is the design variance of S1i (vi,ψ1) in (5), treating
vi as fixed. The specific form for Vπi{S1i (vi,ψ1) | vi} depends on the type of sample design
under consideration as well as the definition of the sample weights. We discuss estimators of
V1i more specifically in Section 2.3 below.

If ψ1 and ψ2 were known, a predictor of a small area parameter θi would be defined by
E(θi | v̂i ,zi ,ψ1,ψ2), where, for any function h(·),

E
{
h(vi) | v̂i ,zi ,ψ1,ψ2

} =
∫ ∞
−∞ h(vi)g(v̂i | vi,ψ1)f2(vi | zi ,ψ2) dvi∫ ∞

−∞ g(v̂i | vi,ψ1)f2(vi | zi ,ψ2) dvi

.(9)

For predicting the small area mean, the function h(·) is defined as a function of vi in (4).
From the approximate normal distribution (8) for the survey-weighted score equation, one
may take g(v̂i | vi) = φ((v̂i − vi)/

√
V1i ). Since the choice for g(v̂i | vi) from (8) is based

on approximate normality, we can call the prediction distribution in (9) as the approximate
prediction distribution. The resulting predictor is then the approximate best predictor.

2.3. Parameter estimation. We now discuss parameter estimation. The basic idea is to
find the marginal likelihood function of the parameters to obtain the maximum likelihood
estimates. Since the marginal likelihood function involves integration using a random effect,
a version of the EM algorithm can be developed.

The distributions (3) and (7) define an area level model for v̂i . The area level model is

v̂i | (vi,ψ1) ∼ g(v̂i | vi,ψ1),

vi | (zi ,ψ2) ∼ f2(vi | zi ,ψ2).
(10)

Note that we have now converted the problem of estimation for the unit-level model in (2) to
the problem of estimation for the area-level model in (10). The profile PMLE v̂i serves the
role of direct estimator in the typical area level model.

Because the model (10) is a Fay–Herriot model for the case in which f2 is a linear model
with normally distributed random terms, we call the estimation procedure defined in this
section the EM-FH algorithm. To use the model (10) for parameter estimation, we require an
estimate of V1i defined following (8). For a given value of ψ1, an estimate of V1i is given by

V̂1i (ψ1) = {
Ĥi(v̂i ,ψ1)

}−1
V̂πi

{
S1i (v̂i ,ψ1)

}{
Ĥi(v̂i ,ψ1)

}−1
,
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where Ĥi(v̂i ,ψ1) = ∂S1i (vi,ψ1)/∂vi |vi=v̂i
and V̂πi{S1i (v̂i ,ψ1)} is a design-consistent esti-

mator of Vπi{S1i (vi,ψ1) | vi} evaluated at vi = v̂i . If wij = π−1
ij , then one can use

V̂πi

{
S1i (vi,ψ1) | vi

} = ∑
j∈A2i

∑
k∈A2i

(
πij,ik − πijπik

πij,ikπijπik

)
S1ij (vi,ψ1)S1ik(vi,ψ1),(11)

where πij,ik is the joint inclusion probability defined as πij,ik = P {(ij) ∈ A and (ik) ∈ A}
(Särndal, Swensson and Wretman, 2003), A denotes the set of sampled clusters and elements
and S1ij (vi,ψ1) is defined in (6). For the data analysis, replicate weights are used for variance

estimation. Let w
(r)
ij be the weight for unit (i, j) in replicate r . We define V̂1i (ψ1) by

V̂1i (ψ1) =
R∑

r=1

(
v̂

(r)
i − v̂i

)2
,(12)

where v̂
(r)
i satisfies S

(r)
1i (v̂

(r)
i ,ψ1) = 0, with S

(r)
1i (vi,ψ1) = ∑

j∈A2i
w

(r)
ij S1ij (vi,ψ1).

Before presenting the proposed algorithm for estimating ψ1 and ψ2, we provide motiva-
tion. For a given value of ψ1, the marginal log-likelihood for ψ2 is defined by

�w(ψ2 | ψ1) = ∑
i∈A1

wi log
{∫ ∞

−∞
g
(
v̂i | vi, V̂1i(ψ1)

)
f2(vi | zi ,ψ2) dvi

}
,(13)

where wi = π−1
I i for a cluster sample with areas as clusters and wi = 1 for designs in which

all areas have at least one sampled element. The area weight reflects the representativeness
of the sample areas to the population of areas. In many cases, f2 is the density of a normal
distribution and so the marginal distribution in (13) is also normal.

In the proposed method we use the EM algorithm to estimate the level-one parameter ψ1
but use a direct maximization of the marginal log-likelihood in (13) to estimate the level-two
parameter ψ2. The second step will be called FH-Step. The proposed EM-FH algorithm is as
follows. For t = 1,2, . . . , T complete the following steps:

[E-step]: Using the current estimates ψ̂
(t) = (ψ̂

(t)

1 , ψ̂
(t)

2 ), compute the conditional expec-

tation of S1ij (ψ1;xij , yij , vi) conditional on v̂
(t)
i and zi evaluated at ψ̂ = ψ̂

(t)
, where

S1ij (ψ1;xij , yij , vi) = ∂

∂ψ1
log

{
f1(yij | vi,xij ,ψ1)

}
.

The reference distribution for the E-step is

p
(
vi | v̂(t)

i ,zi; ψ̂ (t)) = g(v̂
(t)
i | vi; ψ̂ (t)

1 )f2(vi | zi; ψ̂ (t)

2 )∫
g(v̂

(t)
i | vi; ψ̂ (t)

1 )f2(vi | zi; ψ̂ (t)

2 ) dvi

,(14)

where g(v̂
(t)
i | vi; ψ̂ (t)

1 ) is the sampling distribution of v̂
(t)
i which is a normal distribution with

mean vi and variance V̂1i (ψ̂
(t)

1 ). The resulting mean score equation is

S̄1
(
ψ1 | ψ̂ (t)) = ∑

i∈A1

S̄1i

(
ψ1 | ψ̂ (t))

,

where

S̄1i

(
ψ1 | ψ̂ (t)) = ∑

j∈A2i

wijE
{
S1ij (ψ1;xij , yij , vi) | v̂(t)

i ,zi , ψ̂
(t)

1 , ψ̂
(t)

2
}
.

