
The Annals of Applied Statistics
2020, Vol. 14, No. 4, 2069–2095
https://doi.org/10.1214/20-AOAS1377
© Institute of Mathematical Statistics, 2020

MITIGATING UNOBSERVED SPATIAL CONFOUNDING WHEN
ESTIMATING THE EFFECT OF SUPERMARKET ACCESS ON

CARDIOVASCULAR DISEASE DEATHS

BY PATRICK M. SCHNELL1 AND GEORGIA PAPADOGEORGOU2

1Division of Biostatistics, College of Public Health, The Ohio State University, schnell.31@osu.edu
2Department of Statistics, University of Florida, gpapadogeorgou@ufl.edu

Confounding by unmeasured spatial variables has received some atten-
tion in the spatial statistics and causal inference literatures, but concepts and
approaches have remained largely separated. In this paper we aim to bridge
these distinct strands of statistics by considering unmeasured spatial con-
founding within a causal inference framework and estimating effects using
outcome regression tools popular within the spatial literature. First, we show
how using spatially correlated random effects in the outcome model, an ap-
proach common among spatial statisticians, does not necessarily mitigate bias
due to spatial confounding, a previously published but not universally known
result. Motivated by the bias term of commonly-used estimators, we propose
an affine estimator which addresses this deficiency. We discuss how unbiased
estimation of causal parameters in the presence of unmeasured spatial con-
founding can only be achieved under an untestable set of assumptions which
will often be application specific. We provide a set of assumptions which de-
scribe how the exposure and outcome of interest relate to the unmeasured
variables, and we show that this set of assumptions is sufficient for identifica-
tion of the causal effect based on the observed data when spatial dependencies
can be represented by a ring graph. We implement our method using a fully
Bayesian approach applicable to any type of outcome variable. This work is
motivated by and used to estimate the effect of county-level limited access to
supermarkets on the rate of cardiovascular disease deaths in the elderly across
the whole continental United States. Even though standard approaches return
null or protective effects, our approach uncovers evidence of unobserved spa-
tial confounding and indicates that limited supermarket access has a harmful
effect on cardiovascular mortality.

1. Introduction. Over 17 million deaths were attributed to cardiovascular disease
(CVD) worldwide in 2016, and the prevalence of CVD among people aged 20 or older in
the United States that same year was 48% (American Heart Association (2019)). Poor nutri-
tion and high body mass index are major risk factors of CVD (American Heart Association
(2019)), and there is evidence that these risk factors are influenced by the availability of
nearby supermarkets (Laraia et al. (2004), Powell et al. (2007)) which, historically, have had
a higher prevalence of heart-healthy foods (Pearce et al. (2008), Sallis et al. (1986)). In a
prospective cohort study of individuals who had undergone cardiac catheterization, living in
an area (census tract) with low income and poor food access was associated with an increased
risk of myocardial infarction or death (Kelli et al. (2019)).

Here, our goal is to cast this question within a causal inference framework and quantify
the effect of county-level supermarket availability on the rate of CVD mortality among the
elderly (65-years-old and older) in the United States. For that purpose we compile a data
set including mortality, store and demographic information for all counties in the continental
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United States (see also Section 2). Demographic characteristics, such as income, have been
previously associated with CVD risk factors (Kelli et al. (2017)) and might be confounders
of the effect of supermarket proximity and access on CVD mortality. Even though a number
of demographic variables are included in our data set, the relationship of interest is possibly
confounded by unobserved or difficult-to-define variables, such as regional culture relating to
personal vehicles, diet and general health consciousness or state-level support for people with
disabilities. Such variables could represent predictors of the exposure which influence where
people live, whether or not they own a vehicle or where businesses choose to locate and could
also represent predictors of the outcome such as how much people exercise, their stress levels
or what food they choose to eat regardless of supermarket availability. Furthermore, these
potentially unobserved demographic variables are expected to be spatially correlated, in that
nearby counties are expected to have similar values of these unmeasured covariates.

Therefore, we are faced with estimating the causal effect of an exposure on an outcome
using spatially-referenced, observational data and under the threat of unmeasured spatial con-
founding. To address this challenge, we combine spatial statistics tools and causal inference
methodology within a common framework. Even though some attention has been given to
causal inference topics in the spatial statistics literature (Hanks et al. (2015), Hodges and Re-
ich (2010), Hughes and Haran (2013), Paciorek (2010)) and to spatial topics in the causal in-
ference literature (Keele, Titiunik and Zubizarreta (2015), Papadogeorgou, Choirat and Zigler
(2019), Verbitsky-Savitz and Raudenbush (2012)), there is a substantial gap in the intersec-
tion of the two fields.

In classic spatial statistics, regression models are often augmented to include spatially cor-
related random effects in order to “account” or “adjust” for the spatial dependence in the
outcome model residuals. However, there is substantial confusion about what exactly these
spatial models are capable of accounting for (Hanks et al. (2015)). In some settings, spatial
mixed models are employed to estimate the relationship between an exposure and outcome
without conditioning on spatial information. In this context, Hodges and Reich (2010) and
Hughes and Haran (2013) proposed including a spatial random effect that is orthogonal to the
exposure of interest. Other times, it is asserted that spatial models adjust for unobserved co-
variates which have a spatial dependence structure (Congdon (2013), Lee and Sarran (2015)).
Nevertheless, the usual spatial models do not, in general, eliminate bias due to unobserved
confounders, even when the residual variance components are known (Paciorek (2010)). Re-
cently, Keller and Szpiro (2019) discuss the interpretation of estimates from regression mod-
els that progressively include spatial basis functions of higher complexity, and they conclude
that increasing adjustment might even lead to bias amplification.

From a different perspective, causal inference methodology with spatial data and in the
presence of unmeasured spatial confounding has been quite limited, and, to our knowledge, it
has been restricted to classic causal inference tools. Within a regression discontinuity frame-
work, Keele, Titiunik and Zubizarreta (2015) match treated to control units separated by a
boundary minimizing geographical distance of matched pairs and balancing observed co-
variates. Relatedly, Papadogeorgou, Choirat and Zigler (2019) proposed matching treated to
control units on a criterion incorporating both propensity scores and geographical distance.
Although these approaches can, in some cases, address the problem of interest to spatial
statisticians, they are not immediately compatible with models commonly used in spatial
data analysis which are most often grounded in outcome regression. An exception is found in
Thaden and Kneib (2018) where the authors propose a structural equation modeling approach
treating the spatial variable as a confounder in a geoadditive model in order to eliminate bias
from the unmeasured spatial variable.

In the causal inference literature, unmeasured confounding has been most often dealt with
in the realm of sensitivity analysis. Sensitivity analysis is a powerful approach which aims to
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quantify the robustness of estimated effects to different amounts of unmeasured confounding
(Imbens and Rubin (2015), Rosenbaum (2002), Rosenbaum and Rubin (1983a), VanderWeele
and Ding (2017)). However, sensitivity analysis does not directly adjust effect estimates for
the presence of such confounders which is what the methodology presented here and the
works referenced above aim to achieve.

In this paper we seek to bolster the bridge between spatial data analysis and causal in-
ference. In order to do so, we consider unmeasured confounding within a formal causal in-
ference framework and examine estimation approaches grounded on models and tools often
employed by spatial statisticians. We start by focusing on continuous outcomes and linear
models, studying the bias of commonly-used estimators. We propose a model-based approach
to estimate the effect of a change in the exposure on an outcome of interest in the presence
of unmeasured spatial confounding. Our approach is designed to easily incorporate popular
tools in spatial statistics, such as hierarchical and linear mixed models. We explain that iden-
tification and estimation of the causal parameter in the presence of unmeasured confounding
requires untestable assumptions regarding the unmeasured confounders and their relationship
with the treatment and outcome of interest. In general, these assumptions have to be appli-
cation specific, identification of the causal parameter needs to be evaluated separately for
each set of assumptions and the proposed estimator would have to be adapted to alternative
identifying assumptions. For continuous treatments (referred to as exposures), we provide
one set of assumptions that is sufficient for identification of the causal exposure-response
curve and one that is not. Importantly, our results illustrate that, when spatial dependencies
can be represented using a ring graph, the components in our estimator involving the un-
measured confounder can be identified based solely on spatial dependencies in the observed
data. Within the context of our study, we extend our approach to noncontinuous outcomes
and generalized linear mixed models employing a fully-Bayesian approach, and we carefully
discuss the plausibility of the causal assumptions. While our development is in the context of
areal data, refinements in the context of point-referenced data are possible and are discussed
where applicable.

In Section 2 we present a detailed description of our data set and present preliminary
analyses using nonspatial and commonly used spatial regression models that yield suspect
results. In Section 3 we define the causal estimand in terms of potential outcomes for contin-
uous exposures and discuss commonly invoked identifiability assumptions when the observed
covariates include a sufficient confounding adjustment set. The proposed methodology is in-
troduced in Section 4 within the context of linear models. There, we rederive the result by
Paciorek (2010) stating that commonly used spatial regression models do not recover the
estimands of interest in the presence of unmeasured spatial confounding. Motivated by the
bias of commonly used estimators, we propose the affine estimator, and we provide a set of
assumptions relating the exposure and outcome to the unmeasured variables based on which
the causal parameter is identifiable from observed data. In Section 5 we extend the affine
estimator in the context of nonlinear models and suggest using a Bayesian approach. The
estimator is compared to the currently used estimators under various generative mechanisms
via simulation in Section 6. In Section 7 we discuss the plausibility of our assumptions within
the context of our study, and we use the affine estimator to estimate the county-level effect
of poor supermarket availability on CVD mortality. Our study illustrates the potential of
the affine estimator in mitigating bias from unmeasured spatial confounders, returning effect
estimates that are qualitatively different from the ones in Section 2 and more in line with
subject-matter knowledge. We conclude with a discussion in Section 8.

