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Obtaining an adequate description of the behaviour of narwhals in a pris-
tine environment is important to understand natural behaviour as well as pro-
viding the means to determine potential changes in behaviour directly or in-
directly caused by human activity. Based on AcousondeTM data from five
narwhals in Scoresby Sound, this paper aims at modelling buzzing and call-
ing rates of East Greenland narwhals as functions of time, space and, pos-
sibly, autoregressive memory. Both buzzing and calling are sounds produced
by narwhals. Buzzing is a way for the whale to navigate and locate prey using
echolocation, while calling is associated with social communication between
whales. Logistic regression models without and with autoregressive compo-
nents are compared based on AIC and comparatively assessed using diagnos-
tics from point process theory. Adding an autoregressive component appears
to improve the models, and further improvements for the buzzing model are
made with a non-GLM extension. Effects of extrinsic covariates and memory
are presented and interpreted. Buzzing occurs at deeper depths, and initia-
tions of buzzes are separated by refractory periods. A possible feeding area
is identified. Calling occurs closer to the surface, and, while the probability
of calling in general is lower than buzzing, it is more likely that calls are
clustered together rather than spread randomly.

1. Introduction. The narwhal (Monodon monoceros) is one of the deepest diving
cetaceans with the maximum exceeding 1800 m (Heide-Jørgensen et al. (2015)), with the
largest abundances found in East and West Greenland and in the Canadian High Arctic
(Heide-Jørgensen et al. (2002)). The narwhals dive to forage and depend on acoustics for
sensing their environment, navigating and capturing prey at depth (Rasmussen, Koblitz and
Laidre (2015)). Sound plays a crucial role in the life of East Greenland narwhals, because they
dive to depths much below the photic zone and are seasonally exposed to darkness or limited
daylight as well as extensive ice coverage (Blackwell et al. (2018)). To navigate and feed,
a narwhal can buzz which is a form of echolocation. Calling, on the other hand, is used for
communication with conspecifics. Establishing adequate models that describe buzzing and
calling behaviour is thus a significant step toward attaining knowledge of how narwhals be-
have. The data are obtained from narwhals in a relatively pristine environment, and one could,
therefore, hope that resulting models are representative of the whales’ normal behaviour.

Climate changes decrease the sea ice coverage, exposing the natural habitat of narwhals to
anthropogenic factors like underwater noise from shipping and seismic exploration (Koblitz
et al. (2016)). As noise pollution is predicted to increase, the models developed here have
potential to be used as a reference when trying to determine if noise from human activities
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alters the whales’ behaviour. We will qualitatively and quantitatively describe the vocal ac-
tivities to understand the behaviour of narwhals under natural conditions and to ensure the
long-term conservation of one of the most specialized species in the North Atlantic.

In most acoustic studies of narwhals, data were collected with dipping hydrophones, au-
tonomous passive acoustic recorders or hydrophone arrays. Such studies are generally lim-
ited, with little information on the spatial and temporal variation in sound production of
specific individuals, since they are stationary. The development of animal-borne acoustic
recorders has opened up new possibilities for monitoring and gaining understanding of indi-
vidual acoustic behaviour of freely moving cetaceans (Johnson, Aguilar de Soto and Madsen
(2009)). Moreover, only recently it has become possible to obtain attachment durations of
various days or weeks which provides rich information about the variability over time for
whales that are frequenting different habitats. Therefore, it is important to develop robust
statistical methods to deal with these new types of large data sets.

In Blackwell et al. (2018), the acoustic behaviour of East Greenland narwhals was de-
scribed extensively, possibly for the first time. Various descriptive statistics were presented to
gain insight into the spatial and temporal patterns of sound production, where clicks, buzzes
and calls—all being sounds produced by narwhals—were considered. Additionally, logistic
regression models were suggested for five out of six available whales. In these models, con-
ditional probabilities of buzzing and calling were estimated given three extrinsic predictors:
area, depth and time of day; the first being categorical, and the latter two being continuous.
An area-effect as well as nonlinear effects of depth and time of day were justified based on
statistical significance. The regression rested on the assumption that observations each second
were independent, given the extrinsic predictors. Using the same data set, this paper presents
two models that relax this assumption. The best model is selected through AIC and compared
with the previously suggested logistic regression model (hereafter denoted the base model)
with respect to diagnostics in a point process framework which previously has been used in
neuroscience; see Truccolo et al. (2005), Kass, Eden and Brown (2014, Chapter 19), and Li
et al. (2016). To see how the effects of the extrinsic covariates and, therefore, the interpre-
tations possibly change under the different assumptions, the base model and best model are
presented together for each whale.