[M-step]: The updated ψ̂
(t+1)

1 satisfies S̄(ψ̂
(t+1)

1 | ψ̂ (t)

1 ) = 0.



SMALL AREA ESTIMATION UNDER INFORMATIVE SAMPLING 111

[FH-step]: The parameter ψ2 is updated by finding the maximizer of �w(ψ2 | ψ̂
(t+1)

1 )

defined in (13) with respect to ψ2. That is, ψ̂
(t+1)

2 = arg maxψ2
�w(ψ2 | ψ̂ (t+1)

1 ).
[Direct Update]: We update the direct estimator of vi and corresponding direct variance

estimator with v̂
(t+1)
i = v̂i (ψ̂

(t+1)

1 ) and V̂1i (ψ̂
(t+1)

1 ), respectively.

We denote the final parameter estimators by ψ̂1 and ψ̂2. The final direct estimator of vi is
denoted by v̂i . Elashoff and Ryan (2004) discusses convergence of EM-type algorithms for
procedures based on estimating equations that are not necessarily score functions of likeli-
hoods.

2.4. Inference for small area parameters. We define the small area predictor of θi by

θ̂i = 1

Ni

Ni∑
j=1

E
{
E(yij | vi,xij , ψ̂1) | v̂i ,zi; ψ̂1, ψ̂2

}
,(15)

where the reference distribution for the inner expectation is f1 of (2) and the reference distri-
bution for the outer expectation is the approximate predictive distribution (14). The expecta-
tion under the approximate predictive distribution is defined in (9).

We estimate the MSE by

m̂sei = V̂ {θi | v̂i ,zi; ψ̂1, ψ̂2} + Ê
{
(θ̂i − θ̃i )

2}
,(16)

where V̂ {θi | v̂i , ψ̂1, ψ̂2} estimates V {θi | v̂i ,ψ1,ψ2} and the second term, Ê{(θ̂i − θ̃i )
2} esti-

mates E{(θ̂i − θ̃i )
2} with θ̃i = N−1

i

∑Ni

j=1 E{E(yij | vi,xij ,ψ1) | v̂i ,zi;ψ1,ψ2}. Regardless
of the sampling design, we estimate the leading term in the MSE by

V̂ {θi | v̂i ,zi; ψ̂1, ψ̂2} = E
(
θ2
i | v̂i ,zi; ψ̂1, ψ̂2

) − {
E(θi | v̂i ,zi; ψ̂1, ψ̂2)

}2
,(17)

using the predictive distribution (14). The estimator of the second term in the sum (16),
which accounts for parameter estimation, depends on the sample design. For designs in which
clusters are not the same as areas, we use linearization variance estimation. For simplicity,
we ignore uncertainty in the estimator of ψ2. Let V̂ {ψ̂1} be an estimator of the variance of
ψ̂1, such as that defined in Appendix B. Let ∂θ̂i/(∂ψ1) denote the partial derivatives of θ̂i

with respect to ψ1. Then, an estimate of the second term in the MSE is

Ê
{
(θ̂i − θ̃i)

2} = {
∂θ̂i/(∂ψ1)

}′
V̂ (ψ̂1)∂θ̂i/(∂ψ1).(18)

We study the properties of the MSE estimator (18) through simulation in Section 4 and apply
the estimator to the NRI data in Section 3. For a design in which the areas are clusters, we
recommend the jackknife (Rao and Molina, 2015, page 301). In the Supplementary Material
(Berg and Kim, 2021) we present simulation studies validating the properties of the jackknife
MSE estimator for a cluster sample design. Because the clusters are not the same as areas for
the NRI study, we defer a definition of the jackknife procedure to the supplement.

We considered alternatives to the MSE estimators suggested in this section. We found that
the jackknife MSE estimator did not work well for the element sample design used in the sim-
ulation and, therefore, suggest the linearization based MSE estimator instead. The parametric
bootstrap is not well suited to this problem because the design may be informative, and we do
not specify a model for the relationship between the weights, the response variable and the
covariates. Torabi and Rao (2010) compare a linearization based estimator of the MSE to a
parametric bootstrap estimator of the MSE for the You and Rao (2002) predictor. In their sim-
ulations, the design is noninformative, as the weight is a function of the model covariate. If
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we specify a model for the relationship between the weight, the response variable and the co-
variate, then one can define a parametric bootstrap estimator of the variance of the parameter
estimators (Berg and Lee, 2019). If one does not specify a model for the weights and ignores
the correlation between the weights and the response variables (i.e., implicitly assuming that
the weight is uncorrelated with the response variable), then the resulting estimators of the
variances of the parameter estimators can be biased. An advantage of the general small area
model and procedure described in this section is that specifying a model for the weights is
not required.

2.5. Illustration for unit-level linear mixed model. As an illustration, we present the steps
of the EM-FH procedure for the widely used unit-level linear model (Battese, Harter and
Fuller, 1988). To simplify the notation, we consider a univariate covariate xij . The two levels
of the hierarchical model are defined as:

1. Level one model: yij = β0 + β1xij + vi + eij , eij
iid∼ N(0, σ 2

e ),

2. Level two model: vi
iid∼ N(0, σ 2

v )

For the linear model we define v̂i (β) as a function of β = (β0, β1) by

v̂i(β) =
( ∑

j∈A2i

π−1
ij

)−2 ∑
j∈A2i

π−1
ij (yij − β0 − β1xij ).