2. County-level supermarket availability and CVD mortality. We compile a data set
including mortality, store availability, demographic and behavioral data on 3093 out of 3109
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FIG. 1. Percent of households with no vehicle and more than one mile from a supermarket or large grocery store
(left, % HHNV1MI) and observed relative risk of CVD deaths in the 65+ age range (right, relative risk).

counties and county equivalents in the 48 contiguous states and the District of Columbia. For
each areal unit (county or county equivalent), supermarket availability is defined as the pro-
portion of housing units during 2006 that are more than one mile from the nearest supermarket
or large grocery store and do not have a car, obtained from the Food Environment Atlas, June
2012 release (United States Department of Agriculture Economic Research Service (2012)).
County-level population and cardiovascular disease mortality count (ICD-10 codes I00–I99)
during 2007 for residents 65-years-old and over were obtained from the United States Cen-
ters for Disease Control and Prevention (CDC) WONDER query system (Centers for Disease
Control (2018)). Due to privacy constraints, county death counts below 10 are censored by
CDC WONDER. Figure 1 displays the exposure and crude outcome relative risk without
covariate-assisted estimation or smoothing. Demographic information was acquired from the
2000 Census and includes, among others, information on urbanicity, poverty and popula-
tion mobility. Covariate information also includes estimates of 2006 smoking rates derived
from CDC Behavioral Risk Factor Surveillance System data (Dwyer-Lindgren et al. (2014)).
Appendix A provides additional information on the data sources, data collection, and data
processing pipeline, including links to the publicly-available data sets and a table including
names and descriptive statistics of available covariates.

At this point we consider two common analyses investigating the relationship between lim-
ited county-level access to supermarkets on cardiovascular deaths in the elderly. For the first
analysis we model CVD mortality counts as a Poisson-distributed outcome using a log link
with the exposure and all covariates listed in Table A.2 as predictors. Internal standardization
was implemented by using log expected death count as the offset: the population age 65+ in
each county was multiplied by the overall crude rate in the same age range. All covariates
were standardized, and the model was fit within the Bayesian paradigm under Gaussian priors
with mean 0 and standard deviation 10 on regression coefficients. Results are presented on
original scales unless otherwise noted. Samples from the posterior distribution were obtained
via a Gibbs sampler with a Metropolis–Hastings block update for all regression coefficients.
The Gibbs sampler was run for 10,000 iterations after a 1000-iteration burn-in. Censored
outcomes were imputed subject to the known privacy constraint.

The second analysis we implemented is a common analysis method for areal spatial data.
We included a spatially correlated random effect for county, U , in the linear predictor and
assumed it follows a conditional autoregressive (CAR) structure (Besag (1974)), that is,

(1) Ui |U−i ∼ N
[
ϕU

∑
j∈∂i

Uj/|∂i |, (τU |∂i |)−1
]
,
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where ∂i and |∂i | are the set and number of i’s neighbors, respectively. A multivariate normal
representation of the distribution of U is then available as

(2) U ∼ N
[
0, τ−1

U (D − ϕU W)−1],
where wij = 1 if i and j are neighbors, and 0 otherwise and D is diagonal with entries |∂i |
(Banerjee, Carlin and Gelfand (2004)). A uniform prior on (−1,1) was used for ϕU , and a
gamma prior with shape and rate parameters equal to 5 was used for τU , jointly restricted to
require the precision matrix of U to be positive definite.

Based on these two models, we acquired what the estimated effect of a one percentage
point increase in households with poor supermarket access on cardiovascular mortality would
be if each model was specified correctly and was sufficiently adjusted for confounding vari-
ables. The nonspatial estimate (analysis 1) indicated that increasing poor supermarket avail-
ability is protective of CVD deaths with an estimated relative risk of 0.968 (95% CI 0.962
to 0.973). A protective effect of poor supermarket access is not consistent with either theo-
retical or data-driven understanding of the phenomenon, enforcing our belief that the result
is at least partially due to unobserved or poorly adjusted-for confounders. The estimate from
the spatial model (analysis 2) is effectively null with an estimated relative risk of 0.999 (95%
CI 0.988 to 1.011). Although the spatial estimate differs from the nonspatial estimate in both
location and credible interval width, we show in the next section that the spatial estimate does
not necessarily mitigate bias from unobserved confounders.

3. Causal estimands and classic identifiability assumptions. Broadly speaking, the
causal inference literature places substantial emphasis on defining target quantities of in-
terest, referred to as estimands, and determining sufficient assumptions under which such
estimands (which include unobservable quantities) are identifiable based on the observed
data. We begin by defining estimands of interest following the potential outcome framework
formalized by Rubin (1974) and extended to continuous exposures by Hirano and Imbens
(2004). A necessary condition for an exposure Z to have an effect on an outcome Y is that
Z is temporally precedent. We make the stable unit treatment value assumption (SUTVA,
Rubin (1980)) which states that there is a single version of each treatment level and there is
no interference between units. Based on SUTVA, we can use Yi(z) to represent the value that
would have been observed at location i had it received exposure z ∈Z , where Z includes all
possible values of the continuous Z, and i = 1,2, . . . , n. Then, Yi(z) is the potential outcome
for location i at exposure level z, and unit i’s observed outcome Yi is the potential outcome
for the observed level of the treatment, Yi = Yi(Zi).

The most common estimands for continuous treatments are the population average
exposure-response curve (PAERC) μ(z) = E[Yi(z)], z ∈ Z and the expected rate of change
in the outcome for an infinitesimal change in the exposure around z, μ′(z). Since μ(z) repre-
sents the average outcome value over the whole population had everyone experienced expo-
sure z, it is clear that μ(z) includes unobserved quantities, and assumptions need to be made
to ensure identifiability and to estimate it using data. The positivity and no unmeasured con-
founding assumptions (referred to together as the ignorability assumption) form a sufficient
set of assumptions for identifiability of μ(z). Positivity states that all units can experience
any z ∈ Z , and the no unmeasured confounding assumption states that there exist measured
covariates C, which satisfy that, conditional on C, the observed exposure Z is independent
of the potential outcomes Y(z), denoted as Z ⊥⊥ Y(z)|C, z ∈ Z . (See Appendix B for a dis-
cussion on identifiability of μ(z) based on these assumptions.)

Confounders C are generally thought of as temporally precedent to the exposure Z and
as common predictors of Z and Y , as shown in Figure 2. Since temporal order of variables
matters in drawing causal conclusions, observed data are conceived as if generated in the
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C Z Y

FIG. 2. Assumed causal diagram for the generative model. The vector C may represent a collection of multiple
confounders.

following order: [C], [Z|C] and [Y |Z,C]. If the identifiability conditions of positivity and
no unmeasured confounding are met in the observed data, estimation can proceed by imi-
tating the data-generating mechanism for the exposure Z|C, known as the propensity score
(Rosenbaum and Rubin (1983b)), the data-generating mechanism for the outcome Y |Z,C
(e.g., Hahn et al. (2018), Hill (2011)) or both (Hahn (1998), Robins and Rotnitzky (1995),
Zhou, Elliott and Little (2019), Zigler and Dominici (2014)). In order to adhere to common
approaches of spatial statistics, which emphasize analytical models imitating the outcome
generative model, our primary focus is on modeling Y |Z,C.

Even though confounding adjustment is necessary to draw causal conclusions, C might
include components that are not measured, hence violating the no unmeasured confounding
assumption. Denote C = (Cm,Cu), representing the measured and unmeasured components,
respectively. At this point we assume that at least some of the variables in Cu are spatial and
refer to Section 4.5 for a further discussion on this requirement. We refer to a variable as
“spatial” if the correlation of the variable for two observations depends on their geographic
locations. For areal data, like the ones in our study, this could refer to adjacency of counties.
For point referenced data it could refer to the geographical distance of two points.

In this section and the next we discuss unobserved spatial confounders in the case of con-
tinuous outcomes and linear models. Focusing on this setting allows for straightforward ap-
plication of theory from least squares estimation of regression coefficients and restricted max-
imum likelihood estimation of variance parameters. We return to non-Gaussian outcomes for
the simulation study and data analysis, where we employ a fully Bayesian approach. Assume
here that potential outcomes arise in the following manner:

(3) Yi(z) = η
(
z,Cm

i

)+ g
(
Cu

i

)+ εi(z),

for some function η and εi(z) a mean zero random variable and independent of C. In (3), Cu

is assumed to not interact with Z and Cm. We denote U = g(Cu), representing the cumu-
lative contribution of all unobserved covariates. Since at least some components of Cu are
spatial, U also has a spatial correlation structure. Without loss of generality, we may assume
E[g(CU)] = 0 by absorbing any nonzero mean into the the intercept in η(z,Cm).

4. The affine estimator in linear models: Addressing omitted variable bias of classic
estimators. In this section we discuss how the classic approaches to estimation within the
spatial statistics literature are biased for estimating causal quantities in the presence of un-
measured confounders and in the context of linear regression. The bias results derived below
are in line with results in Paciorek (2010), and they motivate the affine estimator which is
designed to explicitly remove the bias of the existing estimators. An extension to nonlinear
models within the Bayesian framework is presented in Section 5.