Behavioural data obtained from tagged cetaceans like the depth measurements and GPS
positions used as covariates here have typically been analyzed with hidden Markov models
(DeRuiter et al. (2017), Langrock et al. (2014), Ngo, Heide-Jørgensen and Ditlevsen (2019),
Quick et al. (2017)); see also Patterson et al. (2017) for a review on statistical methods used
for this type of data. Spatial point process models have been used to model large-scale survey
data of cetaceans (Yuan et al. (2017)); however, these data are not from animal-borne tags
and can thus not model detailed individual behaviour. The point process approach taken here
to model acoustic behaviour of cetaceans is new and provides a flexible modelling framework
that incorporates individual memory components and covariates.

2. Data. Five narwhals were live-captured and instrumented with Acousonde (www.
acousonde.com) acoustic recorders in Scoresby Sound, East Greenland, in August 2013–
2016 (Figure 1, see Blackwell et al. (2018) for details on capturing and tagging). The
Acousonde recorders were released from the whales after three to eight days of attachment
and were retrieved at sea by radio tracking. The Acousonde recorders provided archived data
on depth for every 1 s, continuous recordings of whale vocalizations and daily positions of
the whales (Figures 1–2). The recordings were analyzed for presence of buzzes and calls
by a combination of manual and automatic detections (Blackwell et al. (2018)). The whales
showed a period of posttagging silence that was omitted from the analyses.

http://www.acousonde.com
http://www.acousonde.com
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FIG. 1. Satellite tracks of the five whales and an image of an Acousonde on a narwhal. All tracks begin near
Hjørnedal and end at the star symbols.

3. Methods. The point process framework, for example as used in Truccolo et al. (2005)
and Kass, Eden and Brown (2014, Chapter 19), is chosen for this article. Here, it is assumed
that the true data generating mechanism for the sounds produced by the narwhals is a point
process which is a set of discrete events occurring in continuous time. For the purpose of this
article, these events (henceforth referred to as event times) are the beginnings of a buzz or a
call. Given an observation interval (0, T ], the event times are denoted u1, . . . , uJ , satisfying
the inequalities 0 < u1 < · · · < uJ ≤ T .

For t ∈ (0, T ], a point process can be completely characterized by its conditional intensity
function,

(3.1) λ
(
t | X(t)

) = lim
�→0

P(N(t + �) − N(t) = 1 | X(t))

�
,

where N(t) is the number of events in the interval (0, t] and X(t) contains information on all
past events and all covariate values in (0, t). Thus, for � small enough it follows that

(3.2) λ
(
t | X(t)

)
� ≈ P

(
N(t + �) − N(t) = 1 | X(t)

)
.

This means that λ(t | X(t))� is an approximation of the conditional probability of observing
an event in the interval (t, t + �].

The available data are based on a 1 Hz sampling rate, � = 1 sec, and the observations are
mathematically formalized as (Y1,X1), . . . , (YT ,XT ), where Xt is a vector of covariates and
Yt is a binary response variable with support {0,1}, indicating whether a sound was initiated
in the interval (t, t + �]. The realization Yt = 1 corresponds to the beginning of a buzz or a
call at time t . Theoretically, the data can be interpreted as a discretized representation of the
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FIG. 2. Dive depth as a function of time in days (grey lines) for each whale. The first day is defined as the day
where the record starts, and ticks are placed at midnight. Buzzes are indicated with black dots and calls with
triangles. Area is indicated by the bars below the depth records (colour online) (F: Fønfjord, G: Gåsefjord, O:
Øfjord, OG: Outer Gåsefjord).

true event times, and the analysis relies on assumption (3.2), implying that � is so small that
P(N(t + �) − N(t) > 1 | X(t)) ≈ 0.