For the linear model and a general design with wij = π−1
ij , the estimator of the design vari-

ance of v̂i is V̂1i (β) given by

V̂1i (β) =
(

1∑
j∈A2i

π−1
ij

)2 ∑
j∈A2i

∑
k∈A2i

(
πij,ik − πijπik

πij,ik

)
êij (β)êik(β)

πijπik

,

where êij (β) = yij − v̂i(β) − β0 − β1xij . The log likelihood for the marginal density of v̂i is

�w(ψ2 | ψ1) = −1

2

∑
i∈A1

wi

{
(v̂i(β))2

(σ 2
v + V̂1i (β))2

+ log
(
σ 2

v + V̂1i (β)
)}

,(19)

where ψ2 = σ 2
v , and ψ1 = β . We ignore σ 2

e because an estimate of σ 2
e is not required for

prediction or for variance estimation. Maximizing (19) with respect to ψ2 = σ 2
v is a univariate

optimization problem, and we use the R function optimize. For the E-step of the EM-FH
algorithm, the mean score equation reduces to∑

i∈A1

∑
j∈A2i

π−1
ij

{
yij − β0 − β1xij − E

(
vi | v̂i; β̂(t))}

(1, xij )
′ = (0,0),

where E(vi | v̂i; β̂(t)
) = (σ 2

v + V̂1i (β̂
(t)

))−1σ 2
v v̂i(β̂

(t)
).

2.6. Special case for exponential dispersion family and canonical link. The observation
that an estimate of σ 2

e is not required for the case of the Gaussian response distribution moti-
vates us to consider the role of the dispersion parameter for the more general class of gener-
alized linear models. A common choice of distribution is the generalized linear mixed effects
model, where f1 is in the exponential dispersion family and f2 is a normal distribution with
mean 0 and variance ψ2. Specifically, suppose

f1(yij | xij ,β, φ) = exp
[
φ

{
yij θij − b(θij )

} + c(yij , φ)
]
,
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where h(θij ) = x′
ijβ + vi , h{b′(θij )} = θij , and vi

iid∼ N(0, σ 2
v ) (Jiang, 2003). For this model,

ψ1 = (β ′, φ), and ψ2 = σ 2
v . The mean score equation, evaluated at the t th parameter estimate,

is of the form

S̄1
(
ψ1 | ψ̂ (t)) = ∑

i∈A1

S̄1i

(
ψ1 | ψ̂ (t))

,

where

S̄1i (ψ1 | ψ̂) = φ
∑

j∈A2i

wij

{
yij − E

(
b′(θij ) | v̂(t)

i , ψ̂
(t))}

xij

and θij is implicitly a function of ψ1. In the data analysis, we use a gamma distribution for
f1 with a noncanonical log link function. For the simulation, we consider the gamma model
used for the data analysis as well as the unit-level linear mixed model of Section 2.5. We
present the specific forms for the score equation and EM-FH algorithm corresponding to the
gamma model in Section 3.4 and in the Appendix.

In applications the assumption that φ is constant may not hold and may be difficult to
verify. Because the mean score equation is a multiple of φ, the solution does not depend on
φ. For a linear model the ordinary least squares estimator of the regression coefficients is
unbiased even if the error variances are not constant. We investigate the robustness of the
EM-FH algorithm and corresponding small area prediction procedure to the assumption of a
constant φ through a simulation study in Section 4.

3. Application to NRI erosion data. As discussed in the Introduction, the objective is
to estimate the mean sheet and rill erosion for domains defined by eight-digit hydrologic units
in the Boone-Raccoon River Watershed. The response variable y is the sheet and rill erosion
as measured by the USLE in (1). Four of the NRI erosion values are zero. We set these four
zero values to be 0.005 to permit the use of distributional forms (such as gamma) that do
not include zero in the support. The four zero values represent 0.47% of the NRI sample for
our study. We expect the effect of 0.47% of the data to be negligible. Further, estimating the
parameters of an appropriate model (such as a zero-inflated model) for only four observed
zeros is difficult. The covariates are related to the USLE R and K factors. As we discuss in
more detail in Section 3.1, the NRI data exhibit nonlinear relationships to covariates as well
as nonconstant variances. Additionally, as we discuss in Section 3.2, the weight appears to be
related to the response after accounting for the information in the model covariates. The EM-
FH algorithm defined in Section 2 is well suited for the NRI application because it allows us
to model nonlinear associations in the data and appropriately incorporates the NRI weight.

3.1. Selection of distributions for NRI data. In the right panel of Figure 2, log(y) is plot-
ted against log(K) with symbols representing the five different values of R in the NRI data
set. The smallest K value is 0.02 and the second smallest is 0.1. Note that a K-factor value of
0.02 corresponds to log(K) = −3.9 on the horizontal axis of the right panel of Figure 2. The
gap between these two values is large in the log scale, and the pattern in the right plot suggests
that the nature of the association between log(K) and log(y) may change with log(K). Our
experience is that the K-factor is subject to a modest amount of measurement error, and trun-
cating small values of the K-factor may guard against extrapolation to erroneous K-factor
values. We change all K values of 0.02 to 0.1. We expect the effect of this change on the
predicted values to be small. As shown in the right panel of Figure 2, relatively few locations
have a K-factor of 0.02, and the estimated mean erosion based on lowess for a K-factor value
of 0.02 is relatively close to that for a K-factor of 0.1. The left panel of Figure 2 shows the
log(y) plotted against the truncated values of log(K). The lowess line indicates a possibility
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FIG. 2. Plots of log USLE erosion against the log of the K-factor (right) and log of the truncated K-factor (left)
with symbols corresponding to the R-factor and lowess lines.

of a change in the slope when the K is 0.28. We fit a model where the slope changes at K
= 0.28 and found no evidence of a change in the slope. (See the Supplementary Material for
details.) We prefer to truncate the K-factor values at 0.1.

To select a distributional form, we conduct a Box–Cox type of analysis. In anticipation of
using K as a covariate, we calculate the mean and standard deviation of erosion for groups
defined by the 10 distinct values of K (after truncation to 0.1). We then regress the logs of the
standard deviations on the logs of the means. The slope of the regression is 1.02 (SE 0.12)
which is consistent with the mean variance relationship of a gamma distribution. We consider
models with a gamma distribution defining the response distribution.