4.1. Omitted variable bias of ordinary and generalized least squares estimators. Let
X = (1|Z|Cm) be the design matrix containing an intercept, the exposure Z and measured
covariates, and let X(−z) be the design matrix, including an intercept and measured con-
founders but not the exposure Z. For simplicity of presentation, we assume that the causal
exposure response curve is linear, η(z,Cm

i ) = β
ᵀ
(−z)xi,(−z) + βzz, which will be relaxed in

Section 4.4.2. This simplification implies that μ′(z) = βz, corresponding to the usual linear
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regression coefficient targeted in the spatial statistics literature. Using vector notation, let
Y = (Y1, Y2, . . . , Yn)

ᵀ, with Z, U , ε defined analogously. Then, if all of Y , Z, U and X(−z)

were observed, estimation of the regression model

(4) Y = X(−z)β(−z) + Zβz + U + ε

would lead to consistent estimation of the causal effect through estimation of βz.
However, the above model cannot be directly used in settings where U is not measured. In

(4), Z and U are correlated, but ε is independent of (Z,U). Thus, U and ε is a partition of
the variability in Y not due to Z into one component (ε) which is independent of Z and one
(U ) which is not. If U is correlated with Z and is omitted from the outcome regression, the
ordinary least squares (OLS) estimator of β = (β

ᵀ
(−z), βz), β̂ , will be biased. This is evident

by examining the conditional expectation of β̂ ,

(5) E(β̂|X) = E
[(

XᵀX
)−1XᵀY |X]= β + (XᵀX

)−1XᵀE(U |X).

Considering E(β̂) = E[E(β̂|X)], we see that β̂ will be biased for β since the second term
will, in general, be nonzero for correlated U , Z.

When U is omitted from the regression model, the component of U not attributed to X
will be incorporated in the residuals. Since U is spatially structured, residuals of the regres-
sion of Y on X will also be spatially correlated. In an effort to account for residual spatial
correlation, spatial linear mixed models are often adopted. Typically, such models represent
mechanisms similar in form to (4), but in which all right-hand-side variables are assumed
to be independent, and some assumptions are made about the form of Var[U ] = Var[U |X].
These models aim to explain the spatial correlation in the residuals, and they are often effec-
tive at improving efficiency. However, they do not necessarily alleviate the omitted variable
bias (Paciorek (2010)). If Var[Y |X] (which depends on Var[U ]) is known, the generalized
least squares (GLS) estimator of β is

(6) β̃ = {Xᵀ(Var[Y |X])−1X
}−1Xᵀ(Var[Y |X])−1

Y ,

with conditional expected value

(7) E(β̃|X) = β + {Xᵀ(Var[Y |Z])−1X
}−1Xᵀ(Var[Y |X])−1E[U |X].

Therefore, even if Var[Y |X] is known, β̃ remains biased. This result indicates that including
a spatial random effect in the regression model does not necessarily mitigate or eliminate bias
arising from unmeasured spatial confounders.

4.2. The affine estimator to account for omitted spatial variables. The results presented
above establish that spatial correlation in the outcome model residuals might arise due to
spatial predictors of Y , and commonly used approaches to estimate β1 = μ′(z) are biased
in the presence of unmeasured confounding by a spatial variable U . It is now clear that
mitigating bias from unmeasured spatial variables cannot be achieved based solely on an
outcome regression model without making additional assumptions nor by harvesting spatial
information found solely in the outcome model residuals.

An investigation of the formulas in (5) and (7) shows that bias of both least squares esti-
mators arises from the nonzero correlation between U and Z, leading to a nonzero E[U |X].
Inspired by the form of the bias, we propose an estimator that includes a component that
depends on U . Consider the affine estimator,

(8) �β = {Xᵀ(Var[Y |X])−1X
}−1Xᵀ(Var[Y |X])−1{

Y − E[U |X]},
which replaces Y by Y − E[U |X] and is unbiased if E[U |X] is known or, more practically,
consistent if E[U |X] is consistently estimated.
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Since U is unmeasured, direct modeling of E[U |X] based on traditional estimation meth-
ods is not possible. Hence, identifiability of this component and our ability to calculate the
affine estimator require additional assumptions. In Section 4.3 we provide a set of assump-
tions based on Gaussian Markov random field theory which pertain to the joint distribution of
(U ,Z)|X(−z). Based on these assumptions, we discuss an approach to calculating the affine
estimator in the context of restricted maximum likelihood in Section 4.4. Then, in Section 4.5
we show that these assumptions form a sufficient set for identification of the components of
U on which the affine estimator is based, and, therefore, the estimation procedure is sound.
The identifiability results illustrate that identification is achieved by exploiting the spatial
correlation structure in the exposure and outcome model residuals which is driven by the
unmeasured spatial variable.

4.3. A sufficient set of assumptions. In this section we present a set of assumptions which
pertain to both the spatial and causal aspect of the affine estimator and are summarized in
Table 1. We proceed with these for ease of illustration, and because they seem plausible
within our study setting (see Section 7.1) but note that different or weaker assumptions for
identification of E[U |X] are likely possible (see Sections 4.5 and 8).

4.3.1. A Gaussian Markov random field construction of the joint distribution. In viewing
the model from a spatial perspective and to better align to the spatial modeling literature, we
assume that the marginal distributions of U and ε are Gaussian with mean zero, indepen-
dent of the measured covariates X(−z), and that (U ,Z)|X(−z) is multivariate normal. We see
the assumption that U is independent of X(−z) as without loss of generality, since the same

TABLE 1
Set of assumptions based on which the causal exposure-response curve derivative is identifiable using observed

data and can be estimated using the affine estimator

Causal Assumptions

Temporal Order The exposure is temporally precedent to the outcome.
SUTVA No interference between units, no hidden levels of the treatment,

Yi = Yi(Zi).
No unmeasured nonspatial confounding Z ⊥⊥ Y (z)|Cm,U, z ∈Z.

Positivity∗ P(Z = z|Cm,U) > 0, z ∈Z , which implies that:
Spatial scale restriction Z has variation at a smaller spatial scale than that of U .

Structural Assumptions

Outcome Additivity The exposure and measured covariates do not interact with the
unmeasured covariates.

E[U |Z] identification

Normality Z, U , ε are jointly normal, conditional on X(−z).

Cross-Markov Zi ⊥⊥ U−i |Ui,Z−i ,X(−z), where
U−i = (U1,U2, . . . ,Ui−1,Ui+1, . . . ,Un)T , Z−i defined similarly.

Conditional correlation Cor(Ui,Zi |U−i ,Z−i ,X(−z)) is constant.
Precision matrices The precision matrices of U |Z,X(−z) and Z|U ,X(−z) are of CAR

form.
Mean Specification E[Y |X,U ] and E[Z|X(−z),U ] are correctly specified.

∗For continuous exposures, positivity can be defined in terms of the probability density function of Z conditional
on measured and unmeasured variables.
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procedure could be alternatively followed for U −P(U |X(−z)), where P(U |X(−z)) is the pro-
jection of U on the column space of X(−z). This is also supported by results from simulated
scenarios under which U and X(−z) are correlated (see Section 6). Further, we recognize that
joint normality might be a strong assumption, and we discuss an approach to relaxing it in
Section 8. We make the following assumptions about the joint distribution of (U ,Z)|X(−z):

1. Cross-Markov property: p(Zi |Z−i ,U ,X(−z)) = p(Zi |Z−i ,Ui,X(−z)),
2. Constant conditional correlation: Cor(Ui,Zi |U−i ,Z−i ,X(−z)) = ρ.

The first assumption states that, conditional on measured covariates and the values of Z

at all other locations, Zi depends on U only through its value at location i, Ui . Thus, it
accommodates correlation between nearby treatments, but it does not allow Uj to directly
affect the value of Zi for i �= j . The second assumption states that the conditional correlation
between Ui and Zi does not vary by location. In the joint distribution of (U ,Z)|X(−z), these
assumptions can be incorporated in the precision matrix (see Appendix C for derivations).
Specifically, if

(9)
(
U
Z

)
∼ N

[(
0

X(−z)γ

)
,

(
G Q
Qᵀ H

)−1]
,

the cross-Markov assumption is equivalent to diagonal Q, and, along with the constant con-
ditional correlation assumption, they imply that

(10) qij =
{−ρ

√
giihii, i = j,

0, i �= j.

Given the above framework, the joint model for U and Z is completed by specifying G
and H, the precision matrices of U |(Z,X(−z)) and Z|(U ,X(−z)), respectively, up to some
unknown parameters that will be estimated from the data. For areal data like the ones in
Section 7 we adopt conditional autoregressive structures (CAR; Besag (1974)) for G and
H, a common assumption in standard spatial analysis models. Then, the precision matrices G
and H are assumed to share the same neighborhood structure which is encoded in the matrices
D and W of (2) but are allowed to differ by their precision and spatial dependence parameters
(τU ,ϕU) and (τZ,ϕZ). Based on (10), the assumed CAR structure leads to Q = −ρ

√
τUτZD.

In the analysis of point-referenced data, the precision matrices of U |(Z,X(−z)) and
Z|(U ,X(−z)) can be specified based on a correlation function decaying in geographical dis-
tance. In either case, since U includes all unmeasured spatial variables Cu, the correct speci-
fication of its precision matrix G becomes harder for a larger number of unmeasured spatial
covariates. We note again here that, since U is unmeasured, estimating the components of
the joint distribution in (9) that contribute to the affine estimator cannot be based on tradi-
tional modeling approaches and, instead, is based on harvesting information from the spatial
structure in exposure and outcome model residuals (as we see in Sections 4.4 and 4.5).

4.3.2. Spatial scale restriction for the unmeasured spatial confounder. In order to draw
causal conclusions using our approach, the no-unmeasured and positivity assumptions still
need to hold, conditional on the measured covariates Cm and the unmeasured U . The as-
sumption of positivity implies that estimation of the causal effect of Z on Y in the presence
of U is only possible if there is variability in Z within levels of U . If the spatial scale of U

is smaller than that of Z, the positivity assumption will be violated, since, loosely speaking,
there may be “strata” of U within which only one value of Z is possible. Therefore, from a
causal perspective we assume that the spatial scales of the exposure and spatial confounder
do not violate positivity of the treatment assignment conditional on the unmeasured spatial
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confounder and the measured covariates. In Section 4.6 we also discuss how the spatial scale
restriction is also useful in settings where spatial variables mediate the effect of interest.