As mentioned in the Data section, the whales showed a period of posttagging silence,
which was excluded from the analysis, such that t = 0 corresponds to the time point where
the analysis started. Therefore, for some Q being smaller than this period, it is always the
case that y−Q+1 = y−Q+2 = · · · = y0 = 0, where yt is the observation of Yt ; this information
is included and conditioned on in the model. Implicitly conditioning on all other relevant
predictors and using p as a generic symbol for a probability mass function (pmf), the pmf of
the data can be written as

(3.3) p(y1, . . . , yT | y−Q+1, . . . , y0) =
T∏

t=1

p(yt | y−Q+1, . . . , yt−1).

As will become clear when the models are specified, it is further assumed that, for t ∈
{1, . . . , T },
(3.4) p(yt | y−Q+1, . . . , yt−1) = p(yt | yt−Q, . . . , yt−1),
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implying that all relevant information of past events is contained in the preceding time period
of length Q. It follows that the pmf of the data is

(3.5) p(y1, . . . , yT | y−Q+1, . . . , y0) =
T∏

t=1

p(yt | yt−Q, . . . , yt−1).

Moreover, as the responses are binary,

(3.6) p(y1, . . . , yT | y−Q+1, . . . , y0) =
T∏

t=1

p
yt
t (1 − pt)

1−yt ,

where pt = P(Yt = 1 | Xt) = P(N(t + �) − N(t) ≥ 1 | X(t)). From this, the likelihood can
be established through the model for pt .

For each whale separately, three nested models of pt are considered: M0, M1 and M2, such
that M0 ⊆ M1 ⊆ M2. The base model M0 is characterized as follows:

M0 : logit(pt ) = ηt ,(3.7)

ηt = gA(at ) + gD(dt ) + gH (ht ).(3.8)

Above, gA, gD and gH are parametric functions of the predictors at ∈ {F,G,O,OG}, dt ∈
R≥0 and ht ∈ [0,24), representing the area, depth and time of day. The intensity in this
model is independent of past history, and M0 is an inhomogeneous Poisson process. Let
β = (β1, . . . , βp)T denote the parameter vector of the regression coefficients in ηt in (3.8),
and let θ0 = β denote the parameter vector to be estimated in M0.

To help the reader better understand the intuition behind M1, the largest model M2 is
introduced first. Here, an autoregressive component of order Q is added to the predictor ηt ,

(3.9) M2 : logit(pt ) = ηt +
Q∑

q=1

cqyt−q,

where yt−1, . . . , yt−Q are past realizations of the response variables and c = (c1, . . . , cQ)T

is the vector of autoregressive coefficients. In M2, θ2 = (βT , cT )T . Given a certain response
(buzzing or calling), the autoregressive order Q is chosen based on the pooled AIC-value∑5

i=1 −2 logLi,Q + 2ζi,Q, where Li,Q and ζi,Q are the maximized likelihood and number of
parameters for the ith whale, given Q. Thus, M2 models the memory effects arbitrarily, since
we have no a priori knowledge about these.

In an attempt to improve interpretability (see Table 1) while (greatly) reducing the number
of parameters, M1 is suggested,

(3.10) M1 : logit(pt ) = ηt +
Q∑

q=1

c∗
φ(q)yt−q .

Here, the kernel c∗
φ(q) is a biexponential function,

(3.11) c∗
φ(q) = φ1 exp

(− exp(φ2)q
) + φ3 exp

(− exp(φ4)q
)

of φ = (φ1, φ2, φ3, φ4)
T . The factors exp(φ2) and exp(φ4) could theoretically be replaced

by two positive constants; however, the form above allows for unconstrained optimization.
In M1, θ1 = (βT ,φT )T . The biexponential function is suggested because it provides a flex-
ible class of memory models (models that include information about the past). Table 1 and
Figure 3 summarize some possible shapes in dependence of the parameters; see also Li and
Ditlevsen (2019) for simulated point processes under different kernels and external input. The
kernel c∗

φ has the potential to capture the underlying trend of the autoregressive coefficients
while stabilizing the autoregressive effects, forcing the memory component to be continuous
and smooth. This will become apparent when presenting the results.
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TABLE 1
Characteristics of the biexponential kernel for different parameter vectors φ in (3.11) used to model memory

effects

Kernel Description Parameter Interpretation

Bursting first positive, φ1 > 0 > φ3, recent events have excitatory effects,
then negative, φ1 > |φ3|, accumulation of events has inhibitory effects,
then vanishing φ2 > φ4 resulting in rhythmic bursts of events

Decaying first negative, φ1 = 0 > φ3, inhibitory effects are small but long-lasting,
then vanishing |φ3|, exp(φ4) small making event rate decay slowly over time

Delaying first negative, φ1 > 0 > φ3, recent events have inhibitory effects,
then positive, φ1 < |φ3|, accumulation of events has excitatory effects,
then vanishing φ2 < φ4 preventing short inter-event intervals

Exciting first positive, φ1, φ3 ≥ 0 recent events have excitatory effects
then vanishing max(φ1, φ3) > 0

FIG. 3. Characteristics of the biexponential kernel for different parameter vectors φ in (3.11) used to model
memory effects.