3.2. Effect of survey weight. The premise for our approach is that incorporating the sur-
vey weight in estimation guards against a bias that would result if the sample design is infor-
mative for the specified model and the weight is ignored. We assess the relationship between
the survey weight and erosion, after accounting for the other covariates. To account for the
effect of the NRI survey design on variances, we include NRI primary sampling units as ran-
dom effects. Let j index the NRI point within PSU k and HUC-8 i. We consider a model
where

yikj | μikj ∼ gamma(μikj , α),

log(μikj ) = β0i + x1ikjβ1 + x2ikjβ2 + wikjβ3 + δik + εikj ,
(20)

μikj and α, respectively, are the mean and shape parameter of the gamma distribution and

δik
iid∼ N(0, σ 2

δ ) independent of εikj
iid∼ N(0, σ 2

ε ). The coefficients β0i for i = 1, . . . ,9 are fixed
effects associated with the nine eight-digit hydrologic units (small areas). The covariate x1ikj

is the log K-factor, x2ikj is the log R-factor, and wikj is the final NRI estimation weight
for point j in HUC-8 i and PSU k. We fit the model (20) using the glmer R function. As
discussed in Section 1.1, wikj is a modification to the original inclusion probability intended
to preserve specified controls. As shown in Table 2, the coefficient associated with the weight
(β3) differs significantly from zero, indicating that a relationship between erosion and the
weight exists, after accounting for the other model covariates.
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TABLE 2
Estimates of the parameters of the model (20) and associated standard errors (SE), T-statistics and p-values

Parameter Estimate SE T P -value

β1 0.801 0.089 8.971 ≤2e−16∗∗∗
β2 1.281 0.481 2.660 0.008∗∗
β3 −0.008 0.002 −3.918 0.000∗∗∗
β01 −4.745 2.334 −2.033 0.042∗
β02 −4.568 2.411 −1.895 0.058.

β03 −4.558 2.410 −1.891 0.059.

β04 −4.600 2.458 −1.871 0.061.

β05 −4.676 2.422 −1.931 0.054.

β06 −4.593 2.446 −1.878 0.060.

β07 −4.201 2.494 −1.684 0.092.

β08 −4.369 2.492 −1.753 0.080.

β09 −4.129 2.493 −1.656 0.098.

3.3. Small area model for NRI data. In the estimation procedure we use the NRI repli-
cate weights to appropriately reflect variability due to the sample design and estimation pro-
cedures. We, therefore, specify a model for NRI points in eight-digit hydrologic units. Let
yij , x1ij and x2ij denote the erosion, the log of the K-factor and the log of the R-factor for
NRI point j in HUC-8 i. Assume

yij | vi
ind.∼ gamma(μij , α),

where E(yij | vi) = μij and α is the shape parameter, assumed constant. The model for μij

is

log(μij ) = β0 + β1x1ij + β2x2ij + vi,(21)

where vi
iid∼ N(0, σ 2

v ). Under this parametrization the small area parameter to predict is

θi = exp(γi)
1

Ni

Ni∑
j=1

exp(β1x1ij + β2x2ij ),

where γi = β0 + vi .

3.4. EM-FH algorithm for NRI data. We apply the estimation procedure of Section 2 to
the NRI data. For the NRI model, ψ1 = (β0, β1, β2)

′, and ψ2 = σ 2
v . For a given value of ψ1,

the direct estimator of v̂i(ψ1) = v̂i satisfies S1i (v̂i ,ψ1) = 0, where

S1i (vi,ψ1) = ∑
j∈A2i

wij

{
yij exp(−β0 − β1x1ij − β2x2ij − vi) − 1

}
.

As discussed in Section 1.1, the NRI supplies 29 sets of replicate weights for variance esti-
mation. The replicates are used to estimate V̂1i (β), the design variance of v̂i , as explained in
(12). The M-step of the EM-FH algorithm finds a root of the mean score equation defined by

S̄1
(
ψ1 | σ 2

v

) = ∑
i∈A1

∑
j∈A2i

wij

{
yij exp(−η̃ij ) − 1

}
(1, x1ij , x2ij )

′,

where η̃ij = β0 + β1x1ij + β2x2ij + γ̃i v̂i + 0.5γ̃i V̂1i (β) and γ̃i = σ 2
v (σ 2

v + V̂1i (β))−1. This
closed-form expression for the mean score equation assumes that Cov(yij , exp(vi) | v̂i ) ≈ 0
and uses the Moment Generating Function (MGF) of a normal distribution as in Slud and
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Maiti (2006). The FH step of the EM algorithm finds a maximum of the log-likelihood defined
by

�w

(
σ 2

v | ψ1
) = ∑

i∈A1

log
{

1√
(σ 2

v + V̂1i (ψ1))

φ

(
v̂i√

σ 2
v + V̂1i (ψ1)

)}
.

We use T = 5 steps of the EM-FH algorithm and find that the algorithm converges quickly.
The forms for the MSE and variance estimators for the gamma response distribution and the
log link are presented in Appendix B.2.

3.5. Parameter estimates for NRI data. The loglinear form of the USLE equation would
suggest that β1 = β2 = 1. As discussed, the K and R variables, defining x1ij and x2ij , are
not exactly the same as the USLE R and K factors. Additionally, the LS, C and P factors are
omitted. Therefore, β1 and β2 may differ from each other and may differ from 1. We assess
this by fitting alternative models.

We first fit the full model (21), where we estimate both β1 and β2. We refer to the
full model (21) as Model 1. The estimates of the regression coefficients are (β̂0, β̂1, β̂2) =
(−4.734,1.146,1.437) with corresponding SEs of (2.310,0.138,0.464). The estimate of σ 2

v

is σ̂ 2
v = 0.0500.

We calculate a t-test statistic of the null hypothesis Ho : β1 = β2 as

T = β̂1 − β̂2√
V̂ (β̂1 − β̂2)

,

where V̂ (β̂1 − β̂2) = V̂ (β̂1) + V̂ (β̂2) − 2Ĉov(β̂1, β̂2) and the estimated covariance matrix
of the estimators of regression coefficients is defined in Appendix B.2. The value of the
test statistic is T = 0.634. We fail to reject the null hypothesis and fit the model under the
assumption that β1 = β2. The reduced model (Model 2) is defined by replacing the model for
μij in (21) with the reduced model defined as

log(μij ) = β0 + β1(x1ij + x2ij ) + vi.(22)

With this restriction, (β̂0, β̂1) = (−3.345,1.167) with a corresponding estimated standard
error of (0.545,0.146), and the estimate of σ 2

v increases slightly to σ̂ 2
v = 0.0573.