The spatial scale restriction has been studied from a spatial perspective. Paciorek (2010)
shows that the bias and variance of spatial model estimators depend on the relative spatial
scales of the exposure and the residual, including the confounder, ε + U . Paciorek (2010)
recommends only fitting spatial models when there is exposure variation on a spatial scale
smaller than that of the unmeasured confounder, essentially ensuring positivity. From a spatial
perspective, the spatial scale restriction ensures that we do not mistakenly attribute all spatial
variability of the outcome residuals to the unmeasured spatial confounder when it is truly due
to the exposure.

The spatial scale restriction can be enforced through the precision matrices G, H in (9). For
geostatistical data the spatial scale of dependence is often an explicit modeling parameter, as
in Paciorek (2010). For a conditional autoregressive model of areal data, the autocorrelation
parameters ϕZ and ϕU do not have strict interpretations as spatial scale parameters, though
the restriction ϕZ < ϕU plays a similar role in identifying variance parameters.

4.4. The affine estimator within a restricted likelihood framework. In this section we de-
scribe estimation within a restricted likelihood framework. We do so because it allows for
straightforward illustration of how model components correspond to components in the bias
results of Section 4 and the affine estimator in (8). Further, it allows us to easily discuss iden-
tifiability of the model parameters in Section 4.5. In Section 5 we describe a fully-Bayesian
approach to estimation, which is applicable for linear and nonlinear models, and which we
follow for the remainder of this paper.

4.4.1. Linear effect estimator. We start by assuming the linear structure in (4). Using
the conditional distribution U |X acquired from (9), the joint model for the observed data
(integrating U |X out) can be factored as

(11)
Y |X ∼ N

[
Xβ − G−1Q(Z − X(−z)γ ),G−1 + R−1],

Z|X(−z) ∼ N
[
X(−z)γ ,

(
H − QᵀG−1Q

)−1]
,

where R−1 = Cov(ε) (see Appendix D.1 for the derivation). From (11) we see that the like-
lihood depends on U through the components of the precision matrix in (9). Note that, even
though our focus is in estimating parameters of the outcome model (β), an exposure model
is also adopted to provide information on the spatial structure of U . (This is related to many
settings in causal inference where incorporating information from the exposure model im-
proves estimation of causal effects (e.g., Antonelli, Parmigiani and Dominici (2019), Belloni,
Chernozhukov and Hansen (2014), Wilson and Reich (2014)).)

Following a common approach to estimation for mixed models, variance parameters are
estimated based on the restricted likelihood derived from (11), and the estimates are used to
calculate the bias-adjusted affine estimator �β in (8). Defining

(12)

M =
(

G−1 + R−1 0
0

(
H − QᵀG−1Q

)−1

)
,

C =
(

X G−1QX(−z)

0 X(−z)

)
,

ν =
(
Y + G−1QZ

Z

)
and

θ =
(
β
γ

)
,
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we can write the joint distribution of (Y ,Z) as

(13) f (Y ,Z|β,γ ) ∝ |M|− 1
2 exp

[
−1

2
(ν − Cθ)ᵀM−1(ν − Cθ)

]
and the restricted likelihood as

(14) RL ∝ [|M| · ∣∣CᵀM−1C
∣∣]−1/2 exp

[
−1

2
νᵀ
(
M−1 − M−1C

(
CᵀM−1C

)−1CᵀM−1)ν].
If M̂, Ĉ, and ν̂ are maximizers of the restricted likelihood in (14), we calculate (�β,�γ ) =
(ĈᵀM̂−1Ĉ)−1ĈᵀM̂−1ν̂. (Readers interested in the REML approach can find additional infor-
mation in Appendix A.)

The restricted likelihood formulation allows us to make illuminating connections between
our approach, the mixed effects models often used in spatial statistics and the bias results of
existing approaches in Section 4. If ρ = 0, the matrix Q is zero, the model in (9) reduces to
the case where U , Z are independent and the restricted likelihood estimation method would
lead to the estimator β̃ . A nonzero correlation ρ between U and Z leads to the inclusion
of the −G−1Q component in the coefficient of Z, corresponding to the bias correction term
E[U |X] = −G−1Q(Z − X(−z)γ ).

4.4.2. Semiparametric effect estimator. To better accommodate continuous exposures,
we can flexibly model the exposure-response relationship using penalized regression splines.
Penalized regression splines may be represented as linear mixed models (Ruppert, Wand and
Carroll (2003)), allowing for the linear effect-assumption in (4) to be relaxed to

(15) Y = 1β0 + f (Z) + X(−z)β(−z) + U + ε,

where f (Z) = (f (Z1), . . . , f (Zn))
ᵀ and f being a smooth function of Z. Our chosen radial

basis penalized spline model for f may then be written as

(16) �f (z) =
A∑

a=1

βaz
a +

K∑
k=1

lk|z − ξk|A,

where A is the degree of the spline and the ξk are prespecified knots. Letting

(17) X =

⎛⎜⎜⎝
1 z1

1 · · · zA
1

...
...

. . .
...

1 z1
n · · · zA

n

⎞⎟⎟⎠ , L =

⎛⎜⎜⎝
|z1 − ξ1|A · · · |z1 − ξK |A

...
. . .

...

|zn − ξ1|A · · · |zn − ξK |A

⎞⎟⎟⎠
and V = ψ−1LLᵀ+G−1 +R−1, where ψ > 0 is a roughness penalty, the restricted likelihood
is as in (14) with updated components C and M. Letting T = (XL) and A be a diagonal
matrix with the first A + 1 elements equal to 0 and the rest equal to 1 (corresponding to
penalization of the β and l, respectively), the estimate of θ = (β0, β1, . . . , βA, l1, l2, . . . , lK)

is �θ = (Tᵀ�V−1T + ψA)−1Tᵀ�V−1(Y −�BZ).

4.5. Identifiability of parameters. It is evident from the form of the affine estimator in
(8) and the restricted likelihood in (14) that calculating the estimator depends on being able
to estimate components of the relationship of the unmeasured confounder with the exposure
and outcome of interest. Therefore, it is natural to wonder whether these components can be
identified and, if so, which assumptions are key in driving identifiability and which can be
relaxed. We provide two examples: one in which identifiability can be proved analytically
and one in which model components are not identifiable. The details of how identifiability is
achieved or lost in these examples illuminate the key assumptions and their roles.
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FIG. 3. Graph representation of ring with the cross-Markov property and dependence parameters.

4.5.1. Identifiability of model components for a ring graph. The first example is one in
which identifiability can be analytically proved. We consider the setting without measured
variables since including them complicates the notation without providing any additional
insight, and results extend trivially. We also assume that the spatial dependence can be rep-
resented in a ring graph of n locations depicted in Figure 3 with CAR specifications for U |Z
and Z|U . This spatial structure and model yields the precision matrix

(18) Gn = τU

⎛⎜⎜⎜⎜⎜⎜⎝
2 −ϕU −ϕU

−ϕU 2 −ϕU

. . .
. . .

. . .

−ϕU 2 −ϕU

−ϕU −ϕU 2

⎞⎟⎟⎟⎟⎟⎟⎠
for U |Z and similar for Hn for Z|U . For simplicity, we assume that E[Z] = 0 (marginally
over U ) and that E[Y |Z,U ] = βZZ +U . We present two results: the first discussing parame-
ter identifiability based on Z alone (Theorem 1), and the second based on (Y ,Z) (Theorem 2).
Importantly, these identifiability results allow for U to be completely unmeasured.

THEOREM 1. In the scenario defined in this section, it can be determined whether or not
ρϕU = 0 by observing Z. Further, if ρϕU �= 0, then (τZ,ϕZ,ϕU , |ρ|) is also identifiable by
observing Z.

PROOF. The proof relies on a few matrix lemmas which are stated and given proof out-
lines in Appendix E.1. We have that Prec[Z] = τZ[Hn − 4ρG−1

n ] (marginally over U ), and

(19) lim
n→∞ Prec[Z]ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τZ

[
2 − 2ρ2 1√

1 − ϕ2
U

]
, i = j,

τZ

[
−ϕZ − 2ρ2 ϕU√

1 − ϕ2
U(1 +

√
1 − ϕ2

U)

]
, |i − j | = 1,

τZ

[
0 − 2ρ2 ϕ

|i−j |
U√

1 − ϕ2
U(1 +

√
1 − ϕ2

U)|i−j |

]
, |i − j | > 1.