3.1. Model selection. For both buzzing and calling, a stepwise procedure based on
pooled AIC is used to select the autoregressive order for M2, starting at Q = 0 and then
incrementing one at a time, for example, Q = 1,Q = 2, . . . When the AIC has increased be-
yond 20, compared to the current minimum, the algorithm stops, and the Q resulting in the
lowest AIC is chosen for M2. This autoregressive order is then used when fitting M1, and it
is investigated if the model fit for M1 results in a further AIC decrease.

3.2. Diagnostics and performance. For event times u1, . . . , uJ , the inter-event intervals
uj+1 − uj can be rescaled. They are denoted by (zi

j )j∈{1,...,J−1},i∈{0,1,2} and defined as

(3.12) zi
j = 1 − exp

(
−

∫ uj+1

uj

λi

(
t | X(t), θ̂i

)
dt

)
,

with j = 1, . . . , J − 1, i = 0,1,2, where θ̂i is the maximum likelihood estimator (MLE) of
the parameter vector θi in model Mi . The rescaled zi

j ’s will be independent and uniformly

distributed (i.i.d.) random variables on the interval [0,1) if and only if λi(· | ·, θ̂i) equals the
true data generating conditional intensity (Truccolo et al. (2005)). If a and b are the j th and
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(j + 1)th values of t where Yt = 1, the integral in (3.12) is approximated as follows:

∫ b

a
λi

(
t | X(t)

)
dt ≈

b−1∑
t=a

λi(t | X(t)) + λi(t + 1 | X(t + 1))

2
�

≈
b−1∑
t=a

Pi(Yt = 1 | Xt) + Pi(Yt+1 = 1 | Xt+1)

2
.

(3.13)

Based on the zi
j ’s, the Kolmogorov–Smirnov (KS) statistic can be used to test the significance

of the disagreement between the hypothesized cumulative distribution function (CDF) F and
the empirical CDF Fn which is given as Fn(z) = 1

n

∑n
j=1 1(−∞,z](Zj ) in stochastic form. For

i.i.d. random variables Z1, . . . ,Zn, the KS statistic is defined as Sn = supz∈R |Fn(z) − F(z)|.
Under the hypothesis,

√
nSn converges in distribution to the Kolmogorov distribution. Large

values are critical for the hypothesis. We have that 1 − P(
√

nSn ≤ 1.36) ≈ 0.05, and thus
1.36 is the critical value on significance level 0.05 (Wang, Tsang and Marsaglia (2003)).

KS confidence intervals are presented to help assess the concordance between model and
data. The band defined by Fn ± 1.36/

√
n represents a uniform confidence band for the entire

shape of Fn, meaning that F is entirely contained in the band if and only if the hypothesis
cannot be rejected.

Potential violations of independence are investigated visually by plotting zi
2, z

i
3, . . . , z

i
J−1

against zi
1, z

i
2, . . . , z

i
J−2. If a nonrandom pattern can be observed, there is information propa-

gating from one zi
j to the next, and they are, therefore, not independent.

To check predictive performance in terms of the actual responses, a rolling validation
scheme is implemented. When possible, a model is fit to approximately the first 50% of the
data and then validated in the following 10%. Hereafter, the full 60% is used as training data
and validated in the following 10%. This procedure is done five times, such that the last split
has 90% as training data. For some whales the areas visited are not the same for all splits. In
these cases the available information in the training set is taken into account, meaning that
the area-variable is still used but could be a factor with fewer levels. If a new, unknown area
is visited in the validation set, the algorithm will base its estimates on the last known area
visited. For a given split the expected counts in each hour of the validation set is compared
with the actual counts. Let B denote a bin corresponding to one hour, and let CB denote the
actual count during this hour. The expectation of the count is calculated as

(3.14) E(CB) = ∑
t∈B

E(Yt | Xt = xt ) = ∑
t∈B

P (Yt = 1 | Xt = xt ).