Interestingly, the estimate of β1 from Model 2 does not differ significantly from 1. The
coefficient associated with xij = x1ij + x2ij does not differ significantly from 1, even though
the R and K covariates are not identical to the USLE R and K factors and the model omits C
and P factors. The restriction that β1 = β2 = 1 increases the estimate of σ 2

v , substantially, to
σ̂ 2

v = 0.376. This increase in the estimate of σ 2
v leads to properties of predictors and estimated

mean square errors that seem unreasonable. Therefore, we do not pursue the model with β1 =
β2 = 1 further. We compare predictions and estimated root mean square errors for Model 1
and Model 2.

3.6. Small area predictions and estimated RMSEs for mean erosion. Table 3 contains
small area predictors (est), estimated root mean squared errors and estimated coefficients of
variation for Models 1 and 2. For comparison, the estimates, standard errors and coefficients
of variation for the direct estimators of mean erosion are included as well. The rows labeled
est-t give the prediction for model t for t = 1,2. The rows labeled rmse-t give the estimated
root mean square errors for model t , and the additional suffix of LT indicates that the esti-
mated root mean square error is the square root of the estimated leading term in the mean
square error. The bottom panel of the table compares the estimated means of the covariates
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TABLE 3
Top panel: Estimates, standard errors (SE) and CVs of direct estimators of erosion. Second panel: Small area
predictors based on Model 1, standard errors and CVs. Third panel: Small area predictors based on Model 2,
standard errors and CVs. Bottom panel: Population mean (kbarpop) and direct estimated mean (kbarhat) of

K-factor as well as population mean (rbarpop) and direct estimated mean (rbarhat) of R-factor

1 2 3 4 5 6 7 8 9

Direct Estimators
Est 1.79 2.13 2.51 2.16 1.68 2.23 4.84 5.30 6.71
SE 0.19 0.19 0.38 0.39 0.33 0.31 0.78 0.63 1.76
CV 0.106 0.090 0.149 0.178 0.199 0.137 0.160 0.119 0.262

Model 1 Predictions & RMSE
est-1 3.554 2.922 2.747 3.437 2.373 2.359 3.462 3.859 5.190
rmse-1-LT 0.181 0.380 0.398 0.280 0.291 0.088 0.097 0.401 0.230
cv-1-LT 0.051 0.130 0.145 0.081 0.123 0.037 0.028 0.104 0.044
rmse-1 0.540 0.418 0.410 0.360 0.312 0.095 0.185 0.411 0.250
cv-1 0.152 0.143 0.149 0.105 0.131 0.040 0.053 0.106 0.048

Model 2 Predictions & RMSE
est-2 3.326 2.853 2.747 3.377 2.322 2.357 3.536 3.916 5.235
rmse-2-LT 0.169 0.380 0.409 0.269 0.290 0.086 0.100 0.412 0.231
cv-2-LT 0.051 0.133 0.149 0.080 0.125 0.036 0.028 0.105 0.044
rmse-2 0.336 0.401 0.419 0.340 0.304 0.092 0.145 0.420 0.246
cv-2 0.101 0.140 0.153 0.101 0.131 0.039 0.041 0.107 0.047

NRI Estimates and Population Means of Covariates
kbarhat 0.263 0.251 0.243 0.250 0.245 0.259 0.297 0.340 0.365
kbarpop 0.334 0.282 0.264 0.337 0.273 0.272 0.254 0.287 0.304
rbarhat 4.834 5.002 4.997 5.075 5.011 5.061 5.165 5.165 5.165
rbarpop 5.043 5.073 5.016 5.137 5.060 5.047 5.064 5.077 5.112

from the survey to the corresponding population means. The rows labeled kbarhat and rbarhat
contain the NRI estimates of the means of log(K) and log(R) for the nine domains. The rows
labeled kbarpop and rbarpop are the corresponding population means.

The small area procedure shrinks the small area estimates of mean erosion toward the
overall mean. The procedure shrinks the standard errors similarly. For either Model 1 or
Model 2, the estimated RMSE of the predictor is typically smaller (larger) than the estimated
standard error of the direct estimator if the model based predictor of mean erosion is smaller
(larger) than the direct estimator. Because the standard errors are related to the means, we
focus on the estimated coefficients of variation. The estimated coefficients of variation from
Model 2 are typically close to the estimated coefficients of variation from Model 1. For area
1 the assumption of a common slope for the R and K factors leads to an important decrease
in the estimated coefficient of variation. The assumption of a common slope is expected to
reduce the effect of the variances of parameter estimators on the prediction MSE. The effect
of parameter estimation on the estimated MSE varies across the areas. For area 1 the effect of
parameter estimation from Model 1 accounts for approximately 90% of the MSE. This area
has a relatively large sample size, and (σ̂ 2

v + V̂1i )
−1σ̂ 2

v = 0.93. For Model 2 the variance due
to parameter estimation accounts for 75% of the total MSE of the predictor for area 1. Model
2 is a compromise between the full Model 1 and the simplest model that forces the slopes
for both covariates to equal 1. Therefore, we prefer Model 2. The estimated coefficients of
variation for Model 2 are smaller than those for the estimated direct estimators for all areas,
except for areas 2 and 3. The estimated CV of the predictor for area 3 is close to that of
the direct estimator. The increase in the estimated CV for area 2 is substantial. To better
understand effect of small area modeling on the estimated standard error, we calculate a
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version of a direct standard error in a different way. Define

V̂dir,i,2 =
[

1

Ni

Ni∑
j=1

exp
{
β̂0 + β̂1(x1ij + x2ij )

}]2

× [
exp

{
2v̂i (β̂) + 2V̂1i (β̂)

} − exp
{
2v̂i (β̂) + V̂1i (β̂)

}]
.