First, note that, for any lag l, the number of pairs of locations with |i − j | = l grows linearly
with n. It can be determined whether or not ρϕU = 0 because limn→∞ Prec[Z]ij = 0 for all
(i, j) such that |i − j | > 1 if and only if ρϕU = 0. If ρϕU �= 0, then for |i − j | > 1 and
|i ′ − j ′| = |i − j | + 1 the ratio limn→∞ Prec[Z]ij /Prec[Z]i′j ′ depends only on ϕU and is
bijective, thus ϕU is identified. With ϕU identified, the three cases in (19) form a system of
equations solvable for (τZ,ϕZ, |ρ|). �
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Based on Theorem 1, if ρϕU = 0, some parameters are not identifiable by only observing
Z. That is, because when ρ = 0, Z and U are uncorrelated, hence Z cannot provide any in-
formation on U ; when ϕU = 0, the unmeasured variable is not spatial and the variability in Z

cannot be decomposed accordingly (a situation we examine closely in Section 4.5.2). In con-
trast, when ρϕU �= 0, a number of spatial parameters are identified based solely on the vector
of treatments Z. For intuition about why the unobserved variable’s spatial dependence pa-
rameter ϕU (but not its precision τU ) can be identified by examining the behavior of Prec[Z]
away from the tridiagonal, recall that, off of the tridiagonal, i and j are not neighbors and that
the precision in (19) tells us about the strength of dependence between Zi and Zj , given the
value of Z at all other locations. Our cross-Markov assumption states that, conditionally on
U , the values of Z at nonneighboring locations are independent, given the values of Z at other
locations. If Zi and Zj are not independent conditional only on Z (and not on U ), this depen-
dence has to arise through paths in Figure 3 that pass through U . The strength of dependence
is a function of ρ, the strength of connection between U and Z at a given location (which
is independent of the distance between i and j ) and ϕU which determines how quickly the
dependence of Ui , Uj attenuates with distance |i − j |. These dependencies are graphically
represented in Figure 3 where the dependence between Zi−1 and Zi+1, conditional on Z at
other locations but marginally over U , arises from the paths Zi−1 −Ui−1 −Ui −Ui+1 −Zi+1
and Zi−1 − Ui−1 − Ui−2 − · · · − U1 − Un − · · ·Ui+1 − Zi+1 and the dependency due to the
latter path diminishes as n becomes large. We can identify ϕU off of the tridiagonal by ex-
amining this attenuation, and ρ is separable from τZ only when examining the tridiagonal as
well.

THEOREM 2. The parameter ϕU is identifiable by observing (Y ,Z) Further, if ϕU �= 0,
then the full parameter (βZ, τZ,ϕZ, τU ,ϕU ,ρ, τε) is identifiable by observing (Y ,Z).

PROOF. Note that E[Y |Z] is identified irrespective of Var[Y |Z], and that, by Theorem 1,
we can identify whether ρϕU = 0 by observing Z.

We start by showing that ϕU is identifiable by observing (Y ,Z). Since Var[Y |Z] = G−1
n +

τ−1
ε In, by noting the similarity between the expressions for Var[Y |Z] and Prec[Z] in (19),

we have

(20) lim
n→∞ Var[Y |Z]ij = τ−1

U

1

2
√

1 − ϕ2
U

(
ϕU

1 +
√

1 − ϕ2
U

)|i−j |
, i �= j.

Therefore, limn→∞ Var[Y |Z]ij = 0 for i �= j if and only if ϕU = 0. Since we can identify
Var[Y |Z], ϕU is identifiable by limn→∞ Var[Y |Z]ij /Var[Y |Z]i′j ′ for |i − j | > 0 and |i ′ −
j ′| = |i − j | + 1.

Next, assume that ϕU �= 0, and we show that the remaining parameters are identifiable
by observing (Y ,Z). We first note that, since E[Y |Z] = (βZ − ρ

√
τZ/τU)Z, the combined

coefficient of Z, βZ −ρ
√

τZ/τU is identifiable. Since we can identify whether ρϕU �= 0 from
observing Z (Theorem 1) and since we have here that ϕU �= 0, we can identify whether ρ = 0
which allows us to consider the cases where ρ = 0 and ρ �= 0, separately.

If ρ = 0, the combined coefficient of Z is equal to βZ , and βZ is identified (which is
expected since for ρ = 0 there is no confounding by U ). Additionally, we can return to
(19) to identify (τZ,ϕZ) from the first two cases. Finally, with ϕU �= 0 identified, τU can be
identified from the off-diagonal elements of Var[Y |Z] in (20).

If ρ �= 0, we can identify (τZ,ϕZ,ϕU , |ρ|) by Theorem 1. Recall that E[Y |Z] = (βZ −
G−1

n Qn)Z and −G−1
n Qn = 2ρ

√
τZ
τU

(τU G−1
n ), where τU G−1

n does not depend on τU . Since

ϕU �= 0, Gn is not a scalar matrix, and the terms Z and τU G−1
n Z are known and not collinear.
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Thus, we can separately identify their coefficients βZ and ρ
√

τZ/τU . Since τU and τZ are
both positive and (τZ, |ρ|) has been previously identified, we can identify sign(ρ), and τU .

In both cases (ρ = 0 or ρ �= 0), τε can be identified from the diagonal elements of
Var[Y |Z]. �

Theorems 1 and 2 combined establish that, when spatial dependencies can be represented
using a ring, and the unmeasured variable is spatial (ϕU �= 0) and is truly a confounder (ρ �=
0), the effect of the exposure Z, βZ , is identifiable.

The above results and the details of the proofs indicate that the cross-Markov property is
the critical assumption in identifying βZ . This is not to say that we can remove the more para-
metric or the constant conditional correlation assumptions but rather that these assumptions
are most likely not the only or weakest ones allowing for identification. In turn, the cross-
Markov assumption can be viewed as a relaxation of the usual assumption of no unobserved
confounders, expressing that confounding by unobserved spatial variables is local. To see
this, the assumption may be rewritten as Zi ⊥⊥ U−i |(Z−i ,Ui,X(−z)), expressing that condi-
tional on measured covariates, the value of U at location i and the value of Z everywhere
else, Uk with k �= i is not a predictor of Zi and, therefore, does not confound the relationship
between Zi and Yi .

Although we have proved these asymptotic results for a ring of locations, the key require-
ment on the structure of a graph with large connected components is that there are enough
pairs of locations at varying lags. This requirement does not seem problematic for, for exam-
ple, counties in the United States, as in our study in Section 7.

4.5.2. A nonsufficient set of assumptions: Unmeasured nonspatial confounders. Within
framework (3) any set of assumptions that suffice for identification of E[U |X] would also
allow for identification of the causal parameter μ′(z). In Section 4.5.1 we showed that, for
adjacency structures described as a ring of growing size, identifiability is achieved when
the unmeasured confounder is spatial (ϕU �= 0). Here, we establish that identifiability is lost
when the unmeasured confounder is not spatial (ϕU = 0) under any adjacency structure.

Assume that Ui are independent and identically distributed random variables (exhibiting
no spatial structure) with G = τU I. Further, assume that Z and ε are not spatially structured
with precision matrices H = τZI and R = τεI. Then, the parameter vector (τU , τZ, τε, ρ) in
the restricted likelihood is reduced to (σ 2, ϕ) = (τ−1

U + τ−1
ε , τZ(1 −ρ2)), and the parameters

in (τU , τε) and in (τZ,ρ) are not separately identifiable (the mathematical derivations are
included in Appendix E.2). Thus, when there is no spatial structure, �β = (XᵀX)−1Xᵀ(Y −
ρ
√

τZ
τU

Z) is not identifiable either.
This result is intuitively obvious. If U is not spatially structured, there is no information

in the observed data to differentiate outcome model residuals’ variability due to U from that
due to ε and, similarly, nothing to differentiate intrinsic variability in Z from variability due
to U . In such case, E[U |X] is not identifiable based on observed data indicating that adjust-
ment for U is not possible if the unmeasured confounders do not exhibit spatial structure.
This is in line with recent work showing that latent variable approaches cannot be used to ac-
quire identifiability of causal parameters without additional assumptions (D’Amour (2019),
Ogburn, Shpitser and Tchetgen Tchetgen (2019)).

4.6. Spatially correlated mediating variables. From model (11) and the form of the re-
stricted likelihood in (14), it is evident that information about the elements (G,Q) in the
bias correction term −G−1Q(Z − X(−z)γ ) is found in the spatial variability of exposure and
outcome models’ residuals. However, the estimation procedure cannot differentiate between
spatial structure arising from spatial confounders (temporally precedent of Z) or variables
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found on the causal pathway between Z and Y (mediators). If Z and Y are measured within
a small time window, it may be reasonable to assume that there are no spatial covariates me-
diating the effect of Z on Y , and, for that reason, our estimates correspond to estimates of
βz = μ′(z).

On the other hand, in the presence of spatial intermediate variables, estimates using the
affine estimator might more closely resemble the direct effect of Z on Y , not due to changes
to the spatial mediators (Baron and Kenny (1986)). In this setting the spatial scale restriction
provides some protection against adjustment for spatial mediators since variation in spatial
scales smaller than that of the exposure is not adjusted for. Therefore, the spatial scale re-
striction allows for unmeasured spatial confounder bias mitigation while protecting us from
adjusting for variables on the causal pathway between Z and Y .

5. The affine estimator in nonlinear settings: A Bayesian implementation. The
REML framework has allowed us to analytically investigate bias and identifiability by al-
lowing us to integrate out the distribution of the unmeasured confounder from the observed
data likelihood. However, such analytical approach is less applicable to noncontinuous out-
comes and nonlinear models. Here, we extend the affine estimator to nonlinear models within
the Bayesian framework.

5.1. Estimation of causal parameters with nonlinear models. When μ(z) = E[Y(z)] is
the estimand of interest, and the outcome model specifies E(Y |Z,Cm,U), μ(z) can be writ-
ten as ECm,U [E(Y |Z = z,Cm,U)] under assumptions. This is often referred to as the g-
formula or g-computation (Robins (1986)). If the outcome model is linear without exposure-
covariate interactions, the regression coefficient for the exposure can be directly interpreted
as an estimate of the causal quantity μ′(z). However, the exposure’s coefficient cannot be
directly causally interpreted in the case of nonlinear models, even when the model is cor-
rectly specified. For example, in the context of logistic regression with binary outcomes, the
coefficient of the exposure βz is not equal to μ′(z), and a linear specification of the exposure-
response relationship in the linear predictor of the logistic regression does not imply a linear
μ(z). Therefore, in nonlinear outcome models we need to proceed with care when translat-
ing estimated coefficients to estimates of causal quantities, and an integration step (over the
distribution of confounders in the target population) needs to be employed in order to acquire
estimates of μ(z) from a nonlinear model fit.