3.3. Confidence intervals. For θ,ψ ∈ R
b, the endpoints of an approximate 95% confi-

dence interval for ψT θ are

(3.15) ψT θ̂ ± 1.96 ·
√

ψT 
̂(θ̂)ψ,

where 
̂(θ̂) is the estimated covariance matrix of θ̂ . The logit at a specific setting of area,
depth and time of day can be constructed by picking a suitable ψ .

3.4. Implementation. All computations were carried out using R version 3.6.1 (R Core
Team (2019)). Unless stated otherwise, the default settings were utilized for the various func-
tions.

In practice, the nonlinear functions gD and gH in (3.8) are approximated with splines. For
gD , the ns function from the splines library was used to estimate a natural cubic spline
with three degrees of freedom, except for the whale Balder, where two degrees of freedom
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TABLE 2
Starting values used for φ when fitting M1

Sound Whale φ1 φ2 φ3 φ4

Buzzing Balder −7.53 −1.15 0.75 −3.76
Eistla −3.67 −1.52 0.25 −5.81
Freya −2.48 −1.93 0.19 −7.86
Frida −5.29 −2.26 2.80 −3.30
Thora −6.51 −0.96 0.76 −3.53

Calling Balder 3.63 −2.00 −155.41 1.39
Eistla 0.11 −14.18 2.33 −1.64
Freya 16.57 −1.19 −43.77 −0.10
Frida 8.22 −1.53 −23.44 −0.15
Thora 4.76 −1.63 −10.52 −0.03

in the buzzing models were chosen to reach convergence. For gH , the pbs function from the
pbs library was chosen to estimate a periodic B-spline with three degrees of freedom and
boundary knots at zero and 24 hours.

Both M0 and M2 were estimated utilizing glm, since they are generalized linear models
(GLMs). To understand that M2 is a also a GLM, recall that the posttagging silence and fi-
nite delay imply that there is a constant number of covariates for all observations; see (3.5).
Because of the biexponential term, however, M1 is not a GLM. Therefore, a general purpose
optimizer (optim) was chosen to maximize the log-likelihood for this model (fnscale=-
1 was utilized since optim performs minimization). The method used was BFGS, a quasi-
Newton method. Specifically, the function to be maximized took θ1 as input vector and calcu-
lated probabilities p1, . . . , pT based on the inverse logit-function, after which it returned the
joint probability according to (3.6). The starting vector for β when fitting M1 was the MLE
from M2. Good choices of starting values for φ = (φ1, φ2, φ3, φ4)

T were obtained with the
help of the nls and SSbiexp functions. The values can be seen in Table 2.

When estimating M1 during data splitting, the starting vector for β was the MLE from the
M2 fit to the training data, created by glm. Starting values for φ were those from the M1
MLE based on the whole data. Additionally, maxit was set to 1000 when estimating in the
calling model.

For the construction of confidence intervals, the vcov function was utilized to access the
estimated covariance matrix if the MLE was obtained from glm. If instead it was obtained
with the help of optim, the negation of the estimated hessian was inverted and utilized
as the covariance matrix.

4. Results. Figure 4 shows how the pooled AIC depends on Q when estimating in M2.
It turns out that, for buzzing, Q = 68 is the optimal choice, while, for calling, Q = 41 is best.

Using the best Q for M2, it was investigated whether the AIC could be further lowered by
instead fitting M1. This was the case for buzzing, where a decrease of 275 was observed. For
calling, however, this was not the case.

Model diagnostics using the zi
j ’s are provided in Figures 5–6. KS confidence intervals

are based on the asymptotic critical value, but bootstrapped critical values constructed by
simulating 999 random variables from uniform distributions were similar. Judging by the KS-
plots for buzzing in Figure 5, the distribution of (zi

j )j∈{1,...,J−1},i∈{0,1,2} appears to become
more uniform for all whales when introducing memory; this is seen for both M1 and M2.
Here, the straight line is entirely contained in the bands for Eistla and Freya, and thus a
formal hypothesis tests would not be able to reject that M1 or M2 is the true model for these
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FIG. 4. Pooled AIC increase as a function of the autoregressive order Q used when estimating in M2; see (3.9).
The vertical line indicate the Q for which the minimum AIC is attained.

whales. Regarding Balder and Thora, the zi
j ’s for the memory models have a distribution

reasonably close to the uniform distribution; however, the large sample size exposes a small
but significant difference. In the first three rows of Figure 6, one can assess the relationship
between consecutive zi

j ’s for buzzing. In general, the points seem to become more randomly
scattered with memory, indicating a diminishing dependence and increased concordance.