The V̂dir,i,2 is the conditional variance of [N−1
i

∑Ni

j=1 exp{β̂0 + β̂1(x1ij + x2ij )}] exp{v̂i (β̂1)}
given vi . The V̂dir,i,2 for the nine areas in order by index label are

(0.172,0.440,0.533,0.278,0.312,0.086,0.101,0.483,0.238).

For all areas except for areas 2 and 3, the V̂dir,i,2 is smaller than or equal to the direct estimator
of the standard error of the mean erosion for the area. For areas 2 and 3 the V̂dir,i,2 are
considerably larger than the direct standard error for mean erosion. Smoothing the V̂1i (β̂)

may improve the standard errors for these two areas; however, the number of PSUs per area
is relatively large, so we expect that V̂1i (β̂) is reliable enough.

A comparison of the means of the covariates for the survey to the corresponding pop-
ulation means illustrates why small area prediction increases the estimates for some areas
and decreases the estimates for others. For areas 1–5 the population means of the covariates
exceed the corresponding survey based estimators, and small area prediction leads to an in-
crease in the estimated mean erosion relative to the direct estimator. For area 6, the population
mean for the K-factor is larger than the direct estimator of the K-factor, while the opposite
is true for the R-factor. The small area predictor for area 6 is relatively close to the direct
estimator. Area 6 has a relatively large sample size, and the direct estimate of erosion for area
6 is close to the overall mean erosion in the Boone-Raccoon river watershed. For areas 8 and
9 the population means of the covariates are smaller than the survey based means, and small
area predictors are smaller than the direct estimators.

3.7. Model assessment. The model (2) is a model for the super-population, so the plausi-
bility of model (2) is difficult to assess directly using standard diagnostic tools. Because our
estimation procedure is based on estimating equations, the difficulty of diagnosing the good-
ness of fit of the entire super-population model does not prevent us from defining a model
assessment procedure. One of the critical assumptions that underlies the estimation procedure
is the Fay–Herriot type of model given in (8) and (3). To evaluate if the assumption of the
Fay–Herriot type of model in (8) and (3) is plausible for the NRI data; we define a residual
by

ri = v̂i (β̂)√
σ̂ 2

v + V̂1i (β̂)

.

If the model assumption holds, then ri has a normal distribution. Figure 3 shows a normal
probability plot of ri for i = 1, . . . ,9 based on Model 2. The p-value from a Shapiro–Wilk
test of the null hypothsis that ri has a normal distribution is 0.23, providing no evidence
against normality.

4. Simulations. We consider Gaussian and gamma distributions for the population
model. For the Gaussian distribution

yij = β0 + β1xij + vi + eij ,(23)
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FIG. 3. Normal probability plot of ri for i = 1, . . . ,9.

where vi
iid∼ N(0, σ 2

v ) and eij
iid∼ N(0, σ 2

e ). For the gamma distribution

yij | μij ∼ gamma(μij , α),(24)

where μij and α denote the mean and shape parameter, respectively, of a gamma distribution.

We define μij = exp(β0 + β1xij + vi), where vi
iid∼ N(0, σ 2

v ). For both distributions we set

β0 = −4, β1 = 2, σ 2
v = 0.5, and σ 2

e = 1. We generate xij
iid∼ Unif(0,1).

We generate a population of 10,000 units spread evenly across 50 areas. The sample design
is Poisson sampling with inclusion probability for element j in area i defined as

πij = 0.02Ni exp{0.2(zij − x′
ijβ) + 0.2δij }∑Ni

j=1 exp{0.2(zij − x′
ijβ) + 0.2δij }

,

where zij = yij for the Gaussian distribution and zij = log(yij ) for the gamma distribution.
The δij are i.i.d . standard normal random variables, truncated to the interval [−2,2]. When
we implement the EM-FH algorithm, we use T = 2 steps of the iteration.

We also examine the robustness to two assumptions. First, to assess sensitivity to the as-
sumption of a constant σ 2

e and α, we consider a simulation configuration where the dispersion
parameter varies across the areas. For the Gaussian model we set σ 2

e = 0.5 for areas 1–25
and set σ 2

e = 1.5 for areas 26–50. For the gamma model we set α = 1 for areas 1–25 and
set α = 5 for areas 26–50. Second, we assess sensitivity to the assumption of normally dis-
tributed random effects by generating the area random effects as multiples of a t distribution

with five degrees of freedom. Specifically, we generate vi
iid∼ √

3/5σvt(5). The multiplication
by

√
3/5σv ensures that the generated random effects have variance of σ 2

v .
Table 4 allows a comparison of the average Monte Carlo (MC) MSEs of the predictors

of the small area means based on the EM-FH algorithm of Section 2 to the average MSEs
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TABLE 4
Average MC MSE of direct estimator and of predictor as well as MC mean of estimated MSE of predictor

Common α, vi ∼ N Nonconstant α/σ 2
e , vi ∼ N Common α, vi ∼ t5

Gamma Gaussian Gamma Gaussian Gamma Gaussian

MC MSE of Direct. 0.000376 0.0374 0.00035 0.0384 0.000438 0.0372
MC MSE of Pred. 0.000219 0.0266 0.00021 0.0272 0.000323 0.0270
MC Mean of Est. MSE 0.000205 0.0266 0.00020 0.0272 0.000270 0.0271

of direct Hajek estimators. The EM-FH algorithm for the Gaussian distribution is defined in
Section 2.5, and the EM-FH algorithm for the gamma distribution is defined in Appendix A.
We define the MSE in the standard way as MSE(θ̂i) = R−1 ∑R

r=1(θ̂
(r)
i − ȳ

(r)
Ni

)2, where θ̂
(r)
i is

either a predictor or a direct estimator obtained in MC replication r and ȳ
(r)
Ni

is the population
mean of yij for area i simulated in MC replication r . We present the results for the simulation
with nonconstant α or σ 2