Poisson models for count outcomes, like the one in our study, are an exception. In such
models the parameter βz (or exp(βz), which is often used in Poisson models), can be in-
terpretable as causal but for an estimand that is slightly different from μ′(z). Let Pi be
the population at risk at location i, and Yi(z) be the potential outcome at location i if
the exposure was set to z. Consider the PAERC defined in terms of the standardized out-
come rate as E[P −1Y(z)]. Under a structural model similar to (3) for linear η, assume that
[Y(z)|X(−z),U ] ∼ Poisson(P exp{βzz+β

ᵀ
(−z)X(−z) +U}). Then, the PAERC can be written

as

(21) EX(−z),U

[
exp
{
βzz + β

ᵀ
(−z)X(−z) + U

}]= exp{βzz}EX(−z),U

[
exp
{
β
ᵀ
(−z)X(−z) + U

}]
.

From (21) the coefficient βz can be interpreted as the log-relative standardized rate
for a one-unit exposure change, log{E[P −1Y(z + 1)]/E[P −1Y(z)]}. Equivalently, βz

can be interpreted as the instantaneous effect of the exposure in the relative scale as
∂{log E[P −1Y(z)]}/∂z. Note that this is substantially different from the standard interpre-
tation of estimated coefficients in Poisson models, and βz cannot be used as an estimate of
log{E[Y(z + 1)/Y (z)]}.
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5.2. Bayesian implementation of the affine estimator. The presentation above indicates
that, for nonlinear models where noncollapsibility is an issue and estimated coefficients do
not always estimate causal quantities, estimation might require an explicit model for Y con-
ditional on measured covariates and the unmeasured component. This is straightforwardly
achieved for the affine estimator within a Bayesian implementation, for which U is viewed
as a missing variable that is iteratively imputed through a Gibbs sampler. Therefore, placing
the affine estimator within the Bayesian paradigm does not require marginalization over U
which allows for estimation outside the realm of linear regression. This is exploited in Sec-
tions 6 and 7 where we consider a count outcome and a Poisson model with the log link and
linear predictor ηi = oi + x

ᵀ
i β + ui , where oi is the offset in the usual sense and sampling

from the conditional posterior distribution of β can be performed without modifying standard
algorithms for Poisson regression.

Apart from its generalizability to nonlinear models, the Bayesian approach has a number
of additional benefits over the REML approach, including computational gains. The Bayesian
implementation is computationally more efficient thanks to the conditional nature of Gibbs
sampling which allows us to take advantage of sparsity in P = Prec[U ,Z]. For example, the
log full conditional density of the dependence parameters is (up to an additive constant)

(22)

1

2

[|P| − uᵀGu − 2uᵀQ(z − X(−z)γ ) − (z − X(−z)γ )ᵀH(z − X(−z)γ )
]

+ logp(τU , τZ,ϕU ,ϕZ,ρ),

where P, G, H and Q are sparse matrices depending on (τU , τZ,ϕU ,ϕZ,ρ) and p(τU , τZ,ϕU ,

ϕZ,ρ) is the prior for these parameters. In contrast, the REML approach requires inverting
G, R, (H − QᵀG−1Q), M and CᵀMC in (12) and (14) at each evaluation of the restricted
likelihood.

Another advantage of the Bayesian approach is that it is easier to incorporate non-Gaussian
exposures by distinguishing between Z in (9) and the exposure parameterization in the out-
come model. For example, in our analysis of the food access data in Section 7 we replace Z

with logZ in (9) to make the assumption of joint normality more plausible, while using Z in
the outcome model to retain the desired interpretation of regression coefficients on the orig-
inal percentage point scale. Of course, that comes with the caveat that our assumptions are
now based on the transformation of the exposure variable. The exposure model and outcome
model may be further decoupled by, for example, assuming joint normality of U and a latent
variable in a probit model of a binary exposure.

5.3. A regularization prior on the precision matrix of (U ,Z). The estimation of the joint
precision matrix P of (U ,Z) is critical in mitigating bias due to the unobserved spatial con-
founder U . However, the present setting is a “low-information” one, as we neither observe U
directly nor obtain independent replicates. In such settings the restricted likelihood may have
maxima at the boundary of allowed values. For example, Chung, Rabe-Hesketh and Choi
(2013) noted that it is not unusual in random effects metaanalysis for the REML estimate of
the between-study standard deviation to be zero and suggested regularizing the REML esti-
mate by multiplying the restricted likelihood by a weakly-informative gamma prior for the
between-study variance. Along another thread, Won et al. (2013) considered estimating the
covariance matrix in high-dimensional settings where maximum likelihood estimates of such
covariance matrices are often ill conditioned and cannot be inverted accurately. They propose
a constrained maximum likelihood approach using the constraint κ(�) ≤ κmax, where κ(�)

is the condition number (the ratio of the largest to smallest eigenvalue) and κmax is prespec-
ified. They note that this optimization is equivalent to maximizing the likelihood times an
exponential prior on κ(�) left-truncated at 1.
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We have observed that this problem manifests in the fully Bayesian implementation as
occasional failure of the MCMC sampler to converge. For our purposes we adopt a trun-
cated exponential prior for κ(P) with rate 1/10 and range (1,∞) which directly addresses the
ill-conditioning problem. With this specification the difference in log-prior density between
κ(P) = 1 and κ(P) = 100 is 9.9.

6. Simulation study.

6.1. Linear effect. We perform simulations to compare the affine estimator to the non-
spatial and spatial random effect estimators under several generative models (GMs). Under
all GMs, we consider a single measured covariate, X, generated uniformly on (−1/2,1/2).
We assume that the mean of Z|X(−z) is X. Four GMs reflect (U ,Z)|X(−z) generation accord-
ing to (9) and (10), with U |Z,X(−z) and Z|U ,X(−z) being one-dimensional CAR models.
The within-variable dependence parameters are denoted by ϕU and ϕZ , and precision param-
eters by τU = τZ = 1. The first model we consider is the unconfounded GM (GM 1), where
U and Z are independent of each other (ρ = 0) but still spatially structured with ϕU = 0.5
and ϕZ = 0.2. The unmeasured variable U is still predictive of the outcome, hence induc-
ing spatial correlation in the observed outcomes. For the remaining three CAR models, we
specify cross-variable dependence (ρ = 0.3), and vary the within-variable dependence pa-
rameters (ϕU ,ϕZ) at (0.5,0.2) for GM 2, reresenting a confounder at a larger spatial scale
than the exposure, (0.2,0.5) for GM 3, representing a confounder at a smaller spatial scale
than the exposure violating our causal assumptions, and (0.35,0.35) for GM 4, where con-
founder and exposure vary at the same spatial scale. The fifth and sixth GMs represent sit-
uations in which the analysis model is misspecified. For GM 5, U was generated such that
its marginal distribution is a one-dimensional CAR model with ϕU = 0.5 and τU = 1 and
Z|U ,X(−z) ∼ N [U + X, I]. Therefore, in this GM the model (9) is misspecified, in that G
does not describe the true precision matrix of U |Z,X(−z), and the assumption of constant
conditional correlation is violated. However, the precision matrix of Z|U ,X(−z) is still cor-
rectly specified, and the cross-Markov property holds. For GM 6, tan(U) takes the place of
U in (9), so that the joint normality assumption on (U ,Z)|X(−z) is violated. In all six GMs

the potential outcomes are generated as Yi(z)
iid∼ Poisson[exp{z + Xi + Ui}].

Under each GM we generate 500 data sets of size n = 300 and fit the nonspatial, spatial
and affine estimators. When assumptions on the forms of variances are required, we assume
CAR structures, and for the affine estimator we assume that Q is of the Markov form (10).
Linear predictor models for the exposure and outcome are correctly specified. For the spatial
and affine estimators we evaluate variations with and without the restriction that ϕZ < ϕU

discussed in Section 4.3.2, with the restricted estimators denoted by (-RS). For regression co-
efficients we used Gaussian priors with mean 0 and standard deviation 10. For the Spatial-RS,
Affine, and Affine-RS estimators we used the regularization prior discussed in Section 5.3.
This prior couples the distributions of U and Z, which is not usually a feature in spatial
analyses, and so is not used for the nonspatial and spatial estimators. Instead, for the non-
spatial and unrestricted spatial estimators flat priors were used for all variance parameters.
In all cases the precision matrix P was restricted to be positive definite. Due to the computa-
tional cost of computing the condition number of the precision matrix P when evaluating the
prior for variance parameters, we used an approximation to the condition number acquired
by the same model and parameter values on a four-location, one-dimensional ring instead of
the 300-location line (the first and last locations are also neighbors). Posterior samples were
drawn using 10,000 Gibbs sampler iterations after 1000 burn-in iterations.