The plots for calling in Figures 5–6 are less appealing than for buzzing, even though the
distribution of (zi

j )j∈{1,...,J−1},i∈{0,1,2} still become more uniform with memory. The wide
confidence intervals in Figure 5 are a result of the low amount of calls. Despite the fact that a
hypothesis test for the uniformity of the rescaled inter event times would be rejected for four
out of five whales regardless of which memory model is used, it can still be seen in several
plots that the confidence bands for M2 are closer to containing the straight line than those
for M1 which is consistent with the fact that M1 for calling was not a better memory model
than M2 according to the AIC. As can be observed in the final three rows of Figure 6, the
fitted memory models for Eistla and Thora do not remove dependence between consecutive
z’s, indicating that the models are not entirely adequate.

Figure 7 shows how close the estimated expected counts per hour are to the actual counts,
using the rolling validation scheme described in the Methods section. In the plots the valida-
tion sets are “glued” together. It should be mentioned that the Qs chosen for the entire data
set (68 and 41) are fixed at these values for each split. Also considering Q as a parameter
would make this pragmatic validation procedure very time consuming and error-prone. The
estimates in Figure 7 are based on the best model fits, according to the AIC: M1 for buzzing
and M2 for calling. The left column visualizes the performance of the buzzing models. Here,
the majority of expected counts are reasonably close to the actual counts. There are some ex-
ceptions, for example, in the earlier part of Balder’s plot where overestimation occurs. Later
in the plot, where more data is used to learn from, it looks better. In general, the model’s
predictive performance does not seem poor. The sparsity of Frida’s plot is because the fitting
procedure did not work with 50%–80% training data. At 90%, however, convergence was
attained. The right column in Figure 7 shows the expected counts and actual counts when
calling is used as the response. Initially, it can be difficult to judge how M2 fares since the
call counts are so low during most hours. What can be said, however, is that the model ap-
pears to predict a very low call count when it actually is the case. Unfortunately, there are
hours where the counts are far above what one would expect according to the model. These
are not frequent but, nevertheless, indicate that there is room for improvement.

The MLEs will now be reported. The memory effects in M1 and M2 are presented together
in Figure 8. The buzzing plots in the first row show a tendency for the coefficients in M2 to
start off negative, become slightly positive a little later on and then possibly decrease toward
zero. This indicates that, among other things, a buzz is less likely to occur right after a pre-
vious buzz (refractory period), but there is a selfexcitatory effect at around 10–30 seconds
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FIG. 5. Model diagnostics for buzzing and calling using the rescaled interevent times zi
1, . . . , zi

J−1, as defined

in (3.12). Kolmogorov–Smirnov confidence bands for the empirical CDF of the zi
j ’s are plotted together with the

CDF of the uniform distribution. Diagnostics are shown for both model M0, M1 and M2; see (3.7)–(3.11).

after a buzz in agreement with a delaying kernel; see Table 1 and Figure 3. The biexponen-
tial sequence appears to capture the general trend of the coefficients well, even though it is
obtained from the likelihood of M1 and not estimated based on the coefficients.

The second row in Figure 8 visualizes the memory effects in the calling models. In Freya’s
plot the coefficients behave quite erratically. This can probably be attributed to the fact that
there are only 21 calls in her record. Balder and Frida have more calls (146 and 149), and,
while the coefficients still have a large variance, a possible underlying pattern begins to
emerge. This pattern can again be spotted for Eistla and Thora, where the coefficients have
a smaller variance, due to the larger number of calls (508 and 762). Apparently, the memory
effect has a tendency to be positive early and then decrease toward zero, indicating that a call
is more likely to occur a few seconds after a previous call. The curve in M1 seems to model
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FIG. 6. Model diagnostics for buzzing and calling using the rescaled interevent times zi
1, . . . , zi

J−1, as defined

in (3.12). Here, zi
2, . . . , zi

J−1 are plotted against zi
1, . . . , zi

J−2. Diagnostics are shown for both model M0, M1
and M2; see (3.7)–(3.11).

the trend in an acceptable way; however, as mentioned, if one uses the AIC for model selec-
tion, M1 is not advantageous compared to M2 in terms of describing calling behaviour. For
Eistla, ĉ∗

φ is an exciting kernel; see Table 1 and Figure 3. For Balder, ĉ∗
φ is already positive at

a time lag of one second and thus, in practice, functions as an exciting kernel since the data
is sampled at a 1 Hz rate. For Freya, Frida and Thora, the estimated kernel value is negative
only at the first second.