e below the heading “Nonconstant α/σ 2
e ” in Table 4. The final row

of Table 4 contains the MC means of the linearization based estimators of the MSEs of the
predictors, defined in Section 2.3 with details in Appendix B.2. For the left panel of Table 4,
the assumed model holds, and the results are consistent with the theory. For both the gamma
and Gaussian models the predictors are more efficient than the direct estimators, and the MSE
estimator is a good approximation for the MSE of the predictor. The prediction procedure
continues to attain efficiency gains relative to the direct estimator when the assumption of a
constant σ 2

e or α is violated. The estimated MSEs of the predictors are reasonable, even if the
assumption of a constant dispersion parameter does not hold. The t(5) distribution has heavier
tails than the assumed normal distribution for vi . For the gamma distribution the use of a t(5)

distribution for vi inflates the MSEs of the predictors slightly. For the Gaussian distribution
the results for the case where the true distribution of vi is t(5) are nearly the same as the case
where the assumed normal distribution holds. Overall, the results for the t(5) distribution for
vi indicate that the procedure is resistant to outliers in the distribution of the area random
effects.

5. Conclusion. We develop a small area procedure based on survey weighted estimating
equations arising from a specified super-population model. The method allows us to model
nonlinear relationships and incorporate the effect of an informative sampling design without
making model assumptions on the sampling weights. The basic idea is to obtain the approx-
imate predictive distribution using the asymptotic normality of the profile pseudo maximum
likelihood estimator of the area effect. The profile PMLE is used to construct an area-level
model from the original unit level model. The approximate predictive distribution is also used
to construct the E-step of the EM algorithm for parameter estimation. The proposed method
is applied to estimation of mean erosion in watersheds using NRI data. The estimated CVs of
the predictors are less than or equal to those of the direct estimators for all but two areas.

One of the advantages of our approach is robustness. We do not require a model for the
sampling weights. The simulation shows that the procedure is somewhat robust to departures
from the assumption of a constant dispersion parameter.

The robustness of our procedure may come at the expense of a loss of efficiency if the
area sample sizes are too small. As the area sample sizes decrease, adding stronger model
assumptions may be necessary. For the NRI application the area sample sizes are moderately
large. The procedure appropriately reflects the complex survey process and the relationships
in the data.
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APPENDIX A: EM-FH PROCEDURE FOR THE GAMMA MODEL AND THE
ELEMENT SAMPLE DESIGN

We define the EM-FH algorithm for the gamma distribution used in the simulation. For
this model, ψ1 = (β0, β1), and ψ2 = σ 2

v . The direct estimator of vi is defined such that
S1i (v̂i ,ψ1) = 0, where

S1i (vi,ψ1) = ∑
j∈A2i

π−1
ij

{
yij exp(−β0 − β1xij − vi) − 1

}
.

The direct estimator of the variance for area i in the simulation is defined as

V̂1i (ψ1) =
{ ∑

j∈A2i

π−1
ij yij exp(−β0 − β1xij − vi)

}−2
V̂πi,(25)

where V̂πi = ∑
j∈A2i

(πij,ik − πijπik)π
−1
ik π−1

ij {yij exp(−β0 − β1xij − v̂i) − 1}2. The M-step
finds a root of the mean score equation defined by

S̄1
(
ψ1 | σ 2

v

) =
D∑

i=1

∑
j∈A2i

π−1
ij

{
yij exp(−η̃ij ) − 1

}
(1, xij )

′,

where η̃ij = β0 + β1xij + γ̃i v̂i + 0.5γ̃i V̂1i (β), and γ̃i = σ 2
v (σ 2

v + V̂1i (β))−1.

APPENDIX B: LINEARIZATION VARIANCE ESTIMATION FOR THE ELEMENT
SAMPLE DESIGNS

We define variance estimators appropriate for the NRI study design. In the NRI application,
all small areas have at least one sampled element. Therefore, we consider a situation in which
A1 = {1, . . . ,D}:

S̄1(ψ1 | ψ2) =
∫

S1(ψ1 | vi)g2(v̂i | vi)f2(vi | ψ2) dvi∫
g2(v̂i | vi)f2(vi | ψ2) dvi

=
D∑

i=1

S̄1i ,

where

S̄1i =
∫

Ŝ1i (ψ1 | vi)g2(v̂i | vi)f2(vi | ψ2) dvi∫
g2(v̂i | vi)f2(vi | ψ2) dvi

and

Ŝ1i = ∑
j∈A2i

π−1
ij

∂

∂ψ1
log

{
f (yij | xij , vi,ψ1)

}
.

An estimator of the variance of ψ1 is

V̂ {ψ̂1} = D̄
−1

V̂ ss11
(
D̄

−1)′
,

where D̄ = ∑D
i=1 ∂S̄1i/(∂ψ1) and V̂ ss11 = ∑D

i=1 S̄1i S̄
′
1i . We derive the specific forms of D̄

for the gamma and Gaussian distributions in the following two subsections.

B.1. Gaussian model. The mean score equation is given by

S̄1(β0,β1 | v̂i) =
D∑

i=1

S̄1i ,
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where

S̄1i = ∑
j∈A2i

wij

{
yij − β0 − β ′

1xij − γi

(
ȳwi − β0 − x̄′

wiβ1
)}(

1,x′
ij

)′
,

(x̄′
wi, ȳwi)

′ = w−1
i.

∑
j∈A2i

wij (x
′
ij , yij )

′, wi. = ∑
j∈A2i

wij and γi = σ 2
v (σ 2

v + V̂1i (β))−1 with

β = (β0,β
′
1)

′. Then, the matrix D̄ is given as

D̄ =
(
D11 D′

12
D21 D22

)
,

where D11 = ∑D
i=1 wi.(γi − 1), D12 = ∑D

i=1 wi.x̄wiγi − ∑D
i=1

∑
j∈A2i

wijxij = D21 and

D22 = ∑D
i=1 γiwi.x̄wi x̄

′
wi − ∑D

i=1
∑

j∈A2i
wijxijx

′
ij . The estimated MSE of the predictor

is then

ˆMSE{θ̂i} = γiV̂1i (β̂) + (
1 − γi,1 − γi x̄

′
wi

)
V̂ (β̂)

(
1 − γi,1 − γi x̄

′
wi

)′
,

where

V̂ (β̂) = D̂
−1

{
D∑

i=1

S̄1i S̄
′
1i

}(
D̂

−1)′
and D̂ is obtained by replacing the unknown parameters defining D̄ with estimators.