Table 2 displays the simulation results in terms of bias, standard deviation and root mean
squared error (RMSE) of posterior means across data sets and empirical coverage of 95%
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TABLE 2
Simulation results from 500 data sets of size n = 300. The -RS suffix indicates estimators with the restriction

ϕZ ≤ ϕU

Mechanism Estimator Bias Std. Err. RMSE 95% CI Coverage

GM 1 Unconfounded Nonspatial 0.00 0.14 0.14 0.62
Spatial 0.01 0.12 0.12 0.93
Spatial-RS 0.02 0.12 0.12 0.93
Affine 0.03 0.27 0.27 0.98
Affine-RS 0.03 0.29 0.29 0.96

GM 2 Large-scale Nonspatial 0.37 0.15 0.40 0.02
confounder Spatial 0.37 0.12 0.39 0.05

Spatial-RS 0.37 0.12 0.39 0.04
Affine 0.24 0.34 0.41 0.94
Affine-RS 0.14 0.30 0.33 0.95

GM 3 Large-scale Nonspatial 0.33 0.14 0.36 0.03
exposure Spatial 0.35 0.11 0.36 0.03

Spatial-RS 0.34 0.10 0.35 0.04
Affine 0.33 0.25 0.42 0.91
Affine-RS 0.23 0.36 0.42 0.83

GM 4 Same scales Nonspatial 0.34 0.15 0.38 0.03
Spatial 0.35 0.11 0.37 0.05
Spatial-RS 0.35 0.11 0.37 0.06
Affine 0.29 0.27 0.39 0.93
Affine-RS 0.18 0.32 0.36 0.89

GM 5 Non-constant Nonspatial 0.35 0.11 0.37 0.00
conditional Spatial 0.37 0.06 0.37 0.00
correlation Spatial-RS 0.37 0.06 0.37 0.00

Affine 0.38 0.27 0.47 0.57
Affine-RS 0.22 0.20 0.30 0.75

GM 6 Non-normal Nonspatial 0.24 0.08 0.26 0.06
joint Spatial 0.24 0.08 0.26 0.14
distribution Spatial-RS 0.24 0.08 0.26 0.15

Affine 0.18 0.18 0.26 0.94
Affine-RS 0.08 0.17 0.19 0.96

equal-tail credible intervals. We first note that there is minimal difference between the spatial
and spatial-RS estimators, even when the spatial scale assumption is violated in the large-
scale exposure scenario. Additionally, the spatial and spatial-RS estimators have similar bi-
ases to the nonspatial estimator. For the unconfounded GM 1, all estimators are unbiased,
all spatial estimators have approximately correct confidence interval coverage but both affine
estimators have much larger standard errors and, therefore, RMSE. As expected due to mis-
specification of the dependence structure, the posterior distributions from the nonspatial mod-
els are too concentrated and therefore the credible intervals are anticonservative. In all GMs
with confounding (2–6), the affine-RS estimator mitigates bias relative to the nonspatial esti-
mator, whereas the spatial and spatial-RS estimators do not. The unrestricted affine estimator
generally mitigates bias to a lesser extent, especially in the large-scale exposure, same-scales
and nonconstant conditional correlation scenarios. When the restricted scale assumption is
correct, the affine-RS estimator has a smaller standard error than the unrestricted affine es-
timator. Additionally, the affine-RS estimator has a smaller RMSE than all other estimators,
except in the case of a large-scale exposure where its scale restriction is false. In the pres-
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ence of unobserved confounding, both affine estimators have credible interval coverage rates
far superior to the other estimators. Both have approximately nominal coverage rates in the
independent, large-scale confounder, and nonnormal joint distribution scenarios. Analogous
simulation results for maximum a posteriori (restricted likelihood multiplied by a prior) esti-
mation in the Gaussian outcome are available in Appendix G.

Although our model specifies that U is independent of X, we conducted a smaller simu-
lation for a scenario in which the large-scale unmeasured confounder in GM 2 is correlated
with the measured confounder, by specifying that E[U |X] = X. We simulated 100 data sets
and fit the same models (i.e., without a mean model for U ) as in the previous simulations. The
results in estimating βz were similar to those under GM 2 (Appendix F), but the estimates of
βx were biased upward (not shown). This is expected since the part of U that is correlated
with X is captured and adjusted for with the inclusion of X in the outcome model, and the
affine estimator targets the component of U that is orthogonal to X.

6.2. Nonlinear effect. The bias-variance trade-off observed between the spatial and
affine estimators in the linear case was also observed for a nonlinear effect. We generated
500 data sets of size 300 where U , Z are generated from (9) with (τU ,ϕU , τZ,ϕZ,ρ) =
(1,0.5,1,0.2,0.3), and Y is a Poisson variable with log link and linear predictor in the form
of the right-hand side of (15), with (β0, βx) = (0,0) and f (z) = 2/(1 + e−6z) − 1. There-
fore, the true effect curve is an antisymmetric sigmoid with asymptotes −1 and 1. We fit the
restricted-scale semiparametric spatial and constrained affine estimators using a penalized
cubic spline model with a radial basis and used the same priors as in the linear simulations.
Inference was based on 10,000 posterior draws after 5000 burn-in iterations.

Figure 4 displays a graphical summary of the simulation results. For the most part, both
estimators capture the general shape of the mean response curve. However, the spatial esti-
mator is biased toward more extreme estimates as the exposure deviates from 0, and this bias
is mitigated by the constrained affine estimator. On the other hand, the constrained affine es-
timator exhibits substantially greater variability, especially for exposure ranges with limited

FIG. 4. Nonlinear effect simulation results. Mean and pointwise 95% sampling intervals of posterior mean log
population average exposure-response curve from 500 data sets of size n = 300. True log PAERC indicated by
solid black curve.
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available data (away from an exposure value of 0). There also appears to be an asymmetry
in that, when the true log PAERC is negative, the bias of the spatial estimator is more pro-
nounced, and the constrained affine estimator is more effective at mitigating bias than when
the log PAERC is positive. This asymmetry is likely due to the nonlinear relationship between
the model’s linear predictor and the expected outcome according to the Poisson likelihood.

7. Estimating the county-level effects of poor supermarket availability on CVD mor-
tality. Here, we use the affine estimator in order to estimate the county-level effect of poor
supermarket availability on CVD mortality. We consider the affine estimator with and without
the spatial scale restriction, and we also consider the spatial random effect estimator with the
spatial scale restriction, an extension to the results shown in Section 2. In the outcome model
we include the exposure on the percentage point scale to aid in interpretation of its coeffi-
cient. However, we replace Z with logZ in the joint model (9) to better satisfy the condition
of joint normality. For the spatial-RS model we restrict ρ to be zero, and for the spatial-RS
and affine-RS models we apply the constraint ϕU ≥ ϕZ . Note that the prior distribution for
the spatial-RS model differs substantially from that of the unconstrained spatial model. In all
three models we use a similar approximation to the condition number prior of Section 5.3
that was used in the simulation study: rather than computing the condition number on the full
joint precision matrix P, we use the analog of P derived from a 4 × 4 regular grid. Posterior
distributions from all models were simulated by retaining 10,000 Gibbs sampler iterations
after 1000 burn-in iterations. The affine-RS model took approximately 1.5 hours to fit on a
laptop for a sample size of n = 3,093.

In Section 7.1 we examine the assumptions underlying the affine estimator, and in Sec-
tion 7.2 we report summaries of the posterior distribution of the causal effect estimates.

7.1. Examining the plausibility of the assumptions in the context of our study. A number
of assumptions, previously presented in Table 1, are necessary to identify the causal effect of
interest in the presence of unmeasured spatial confounders.

Temporal ordering and SUTVA are standard assumptions in causal inference and are nec-
essary to define our causal effect. The temporal ordering of the exposure and outcome is
immediate satisfied since the exposure data were compiled from 2000 and 2006 data sets,
while the mortality outcome data were compiled from 2007 reports. SUTVA is expected to
hold, at least approximately, since we can assume that the county-level effect of poor su-
permarket access on CVD mortality is due to individual-level causal effects, and the home
address county listed on death certificates in 2007 corresponds well to the deceased person’s
county of residence from 2000 to 2006.

Outcome additivity and the appropriateness of the joint normality and CAR assumptions
for (U ,Z)|X(−z) are modeling assumptions that may be, at least partially, addressed via stan-
dard diagnostics. Maps of Pearson residuals, based on posterior mean parameters and plots of
those residuals versus linear predictors, indicated no visually apparent residual spatial corre-
lation or nonlinearity in either the log exposure or outcome models in the affine-RS approach.
A scatterplot of the joint distribution of the residual log exposure, after adjusting for covari-
ates vs. mean, imputed confounder U appeared Gaussian.

The cross-Markov and constant conditional correlation assumptions are assumptions about
the relationship between unobserved confounders and the exposure to which standard diag-
nostics are not applicable. The plausibility of these assumptions depends heavily on the ap-
plication and hypothesized confounders. For example, consider an unmeasured variable rep-
resenting cultural preference toward purchasing prepared food from restaurants vs. cooking
at home. This variable might act as a confounder in our study, since an increase in such a pref-
erence could both depress the demand for and availability of supermarkets and might drive
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Zi−1 Zi Zi+1

FIG. 5. Graph representation of the cross-Markov property p(Zi |Z−i ,U) = p(Zi |Z−i ,Ui).

food choices independent of supermarket availability. The cross-Markov property for this
variable (an illustration of which is shown in Figure 5) allows for such cultural preferences
to have complex dependence structures across locations. However, grocery store accessibility
within a county i, Zi , is only allowed to depend on such cultural preferences only through
its value within the county (conditional on the grocery accessibility in all other locations).
This assumption is reasonable for large counties where the food culture in neighboring coun-
ties does not directly influence the demand for (and eventual availability of) supermarkets,
except through its correlation with the food culture within the county itself. Given the cross-
Markov property, the constant conditional correlation assumption implies that the strength of
the relationship between this aspect of food culture and supermarket availability is constant
(conditional on other observed variables in X(−z)). This can be seen by noting that

(23) E[Zi |Z−i ,Ui] = x
ᵀ
(−z),iγ + ϕZ

|∂i |
∑
j∈∂i

(
Zj − x

ᵀ
(−z),jγ

)+ ρ

√
τU

τZ

Ui.

Thus if both the cross-Markov and constant conditional correlation hold,
√

τU/τZUi above
behaves like an additive predictor of Zi with regression coefficient ρ. A plot of residuals from
the regression implied by (23) did not indicate any departures from linearity.

An assumption on the spatial scales of unobserved confounders is also critical for reliable
identification of causal effects. We can evaluate this assumption within the model by exam-
ining the joint posterior distribution of (ϕU ,ϕZ). In our case the posterior distribution of
ϕU −ϕZ from the unconstrained affine model was approximately Gaussian with mean 0.091,
standard deviation 0.024 and first percentile 0.030. The posterior from the affine-RS model
was similar, indicating that the assumption is satisfied within the scope of the model.