In Figure 9, the effects of area, depth and time are illustrated for M0 and the memory
models of choice (M1 for buzzing and M2 for calling). Confidence intervals for the memory
models are provided. They can be used as pragmatic measures of uncertainty but are only
approximations, since they rely on the assumption that the corresponding suggested models
are correct.
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FIG. 7. Actual counts (dots) and estimated expected counts (lines) based on M1 for buzzing and M2 for calling;
see (3.8)–(3.11) and (3.14). All estimates are shown for left-out data.

The first row in Figure 9 reports the estimated buzzing odds-ratios (ORs) with respect to
reference areas (O for Balder and G for the others). All effects have the same directions in
the models with and without memory (remain over/under one when introducing memory),
and thus the conclusions regarding which area represents more/less buzzing do not change.
Area G generally represents a high buzzing rate which could indicate a feeding area. Only
for Thora is there an area (OG) that corresponds to a higher buzzing rate, and Balder is not
observed in area G.

In rows 2–3, the effects of depth and time of day are visualized in area O for Balder and G
for the other whales. In the depth plots the time is fixed at 15 (3 p.m.). In the time plots the
depth is fixed at the common median for buzzing whales (361 m). Note that, since the mod-
els are additive, fixing the area and one of the continuous predictors will not change where
the other continuous predictor causes the buzzing/calling intensity to decrease, increase, be
minimized or maximized.

In the second row of Figure 9, the overall shape of the curve is preserved with memory,
meaning that the depths where one expects the whale to buzz more/less are similar in the
two models. At certain depths the curves overlap, and at others the magnitude of the effects
are noticeably smaller in M1. Therefore, the base model has a tendency to overestimate the
effects of the extrinsic covariates compared to the memory model. In general, the buzzing
intensity increases with increasing depth until at least 250 m for all whales. For Balder and
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FIG. 8. Autoregressive coefficients (white triangles) from model M2 and the biexponential sequence (black dots)
from model M1; see (3.8)–(3.11). For visual reasons, some points with extreme values are not included.

Frida the intensity peaks at a certain depth before falling again. It is also worth noticing
that, even though area G generally represents a high buzzing probability, the highest buzzing
probability in the depth plots for M1 is attained by Balder in area O which is actually the
area in which he buzzes the least. Thus, even though certain generalizations can be made
regarding the depth effect, there is still considerable differences between whales.

The third row in Figure 9 can be used to assess the time-of-day effect on buzzing. Again,
there are similarities in shape between the solid and dashed curve for a given whale, and
overestimation occurs in M0 for Balder, Frida and Thora. Generalizations of the time-of-day
effect are difficult, as the whales behave differently. For example, Balder peaks in the evening,
and Freya peaks in the morning while Frida and Thora peak around midnight.

The calling ORs are observable in the fourth row of Figure 9. It is noteworthy here that
some ORs that before were under (over) 1 now are over (under) 1 in the memory models.
This can be seen for Balder and Eistla when comparing area F to the reference area. Thus,
the conclusions regarding which area represents more or less calls change for these whales
when memory is added to the model.

Similarly to buzzing, including memory seems to muffle the calling intensity at certain
depths, while at other depths the intensity is more or less the same, as can be seen in the fifth
row of Figure 9. All models agree that there are more calls close to the surface; however,
in a given area the calling intensity is also highly dependent on the whale. In area G, Thora
calls much more than Eistla, who calls noticeably more than Freya and Frida. The broad
confidence region for Freya is probably due to the very low number of calls in her data set
(21 calls).

The final row of Figure 9 shows that it is also hard to generalize the time-of-day effect on
calling. While there is some shape-preservation between M0 and the memory models, how
the intensity varies during the day is highly whale dependent.