B.2. Gamma model. The mean score equation for β = ψ1 = (β0,β
′
1)

′ is given by

S̄1(β | v̂i) =
D∑

i=1

S̄1i ,

where

S̄1i = ∑
j∈A2i

wij

{
yij exp

(−β0 − β ′
1xij − γiv̂i − 0.5γiV̂1i

) − 1
}(

1,x′
ij

)′
,

γi = σ 2
v (σ 2

v + V̂1i (β))−1, v̂i satisfies S1i (v̂i ,β) = 0,

S1i (vi,β) = ∑
j∈A2i

wij

{
yij exp

(−β0 − β ′
1xij − vi

) − 1
}

and V̂1i (β) is defined in (25). To calculate D̄, we require the derivative of v̂i with respect to
β = (β0,β

′
1)

′. Using implicit differentiation of Ŝ1i (v̂i ,β), we obtain

0 = ∑
j∈A2i

wij yij exp
(−β0 − β ′

1xij − v̂i

)(−1 − ∂v̂i

∂β0

)
and

0 = ∑
j∈A2i

wij yij exp
(−β0 − β ′

1xij − v̂i

)(−xijk − ∂v̂i

∂β1k

)
,

where xijk and β1k are the kth components of xij and β1, respectively. Therefore,

∂v̂i

∂β0
= −1,

and

∂v̂i

∂β1k

= −
∑

j∈A2i
wij yij exp(−β0 − β1xij − v̂i )xijk∑

j∈A2i
wij yij exp(−β0 − β1xij − v̂i)

.
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We can now calculate D̄ as

D̄ =
(
D11 D′

12
D21 D22

)
,

where

D11 =
D∑

i=1

∑
j∈A2i

wij yij exp(−ηij )(γi − 1),

D12 =
D∑

i=1

∑
j∈A2i

wij yij exp(−ηij )

(
−xij − γi

∂v̂i

∂β1

)
,

D21 =
D∑

i=1

∑
j∈A2i

wij yijxij exp(−ηij )(γi − 1),

D22 =
D∑

i=1

∑
j∈A2i

wij yijxij exp(−ηij )

{
−x′

ij −
(
γi

∂v̂i

∂β1

)′}

and ηij = β0 +β ′
1xij +γiv̂i +γiV̂1i (β)/2. The estimated MSE of the predictor for the gamma

model is then

ˆMSE{θ̂i} = M̂1i + M̂2i ,

where

M̂1i =
{

1

Ni

Ni∑
j=1

exp
(
β̂0 + β̂

′
1xij

)}2

exp(2γiv̂i)
[
exp

(
γ̂i V̂1i (β̂)

){
exp

(
γ̂i V̂1i (β̂)

) − 1
}]

,

M̂2i = (
d̂pred,i,1, d̂

′
pred,i,2

)
V̂ (β̂)

(
d̂pred,i,1, d̂

′
pred,i,2

)′
,

d̂pred,i,1 = N−1
i

Ni∑
j=1

exp(η̂ij )(1 − γ̂i),

d̂pred,i,2 = N−1
i

Ni∑
j=1

exp(η̂ij )

(
xij + γ̂i

∂v̂i

∂β̂1

)
,

∂v̂i/(∂β̂1) denotes the derivative of v̂i with respect to β1 evaluated at the estimated parameter
and V̂ (β̂) is defined an a manner analogous to the linear model.

APPENDIX C: VALIDATION OF LINEARIZATION VARIANCE ESTIMATION

The prediction MSE is dominated by the leading term. Therefore, an analysis of the esti-
mated MSE of the predictor can mask problems with the estimated variances of the estimators
of the regression coefficients. In this section we assess the estimators of the variances of the
estimators of the regression coefficients.

Table 5 contains the MC variances of the estimators of the regression coefficients along
with the MC means of the variance estimators for the six simulation configurations. The MC
means and MC variances are mutiplied by 100. For cases where σ 2

e or α is constant across the
areas, we observe overestimation of the variance for β0 and underestimation for β1. For both
the Gaussian and gamma distributions the procedure is robust to the assumption of a constant
dispersion parameter. The variance estimators remain reasonable if the true distribution of
the random effects is a t-distribution.
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TABLE 5
MC means of estimators, MC variances of estimators of (β0, β1) and MC means of variance estimators for six

simulation configurations. MC variances are multiplied by 100. True values are (β0, β1) = (−4,2)

Distribution Statistic β0 β1

Gaussian MC Var of Est. 1.138 0.664
Gaussian MC Mean of Var. Est. 1.369 0.574
Gaussian MC Mean of Est. −4.021 2.005

Gaussian �= σ 2
e MC Var of Est. 1.233 0.699

Gaussian �= σ 2
e MC Mean of Var. Est. 1.648 0.671

Gaussian �= σ 2
e MC Mean of Est. −4.001 2.002

Gamma MC Var of Est. 1.028 0.684
Gamma MC Mean of Var. Est. 1.358 0.568
Gamma MC Mean of Est. −4.009 2.011

Gamma �= α MC Var of Est. 1.180 0.287
Gamma �= α MC Mean of Var. Est. 1.770 0.344
Gamma �= α MC Mean of Est. −4.013 1.986

Gaussian vi ∼ t5 MC Var of Est. 1.129 0.850
Gaussian vi ∼ t5 MC Mean of Var. Est. 1.273 0.674
Gaussian vi ∼ t5 MC Mean of Est. −3.998 1.993

Gamma vi ∼ t5 MC Var of Est. 1.165 0.550
Gamma vi ∼ t5 MC Mean of Var. Est. 1.322 0.580
Gamma vi ∼ t5 MC Mean of Est. −4.021 2.005
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