7.2. Estimating the effect of poor supermarket availability on CVD mortality. Figure 6
displays the posterior distribution of the exponentiated exposure coefficient from the nonspa-
tial, spatial, spatial-RS, affine and affine-RS models. As noted in Section 5.1, this quantity
can be interpreted as the relative expected risk of CVD mortality among the population in
the 65+ age range due to a one percentage point increase in poor supermarket access in a
randomly-chosen county. The agreement of the posterior distribution of ϕU − ϕZ in the spa-
tially restricted and unrestricted models implies that the posterior densities from the spatial
and spatial-RS models closely coincide (both posterior geometric means 0.999, 95% CIs
(0.988,1.011)), as do those from the affine and affine-RS models (posterior geometric mean
1.005, 95% CI (0.993,1.018) and 1.005 (0.992,1.018), respectively). As we saw in Sec-
tion 2, the nonspatial model reports a definitive, protective effect of poor supermarket avail-
ability (posterior mean 0.968, 95% CI (0.962,0.973)). In contrast, all four spatial models
return a smaller and potentially null effect. The spatial and spatial-RS models return approx-
imately null effects with posterior probability of a relative risk smaller than one equal to 0.54
and 0.53, respectively. In contrast, the affine and affine-RS models estimate that poor super-
market access might have a harmful effect on CVD mortality, with posterior probability of a
relative risk greater than one equal to 0.8 and 0.79, respectively.



2090 P. M. SCHNELL AND G. PAPADOGEORGOU

FIG. 6. Posterior densities of county-level relative risk of CVD mortality in the 65+ age range due to a one per-
centage point increase in the proportion of households with no vehicle and more than one mile from a supermarket
or large grocery store.

The change in the point estimate between the spatial random-effect models and the affine
models is largely attributable to the posterior distribution of ρ. This distribution is skewed
slightly left, with a posterior mean of −0.020 and 95% CI (−0.040,−0.001), indicating
confounding by the latent variable U , even though the posteriors of exp(βZ) from the spatial(-
RS) and affine(-RS) models overlap. Among posterior draws from the affine-RS model, the
correlation between ρ and exp(βZ) is −0.448, indicating that unobserved spatial confounding
is likely to bias the spatial estimator downward.

We also fit semiparametric versions of each model following the approach in Section 4.4.2.
Due to the nonuniform distribution of exposures, we used a truncated cubic basis for the pe-
nalized spline. We retained 10,000 MCMC iterations after 5000 burn-in iterations. The affine-
RS model took approximately two hours to fit. Results are shown in Figure 7 and are in broad
agreement with those from the generalized linear models. The nonspatial model indicates a
protective effect of increasing the proportion of households with poor supermarket access on
CVD mortality across the observed exposure range. In contrast, the spatial and affine models
indicate null and weakly harmful effects, respectively. In all models the posterior geometric
mean of PAERC indicates a protective effect at extremely high levels of poor supermarket
access (above 15%), though this is likely an artifact of extrapolation of the spline basis since
data are sparse in that range and the credible bands widen dramatically.

8. Discussion. By positing a joint model for the exposure and unmeasured spatially-
correlated confounders, we were able to extend commonly-used spatial data analysis tools
to mitigate bias due to such confounders. In contrast to existing approaches that indicate
a potentially protective effect of poor supermarket access on cardiovascular disease deaths
among the elderly at the county level, the proposed approach leads to estimated effects and
inferences that are more plausible and in line with subject-matter knowledge which indicate
that poor supermarket access is likely to be harmful on cardiovascular health. Our study
also contributes to the literature on racial and socioeconomic disparities. Much of the recent
research on food access and health makes reference to food deserts, census tracts with low
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FIG. 7. Posterior geometric mean and pointwise 95% credible bounds for the population average exposure-re-
sponse curve. Rugs indicate observed exposures. Results from the constrained spatial and unconstrained affine
models are similar to those from the unconstrained spatial and constrained affine models, respectively.

income and poor food access (United States Department of Agriculture Economic Research
Service (2012)). At the neighborhood level, supermarkets are more prevalent in high-income
neighborhoods and in neighborhoods with predominantly white residents compared to those
whose residents have lower incomes or are black (Morland et al. (2002)).

At the same time, there exist limitations to our study that extend outside the scope of unob-
served confounders. County-level effects of supermarket access can be extremely relevant for
policy making and local planning, but they cannot be directly translated to individual-level ef-
fects that may also be of substantial scientific interest. Additionally, although outcomes were
measured in the 65+ age range, the exposure and covariates were generally measured across
all age ranges. Finally, it is unlikely that effects of poor supermarket access would manifest in
differences in mortality in the short term (e.g., the following year). Instead, effects are more
likely to be cumulative over timespans on the order of many years.

From a statistical perspective, our approach to mitigating bias from unobserved spatial
confounders is rooted in the causal inference framework and exploits spatial statistics tools
that can be used to directly adjust for structured unmeasured confounding. We hope that our
work contributes to the growing bridge between spatial data analysis and causal inference.
The methodology is intended to be amenable to researchers accustomed to the usual spatial
statistics literature but could, potentially, be useful in situations calling for mixed models,
more generally, with appropriate modifications. For that reason the proposed approach may
be widely applicable to scenarios in spatial statistics, time-series analyses and spatiotemporal
settings.

One of the key assumptions in drawing causal conclusions is that of positivity. In the
presence of spatial confounders and for positivity to hold, the spatial scale of the confounder
must be larger than that of the treatment. Checking the robustness of estimated effects using
the affine estimator with and without the spatial scale restriction can provide intuition on the
plausibility of positivity due to unmeasured spatial confounders. This should, however, be
employed with care, if spatial mediating variables are expected to exist.

A natural question that arises is, whether and at what occasions methodology, which di-
rectly adjusts for unmeasured confounding, should be preferred over classical sensitivity
analysis. We find that in settings with structured data, such as spatial and temporal data,
unmeasured confounders will also be expected to be structured. In those situations we find
that methodology that directly adjusts for these variables can provide more accurate effect es-
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timates, and strengthen the causal claim of scientific conclusions. An interesting line of future
research could extend sensitivity analysis to settings where methods, like the one presented
here, alleviate bias from structured confounders, and sensitivity of results in the presence of
unstructured covariates is evaluated.

Based on the structural model (3), we discussed a set of assumptions that allowed for
identification of the bias correction term using only the observed data while providing a
simple expression for the expected value of the confounder conditional on the exposure:
joint normality of the spatial confounder and exposure of interest, the cross-Markov and con-
stant conditional correlation assumptions. There are several ways in which these assumptions
could be relaxed. First, joint normality may be relaxed by assuming joint normality of an
underlying random effect process, with the realizations of both the exposure and covariates
arising from other distributions. For example, a latent probit model could be used to assess
the effects of binary exposures. Furthermore, it may be possible to use more flexible, non-
parametric alternatives to the multivariate normal form of the random effect structure, such
as spatial Dirichlet processes, both in point-referenced (Gelfand, Kottas and MacEachern
(2005)) and areal (Kottas, Duan and Gelfand (2008)) data. However, questions of identifi-
ability in less parametric settings will likely be difficult to answer. The cross-Markov as-
sumption may be relaxed by, for example, treating the joint distribution of the exposure
and confounder as a multivariate conditional autoregressive process (Gelfand and Vounatsou
(2003)) and expanding the allowable neighbor relations. The constant conditional correla-
tion assumption may be relaxed by allowing the conditional correlation to vary smoothly
in space or based on the number of neighboring locations. In any case, formal treatment of
general requirements on the: (a) spatial dependence structure (such as the ring graph in Sec-
tion 4.5.1), including (b) the cross-Markov structure specifying the conditional dependence
between the exposure and the unmeasured confounder and (c) the conditional correlation
between the unmeasured confounder and exposure, allowing for identification of the causal
effect in the presence of unmeasured confounding is an interesting topic of future research.
On a more technical note, priors that place a positive probability on τ−1

U = 0 could be al-
lowed.

Furthermore, even though the structural model in (3) allows for arbitrary interactions
among the exposure and measured covariates (allowing, e.g., for treatment effect heterogene-
ity), it assumes that there are no interactions between measured and unmeasured covariates.
The extent to which this assumption can be relaxed is an interesting line of future work, espe-
cially in the light of recent results in causal inference for unmeasured confounding (D’Amour
(2019), Ogburn, Shpitser and Tchetgen Tchetgen (2019)). Therefore, an interesting question
that arises is, “Can we harvest the spatial information of the data to mitigate bias from un-
measured confounders without imposing structural assumptions?”

We consider this to be the most pressing topic of future study: what are the general condi-
tions under which causal effects are identifiable in the presence of unmeasured spatial con-
founding and to what extent is bias mitigation robust to model misspecification? Within the
context of each study, researchers would need to verify whether the set of reasonable (within
their context) assumptions suffices for identification of the bias correction term, while we
have illustrated situations in which the causal effect is and is not identifiable.
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SUPPLEMENTARY MATERIAL

Supplement to “Mitigating unobserved spatial confounding when estimating the
effect of supermarket access on cardiovascular disease deaths” (DOI: 10.1214/20-
AOAS1377SUPPA; .pdf). (Schnell and Papadogeorgou (2020a)) PDF file containing detailed
data descriptions, derivations, and additional simulation results.

Supplement data and code to “mitigating unobserved spatial confounding when es-
timating the effect of supermarket access on cardiovascular disease deaths” (DOI:
10.1214/20-AOAS1377SUPPB; .zip). (Schnell and Papadogeorgou (2020b)) Data sets and
code for reproducing simulations and analyses.
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