5. Discussion. The results show that the logistic regression model presented in
Blackwell et al. (2018) can be improved by adding a memory component.
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FIG. 9. Odds-ratios and covariate effects. Rows 1 and 4: Odds-ratios for the areas. Rows 2 and 5: The depth
effect. The time is fixed at 15 (3 p.m.). Rows 3 and 6: The effect of time. In row 3 (6) the depth is fixed at the
common median for buzzing whales (361 m) (calling whales (6.2 m)). The dashed lines correspond to M0, and
the solid lines to M1 for buzzing and M2 for calling; see (3.7)–(3.11). Pointwise confidence intervals are provided
for estimates in M1 and M2.

For buzzing, using AIC for model selection, M1 is the best model. Additionally, point
process diagnostics reveal a considerably better concordance between model and data for M1

than M0, even though a significance based approach to the goodness-of-fit analysis concludes



MEMORY EFFECTS IN NARWHAL SOUND PRODUCTION 2051

that M1 is still not entirely satisfactory for all whales. A visual presentation of buzz count
predictions indicates that M1 has a decent predictive performance. There are some exceptions
where the prediction do not match the observation well. This occasional unpredictability
could perhaps be attributed to the fact that there are very small energetic costs of buzzing for
narwhals (Noren et al. (2017)). Thus, a narwhal does not have to only buzz when it is strictly
necessary, and some random deviation from more well-defined patterns is to be expected.

The memory model M1 implies for all whales that, right after beginning buzzing, there is a
lowered probability of beginning buzzing again. This can likely be explained by the fact that
buzzes can last several seconds. Thus, the memory model has the capacity to implicitly take
into account the buzz length, even if this is not included in the data set.

The memory model additionally implies that given a buzz at least seven to 19 seconds
into the past (depending on the whale), there is a short period of slightly elevated buzzing
probability. As such, even when conditioning on extrinsic covariates, M1 allows the whale
to enter a state of higher buzzing activity. As buzzing is used for feeding, such a buzzing
mode could perhaps be triggered by encountering prey underwater. A possible objective for
future analyses is to investigate whether there is an association between a given buzz series
and successfully capturing a fish. Measurements of stomach temperature can be used as a
predictor of the presence or absence of food in the stomach (Heide-Jørgensen et al. (2014)).
Combining these measurements with Acousonde data could provide new information on the
role of buzzing in feeding events.

Unlike with buzzing, AIC suggests that the memory model M2 is the best model for call-
ing. However, point process diagnostics were less appealing than with buzzing, even though
they did improve for M2, compared to M0. The memory model indicates that, shortly after
a previous call, there is an increased probability of observing another call. A possible ex-
planation for this is that the calls in the data set can be from both the whale itself and other
whales. As calls are presumably used for social communication, higher calling activity could,
therefore, be the result of interaction between several whales in close proximity.

For both responses the effects of depth and time of day led to qualitatively similar conclu-
sions with and without memory in terms of positive/negative contributions to buzzing/calling
activity. The base model tends to overestimate the magnitude of the effects compared to the
memory model. There is a considerable difference from whale to whale, but some similari-
ties are apparent: The whales all prefer to buzz at deeper depths and call closer to the surface.
Generalizations of the effects of time are harder to discern.

Regarding the area effects, buzzing activity is generally high in area G, indicating a possi-
ble feeding area. For calling, adding the autoregressive component changed the interpretation
of certain areas in relation to expected calling intensity. While one should be careful with
trusting the estimated ORs in the calling models, this qualitative discrepancy between M0
and M2 at least indicates that better fitting models and/or data sets with much higher num-
bers of calls are needed before clear area effects on calling behaviour can be claimed.

In general, it intuitively makes sense that there is some sort of dependency between obser-
vations for a given narwhal. The assumptions behind the base model are that of independent
response variables given the extrinsic covariates which does not seem entirely reasonable; it
does not take into account that the whales can buzz or call in certain patterns. However, it
is important not to dismiss the base model based on its assumptions alone. As was already
concluded, a lot of the extrinsic covariate effects are qualitatively quite similar in the mod-
els with and without memory. The base model is more easily interpretable and, possibly, a
valuable addition to an exploratory analysis.

Regardless of whether or not a memory component is used, collecting extensive data sets
from several whales and then fitting one model to the pooled data is a logical next step toward
better understanding general narwhal behaviour. A random effects model could be useful
here.
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